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1. Introduction and Main Results 

A distribution function F(x) on the real line is said to be of class L (or L 
distribution function), if there are a sequence of independent random variables 

{X,},>__ 1 and constants b, > 0 and a, such that the distribution of b 2 1 ~, Xv -a ,  
p = l  

weakly converges to F as n ~ oo and, for every e > 0, 

lim max P(b21 ]Xp[>e)=0. 
n~oo  l_<p_<n 

Since K.L. Chung's remark in his translation of the book of Gnedenko and 
Kolmogorov [4] in 1954, unimodality of L distribution functions has long been 
an open problem. But, one of the authors 1-16] recently proved that every L 
distribution function is unimodal. The purpose of the present paper is to make a 
deeper analysis of properties of L distribution functions. We will classify L 
distribution functions into several classes and study each class. One of the main 
results we will show is that L distributions are strictly unimodal except in one 
class. 

The class of L distributions is a natural family of infinitely divisible distri- 
butions including stable distributions. The representation of their characteristic 
functions was found by L6vy [8] (see also [4]). Let ~b(t) be the characteristic 
function of a distribution function F(x). Then, F(x) is of class L if and only if 

( 0.2t2 / itu itu \k(U) du~ ' 
~ b ( t ) = e x p ~ i T t - ~ - - +  y [e - 1 - 1 - ~ 5 u 2 ) -  ~ -  (1.1) 

3 k ~ Ro 

where ? is real, 0-2>0, R0=  ( -  ~ ,0)w(0 ,  ~),  k(u) is nonpositive on ( - ~ , 0 )  and 
nonnegative on (0, ~) ,  k(u) is non-increasing on each of ( -  c~, 0) and (0, ~),  and 

uk(u)du+ ~ u-lk(u)du<oo. (1.2) 
P.[=<I M>I 
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Henceforth, let F(x) be an L distribution function with characteristic function (o(t) 
o f  (1.1). We assume right-continuity of k(u) without loss of generality. 7, a2, k(u) 
are thus uniquely determined by F. We denote 2+ =k(0+) ,  ) .  = lk(0-) [ ,  )~=,~+ 
+ 2_. These are important characteristics of F. If 0 < 2  < 0% then we define N as 
an integer such that 

N < 2 < N + I .  (1.3) 

If 

S Ik(u)ldu<oo,  (1.4) 
lul_-<l 

then the following expression is more convenient: 

~b(t)=exp i y o t - - ~ +  ~ (eitu--1) du , 
Ro 

where 

(1.5) 

k(u) 
7o = 7 -  2o]~U~- du. (1.6) 

A distribution function G(x) is said to be unimodal if, for some a, G(x) is 
convex on ( - 0% a) and concave on (a, oo). The point a is called a mode of G. Let 
b l= in f{x :  G(x)>0} and b2=sup{x: G(x)<I}. We say that G(x) is strictly 
unimodal if there is a point a such that G(x) is absolutely continuous on 
( -  0% a )~  Ca, oo) and has a density increasing on (bl, a) and decreasing on Ca, b2). 

(We are using the words 'increasing' and 'decreasing' in the strict sense). The 
mode of a unimodal distribution is not necessarily unique, but the mode of a 
strictly unimodal distribution is unique. 

The following two theorems are known. 

Theorem 1.1 (Yamazato 1-16]). F(x) is unimodal. 

Theorem 1.2 (Zolotarev [17-1 and Wolfe [13]). I f  2 >  1 or a 2 >0, then F(x) has a 
continuous density f ( x )  on ( - o %  oo). I f  a 2 = 0  and 0 <)~< 1, then F(x) is con- 
tinuous on ( - 0 %  oo) and has a continuous density f ( x )  on (-O%yo)W(7o, oo). I f  
(1.4) holds, define 

h ( x ) = ( X - y o ) f ( x  ) for  x~-7o and h(7o)=0. (1.7) 

I f  a z = 0 and 0 < 2 < 1, then h is continuous on ( - oo, oo), but f is not continuous on 
( - 0% oo). I f  ~2 = 0 and 1 <)~ < 0% then f is a C N- 1 function on ( - 0% oo) and C N 
on (-O%?o)W(7o, oo), h is C N on ( -  oo, oo), but f is not C N on ( - o o ,  oo). I f  2 = o o  
or a 2 > 0, then f is C ~ on ( -  0% ~) .  

These are remarkable facts. Other results are found in [13, 14, 15, 16, 17]. 
From now on, f ( x )  denotes the density of F(x) in Theorem 1.2. 



O n  D i s t r i b u t i o n  F u n c t i o n s  o f  C l a s s  L 

We say that F is of 

type I  if 0 -2=0, 2 =0, 2 + > 0 ;  

type II if 0-2>0, 2_=0 ,  2 + > 0 ;  

type III if 0-2=0, 2+->2 >0;  

type IV if 0-2>0, 2+->2 >0. 

275 

Let if(x) be the reflection of F(x), that is, i f ( x ) = l - F ( ( - x ) - )  (we define 
distribtuion functions to be right-continuous). If F(x) is non-degenerate and 
non-Gaussian, then F or /~ belongs to one of the above four types. Hence, in 
order to study properties of L distributions, it is enough to study the above four 
types. We further subdivide types I and III. In case F is of type I, we say that F 
is of 

type I  1 if 0 < 2 < 1 ;  
1 

t ype I  2 if 2 = l , k ( u ) < l  for a l l u > 0 a n d y ( 1 - k ( u ) ) u - l d u = o v ;  
0 

1 

t ype I  3 if 2 = l , k ( u ) < l  for a l l u > 0 a n d ~ ( 1 - k ( u ) ) u - l d u < o o ;  
o 

type 14 if 2=1 and k(u)=l  for some u>0;  

t ype I  5 if l < 2 < o v ;  
1 

type 16 if 2=oo  and ~k(u)du<ov; 
0 

1 

t ype I  7 if 2=oo and ~k(u)du=oo. 
0 

In case F is of type III, we say that F is of 

typeI I I  1 if 0 < 2 < 1 ;  

typeI I I  2 i f 2 = l ;  

typeI I I  3 if 1 < 2 < 2  and 0 < 2  _<2+__<1; 

typeI I I  4 if 1<2=<2 and 0 < 2 _ < 1 < 2 + ;  

typeI I I  s if 2 < 2 < o o ;  
1 

typeII I  6 if 2=oo  and y ]k(u)]du<vo; 
- 1  

1 

typeI I I  7 if 2 = ~  and ~ [k(u)Jdu=oo. 
- 1  

Now, let us state our main theorems. We write, for instance, F e I  1 in the 
meaning that F is of type 11. f(x) is said to be log-concave if f (x)>0 and logf(x) 
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is concave. If f ( x )  is absolutely continuous,  we denote  by f * ( x )  the almost- 
everywhere derivative of f (x) .  

6 
Theorem 1.3. (i) F~  U ij ~ f ( x )  = 0  on ( - o % ~ o  ). 

i=1 
4 

(ii) F s  U ij ~ f ( x )  is absolutely continuous on (70, oo). 
j=l  

3 

(iii) f e  (.j Ij ~ f * ( x )  < 0  a.e. on (~o, oo). 
j=l  

2 

(iv) F s  U ij => f ( 7 o + ) =  oo. 
j = l  

(v) F ~ I  a ~ f ( 7 o + ) <  oo. 

(vi) F e I  4 ~ Let  B = sup {u > 0: k(u) = 1 }. f ( x )  = const on (~o, 7o + fi]. f * ( x )  < 0 
a.e. on (7o+fl,  oo). 

6 

(vii) F e  [..)1 i ~ f ( x )  is continuous on ( - 0 %  oo), C 1 on (70, oo). There is a 
j = 5  

point ae(?o,  oo) such that i f (x )  is positive on (Yo,a), zero at a, and negative on 
(a, co). f ( x )  is log-concave on (7o, a]. 

2 

(viii) F e  ~) IIIj ~ f ( x )  is absolutely continuous on ( -  oo, 7o) U(Vo, oo). f * ( x )  is 
j = l  

positive a.e. on ( - 0 % 7 0  ) and negative a.e. on (Vo, ~ 1 7 6  ~ 1 7 6 1 7 6  

(ix) F e I I I  a ~ f ( x )  is continuous on ( - 0 %  oo) and C 1 on ( - oO ,  Vo)~(y o, oo). 
i f ( x )  is positive on ( - oo, 70) and negative on (~o, oo). 

(x) F s l I I ~  ~ f ( x )  is continuous on ( - 0 % o 0 )  and C 1 o n  (--oO,])o)k..)(~o, GO ). 
There is a point ae(7o, oo) such that i f (x )  is positive on ( -  oO,7o)U(vo,a), zero at 
a, and negative on (a, o o ) . f ' ( 7 o - ) =  oo , f ' ( 7o+)  = oo. 

(xi) F e I  v w II • III 5 w III 6 ~ IIIv w IV ~ f ( x )  is C 1 on ( -  oo, oo). There is a 
point a such that i f (x )  is positive on ( -  oo, a), zero at a, and negative on (a, oo). 

(xii) F e I  v u I I  ~ f ( x )  is log-concave on ( -  0% a]. 

The following two theorems are immediate  consequences of Theorem 1.3. 
Theorem 1.5 shows that  T h e o r e m 4  of [17] is incorrect. 

Theorem 1.4. F is strictly unimodal if and only if neither F nor F is of  type 14. 

Theorem l.5. F has unbounded density if  and only if F o r  F belongs to 

It u I2 ~I I I1  wII I  2. 

We are interested in how f behaves in a ne ighborhood of 7o. Let  f{") be the 
5 

n-th derivative of  f ;  f { o ) = f  Fo r  F e  L) ij, we describe behaviors of f(") for n 
j =  1 

5 

=0,  . . . ,N,  which is an extension of a result of  [15]. For  F e  U i i i j ,  we describe 
j = l  

behaviors of f(m. In general, when 2 <  o% we define a constant  c and two 
functions K(x) and L(x) of x + 0 as follows: 
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c = e x p  2 ( e - " - l ) u - l d u + 2 S e - " u - t d u - S ( k ( u ) - k ( - u ) ) u - l d u  , (1.8) 
1 1 

1 

K(x)=exp S ( 2 - k ( u ) + k ( - u ) ) u  -1 du, (1.9) 
Ixl 

1 

L(X) = ~ K(u )  U -1  dbl. ( 1 . 1 0 )  
Ixl 

K(x) and L(x) are slowly varying as x -~ 0. 

