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Summary. A technique is presented, which enables the state space of a Harris 
recurrent Markov chain to be "split" in a way, which introduces into the split 
state space an "atom".  Hence the full force of renewal theory can be used in the 
analysis of Markov chains on a general state space. As a first illustration of the 
method we show how Derman's construction for the invariant measure works 
in the general state space. The Splitting Technique is also applied to the study of 
sums of transition probabilities. 

I. Introduction 

Let X = {Xn; n =0, 1, ...} be a Markov chain (M.C.) on a general measurable state 
space (E, g). Our notation and terminology follows Revuz (1975) (abbrev. [R]), to 
which the reader is referred for unexplained notation and terminology. We shall 
assume throughout this paper that the M.C. X is recurrent in the sence of Harris ((p- 
recurrent in the terminology of Orey (1971)): we assume the existence of a non- 
trivial (p~d/+(d ~ such that 

P~[X, sA i . o . ]= l  for all x~E, A6E  with (p(A)>0. 

When studying recurrent Markov chains with a denumerable state space, a basic 
technique is to fix one state, and investigate the properties of the chain by using the 
independence of the paths between visits to this fixed state. This enables, for 
example, the full force of renewal theory to be used on the diagonal elements of a 
Markov chain transitions matrix (cf. Feller (1957)). When the state space is a 
general measurable space (E, g), this type of argument fails: there does not, in 
general, exist a single point which is visited with positive probability from any point 
in the state space. 

The main purpose of this paper is to present a technique which enables the state 
space of a Harris recurrent Markov chain to be split in a way which preserves the 
recurrent character of the chain, and which introduces into the split state space an 
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atom: that is a set from the points of which all transitions are identical. On the new 
state space elementary renewal theorems can be used by considering returns to the 
atom in a manner analogous to the technique of countable state space chains. 

Our splitting technique is in some ways similar to a method used by Griffeath in 
the context of coupling methods for Markov chains (cf. Theorem 3 of Ch. 3.3. of 
Griffeath (1976)). According to Griffeath, to every visit of the coupled process to the 
rectangle C x C, where C is a C-set (for the definition of C-sets see [R], p. 160), is 
associated a random variable Z taking values 0 and 1 and being independent of the 
past history of the coupled process. The transition probability function of the 
coupled process is then modified according to the value of Z. The modification is 
such that the marginal distribution of the resulting stochastic process is the same as 
the distribution of the original coupled process. 

Our method, however, does not involve the coupling of two copies of the 
original chain X. Instead, we are interested in a bivariate process, formed by the 
Markov chain X and an associated random variable taking the values 0 and 1, 
which essentially indicates in which "half" of the split space the chain is currently 
taking its value. Again, though, the bivariate process is such that the marginal 
distribution of X is that of the original process. 

In order to split the space in this way, our basic assumption is that for some k, 
the k-step transition probability Pk is bounded below in a certain way: specifically, 
we assume the existence of h Eg+ with q~(h) > 0 and of a probability measure v such 
that for all xsE,  A~8: 

Pk(x,A)> h| (M) 

By considering the properties of C-sets mentioned above, it can be seen that this 
Minorization Assumption is in fact automatically satisfied when the c-algebra ~ is 
countably generated. Since most results can be extended from countably generated 
to arbitrary a-algebras using the method of admissible a-algebras (cf. Orey (1971)) 
our splitting technique has almost universal applicability. 

2. The Splitting Technique 

We shall assume for a while that the transition probability P satisfies (M) with k = 1, 
i.e. we assume that 

P~h|  

We shall construct a Markov chain X*, such that the original M.C. X is 
"embedded" in the chain X*, and such that X* possesses an atom which is visited 
infinitely often with probability one. 