5 

Theorem 1.6. I f  Fe  ~ Ij, then, for n = 0  .. . . .  N, 
j = l  

f ( ' ) ( x ) ~ c F ( 2 - n ) - a ( X - Y o ) ~ - ' - i  K ( x - 7 o )  as x,~ ? o. (1.11) 

5 

Theorem 1.7. Suppose that F~ U IIIj. 
j = l  

(i) I f  N <2 < N  + I, then 

lim f (m(x)  _ c sin 2+ n 
x+~o(X--Yo)a-N-1K(x--?o) F ( 2 - N )  sin 2 re' 

f(S)(x) ( - 1) N c sin 2_ 
lim . x)Z-n-  1 x~o (~o-  K(7o-X)  F ( 2 -  N) sin 2 zr 

(ii) I f  2 = N + 1, then 

(1.12) 

(1.13) 

f lm(x)  =c_ cos (2+ - 2 _  -N)rc  (1.14) 
lira L ( x -  To) n 2 x ~ o  

(iii) I f  2 = N + 1, then 

lim f ( m ( x ) - f ( m ( 2 ? ~  c 1)N+ 1 
x~7o K ( x -  7o) - 2  ( ( -  c o s 2 + n + c o s 2 _  ~). (1.15) 

Let us give some 
5 

integers. If F e  ~) IIIj, 
j = l  

remarks on Theorem1.7. Let N be the set of positive 

then we have the following four cases: 

(a) 2~N, 2+r 2 _ r  

(b) 2r 2+ or 2_~N;  

(c) 2eN,  2+r 2 _ r  

(d) 2zN,  2+eN,  2_EN. 

In Cases (a) and (c), the right-hand sides of (1.12), (1.13), and (1.14) do not vanish 
and these describe the exact order off(re(x) as x approaches 70. In Case (b), (i) 
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gives the exact order only on one side of Yo. In Case (d), the right-hand side of 
(1.14) vanishes but the right-hand side of (1.15) is ( - 1 )  z- c. We have not 
succeeded in describing the exact order in Cases (b) and (d). 

In Section2, we will give an integro-differential equation satisfied by L 
distribution functions. In Section 3, a theorem on convolution of two unimodal 
distributions will be proved. Using these results as essential tools, we will prove 
the major part of Theorem 1.3 in Section 4. More information on the location of 
modes in case of types II, III, and IV will be included in Section 4. Section 5 
contains the proof of Theorems 1.6 and 1.7 and completion of the proof of 
Theorem 1.3. A result on asymptotic behavior near 70 of f ( x )  of type 16 is also 
given in Section 5. Location of modes in case of types I and II will be discussed 
in Section 6 as an application of the integro-differential equation of Section 2. 
Our proof of Theorems 1.3-1.7 does not presuppose Theorems 1.1 and 1.2. 
Besides certain results found in the standard references [2] and [4], the only 
thing we use without proof is a general property of log-concavity (Lemma4.5). 
Since Theorem 1.3 is stronger than Theorem 1.4 plus Theorem 1.3(vi), our 
argument gives an alternative proof of Theorem 1.1. Also, Theorem 1.2 is proved 
and refined by our Lemmas 2.5, 2.6 and Theorems 1.6, 1.7. 

2. Integro-Differential Equation for L Distribution Functions 

Let F(x) be a non-degenerate L distribution function with characteristic function 
(1.1). 

Theorem 2.1. I f  

(x - y) f (x) = 

2>1 o r  0"2>0, then 

(F(x - u) - F(x) + f (x) arctan u) dk(u) - a2 f '(x) 
Ro 

= ~ ( f ( x - u )  f ( x )  ~ k ( u ) d u _ a 2 f , ( x )  (2.1) 
-1 7! Ro \ 

for every x. I f  2<<_1 and a2=0,  then (2.1) holds for x4:7o. Ignore the term 
-0-2f'(x) in (2.1) when a2=0. ( f  is not always C 1 in case a 2 =0.) 

Lemma 2.1. 

lira k(u)log lu] =0,  (2.2) 

log lul dk(u) > - 0% (2.3) 
lul>l 
limu 2 k(u)=0,  (2.4) 
u ~ O  

u 2 dk(u) > - ~ .  (2.5) 
o<[ul=<l 

I f  (1.4) holds, then 
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lim u k(u) = O, 
u ~ 0  

lul d k ( u )  > - oo.  
O<lul_-<s 

Proof For  1 < u  1 <u2, 
1~2 U2 

k(u2) log u 2 - -  k(Ul) log U s = S U-- 1 k(u) du + y log u dk(u). 
g l  Ul 

This shows that  

(2.6) 

(2.7) 

(2.8) 

g2 

k(uz) log u 2 - k(u 0 log U 1 ~ y /~- 1 k(u) du. (2.9) 

Let 01 and 02 be the lower and upper  limits of  k(u) log u as u ~ oo, respectively. 
If  0 s < 0 2 = 0 1 + e ,  then, by (1.2), we can find u s and u 2 such that  
U2 

S u-lk(u)du<e/2 and k(u2)logu2-k(uOlogul>e/2, which contradicts  (2.9). 
Ul 

Hence 0 s = 0 2 .  If  0 1 = 0 2 > 0 ,  then u-Sk(u)>2-sOs(ulogu) -s for large u, con- 
tradicting (1.2). Hence 01 = 02 =0.  Considering u ~ - o o  in the same manner,  we 
get (2.2). (2.3) follows from (1.2), (2.2), and (2.8). Similarly, (2.4) and (2.5) are 
proved by (1.2) and 

U2 U2 

u~ k ( u 2 ) -  u~ k(ul)= 2 ~ u k(u) du + ~ u 2 dk(u) (2.10) 
Ul Ul 

for 0 < u  I ~Lt 2 or  u I ~ L / 2 ~ 0 .  (2.6) and (2.7) are proved by (1.4) and 

U2 U2 

u 2 k ( u 2 ) - u  s k(us) = S k(u)du+ ~ udk(u) (2.11) 
u l  u l  

for 0 < u  s < u  2 or u 1 < u 2 < 0 .  

The following expression of  qS(t) is essentially the same as Urbanik  [11]. 

L e m m a  2.2. 

cr 2 t 2 
qb(t) = exp iTt 2 

Proof For  each t =t= 0, 

_ itv ]dv 
i e i t v -  1 
o l + v  2 ] v 

and 

i-u, -1]u 

f 2 U 2 

a s  lul --,0 
4 

(e~t ~ i t v \ 
[ X , u ] \  -- I -- 1 - - ~ 2  ) <=410gu+]t[n 
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for u >  1. Hence, Lemma2.1 and integration by parts rewrite (1.1) as 

4)(t)=exp { i v t  cr2t22 Jo (i  (e i tv-  1 - l ~ v 2  ~ dV)__ dk(u)}. 

This is identical with (2.12). 

Lemma 2.3. ~(t) is C 1 on (-o%0)w(O, ~ )  and 

(~ {i T--~ t - - t -  l S (ei~"-- l -- it aretan u) dk(u)} (2.13) 

Proof (2.13) is obtained from (2.12), if we change the order of integration and 
differentiation. Since 

[t- l (eit" - 1 - it arctan u)l 

" dv i dv =< ! (e ' t~- l )  + (1-(l+v2) -1) ~2-1]tlu2+3-1[u[ 3, (2.14) 

the change is justified for t + 0  by (2.5). The right-hand side of (2.13) is 
continuous in t # 0. 

Lemma 2.4. 

IqS(t)l__<exp(-2-1~2t 2) for all t. (2.15) 

I f  0 <)~ < o% then there is a constant M such that, for It[ > 1, 

Iq~(t)l < M  Itl -~ K(ltl-x). (2.16) 

I f  0 < 2 < ~ ,  then, Jot each • < 2, 

[~b(t)l =o(Ltl -~) as Itl --' oo. (2.17) 

Proof (2.15) is obvious. Let 0 < 2 <  oo. To prove (2.16), we may assume o2=~o 
=0. Since qS(-t)=gb(t), we may further assume t >  1. Let 

l(u) = k (u) - k (( - u) - ) .  (2.1 S) 

We have 

oo 1 

14~(t)] =exp S ( c o s t u - 1 ) u  -1 l(u)du<exp ~ (cos t u - 1 ) u  -1 l(u)du 
0 l i t  

=t-XK(t -1)exp l ( t -1 )~v - l cosvdv+ v - l cosvdv  dl(u).  
1 t 
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t 

~v-1 cos v dv is bounded in t. ~/)-1 cos/) dv is bounded in u e[1/t, 1] uniformly in 
1 tu  

t. Hence we get (2.16). (2.17) follows from (2.16). If 2=  0% then, for f l> ~> 0 ,  let 
kB(u ) = ~ A k(u) for u > 0, k~(u)= ( - f l ) v  k(u) for u < 0, and use 

[q~(t)[ < exp S (e i ' " -  1)u -1 kp(u)du 
- c o  

to obtain (2.17). 

Lemnla 2.5. For any x, 

F(x)-F(O) = 1 (o(t)dr, (2.19) 
_~ - i t  

and F is continuous on ( -  0% ~).  I f  1 < 2 < 0% then, F is C u on ( -  0% oo) and 

"n 1) 1 F(")(x)=f t - ( x ) = ~  ~ ( - i t )  "-le-~xt~p(t)dt (2.20) 
--~X3 

for n = 1,..., N. I f  2 = oo or ~2 > O, then F is C ~ on ( - 0% oe) and (2.20) holds for 
all n > l. 

Proof (2.19) follows from L6vy's inversion formula. Note that the integrand in 
(2.19) is integrable (Lemma2.4). If 2 > n  or G2>0, then Itl " - 1  IqS(t)l is integrable 
(Lemma2.4), and (2.19) implies (2.20). 

Lemma 2.6. Suppose 0 < 2 < oo and ~2 = 0. F(x) has a continuous density f (x )  on 
(-oO,7o)~(7o, oo). Define h(x) by (1.7). Then h(x) is continuous on ( - o %  oo) and 

1 ~ e-itX--e -iT~ 
h ( x ) = ~  - i t  O(t)dt ~(e""- l )dk(u) .  (2.21) 

- c o  R o  

h(x) is C s on ( -o%o0)  and, for n = l , . . . , N ,  

co 

h(,)(x ) =~1 2 (  _ i t)"- 1 e-it~ 4)(t) dt Ro ~ (ei'" -- 1) dk(u). (2.22) 

Proof By (2.19), 
e - i x t  - -  1 

F ( x + 7 ~ 1 7 6  - i ~  ~(t)e- i '~ 
- -o3  

- 2 n  _co - i s  0 e-i~~ (2.23) 

for x 4= 0. Since 

70 = ? + Y arctan u dk(u), (2.24) 
R o  



282 K. Sato and M. Yamazato 

Lemma 2.3 shows that 

((9(t) e-i~~ '= -~p(t) e-ie~ -1 ~ (e it"- 1)dk(u) 
Ro 

for t + 0. Hence 

d x  - -  X Ro  

for x#:O, s+O. By Lemma2.4, there is an e > 0  such that, as Is] ~ ,  the right- 
hand side of (2.25) is o([s[ -~) uniformly in x on any compact set off the origin. 
Hence the extreme right member of (2.23) is continuously differentiable in x 4: 0, 
and 

1 f(X+Vo)-27zlxl _ i ~ c ~  e-i'~ S 1)dk(u) 
- o o  R o  

for x 4=0. This is (2.21). The other assertion follows from (2.21) and Lemma 2.4. 

Proof of Theorem2.1. The proof consists of two parts. The first part gives the 
proof under the assumption that 2 > 2 or cr2> 0. The second part gives the proof 
when 0 < 2 < oo and a 2 = 0. 

First Part. By x t=s in (2.19), we get 

F(x) - F(0) = sgn x - -  (9 ds for x =~ 0. (2.26) 
2re -oo - i s  

By Lemma 2.3, 

d @5 (s))=l--q5 {~o (ei"s/x- is u) dk(u)- ~ 2  z} 

for x=i=O, s4:O. Noting (2.14) and Lemma2.4, we can find an e > 0  such that, as 
[sl -~ 0% the right-hand side of (2.27) is o(Isl-~) uniformly in x on any compact 
set off the origin. Here the assumption 2 > 2 or o-2> 0 is made use of. Hence we 
can differentiate (2.26) under the integral sign. Thus 

, 

f(x)=27z[x] -oo - i - - ~ 4  {...} ds, 

where the quantity in the braces is that of (2.27). Hence 

f ( x ) = 2 ~  ~ S e - i t x - 1  S ( e i t ,  - i t  qS(t) { 1-itarctanu)dk(u)-i7t+o-2ta}dt 
- oo Ro  

for x ~ 0. By Fubini's theorem, 

~--~o ~ e-~tX-l(e""- l - i tarctanu)ck( t )dt  xf(x)  = dk(u) - i V  
- o o  

(7 2 

+ 7  ~ (e_~,X_l) ~ -  ~ (_ i t ) (e -~ ,x  1)~(t)dt. 2 rt _~ (9(t)dt-z Tr -oo 
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By Lemma 2.5, this relation shows that 

R ( x ) = R ( O )  for all x, (2.28) 

if we define 

R(x )  = ( x -  7 ) f ( x )  

- S (F(x  - u) - F(x )  + f ( x )  arctan u) dk(u)  + ~2f'(x). (2.29) 
Ro 

We claim that R(x)=0.  By (2.20) for n = l , 2 , f ( x )  and i f ( x )  tend to zero as 
]xl ~ oe (use the Riemann-Lebesgue theorem). We have 

u 

F ( x  - u) - F(x )  + f ( x )  arctan u = S(f(x) (1 + v 2)- i _ f ( x  - v)) dr ,  (2.30) 
0 

If(x) (1 + v 2) - i  _ f (x - v)J < If(x) - f (x - v)[ + v2(1 + v 2 ) - i f ( x )  

< M ( r v l / x  1) (2.31) 

with M independent of x and v, noting that f '  is bounded. Hence, using (2.5), 
we see that the integral in (2.29) tends to zero as Ixl--,~, Since f ( x )  is 
nonnegative and integrable, we can choose a sequence x n ~ such that 
x , f ( x n )  ~ 0 .  It follows that R ( x , ) ~ 0  as n ~ oe. Combining this fact with (2.28), 
we get R(x)=0  as claimed. This proves the first equality in (2.1). The second 
equality follows from (2.5), (2.30), (2.31), and Fubini's theorem. 

Second Part .  Assume 0 < 2 < oe and cr2= 0. Using Lemma 2.6, Fubini's theorem, 
and (2.19), we can rewrite (2.21) as 

(x - 7o)/(x) - ~ (F(x  - u) - F(x))  dk(u)  --- - ~ (F(? o - u) - F(7o)) dk(u) (2.32) 
Ro Ro 

for x4:7o. As Ix[ ~ ~ ,  the integral in the left-hand side tends to zero. There is a 
sequence x, ~ ov such that ( x , - ? o ) f ( x , ) ~ 0 ,  because f ( x )  is nonnegative and 
integrable. Hence the right-hand side of (2.32) must vanish. This proves the first 
equality in (2.1) for xOe7 o with the last term omitted. We obtain the second 
equality for x 4: 70, using (2.30) and Fubini's theorem, since k is bounded. If 2 > 1, 
then f ( x )  is bounded and continuous (Lemma2.5), and the equalities hold also 
at 70. Proof  of Theorem 2.1 is complete. 

Corollary 2.1. I f  )~ > 2 or  ~2 > O, then 

(x - 7 ) f ' ( x )  

= - f ( x )  + ~ ( f ( x  - u) - f ( x )  + f ' ( x )  arctan u) dk(u)  - o-2f"(x) (2.33) 
Ro 

f o r  every x. I f  1 < 2 < o o  and a2=0,  then f ( x )  is C i on ( - o e ,  yo)W(7o, o�9 and 

( X - 7 o ) f ' ( x ) = ( 2 - 1 ) f ( x ) +  ~ f ( x - u ) d k ( u )  fo r  x=#7o. (2.34) 
Ro 
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I f  0 <)~ < 1 and 0-2 = O, then f ( x )  is absolutely continuous on ( -  az, 7o) w (7o, o0) 
and f* (x )  satisfies 

(x - 7o)f*(x) = (2 - 1)f(x)+ ~ f ( x  - u) dk(u) (2.35) 
u ~ O , x - ~ o  

for almost every x. 

Proof If 2>3  or 0-2>0, then (2.33) is an obvious consequence of (2.1), for f has 
two bounded continuous derivatives (Lemma2.5). If 2 < 2 < 3  and 0-2=0, then 
(2.33) holds with the term - 0-2f"(x) omitted, since f has a bounded continuous 
derivative in this case. Suppose that 0 < 2 <  oo and 0-2=0. It follows from (2.1) 
that 

( X - 7 o ) f ( x ) = 2 F ( x ) +  j F ( x - u ) d k ( u )  for x4=7o. (2.36) 
Ro 

The right-hand side of (2.36) is a function of bounded variation, since F is 
monotone. Hence, for each e>0, f ( x )  is of bounded variation on (-oO,7o 
-e)W(7o+e, oo). For x4:7o, let f ( x )  be the right-hand side of (2.35) divided by x 
-7o  (the integral in (2.35) may be -oo).  Let Ix1, x2] C(7o, or). f ( x )  is bounded 
from above on Ix1, x2] and we have 

X2 

((x - 7o) f(x) + f(x))  dx 
x1 

X2 X2 

f( )dx § J ax J f (x- . )ak(u)  
x t  Xl u ~ : O , x - - y o  

= (x 2 - ~o)f(x2) - (x I - 7o) f (x  0 
X2 X2 

= ~ (x - Yo) df(x) + ~ f (x )  dx, 
x l  Xl  

by using Fubini and (2.36). If [xl,x2] ~(-~,V0), then f (x )  is bounded from 
below on [xl,x2] and we get the same identity. Hence f is the a.e. derivative of 
f If 1 < 2 <  o0 and a 2 =0, then f is continuous on ( -  ~ ,  ~ )  (Lemma2.5), C 1 on 
( - ~ , ) ' o )  w(70, oo) (Lemma2.6), and the right-hand side of (2.34) is continuous. 
Since this equals the right-hand side of (2.35) almost everywhere, (2.34) holds. 
The proof is complete. 

Remark. In case a2=O, k(u)=0 on ( -0%0)  and k(u) is a step function with a 
finite number of jumps, the equations (2.34) and (2.36) are extensively used by 
Wolfe [12, 14] and Yamazato [16]. An equation analogous to (2.1) is known for 
all one-sided infinitely divisible distributions (Steutel [10], p. 86). 

3. A Convolution Theorem 

We will give a strict sense version of a theorem of Yamazato [16] on con- 
volutions of unimodal distributions. Let G(x) be an absolutely continuous 
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distribution function, bo=b(G)=inf{x:G(x)>O}, and g(x) be the density of 
G(x). Let g*(x) denote the a.e. derivative of g(x) if g(x) is absolutely continuous. 
We introduce two conditions. 

Condition (A). b G > - o~, g is absolutely continuous on (b~, or), and, for some ~ > O, 
g*(x)=0 a.e. on (bG,b~+6) and g*(x)<0 a.e. on (bG+6 , ~).  

Condition (B). g is C: on (bo, ~) ,  lira g(x)=0. There is a point ao =a(G)>  bo such 
X~bG 

that g'(x) is positive on (bG, a~), zero at aG, negative and bounded on (a~, o9). g(x) 
is log-concave on (bG, a~]. 

If G satisfies (A), let a~ = b~. 

Theorem3.1. Let G :(x) and GE(X ) be absolutely continuous distribution functions 
with densities gl(x) and g2(X), respectively. Let G= G 1,G 2 and 

g(x)= ~ g: ( y )g2 (x - y )dy=  ~ g: (x -y )g2(Y)dy  ' (3.1) 
- c o  - o o  

the density of G. Let 

b l = - b ( G : ) ,  a l = - a ( G 0 ,  b2=b(G2), az=a(G2). (3.2) 

(i) I f  G1 and G 2 satisfy Condition (A), then g(x) is absolutely continuous on 
( -  ~ , b :  +bz)u(b  1 +b2, ~ )  and g*(x) is positive a.e. on ( -  ~ , b  I +bz) , negative 
a.e. on (b: +ba, ~).  

(ii) Suppose that G: satisfies (B) and G 2 satisfies (A). Then g(x) is continuous 
on ( - ~ , 0 0 ) ,  C: on ( - o ~ , b l + b z ) W ( b l + b z ,  z~), and there is a point aG(a: 
+b2,bl +b2) such that g'(x) is positive on ( - ~ , a ) ,  zero at a, and negative on 
(a, b l + b 2 ) u ( b l + b 2 , ~  ). I f  b l < ~  , then lim g'(x) exists and <0 and 

x~,bl +b2 
lira supg'(x) < 0 (the possibility of - ~ is not excluded). 
x~bl +b2 

(iii) I f  G1 and G 2 satisfy (B), then g(x) is C 1 on ( -  ~ ,  ~),  and there is a point 
aG(a: +b2,az +b 0 such that g'(x) is positive on ( - ~ , a ) ,  zero at a, and negative 
o n  (a, 0o). 

Corollary 3.1. Suppose that G: satisfies (A) or (B), G 2 satisfies (A) or (B), and G 
=Ga*G 2. Then G is strictly unimodal. With the use of (3.2), the mode a of G is 
located as follows: 

a = a l + b  2 if a l+b2=a2+ba;  (3.3) 

ae(al+b2,a2+bl)  if a l+b2<a2+b  1 . (3.4) 

Lemma3.1. Let G 1 be such that G1 satisfies Condition (B) and b I = - b ( ~ l ) > 0  , 
a(G1)=0. For eG(O, bl) , define 

A~ (x) = g i (x + e)/g a (x), (3.5) 

B e (x ,  y )  = ( g  1 ( x  --~ ~ - -  y )  - -  g i ( x  -~- ~ ) ) / ( g  I ( x  - -  fl) - -  g i ( x ) ) .  (3.6) 
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Then, 

A~(x) is non-increasing on [0, b 1 - 8); (3.7) 

A,(x) is decreasing on (-8,0]; (3.8) 

A,(x) < 1 on [0, b0;  (3.9) 

A~(x)> 1 on ( - 0 % - e l ;  (3.10) 

B~(x,y)>A~(x) for O < y < x < b l - e .  (3.11) 

Proof Since gl is log-concave on [0, b0, (3.7) follows from 

+ e) [g] (x + e) ' x 
gl( ) ] < 0  on [0, b l - g  ). 

Since gl(x) is increasing on ( - 0 % 0 )  and decreasing on (0,b0, it is easy to see 
(3.8), (3.9), and (3.10). It follows from (3.1) that 

g l (x + e - Y)/gl (x - y) >= g l (x + 8)/g 1 (x) 

for 0<y=_<x<b 1 - e ,  and hence (3.11). 