We denote for all xEE, A~g 

Xo=(X,0), x l= (x ,  1); 

Ao=Ax{O}, AI=Ax{1} ,  A*=Ax{O, 1}. 
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We denote by g* the o--algebra on E* generated by the sets A i (A6g, i=0,  1). In the 
following we identify any subset A of E with the subset A* of E*. In particular we 
can write g c g * .  Any measure 2e J /+ (g) is automatically extended to a measure on 
g* by defining its values on the sets Ai(A~g, i=0,  1) 

2(Ao)=2Ia_h(A), 2(A1)=2Ih(A ). (2.1) 

We call 2sJg+ (g*) the splitting of 2 ~ +  (g) (because A o u A i = A and A o c~ A1 = ~, 
the extension is well defined). A finite 2 can be extended in a similar way to g*. Any 
g-measurable function f on E is automatically extended to an g-measurable 
function on E* =Ex{0,  1} by defining for all xeE 

f ( x  0 =f(x0) =f(x).  

Note that 2(f)  is unambiguously defined: 

2(f)  = S 2(dx) f(x)  = ~ 2(dz) f(z). 
E E* 

We define a T.P. P* from (E*, g*) into (E, g) as follows. Let x6E, A~g be arbitrary: 

fv(A) for x~{h = 1}, 
P*(x~174  for x~{h< l} ;  

P*(Xl, A) = v(A). 

We extend P* to a T.P. on (E*,F*) as follows: for every z~E*, the measure P*(z, .)6 
J//+ (g*) is the splitting as defined by (2.1) of the measure P*(z, .)~Jr (g). 

Let X - {X, } = {(X,, Y,)}, (X,~E, Y,,e{0, 1}), be the M.C. with state space (E*, 
g*) and with T.P. P*. We immediately see that the set E 1, which we shall henceforth 
denote by B, is an atom for the T.P. P*, satisfying ~0(B)= (p(h)>0. We shall use the 
obvious notations for X*; e.g. P,* denotes the canonical probability measure on 
(f2*, ~-*)=(E *~, g*~) induced by an initial probability # on (E*, g*) and the T.P. 
p*. 

We immediately get from the definitions the following two key results. 

Theorem 1. For any probability measure 2 on (E, g), the marginal distribution (w.r.t. 
Px* ) of the first coordinate process {X,} of the M. C. {X*} and the distribution ( w.r.t. 
Pz) of the original M.C. {Xn} are identical. 

In particular, for any A sg,  n >=0, 

,~P.* =,~P,. 

Theorem 2. (i) The M.C. X* is Harris recurrent. 

(ii) The set B%fE1 is a recurrent atom for X*. 

Proof. (i) By the definition of the M.C. X* and since X is ~o-recurrent, we have for all 
z~E*, A~g with ~0(A)>0 

P~* [S A < co] = P* (z, A) + S P* (z, dy) Pv [-SA < o0] = 1. (2.2) 
A c 
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Fix z EE* and A 6~ with (p(A l )=  (Plh(A) > 0. Then there exist fl > 0 and C c A such 
that ~o(C) > 0 and h > fl on C. Denote by S~ the instant of the n'th visit of X to C and 
define for n > 1 

Z , =  Ys~ l~s~< ~ .  

Then 

P~* EZ,= I lZ1, . . . , z ,_  I] >=B. 

Hence by (2.2) P~*[Scl<Oo]=P~*[Z,=I for some h i = l ,  from which we get 
P~* ESa, < oo] = 1. 

Similarly P~* [SAo < oo] = 1 for all z ~E* and A s g  with ~0 (A o) > 0. 
(ii) Follows from (i) and from the fact that q~ (B) = q) (h) > 0. [] 
We define a transition kernel Q as follows: 

Q = P  ~, (P -h |  
n = O  

It is easily seen that Q has, in terms of the split chain X*, the following probabilistic 
interpretation: for all 2~,//{+ (~), f ~ + ,  

= 2 U ~ f ,  (cf. [R], p. 48). (2.3) 

Denote in the following by s a fixed point in the atom B = E l ,  and let 

ax(n) = P~* [S~ = n] = 2 P(P - h | - i h, 

a(n) =P~* IS B = n] = v(P - h|  1 h, 

tp I (n ) -E  s [ f ( X , ) ] l ~ s , > = j = v ( P - h |  f ,  

1 for n = 0 ,  
u(n)=P~*(s,B)= vP~_ih for n > l .  

The sequence {u(n); n=0,1,....} is a renewal sequence satisfying the renewal 
equation 

u(n)=6(n)+a,u(n) ,  (6(0)=1, 6(n)=0 for n > l ) .  

By using the fact that B is an atom, we obtain the following important first- 
entrance-last-exit decomposition 

2P~f= E* I f  (X*) l~s B >=,~] + a~* Oi* u(n). (2.4) 

In order to avoid unessential technicalities we shall assume for the rest of the paper 
that the M.C. X is aperiodic (see JR], p. 163). 

Ifk in (M) is allowed to be greater than 1, we can always consider the k-step M.C. 
k X = {X,k; n = 0, 1,... } and construct its split chain in the manner described above. 
The following lemma is needed when turning from the original M.C. X to the M.C. 

k X �9 
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Lemma 2.1. mX is Harris recurrent for all m >_ 1. 

Proof. Fix A 6g with q~(A)> 0. Let ~ c g be an admissible a-field (see Orey (1971)) 
such that A ~  and X with state space (E,~) remains aperiodic. Let C s ~  with 
~p(C) > 0 be a C-set (w.r.t. X on (E, ~)). By the aperiodicity, there exists N = 1 such 
that 

inf{P,(y,A); y~C, N < n < N + m } > O .  

By using an obvious "geometric trial argument" we can conclude that the chain mX 
eventually visits the set A (P~-a.s. for any x~E). [] 

As an illustration of the Splitting Technique, we shall present a new constructive 
proof for the existence of an invariant measure (Harris (1956)). 

Theorem 3. The measure 

m=v ~ (Pk--h| 
n = 0  

is invariant for X and satisfies re(h) = 1. 

Proof. (i) Ifk = 1, then according to the construction of Derman (1954), the measure 
m, defined by 

-E~ f (X*)  = 0s(n) 
n 1 n = l  

=v ~ (P-h| 
n = 0  

is invariant for X* (hence also for X) and satisfies m(B)=m(h)= 1. 

(ii) The case k > 1 easily follows from (i), from the uniqueness of the invariant 
measure and from Lemma2.1. [] 

We shall henceforth use the notation 

g+ = {A~g; m(A) >0}. 

The Splitting Technique combined with the renewal theorem of ErdSs, Feller and 
Pollard (1949) provides also (via the decomposition (2.4)) a simple proof for Orey's 
convergence theorem ([R], Theorem 2.8 on p. 169). We leave the details to the 
reader. 

3. Sums of Transition Probabilities 

In this section we shall illustrate the use of the Splitting Technique further and 
study the convergence of sums of transition probabilities (abbrev. S.T.P.). Our 
results generalize and sharpen some results of Kemeny, Snell and Knapp (1966), 
Pitman (1974), Cogburn (1975) and Griffeath (1976). 

The following two concepts turn out to be useful in this context. 
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Definition 3.1. (i) Let fe~t+(m) be arbitrary. A measure 2ebdg+(#)  is called f- 
regular, provided that 

2UAf< DO for all A s g  +. 

(ii) (Cogburn (1975)). A set F e #  is called strongly uniform, provided that 

supEx[Sa]<  Do for all A e g  +. 
x ~ F  

We shall need the following lemma, the proof of which is straightforward and is 
therefore omitted. 

k - 1  

Lemma 3.2. (i) Denote f =  ~ P, f  . 2 is f-regular, if and only if it is f-regular w.r.t, kX 
n = O  

and satisfies 2 ( f - f ) <  Do. 