Proof of Theorem3.1. (i) By translation, we may assume b l = b 2 = 0 .  Let x>0 .  
Since 

0 

g(x)---- y g2(x-y)gt(y)dy, 
- - c o  

g(x) is finite and continuous. We have 

co co 0 

- dyyg~(z )g l (y - z )dz=-~g*(z )dz  ~ gl(y)dy 
X y X ag--Z 

0 

= -  I gl(y)dy g*( )dz 
- - c o  x - - y  

= g ( x ) .  

oo 

Hence, for x>O, g(x) has density 5g2(z)gl(x-z)dz, which is finite a.e. and 
x 

negative. Argument for x < 0 is similar. 

(ii) We may assume a, =bE=0.  From the second expression of g(x) in (3.1), 
we see that g(x) is bounded and continuous on ( - 0 %  oc). For each 3>0,  we 
have 

co x - - z  

g(x)=g2({) i g~(y)dy+Sg~(z)dz 5 g,(y)dy-Sg*(z)dz i g,(y)dy, (3.12) 
- c o  ~ - c o  0 x - z  

because 

g(x)= 5g~(x -y )  g2(~)+ Sg~(z)dz dy + I g d x - y )  g2({)-Ig'~(z)dz dy. 
g ~ o y 
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For x > b  1, choosing ~ < x - b  1 in (3.12), we see that g(x) is differentiable and 

oo 

g'(x) = ~ g~ (z) g ~ (x - z) dz.  (3.13) 
r 

Hence, on (b~, oe), g is C ~ and g '<0.  We have, for each e>0, 

[g l ( x - z ) -g~(x ) l<cons t z  for x < b l - e  and z > 0  (3.14) 

by Condition (B) of G~, and 

~ g~(z) z dz= ~ z dgz(z) > - co, (3.15) 
0 0 

which is proved like (2.7) of Lemma2.1. For X<bl ,  we can differentiate (3.12) 
and obtain 

gt(X) = g2 (~) g l (X) "~ ~ g~ (Z) g l (X - -  Z) d z  .qt_ ~ g2 �9 ( z ) ( g l ( x  - z)  - g l (x))  dz 
r o 

(3.16) 

for each ~>0, because (3.14) and (3.15)justify differentiation under the integral 
sign of the last term of (3.12). Thus g is C 1 on (-o%b1). Since g~ is bounded 
continuous on ( -  oo, 0], we see that 

oo 

g'(x)= ~ gi (x -y)g2(Y)dy>O for x < 0  
0 

from the second expression of g in (3.1). If b 1 < o% then 

lim sup g'(x) < 0, 
x'bl 

because, choosing 0 < ~ < b  1 in (3.16) and letting x tb l ,  we get 

oo co 

g'(x) __< g2 ( 0  g l (x) + ~ g~ (z) g~ (x - z) a z --, ~ g~ (z) g~(bl - z) dz < 0. 

Also, if bt < 0% then 

lira g'(x) < 0, 
x,tbl 

since (3.13) shows that, for x>b~, 

g' (x)= ~ g*(z)gl(x-z)dz, 
x-b1 

o9 

which tends to ~ g* (z) gl (b 1 - z) dz as x + b 1. Now, the proof of (ii) will be complete if 
0 

we show that 

, < if O < x < x + g < b  I and g (x)=0, then g'(x+e)<O. (3.17) 
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Let us prove (3.17). We will make  essential use of L e m m a  3.1. Let  0 < ~ < x. F rom 
(3.16), 

co 

g'(x +e)=g2(~)gl(x +e)+ ~ g~(z) gt(x + e - z ) d z  

r 
+ ~ g*(z)(gl(x + e -  z ) - g l ( x  + e)) dz 

0 

co 

= g2 (4) A,(x) g l (x) + J g* (z) A~(x - z) g l (x - z) dz 

+ j g* (z) Be(x, z)(gl (x  - g) - g l (x)) d z ,  
0 

where A~ and B~ are (3.5) and (3.6). We have A~(x - z) > 1 > A~(x) for z > x + ~ by (3.9), 
(3.10); A~(x-z)>=A~(x) for x + e > z > 0  by (3.7), (3.8); and B~(x,z)>A~(x) for 
~ > z > 0  by (3.11). Hence 

g'(x + e) < A,(x) g2 (4) g l (x) -I- S g~ (Z) g,  (X -- Z) dz + J g* (z)(g~ (x - z) - g l (x)) dz 
0 

= A~(x)  g'(x) < 0. 

(iii) We may assume a 1 --- a2 = 0. By (3.1), g is clearly bounded  and continuous.  If 
we are permit ted to differentiate (3.1) under  the integral sign, we would get 

g ' (x)= ~ g'2(x-z)gl(Z)dz 
- c o  

and hence 

0 co 

g'(x)= ~ g'2(z)g~(x-z)dz + ~ g'z(Z) g~(x-z )dz .  (3.18) 
b2 0 

Let us show that  g is C ~ and (3.18) holds. In fact, 

( o ) i ( ' ) g(x )=  g ~ ( x - y )  g 2 ( 0 ) - j g i ( z ) d z  d y +  g l ( x - y )  g2(O)+[.gi(z)dz dy 
b2 y 0 

x - - b  2 0 x - b  2 co 2C--Z 

=g2(0) I g , ( y ) d y -  ~g'2(z)dz I gl(y)dy + Ig'2(z) dz I glty)dy, 
- - c o  b2 x - -  z 0 - - c o  

from which follows 

0 co 

g'(x) = g2 (0) g l (x - b2) + ~ gl (z) (g 1 (x - z) - g ~ (x - b 2)) dz + I gl (z) g l (x - z) dz 
b2 0 

with the understanding that  g ~ ( x - b a ) = 0  if b 2 = -  oo. This shows that  g is C 1 
on ( -  oe, oo) and (3.18) is true. If bl < oo, then g ' < 0  on [bl,  oo ), for (3.18) shows 
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bl  

g'(x)= f g'2(x-y)g~(y)dy.  
- o o  

By the symmetry of the assumption, we also see that, if b 2 > - 0 %  then g '>  0 on 
( - o% b2]. Now, in order to complete the proof, it is enough to verify the following 
two properties: 

if O<=x<x+e<b I and g'(x)<=O, then g ' (x+e)<0 ;  (3.19) 

if b 2 < x - e < x < = O  and g'(x)>O, then g ' (x -e)>O.  (3.20) 

By the symmetry of the assumption, it suffices to prove one of these. Suppose 
O<=x<x+e<b I and g'(x)<=O. We have, from (3.18), 

0 
g ' (x+e)=  ~ g i ( z ) A ~ ( x - z ) g l ( x - z ) d z  + ~, g i ( z ) A ~ ( x - z ) g l ( x - z ) d z .  

b2 v ( x + e  - -b l )  0 

Note that A~(x-z)<=A~(x) for x + e - b l < z < O  by (3.7); A~(x-z )>A~(x)  for 
0 < z < x + e  by (3.7), (3.8); A ~ ( x - z ) >  1 >A~(x) for z > x + e  by (3.9), (3.10). Then, 

o ) 
( ~ g i ( z ) g l ( x - z )  dz + ~ g i ( z ) g , ( x - z ) d z  g' (x + e) < A~(x) 
\ b2 v ( x + e - b ~ )  0 

o ) 
<=A~(x) ( S g2(z)g,(x-z)clz + ~gi(z)gdx-z)dz 

\ be v (x -- b l )  0 

= A~(x) g'(x) <__ O. 

This proves (3.19) and the proof of Theorem 3.1 is complete. 

4. Strict Unimodality and Related Properties 

If 

o 

Ik(u)[ du < o% (4.1) 
- 1  

then we use 
0 

qS_ (t) = exp ~ (e"" - 1) k(u) u-  1 du. (4.2) 
- o o  

If 

1 

[k(u) du < oo, (4.3) 
0 

then let 

5O 

+ (t) = exp y (e i'" -- 1) k(u) u - 1 du. (4.4) 
o 
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Let 

43 1 (t) = 43 (t)/43 + (t) (4.5) 

43 2 (t) = 43 (0/43 - (t). (4.6) 

Denote the distribution corresponding to 43+, 43_, 431, or 432 by F+, F ,  F1, or F2, 
respectively. In strict unimodal case, the mode is denoted by a+, a ,  a~, or a2, 
respectively. If F is strictly unimodal, the mode is denoted by a. In this section we 
will prove most of Theorem 1.3 and, simultaneously, give the following results. 

Theorem 4.1. 

(i) F e l l  and (4.3) =~ ae(7o, oo). 

(ii) F e l I I ,  ~ ae(7o,7o+a+).  

(iii) F e l I I s ~ I I I  6 and 2 <1 ~ ae(To,3,o+a+). 

(iv) F M I I s w l I I  6 and 2 > 1 ~ aE(Vo+a_,7o+a+). 
(v) F M I I T u I V  and (4.1) ~ a e ( -  oo, a2). 

F M I I 7 u I V  and (4.3) ~ ae(a~, oo). 

F M I I v w l V  and (1.4) ~ ae(al,a2).  

First, we give two simple lemmas. Lemma 4.1 applies to all one-sided infinitely 
divisible distributions. Lemma4.2 is an extension of Steutel [10], p. 87. 

6 

Lemma4.1. I f  F e  U Is, then F(x )>0  for all xe(7o, oo). 
j ~ l  

Proof  Given x o > 7o, we can find an e > 0 such that the distribution function Gl(x  ) 
with characteristic function 

exp i ?o t + y(e i t " -  1) u -  1 k(u) du 
0 

satisfies Gl(xo)>0, because this distribution weakly converges to the degenerate 
distribution at 7o as e~0. Define G 2 by F = G 1 * G 2. Then G 2 is a compound Poisson 
distribution, and hence G2(0 ) - G 2 ( O - ) =  Gz(O ) > 0. It follows that F(xo)>0.  

6 

Lemma 4.2. I f  F e [.) I j, then f ( x ) >  0 on (70, oo). I f  F e Iv, then f ( x ) >  0 on ( -  oo, oo). 
j ~ l  

Proof  Let 

7o = - oo for F e I  7. (4.7) 

6 

Suppose that f(Xo) = 0 for some x o > 70. I fFe jy_  I j, then f(x)  > 0 for some xe(7o, Xo) 

by Lemma4.1. The same is true also for F e I  7, since the support of F of 17 is 
unbounded from below by a general theory of infinitely divisible distributions 
(Baxter-Shapiro [1]). By continuity (Lemma 2.6), we can find 7o < x~ < x 2 such that 
f(x2)=0 and f > 0  on (xl,x2). By the equation of Theorem2.1, 
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co  

y (F(x2- u)-  F(x9) ak(u) = O. 
o 

Hence F ( x  2 - -  u )  - -  F ( x 2 )  = 0 for some u > 0. This is absurd. The proof is complete. 

Proof  of  Theorem 1.3 (i), (ii), (iii). (i) is a well-known result from a general theory (see 
Feller [2] or Baxter-Shapiro [11), but it is also a consequence of Theorem2.1. 
Namely, iff(x) > 0 for some x > 70, we have a contradiction with (2.1), noting (2.24). 
(ii) is shown in Corollary2.1. Let us prove (iii). By (2.35), 

( X - 7 o ) f * ( x ) = ( 2 - 1 ) f ( x ) +  ~ f ( x - u ) d k ( u )  
(O,x-7o) 

for a.e. x > 70. Each term of the right-hand side is nonpositive. By Lemma 4.2, the 
first term is negative if F~I1, and the second term is negative if F ~ I 2 w I  3. 

Proof  of  Theorem 1.3 (vi). By (2.35), 

( X - 7 o ) f * ( x ) =  ~ f ( x - u ) d k ( u )  for a.e. X>7o. 
(0,x-~,o) 

Hence f *  = 0 a.e. on (70,70 + 13). If x > 70 +/3, then the right-hand side is negative by 
Lemma 4.2. 

In order to examine I s w 16, we need three lemmas. 

Lemma 4.3. Assume F~I  s u 16 and let 

/3=sup {u: k(u)> 1}. (4.8) 

Then, f ' ( x ) > 0  on (7o,7o+/3"1. 

Proof  By Lemmas2.5 and 2.6, f is continuous on ( - c ~ ,  ~ )  and C 1 on (7o, c~). 
Suppose i f ( x )  < 0 for some xe(7o, 7o +/3]- By Lemma 4.2 and f(7o) = 0, we can find 
in any right neighborhood of 7o a point x at which f ' ( x )>0 .  Hence there is 
x1~(7o,7o+/3.1 such that f ' ( xa )=0 .  Again by Lemma4.2, f ( x l ) > 0 .  Choose 
Xo~(7o , x l ]  such thatf (xo)  = max f ( x )  andf(x)  < f(Xo) for all x < x  o. Sincef'(Xo) 

xe[~o,xd 
=0, we have 

oo 

f (xo) = ~ ( f (x o - u) - f (Xo) ) dk(u) (4.9) 
o 

by (2.33). Let x o -  70 = e. It follows that 

(k(~ - )  - 1) f(Xo) + ~ ( f ( x  o - u) - f(Xo) ) dk(u) = O. (4.10) 
(0, e) 

We have k ( e - ) >  1 since e</3. Hence both terms in (4.10) vanish. It follows that 
k(e - )  = 1 and k(e - )  = k(0 +), contradicting the assumption 2 > 1. 

Lernma 4.4. Let  G,(n = 1, 2, . . . )  be unimodal distribution functions with mode a,. I f  G, 
weakly converges to a distribution function G, then G is unimodal and one can f ind a 
sequence n a <n z < ... such that a,p tends to a mode of  G as p ~ oo. 
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Proof It  is enough to use the fact that  the limit of convex functions is convex. See 
[4], p. 160. 

L e m m a  4.5. Let G, (n=  1, 2, ...) be a sequence of distribution functions weakly 
convergent to a distribution function G. Suppose that, on some interval (c,, dn) , G, is 
absolutely continuous and its density g, is C 1 and log-concave, that c, ~ c and dn ~ d, 
and that G is absolutely continuous on ( c, d) and its density g is C 1 and positive on ( c, d). 
Then, g is log-concave on (c, d). 

Proof This is a consequence of L e m m a  2 of Y a m a z a t o  [16]. 

Proof of Theorem1.3 (vii). L e m m a s  2.5 and 2.6 show that  f is cont inuous  on 
( - o% ~ )  and C i on (70, oo) for I s and that  f i s  C ~~ on ( - o% oe) for 16. Let  F e I  s w 16. 
We will divide our  p roo f  into several steps. First, note  that,  i fxo > 7o and f '(Xo) =0 ,  
then 

oO 

f(Xo) = ~ ( f (x  o - u ) -  f(xo) ) dk(u). (4.11) 
o 

Step 1. There  exists no pair  of  points  x 1, x2 such that  Y o < x a < x2, f is increasing on 
(70, x i), non-increasing on (x l, x z) , and f ' ( x  1)= f ' ( x 2 ) =  0. The  p roof  is as follows. 
Suppose  that  such a pair  of  points  exists. Let  x 2 - x 1 = e- Since (4.11) holds at x 2 and 
f ( x 2 - u ) - f ( x 2 ) > O  for ue [0 ,e ] ,  we have  

f (x2)< ~ ( f (Xz-U)- f (Xz) )dk(u) .  
(e, oo) 

Hence,  

(k (~) - l ) f ( x2)> - ~ f ( x z - u ) d k ( u ) .  (4.12) 
(e, x2 - ~'o) 

Since f ( x 2 ) >  0 by L e m m a  4.2, it follows that  k (e )>  1. On  the other  hand,  

( k ( ~ ) - l ) f ( x i ) = -  ~ ( f ( x l - u ) - f ( x l ) ) d k ( u ) -  ~ f ( x i - u ) d k ( u ) ,  (4.13) 
(0,~1 (e, co) 

because (4.11) holds also at x 1. N o w  note  that  f ( x  1 - u) - f ( x  1) < 0 for u > 0 and that  
f ( x  1 - - u ) < f ( x 2 - - U  ) for ue(~ ,Xz-yo) .  Moreover ,  since y o + / ~ < x l  by Lemma4 .3 ,  
we have  k ( ( x 2 - 7 o ) - ) <  1 < k ( 0 + ) .  It  follows f rom (4.13) that  

(k (e ) -  1 ) f (x  1)< - ~ f ( x  2 - u)dk(u). (4.14) 
(g, X2 - -  ]~O) 

This contradicts  (4.12), since (k ( e ) -  1)f(xi)>=(k(e ) -  1)f(x2). 

Step 2. Let  a be the inf imum of x~(7o, oo) such that  f ' (x)=0.  Then 70 +/~ < a  and 
f '  > 0  on (70, a) by L e m m a  4.3. We claim that  f '  < 0  on (a, oo). By Step 1, it is enough 
to show that,  if g > 0 is sufficiently small, then f ' (a  + e)<0. Fix eo and c~ such that  
0 < to </~ and 0 < ~ < a - 7o -/~- Let  0 < e < Co. Suppose,  for a while, that  F e I  s. F r o m  
(2.33) at x = a  and a+e, we have 

oo 

(a + ~ - 70) f ' (a  + e) = (2 - 1) ( f (a  + ~) - f(a)) + ~ (f(a + e - u) - f (a  - u)) dk(u). 
o 

(4.15) 
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The r ight-hand side is o(e) + A 1 + A2 + A 3, where A 1, A2, A 3 are the integrals ~ ( f (a  
+ e - u ) - f ( a - u ) ) d k ( u )  over (0,8], ( e , a - 7 0 ] ,  ( a - V o , a - 7 o + 8 ) ,  respectively. It is 
easy to see that  A 1 =o(e)  and A 3 __<0. We have 

A 2  ~= I ( f ( a + e - u ) - f ( a - u ) ) d k ( u ) < M e  

where 

M = (k(fl + e) - k(fl - )) min f '(y).  
y e [ a - , 6 - - ~ ,  a + eo - fl] 

M is negative, since k(fl-)>_ 1 > k(fl + c~) and f '  > 0  on (70, a). Hence we get f ' (a  
+ e ) < 0  for small e, as desired. If F~I6,  then we need more  delicate argument  as 
follows. Instead of (4.15) we have 

co 

(a + e - ~o)f'(a + ~) = f(a)  - f ( a  - ~) + [. f (u)  dk(u) 
o 

where f (u)  = f (a  + e - u) - f ( a  - u) - f ( a  + e) + f(a). Using Lemma  2.1, notice that  

I a+~ I 
[ ~ f (u)dk(u)[= ~ dk(u) ~ ( f  ( x - u ) - f  (x))dx = c o n s t e ]  y udk(u)l=o(e) 
(0, ~1 (0, el a (0, el 

and that  

( - f ( a  + e) + f(a)) d k(u) = 2-1 ez f , ,(a + 0 e) k(e) = o(e) 
(e, m) 

where 0 < 0 < l. The  remaining part  of the p roof  is the same as above. 

Step 3. Let  1 < 2 <2.  Then, f ( x )  is log-concave on (7o, a]. In fact, just  as we proved 
the last sentence of Corol lary  2.1, we can show that  f '  is absolutely continuous on 
(7o, a) and 

( X - 7 o ) ( f ' ) * ( x ) = ( 2 - 2 ) f ' ( x ) +  ~ f ' ( x - u ) d k ( u )  
(O,x-  yo) 

a.e. on (70, a). Hence ( f ' )*  < 0  a.e. on (70, a). It follows that f '  is non-increasing on 
(70, a) and hence f ' / f  is non-increasing there. 

Step 4. Let  2 </ t  < oo. Under  the assumption that  

k(u) = 2 on some (0, 6), (4.16) 

we claim that  f i s  log-concave on (7o, a]. We may assume that  k(u) < 2 for u > 6. Let  
S(x) -= (log f ) "  = ( f " f -  ( f , )2)/ fz .  For  xE(70, Y0 + 6), (2.34) reduces to (x - 7o)f '  = (2 
- 1 ) f  and hence f ( x ) = c o n s t ( x - 7 o )  ~-1. Thus S ( x ) < 0  on (7o,~o+3] .  We have 

co 

( X - Y o ) f " ( x ) = ( 2 - 2 ) f ' ( x ) +  S f ' ( x - u ) d k ( u ) ,  X>7o,  
0 

from (2.34). It follows from this and (2.34) that  
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(x - 7 o ) ( f " ( x ) f ( x )  - f ' ( x )  2) 

= - f ' ( x ) f ( x ) +  ~ ( f ' ( x -u ) f ( x ) - f ( x -u ) f ' ( x ) )dk (u ) .  (4.17) 
(0 ,  x -  ~o) 

Now, suppose that, for some Xoe(7 o, a], S(xo) = 0  and S < 0  on (70, Xo). Then, x 0 > 70 
+ 3. Look  at (4.17) at x = x o. The  left-hand side vanishes, while f'(Xo)f(Xo) >= 0 and 
the integral in the r ight-hand side is 

[f'(Xo--U) f'(XO)~dk(u) ' 
f(xo)f(Xo-U) \ f(Xo_U) f(Xo) ] 

[6, xo  - ~'o) 

which is negative. This is contradict ion.  It follows that  S < 0 on (70, a]. 

Step 5. Let ~ > 2. Let  us show that  f is log-concave on (70, a] even if (4.16) is not  
satisfied or if ~--oo.  Choose  n o such that  k ( n o l ) > 2 .  For  n>=no, let 

k,(u) =k(u v n-l)  (4.18) 

and let F~ be the distribution with characteristic function 

~n(t)=exp{iTotq-i(eitU-l)u-lkn(u)du }. (4.19) 

Denote  the quantities related to F~ by putt ing subscript n. As n ~ oo, qSn(t ) ~ q~(t) 
and F n tends weakly to F. Hence  a n ~ a by L e m m a  4.4 and by the uniqueness of the 
mode  of F (Step 2). Since f ,  is log-concave on (7o, an] by Step 4, f is log-concave on 
(7o, a) by L e m m a  4.5 (or, check f ,  ~ f instead of using L e m m a  4.5). By continuity,  it 
is log-concave on (70, a]. P roo f  of (vii) is complete. 

Proof of the Assertion on 17 in Theorem 1.3 (xi), (xii). We divide the p roof  into two 
steps. The first step is a slightly weaker version of Step 1 of the preceding proof. 
Instead of Lem ma  4.3, we can now use the assumption Jt = oo. In the second step, we 
use the result of (vii). 