(ii) F is strongly uniform, if and only if it is strongly uniform w.r.t, k X. [] 

By considering the split chain X* and using (2.4) we easily obtain the following 
characterization result, which, by using the preceding lemma, easily could be 
formulated in the case k > 1, too. 

Proposition 3.3. Assume that k = 1. Then 

(i) 2 is f-regular, if and only if 2 Q f  is finite; 
(ii) F is strongly uniform, if and only if Q 1 is bounded on F. [] 

The following lemma has also independent interest, since it generalizes the 
following result of Cogburn: for positive X, Ex [SA] is finite for all A~o ~+, and m- 
almost all x. 

Lemma 3.4. For any f ~ l +  (m), A ~ g  +, UAf is finite m-a.e. 

Proof. Denote G = { UAf= ~}.  By using the resolvent equation of [R], p. 48, and the 
fact that mI a U A f = m ( f ) <  ~ ([R], p. 54), we obtain 

PIAc~GUAf(x )<~ for x(~G. 

From this we easily get by induction that 

mlAP~(G):O for all n>0,  

which implies the assertion. [] 

The interpretation of Q in (2.3), Proposition 3.3 and Lemma 3.4 lead us to the 
following result. 

Proposition 3.5. (i) The set R f = {x~E ; e~ is f-regular} of f-regular states is equal to 
E up to an m-negligible set. 

(ii) There exists an increasing sequence {Fn} of strongly uniform sets such that F~ 
= R  1 is equal to E up to an m-negligible set. [] 

Remark 3.6. In the special case f -  1 this sharpens Cogburn's (1975) Theorem 3.1 by 
ruling out the possibility that re (R0=0.  []  
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After these preliminaries we are able to formulate and prove our S.T.P.-results. 
The first result (Theorem 4) generalizes Theorem 9.15 of Kemeny, Snell and Knapp 
(1966) to general state space. The assumption that k = 1 is not restrictive, since again 
by considering the k-step chain kX and using Lemma 3.2, we could easily formulate 
and prove the theorem for general k. We shall use the following notations: 

bJg0(g) = { 2 e b b ( g ) ;  2(E)=0}, 

5~ = {feS~ re(f)=0}. 

Theorem 4. Assume that k = 1. 

(i) For any 2~bs#0(g), fs5~l(m), such that 121 is If  I-regular and ~ )LP, h 
converges, n =  1 

m oo 

2P~f=2Qf  + m(f) ~ 2P~h. 
,= 1 re(h) . =  1 

(ii) For any 2Ebdg(g), fc~CP~(m), such that ]2] is If  J-regular and ~ vP"f  
converges, ,= 1 

2P~f=2Qf  +2(E) ~ vP, f .  
n = l  n = l  

Proof. We prove only (i), since the proof of (ii) is the "dual" of (i). We sum the 
decomposition equation (2.4) over n. The r.h.s, then converges to the desired limit 

2 U ' f +  m(f) ~ 2P,*(B)=XQf+ ~ 2P, h. [] 
m (B) ,= 1 ,= 1 

It follows directly from the definitions that a function fe~+~ (m) is special (see 
[R], p. 182), if and only if all 2 ~bsr (g) are f-regular. We thus obtain the following 
corollary. 

Corollary. I f  ~ v p'k f converges for every charge f ,  then the M. C. X is normal (see 
n = l  

[R], p. 242). 

For the rest of this section we shall assume that X is positive, i.e. m is finite. We 
shall be concerned with the total variation norm (notation ]]-][) convergence of the 
sums 

N 

2P,, (2~b-J~o (E)) , 
n = l  

and of the 5~ (notation I1"11,.) convergence of the sums 

N 

2 P,f, (fE~fl(m)) �9 

(3.1) 

(3.2) 

Theorem 5. (i) I f  2ebdgo(d ~ is such that [2[ is 1-regular, then ~, [[2P, ll is finite. 
t t ~ l  
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(ii) I f  fe~f~(m) is such that m is If I-regular, then ~, IIe~fllm is finite. 
n = l  

Proof. Again we prove only (i). By Lemma 3.2 we can restrict ourselves to the case k 
= 1. Take the supremum over f e q / a n d  after that sum over n in both sides of the 
decomposition equation (2.4) to obtain 

m(~) 
II,~P~II < I 2 1 Q l + - -  2., laa*ul(n). 