Step 1. Wc claim that  there exists no pair  of points x 1 < x  2 such that  f(x) is non- 
decreasing on ( - o r ,  x1), f'(xl)=f'(x2)-=O, f ( x )< f ( x l )  for all x e ( -  oV, Xx) , and 
f(x)>=f(x2) for all xe[xl ,x2].  Suppose that  such x 1 and x 2 exist. Let  x 2 - x  1 =5. 
Then we get (4.12) (with oo in place o fx  2 - 7o), (4.13), and k(~) >= 1 in the same way as 
Step 1 of the proof  of (vii). Since k(~) < oo = k(0 +),  we have 

- ~ ( f ( x l -u ) - f ( x l ) )dk (u )<O.  
(0 ,  ~1 

Also, we have f ( x  1 -u)_~f(x  2 -u)  for u~(~, oe). Hence  we obtain (4.14) with oo in 
place of x 2 - 7 o .  This is a contradict ion.  

Step2. Let  n o be such that  k ( n o l ) > 2 .  For  n>=no, define k n by (4.18), let 

qSn(t ) = exp i 7 t + (e ~ " -  1 - i t u(1 + u2) - 1) u- 1 k.(u) du , (4.20) 
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and let F, be the corresponding distribution function. F, is of type 15 . It converges 
weakly to F, and 7o, ~ - co. It follows that  F is unimodal  and f is log-concave on 
( - co, a), where a is a mode  o f F  (Lemma 4.4 and 4.5). f '  is nonnegat ive on ( - o% a), 
zero at a, and nonposi t ive on (a, oo). By Step 1, f is not  flat on any interval in 
( - c~, a). It follows that  f '  > 0 on ( - 0% a). In fact, i f f '  = 0 at some x o 6( - co, a), then 
f ' / f  <0 on (xo, a) by log-concavity,  and hence f ' =  0 on (x o, a), a contradict ion.  
Now using Step 1 again, we see that  f ' < O  on (a, oo), complet ing the proof. 

4 
Remark. The above p roof  indicates that, i fF~  Q) I j, then F satisfies Condi t ion (A) of 

j = l  
7 

Section 3, and that, i f F e  ~) I j, then F satisfies Condi t ion (B). Only the fact that  f '  is 
j=5  

bounded  on (a, co) in the latter case is not  yet checked. But, it is a consequence of the 
Riemann-Lebesgue  theorem that f ' ( x ) ~ O  as x ~ o o .  Use (2.20) or (2.22) 
according as 2 > 2 or 1 < 2 < 2. 

Proof of Theorem 1.3 (viii) Except that f (7 o - )  = co and f(7o + )  = oo. Use F+ and 
F_ of  (4.2) and (4.4). Since _P+ and F_ are of type I1, Theorem 3.1 (i) applies. 

Proof of Theorem 1.3 (ix). By translation, we may assume 7o = 0. As above, f is 
absolutely cont inuous on ( -  oo,0)w(0, co) and f *  is positive a.e. on ( -  co,0) and 
negative a.e. on (0, oo). The p roof  of Theorem 3.1 shows that 

oO 

f * ( x ) =  S f * ( z ) f _ ( x - z ) d z  a.e. on (0, co). 
x 

But, by Lemmas2 .5  and 2.6, f is cont inuous on ( - o % o o )  and C 1 on 
( - ~ ,  0) w (0, co). Of  course, f '  is a version o f f * .  Given x > 0, choose x n + x such that 

co 

i f (x . )  = ~ f * ( z ) f _ ( x .  - z )  dz. 
Xn 

Using Fatou 's  lemma, we get 

oO 

i f (x)  < ~ f * ( z ) f _  (x - z) dz, 
0 

and hence i f (x)  <0.  Similarly, i f (x)  > 0  for x <0.  

Proof of Theorem 1.3 (x) and Theorem 4.1 (ii) Except that f ' ( 7 o - )  = m and f ' (7o  +)  
= co. This time, P eI  1 and F+ eI  s. Applicat ion of Theorem 3.1 gives the assertion. 

Proof of the Assertions on IIIs,  III6, III 7 in Theorems 1.3 and 4.1. f is C 1 on ( - 0% co) 
by L e m m a  2.5. Using Theorem 3.1 for F+ and F ,  we get the assertions for III 5 and 
III 6. I f F e I I I  v and (4.1) holds, then the assertions follow from the decomposi t ion F 
= F . F  2. I f F e I I I  7 and (4.3) holds, use the decomposi t ion  F =F ,  ,F+ .  I f F e l I I  7 and 
if nei ther  (4.1) nor  (4.3) holds, Theorem3.1  also yields the conclusion in 
Theorem 1.3 (xi). 

Proof of the Assertions on II in Theorems 1.3 and 4.1. The conclusion in Theorem 1.3 
(xi) and the assertion of Theorem 4.1 (i) are obta ined from Theorem 3.1, since F is 
convolut ion  of  a type I distr ibution and a Gaussian. To see that f (x )  is log-concave 
on ( - o o ,  a], let 
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k.(u) = k(u) + n r u -  1(1 + u 2) Z(o,.- ,~(u), 

where )~ is the indicator function, and define ~b,(t) by (4.20). It is easy to check that ~b, 
is the characteristic function of an L distribution F, of type 17 and that F, weakly 
converges to F as n ---> oo. By Lemma 4.4, a, tends to a. Since f ,  is log-concave on 
( - o % a , ] ,  f is log-concave on ( - o o , a )  by Lemma4.5. By continuity, it is log- 
concave on ( - 0% a]. 

Proof  of  the Assertion on IV in Theorems 1.3 and 4.1. We can proceed like the proof 
of the assertion on type III 7. But, note that we are now using the result on type II in 
Theorem 1.3 (xii). 

Some parts of Theorem 1.3 still remain unproved. But they are automatically 
proved when we establish Theorems 1.6 and 1.7 in Section 5. 

Let us add one result here. We say that f is strictly log-concave i f f  is positive, 
C 1, and (log f ) '  is decreasing. 

Theorem 4.2. I f  F ~ I 5 u I6, then f is strictly log-concave on (70, a]. I f  F ~I 7 w II, then f 
is strictly log-concave on ( -  o% a]. 

Proof  If 1 < 2 < 2 and a 2 = 0, then Step 3 of the proof of Theorem 1.3 (vii) actually 
proves strict unimodality o f f  Suppose that 2 > 2 or 0 -2 > 0. Let 71 = 7o if F~Is  u I6, 
and 71 = - o o  if F617uI I .  We already know that (log f ) '  is non-increasing on 
(71,a]. Suppose that (log f ) '  is flat on some [c,d] ~(71,a].  Then f ( x ) = m e  ~ on 
[c, d] with some constants M, e. If 2 > 3 o r  0-2 > 0, then f is C 3 on (71, oo) and we can 
differentiate (2.33) under the integral sign.Thus 

(x - 7) f" (x)  = - 2/ ' (x)  
oo 

+ ~ ( f ' ( x  - u) - f ' ( x )  + f " ( x )  arctan u) dk(u) - a z f ' " ( x )  (4.21) 
0 

for x~(71, oo). If 2 < 2 < 3  and 0 - 2 : 0 ,  then (2.34) can be differentiated under the 
integral sign. Hence we get (4.21) also in this case. Multiply (2.33) byf ' (x )  and (4.21) 
by f (x ) .  Consider the difference. Then we get 

oo 

0 = f ' ( x )  f ( x )  + ~ ( f ( x  - u) f ' ( x )  - f ' ( x  - u) f ( x ) )  dk (u) 
0 

for x ~ rc, d], noting that f ( x )  = M e ~ .  This is absurd, since the right-hand side must 
be positive. 

5. Asymptotic Behavior of the Density Function 

We will prove Theorem 1.6 appealing to a Tauberian theorem for Laplace 
transforms. Theorem 1.7 will be proved directly from the inversion formulas of 
Lemmas 2.5 and 2.6. First, we give a theorem on the derivatives o f f  for F s I  5 u 16. 
We will use this theorem in the proof of Theorem 1.6, but the theorem is interesting 
by itself. 



On Distribution Functions of Class L 297 

Theorem 5.1. (i) Let F s I  5. Then, there are points 

70 <aN <aN-1 < "'" < a t  < o0 = %  

such that, for n = 1 ... .  , N, 

f(") is positive on (70, a,), zero at an, and negative on (a,,, an_ 1)' (5.1) 

On (7o,aN), f(m is absolutely continuous and (f~u))*<O a.e. I f  2 4 = N + 1 ,  then 
(f(N)), < 0  a.e. on (70, aN). Furthermore, for n = 1, ..., N, 

y o + / ~ n < a , ,  (5.2) 

where 

fin = sup {u: k(u) > n}. (5.3) 

(ii) Let F ~ I  6. Then, there are points 

7o < -.. <an<an_ t < ... < a  1 < oo = a  o 

such that, for each n >  1, (5.1) holds. (5.2) is also satisfied for each n> 1. 

Proof Let F e I  5. First, notice that  f is C N-1 on ( - 0 %  oo) and C N on (7o, ~ )  
(Lemmas  2.5 and  2.6). Let  a 1 be the m o d e  o fF .  F o r  n = 1, (5.1) and (5.2) are a l ready 
p roved  in T h e o r e m  l.3 and Lemma4 .3 .  Suppose  that  p < N  and that  there are 
points  7 o < a p < - - - < a  t < oo = a  o such that, for n =  1 . . . .  ,p, (5.1) and (5.2) are true. 
We claim that  we can find ap+ t @(7o, a;) such that  (5.1) and (5.2) hold for n = p  + 1. 

Step 1. f(P+ t~ > 0 on (70, 70 + tip+ 1]. 
(p) Step2. There  exists no pair  of  points  x t, x 2 such that  7o<Xt  < X z < a - ,  f is 

increasing on (70, xl),  non-increasing on (xl ,  x2), and f(P+ t)(xt) =f(P+ ~)ix2) = 0. 

Step3. Since f(P)(7o)=f(P)(ap)=O, there is at least one point  x@(7o,ap) such that  
f (P+ t ) (x )=0 .  Let  ap+ t be the inf imum of such x. Then, f ~ P + t ) < 0  on (ap+t,ap). 