. =  i m(h) . =  i 

The former term in the r.h.s, is finite by Proposition 3.3 and the latter by the renewal 
Theorem 6.11 of Pitman (1974). [] 

Remark 3.7. By choosing 2 = e x - e  r (x, yeE) in (i) and taking into account 
Proposition 3.5 we get as a corollary Griffeath's (1976) Theorem 3.3. Note that in 
Griffeath's theorem the assumption of the existence of a strongly uniform set is 
unnecessary by our Proposition 3.5. 

The first part of Cogburn's (1975) Theorem 5.3 follows as a corollary from (ii) 
and Proposition 3.5 by choosing 2 = e x -  m. [] 

The following theorem identifies the limits of (3.1) and (3.2). We formulate it 
again only in the case k = 1 the extension to general k being obvious. 

Theorem 6. Assume that k = 1. 
(i) For any 2eb~'0(g), such that 121 is 1-regular, 

lim a ~ 2P.-2Q(I- l |  =0. 
N ~  n =  i 

(ii) For any f e ~ ( m )  such that m is If I-regular, 

lira ~ P~f- ( I  Q f  m - - l |  =0. 
N ~  n = l  

Proof of (i). From (2.4) we get for any A~g, by summing over n and taking into 
account Pitman's Theorem 6.11, 

n~= l ,~Pn(A)- 2Q(I -  1 | (A) 

-<-- L PlaES" >n]+ L O,*la.~*ul(n). 
n = N + l  n=N-+- i 

The former term in the r.h.s, converges to zero by (2.3) and Proposition (3.3), and the 
latter by Pitman's Theorem6.11. [] 

4. A Ratio Limit Theorem for Sums of Transition Probabilities 

Finally, we shall study the convergence of the ratio 
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2P~f #P.g, (4.1) 
n = l  n 1 

where 2 and # are probability measures on (E, ~), and f and g belong to A~ t (m). 
Metivier (1972) (see also Neveu (1973) and [R]) has proved that the ratio of(4.1) 

converges to re(f )~re(g) for any two probability measures 2 and #, and for any two 
special functions f and g with re(g) >0. The following theorem is a generalization of 
this result, since for any probability measure ,~ and f~A~ (m) the statement 2 is f- 
regular is weaker than f is special. 

Theorem 7. For any probability measures 2 and #, and any f, gESfl I (m) with re(g) > O, 
such that 2 is f-regular and # is g-regular, 

lira 2P~f #P,,, g = re(f )~re(g). 
N ~ o ~  n =  i n 

Proof. It again suffices to consider only the case k = 1. We denote by 1 the sequence 
{1,; n>0} with 1,=1. By (2.4) and Proposition 3.3 

N 

sup =Y'I 2PJ-az*~b y*u* l(N) < )'Qf < co, 
N > I  n 

and similarly for # and g. Since ~ #P~ g is infinite, we have 
n = l  

lim ~ 2P~f / ~ txP~g= lim ax*Oy*u*l(N)/a.*O~*u*l(N). 
N ~ n = l  n = l  N ~ o o  

An elementary calculation and Theorem 3 yield 

lim az,~by,u,l(N)/u,l(N)= ~ ~by(n) 
N~cc n= 1 

=m(f)/m(h). 

Similar calculation for # and g leads us to the final assertion. [] 

There are also other uses of the Splitting Technique. In Nummelin and Tweedie 
(1976) the Splitting Technique is applied in the study of geometric ergodicity for 
general state space M.C.'s. The Splitting Technique is extended to Markov renewal 
processes in Nummelin (1977). 
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paper. 
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