The above  three steps are p roved  exactly in the same way as the p roo f  of  
L e m m a  4.3 and Steps 1 and 2 of  the p roo f  of  Theo rem 1.3 (vii). We have only to 
notice 

oO 

(x - yo)f  (p+ 1)(x) = - ( p  + 1)f(P)(x) + ~ (f(P)(x - u) -f(P)(x)) dk(u) (5.4) 
0 

for x > 7o and to imitate  the previous  p roo f  with trivial modification.  In this way we 
obta in  7o <aN < "'" < a l  < oo = a  0 such that  (5.l) and (5.2) hold for n = 1, .. . ,  N. In 
order  to p rove  the remaining assert ion on f(u), we proceed  like the p roo f  of  the last 
sentence of Corol la ry  2.1 and Step 3 of  the p roof  of  T h e o r e m  1.3 (vii). On (7o, aN), 
f (m  is absolutely cont inuous  and 

(x - 7o)(f~N)) * (x) = (2  - N - 1) f~m(x) + ~ f (m(x - u) dk(u) a.e., 
( O , x - ~ ' o )  
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which is nonpositive (negative if 2 ~ N + 1). This finishes the proof of (i). The proof 
of (if) is given in the same manner. 

s 
Proof of Theorem 1.6. Let F s  U ij. By translation, we may assume ?o = 0. Laplace 

j=l 
transform of F is 

oo ao 

O(t) = S e-t~ dF(x) = exp S (e -~" - 1) u-1 k(u) du. (5.5) 
0 0 

We claim that 

O( t )~c t -~K( t  -1) as t-~oo (5.6) 

with c of (1.8). In fact, 

1/3 1 1 

i ( e -~" -  1) u-1 k(u) d u = I ( e - " -  1) u - '  k(t -1 u) du -- 2 I ( e - " -  1) u -1 du, 
0 0 0 

o() 

f ( e - ' "  - 1) u -1 k(u)du--, - ~ u  -1 k(u)du, 
1 1 

and 

1 

f (e-t" _ 1) u-  1 k(u) du + 2 log t -  log K(t -  1) 
1/t 

1 t ao 

-- ~ e-tUu -1 k(u)du=~e-Uu -1 k(t - l u )du  - 2 ~ e-Uu -~ du, 
1/t 1 I 

proving (5.6). Because K(x) is slowly varying as x~0, we obtain from (5.6) that 

F ( x ) ~ c F ( 2 + l ) - l x Z K ( x )  as x~0 (5.7) 

by using Karamata's Tauberian theorem (Feller [2], p. 445). Since f (x)  is monotone 
in a right neighborhood of 0, (5.7) leads to 

f ( x ) "~cF( )O- lxa - lg (x )  as x$0 (5.8) 

by the dual version of a theorem of Feller [2], p. 446. f '  is monotone in a right 
neighborhood of 0 by Theorem 5.1, and hence, (5.8) leads to 

f ' ( x ) ~ c F ( 2 - 1 ) - l x Z - 2 K ( x )  as x~0. 

Theorem 5.1 allows us to repeat this procedure to obtain (1.11) for n =  1, . . . ,N. 

In order to prove Theorem 1.7, we examine behavior of q~(x -1 s) as x~0. 

LemmaS.1. Let s:#O. I f  2<  oo and 7o=a2=0 ,  then 

~)(x -1 s)x-~K(x)  -1 ~ c  N-~ exp((sgn s) 2 -1 n#i)  (5.9) 

as x~O, where c is (1.8) and 

# = k ( O + ) + k ( O - ) = 2 +  - 2 _ .  (5.10) 
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Proof Let  l(u) be (2.18) and m(u)=k(u)+ k ( ( - u ) - ) .  We have 

@(X-  1 S) = exp ~ (e is ' /x-  1) u -  1 k(u)  dbl 

= exp cos x -  1 s u - 1) u - 1 l(u) du + i ~ ( s in  x -  1 s u) u -  i re(u) du 
0 

for x~=0. Let  s > 0 .  As x$0,  

~ (cos x -1 su)u -1 l(u)du ~ 0  
1 

a n d  

co 
( s in  x - i s u) u -  1 re(U) du  ~ 0 

1 

b y  the Riemann-Lebesgue a n d  

x/s 1 
(cos x -  t s u - 1) u -  i l(u) du ~ A ~(cos u - 1) u -  1 db/, 

o o 

x/s 1 
( s i n x -  l s u )  u - l m ( u ) d u  ~ p ~ ( s i n u )  u - l d u .  

o o 

Moreover ,  

1 
f (cosx - i  s u -  1)u -1 l ( u ) d u - l o g K ( x ) + 2 1 o g x  -1 s 

x/s 

= S ( c o s  x -  1 s u) u -  ~ l(u) d u  + (2 - l(u)) u -  ~ du  
x/s x/s 

six 1 s/x 
= l ( x 8 - 1 )  I ( cOS/ ) )~ ) - ldv '~ -  f d l (u )  I ( c O s v ) / ) - l d / )  

1 x/s su/x 
1 A 

+ S ( 2 -  l(x u)) u-  i du ~ 2 l i m  ~(cos u) u -  1 du 
1/s A~oo 1 

a n d ,  s i m i l a r l y ,  

1 A 
S ( s in  x - 1  s u) u - i  re(u) du ~ # l ira  ~ ( s i n  u) u - t du. 

x/s A ~ oo 1 

N o t i n g  that 

A A 
l ira  S ( s i n u ) u - l d u = 2 - 1 ~  a n d  l i m  ~ ( c o s u - e - " ) u - l d u = O ,  
A~oo 0 A~oo 0 

we obtain (5.9) for s > 0 .  For  s < 0 ,  it is enough to use r 1 6 2  
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5 

Proof of Theorem 1.7. Let F s  t..) IIIj. By translation, we may assume 70 =0. There is 
j = l  

a constant M,  such that, for s=b0 and 0 < l x l < l ,  

14~(x -1 s)l Ixl-Z K(x) -~ <-_M I Isl-a K(Is1-1 A 1). (5.11) 

To see this, we may assume x > 0  and s>0.  I fx  -1 s < l ,  then (5.11) is trivially true 
with M 1 replaced by 1. If x -1 s>  1, then 

I q$(x- 1 s)l Ixl-~ _-__ M Isl-~ K(x s- 1) 

by (2.16) of Lemma2.4, and we have 

1 

K(xs-1)/K(x)=exp ~ (2-1(xu))u -1 du<_K(s -1/x 1). 
1/s 

Hence (5.11). Consequently, for each e < 2, there is a constant M z such that, for 
Is l>l  and 0<[xh<l ,  

]4b(x -1 s)[ Ix] -x K(x) -1 <M z Is[ -~. (5.12) 

Now, by Lemma2.3, 

for s . 0 ,  x~=0, n=0,  1, .... We have, for x:b0, 

sgnx 7 e - i S - i  d ((xS_)) 
f ( x ) -  27r -oo ~ i s  dx (o ds, (5.14) 

�9 sgnx 7e_iS(_is) ,_l  d (1 ( s ) )  
f(")(x)=--2n _~ dxx ~ 4b ds (5.15) 

for n=  1, ..., N. In fact, (5.14) is shown in Lemma2.6; (5.15) for n = 1 is seen from 

h'(x)-f(x)  
f'(x) - 

X 

- (~o (s) e -is ( s ) )  
2~ x dx -oo 

in Lemmas 2.5 and 2.6; and (5.15) for n = 2  . . . . .  N is proved by (2.17), (2.20), and 
(5.13). We claim that, for any given e>0, we can find an A o such that, for all 
0<[xlN1,  A>A o, and n = 0 , . . . , N ,  

S~:>(x! (sgnx)" i e-'S(-is)" ds < ~ .  

First, notice that, by (5.12) and (5.13), 
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2nlx[~-lK(x) I~r>A - i s  dx 

and 

1 e_iS ( _  d 1 <2' 
2rc[xl;~ K(x) IsJ>A is)"-ldxx 72 

for n = 1 ... .  , N uniformly in 0 < Ixl _-< 1 if A is large enough. Next we deal with the 
integrals over [sl < A  in (5.14) and (5.15). Note that 

A l ( - i s )n -1  d ((--is) n 
dx\  x" r (s))__=d s \ ~ r  ( s ) )  (5.17) 

for s 4=0. Make integration by parts. We find, for n = 1,... ,  N, 

sgnx A 1 d (1 (S) )  
2n[x[Z-"-l K(x) -A ~ e-i*(-is)n- dxx 72r ds 

([ e-iS(--is)n ~0 (S~l] A -~ i e--/s(--!s)n-(]5 d,). 
\ k 2 - ~ / [ ~ 2 7 x  ) \X/Js=-a -A 2n[x]ZK(x) (s) ~ ( s g n  X) ~ (5.18) 

By (5.12), the absolute value of the integrated term in (5.18) is smaller than e/2 
uniformly in 0 < [ x [ < l  for large A. Similar consideration can be made also for 
n = 0  by (5.17). Thus we get (5.16). 

Now, let us treat (i), (ii), and (iii) separately. 
(i) Let N < 2 < N + I  and let n=N. By Lemma5.1, we can find the limit of 

(sgn x) N i e-i*(-is) N (s) 
2n -A Ix]~K(x) (~ ds (5.19) 

as x tends to 0, because (5.11) guarantees applicability of the dominated 
convergence theorem. The limit as x$0 is 

i~ c ((_l)N iSN_~exp ( . .el*n, i#n, ds) �9 o - t s+-~-]ds+ i ]slN-Zexp ( - / s -T -  ) 2n  -A 

c a  ( N - - ~  t = - - !  s N - * c ~  s + ~ - - g  ds. 

If x <0, (5.19) equals 

(-1)N2n -Ai [~ii:(gl~) ~) (~X])ds 

and its limit as x T 0 is, similarly, 

( -  1)Nc A / N + #  
S:- cos ts+ --n ds. ! n o \ z 
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Hence, noting (5.16) and 

B ( ~ _ ~  ) _ 2 ) s i n 2 _ 2 N + #  lim ~sN-~cos s+ ~ d s = F ( N + l  n 
B-~ o 2 

= (- i) N F(N + i - 2) sin 2+_ ~ = n F(2 - N)- * (sin 2 ~)- * sin 2+_ ~, 

we obtain (1.12) and (1.13). 

(ii) Let 2 = N + 1. We claim that 

x d [f(N-*)(x)--f(N-1)(O)~ c # - N  
lim . . . . .  I x ]  cos ~ ~ (5.20) :,~o K(x) dx zr 

with the convention t h a t f  (- ') = F. Let x > 0. Let e > 0 be an arbitrary small number. 
We will show that 

x d (f(N-1)(x)Tf(N-*)(O)) (5.21) 
K(x) dx 

is within e of 

2 ~ K(x) -A S ds \ x ~ ~ (a ds (5.22) 

uniformly in x~(0, 1) for large A. If N>__ 1, then, by (2.20) and (5.15), 

x d (f(N-*)(x)Tf(N-*)(O)) 
K(x) dx 

i , 1 

- K(x) f(N)(x) X 2 ZC K(x) -oo ~(s, x) ds (5.23) 

where 

d [(-!s) N-* .(-is) N-' 
4J(s,x)=e-'S~x \ x N o (s))-(e '~-1) ~ q~(s). 

By (5.12) and (5.13), 

2 l ( x )  ~ q)(s ,x)ds<2 
Isl>A 

uniformly in x~(0, 1) for large A. Rewrite ,lJ(s,x) by (5.17). Note that 

2~k(x) d [ ( - i s )  N ds <2 
- A  

uniformly in x~(0, 1) for large A. Then we see that (5.21) is within ~ of 

, , ) . ,  
1 i ( e - ~ ' - l )  \/x-~DWi- 4 q$ ds, 

2 rc K(x) -a  xN+* 
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which equals (5.22). In case N--0,  we have, by (2.23) and (5.14), 

x d 1 (f(x) F(x) 

-2reK(x)_oo - i s  dx 4 -x -  \ x / J  

r 
- 2 re K ( x )  _ oo ~ ds  • ds, 

which is within e of(5.22). Now, let us prove (5.20). By integration by parts and again 
by (5.12), we see that (5.22) is within e of 

2~r -a  \ ~ - s  -]  x N V r ~ )  ~b ds (5.24) 

uniformly in x e(0, 1) for large A. Let x $ 0 and use Lemma 5.1 and (5.11). The limit of 
(5.24) is 

2rec (ei(~,_~r _1)~/2i ( ~ y d s + e i t U + .  1-u)~/2 i ( ~ s - % ) d s )  -is 1 ' 
0 - A  

This is within e of 

- (2 re)- 1 c(i e i(u-N- 1 ) ~ / 2  - -  i e i(N+ z -u)~/z) 

= __ r e -  1 C C O S ( ( / *  - -  N) re/2) 

for large A. Hence we obtain (5.20). Next, we see that 

lira f(N-1)(x)--f(N-1)(O) C /*--N = -  cos - ~  re (5.25) 
x,O xL(x) re 

by an elementary argument based on 

f(N--a)(x)--f(N--l)(o) f,N_~)(1)__f(N_l)(o)__i (f(N-1)(y)--__f(N--1)(O))'dy 
X x Y 

and lim L(x) = co. Since limK(x)/L(x) = O, the first equality in (5.23) combined with 
x,~O x $ O  

(5.20) and (5.25) proves that f(N)(x)/L(x) --+ re- 1 c cos((/, -- N) 7r/2) as x $ 0. Note that 
we did not use the assumption 2 < 2+. Therefore, in order to find the limit as x T 0, 
it suffices to consider ff and to apply the above result. This completes the proof of 
(ii). 

(iii) Suppose that 2 = N + l .  Let x>0 .  By (5.16), 

K(x)-  ' (f(N)(x) _ f(N)(_ x)) (5.26) 

is within 2 e of 

1 i xN+a 2re_ a K(x) C~ --(-- 1)~ qb ds (5.27) 
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uniformly in x~(0, 1) for large A. Since (5.26) is real, it is within 2e of 

n-1 -Ai X~+lSN sin SK(x) Im ( (_  i)nr ( s ) ) d s ,  (5.28) 

the real part of (5.27). Now use Lemma 5.1. The dominated convergence theorem 
applies. Thus the limit of (5.28) as x ;  0 is 

c_ ~ sins ds(s in~S~_n+(_l)Nsin~_+2N_N_n) .  
7C 0 S 

Hence, 

_ c  sin # + N  n)  lim f(N,(x)-f(sv)(-x) (sin ~ r e+(_  1)N 
x,o K(x) 2 ~ - -  

c 
=~(cos 2_ n + ( -  1) N+I cos2+ re). (5.29) 

The proof of Theorem 1.7 is complete. 

If F is a one-sided stable distribution with exponent 0 < c~ < 1 and 7o = 0, then 

k ( u ) = r u  -~ (foru>0),  0 (for u<0),  (5.30) 

with r = const > 0 and, from the asymptotic expansion off (x)  in Theorem 2.4.6 of 
[53, we have 

f (x )~czX-(2-~) / (2-2~)exp(- -c tx  -~/(1-~)) a s  x+0 (5.31) 

with 

c 1 =(1 - ~) a-  x (r F(1 - e))l/(t -,), (5.32) 

c 2 = (2 n) - 1/2 (1 - c 0- l12(r r(1 - e))1/(2 - 2~). (5.33) 

Let us consider the case where k is close to (5.30). 

Theorem5.2. I f  F e I  6 and if 

k ( u ) ~ r u  -~ as u$O (5.34) 

for some 0 < ~ < 1 and r > O, then 

logf(x) ~ -- cl(x - Yo)-~l(1 -~) as x ~, Yo (5.35) 

with c 1 of  (5.32). 

Lemma 5.2. I f  F~ I  5 w I 6 ,  then F(x) is log-concave on (~o, oo). 

Proof. Analogous to Steps 4 and 5 of the proof of Theorem 1.3 (vii). Namely, assume 
(4.16) and let S(x)=( logF)" .  We have S < 0  on (7o,Yo+~5] and 

(x - 70)(if(x) F(x) - f(x) 2) 

= - f ( x ) F ( x ) +  S ( f ( x - u ) F ( x ) - F ( x - u ) f ( x ) ) d k ( u )  
(0, x -  ~o) 

K. Sato and M. Yamazato 
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for x > 70- It  follows that  S < 0  on (70, oo). If  (4.16) is not  satisfied, then define ~b, by 
(4.19). F, is log-concave  on (7o, oo). As n ---, o% F,(x) ~ F ( x )  for all x. Hence  f is log- 
concave on (70, oo). 

Proof  of  Theorem 5.2. Let  7o = 0 and consider the Laplace  t ransform (5.5). We  have 

- - " k d u  - lk(u)d. 
t ~ U 1 +• t~ 0 t~ 1 U 

co 

~ r S ( e - " - l ) u - l - ~ d u = - ~ - l F ( 1 - o O r  as t ~ o o .  
0 

Applying a Tauber ian  theorem of exponent ia l  type of Min los -Povzner  [9] and 
F u k u s h i m a  [3], we get 

l o g F ( x ) ~  - c  1 x -~/0-~) as x J,0. (5.36) 

Since (log F)' is m o n o t o n e  on (0, ~ )  by L e m m a  5.2, we can aply the me thod  of p roo f  
of  a t heo rem of Feller [2], p. 446 and obta in  

f ( x ) / F ( x ) ~ q  e(1 - c 0  -1 x -l-~/(it-~) as x$6 .  (5.37) 

N o w  (5.35) follows f rom (5.36) and (5.37). 

6. Location of the Mode 

Let  F e I  s • 16 kA 17 k)II. F r o m  a general  theory  of infinitely divisible distr ibutions 
(see Krug lov  [7]), it is known  tha t  mean  m of F exists and - oo < m < co, that  m # oo 
if and  only if 

~k(u) du < 0% (6.1) 
1 

and that, if (6.1) holds, then 

oo 

m = i -  1 (Y(O) = 7 + ~ uZ (1 + u 2) - 1 k(u) du. (6.2) 
0 

Concerning the locat ion of the m o d e  a o fF ,  Wolfe [14] proves  that  a < m and that, if 
m < o% then a > m - d where 

d = s u p  {u: k(u) >0}.  (6.3) 

He  quotes  also a result of  Johnson-Roge r s  [6]. We will give strict sense versions of 
their results and add some other  results. Another  result in case of  type I I  exists in 
Theorem4.1  (i). In fo rma t ion  on locat ion of modes  in case of  types I I I  and  IV is 
obtained,  if we combine  our  results with Theo rems  1.3 and 4.1. 

Theorem 6.1. Let  F e I  s u 16 kA 17 U II. Then the following hold. 
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(i) a < m .  

(ii) I f  F~I  5 u I6, then 

a - - y o  

( a - ? o ) - '  S k(u) d u > l .  
0 

This gives an upper bound of a. 

(iii) I f  m< 0% then a > m - d ,  where d is (6.3). 

(iv) For every ~ > O, 

a > 7 + ~u2( 1 + u2) - ~ k(u) du - ~ (1 + u 2) - 1 k(u) du - ~ k(~) - 4. 
o 

(6.4) 

(6.5) 

(v) I f  m< o% then a > m - ( 3  V) 1 /2 ,  where v is variance o fF .  

(vi) I f  F ~ I s w I  6, then a>Yo+f l ,  where fl is (4.8). 

We need a simple lemma. 

L e m m a  6.1. Let G 1 be an absolutely continuous distribution function such that, on an 
interval ( - c ~ , c l )  , its density gl is continuous and non-decreasing, le t  G 2 be a 
distribution function supported on [b2, o0), and let G--G 1 �9 G 2. Then G is absolutely 
continuous and, on ( - o0, cl + b2), the density g of G is continuous and non-decreasing. 

Proof Notice  that  g (x )=  ~ g l (x -y )dG2(Y) .  It is easy to check the assertion. 
[b2, oo) 

Proof of Theorem 6.1. (i) Using the Equat ion  (2.1) at x = a, we see that 

o9 

(a - 7) f (a) = ~ ( f  (a - u) - (1 + u 2) - t f (a))  k(u) du. (6.6) 
0 

Since f ( a - u ) <  f(a)  by Theorem 1.3, this and (6.2) prove a <m. 

(ii) If F 6 I  5 u I6, then f ( x ) = 0  on ( - o %  70). Hence (6.6) gives 

a - - y o  

( a -  ?o)f(a) = ~ f ( a -  u) k(u) du. 
0 

Noting f ( a -  u)< f(a)  again, we get (6.4). 

(iii) Suppose that  a < m - d .  By (2.1) and f'(m)<_O we have 

d 

(m - ?) f (m) > ~(f(m - u) - (1 + u 2) - I f (m))  k(u) du. 
0 

But, since f ( m -  u) > f (m)  for 0 < u < d by Theorem 1.3, the r ight-hand side is bigger 
than ( m - y ) f ( m ) ,  a contradict ion.  

(iv) Given ~ > 0, let 

oo 

~bz(t)=ex p ~(e* t " - l )u - l k2 (u )du ,  k z (u )=k(uv~) ,  
0 

~bl(t ) = q~(t)/~2(t ). 
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Let F~, F 2 be the distributions corresponding to r ~ (t), r (t), respectively. Then, bo th  
F1 and F 2 are L distributions, and F = F 1 , F  z. Let a t and m~ be the mode  and the 
mean o f f  1 (let ax=Yo if F1M4). We claim 

a > m 1 - 4 .  (6.7) 

7 4 

If  F 1 s ~) Ij w II, then (iii) and L e m m a  6.1 prove (6.7). If  F 1 ~ ~ Ij., then use a > ? 0 and 
j = 5  j = l  

note that  

m, = 1'o + S (k(u) - k(O) du <= ~o + 
0 

by (6.2), (6.7) is thus established. Using (6.2) again, we see that  m 1 - ~  equals the 
r ight-hand side of (6.5). 

(v) A theorem of  Johnson  and Rogers [6] shows to us that  ] m - a l  <(3  01/2 for 
any unimodal  distribution. It is easily seen from their p roof  that  the equality holds 
only if the distr ibution is degenerate or  uniform on an interval. Hence, in our  case, 
4m - aC <(3  v) 1/2. 

(vi) is proved in L e m m a  4.2. 

Example i. Let F be a one-sided stable distribution with exponent  0 < ~ < 1 and ?o 
=0.  We have (5.30) and F ~ I  6. Theorem 6.1 (ii) says that  r(1 _ a ) - i  a - S >  l, and 

hence a<(r/(1--~)) l /L On the other  hand, we have a > r  1/~ from (vi). 

Example 2. Let F be an extremely asymmetr ic  stable distribution with exponent  
1 < a < 2 and ? = 0. That  is, 

r  r ~ ( e i t U - l - i t u ( l + u 2 ) - l ) u - l - ~ d u  
0 

with r = const > 0. Then F e I  7. Let  P ( 0  be the r ight-hand side of(6.5). By elementary 
calculus, we see that  P ( 0  is m a x i m um  when ~ = (r e)1/~. Hence, a > p((r e)l/~) is the 
best estimate from below that  we have. If  c~ = r = 1, then the two integrals in the 
expression of  p ((r :~)1/~) cancel and we obtain a > - 2. If  c~ + 1, then it follows from (i) 
and (6.2) that  a < m = - 2 -1  rc r sec 2 -1  rc c~. 
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