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Comparison of Experiments 
when the Parameter Space is Finite* 

ERIK NIKOLAI TORGERSEN 

The convex function criterion for "being more informative" for k-decision 
problems i s - i n  Section 2 -genera l i zed  to a convex function criterion for e- 
deficiency for k-decision problems. The particular case of comparison by testing 
problems is discussed in Section 3. A theorem of Blackwell on comparison of 
dichotomies is generalized and a problem on products of experiments raised by 
Blackwell is settled by counter-example. Pairwise comparison of experiments and 
minimal combinations of experiments are discussed. The problem of composing 
and decomposing experiments by mixtures is treated in Section 4. It is shown that 
any experiment with finite parameter  space is a mixture of complete experiments, 
and the complete experiments are characterized. 
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1. Introduction 

In [12] Le Cam introduced the notion of e-deficiency of one experiment 
relative to another. This generalized the concept of "being more informative" 
which was introduced by Bohenblust, Shapley and Sherman and may be found 
in Blackwell [3]. "Being more informative for k-decision problems"  was intro- 
duced by Blackwell in [4]. We shall here consider the hybrid of "e-deficiency 
for k-decision problems".  

An experiment will here be defined as a pair ~=((Z,  d),(P0: 0~O)) where 
(X, sd) is a measurable space and (P0: 0~O) is a family of probabili ty measures 
on 06 d ) .  The set O -  the parameter  set of ~ - w i l l  be assumed fixed, bat  arbi- 
trary. An experiment ~ as defined above may be identified with an experiment 

in the sense of [12] by taking _g = (O, E, Z, {P-0}) where E is the set of bounded 
measurable functions on 06 d )  and P-0 for each 0 is given byfP_o=~f(x) P0(dx); 
feE. 

* This paper is-essentially-the author's dissertation submitted in partial fulfilment of the 
requirements for the Ph.D. degree in Statistics at the University of California, Berkeley, June 1968. 
The paper was prepared with the partial support of Norges Almenvitenskapelige Forskningsrftd, the 
University of Oslo and U. S. Army Research Grant DA-3 l- 124-AROD-548, Da-ARO-D-31-124-G816. 
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Definition. Let e=((;g, sO), (P0: 0cO)) and @=( (~ ,  ~), (Qo: 0~0)) be two ex- 
periments with the same parameter set O and let 0 ,~  e 0 be a nonnegative function 
on O (and let k >  2 be an integer). 

Then we shall say that d ~ is e-deficient relative to ~- (for k-decision problems 1) 
if to each decision space 2 (D, 50 where 6 # is finite (where 50 contains at most 
2 k sets), every bounded loss function 3 (O,d),~Wo(d) on O x D and every risk 
function r obtainable in ~ there is a risk function r' obtainable in g so that 

r'(O)~r(O)+eollWll, 0~0 (1) 

where t1Wll =sup IW0(d)l. 
O,d 

If g is 0-deficient relative to ~ (for k-decision problems) then we shall say 
that g is more informative than ~ (for k-decision problems) and write this 

The greatest lower bound of all constants e such that g is e-deficient relative 
to o~ (for k-decision problems) will be denoted by 6 (g, ~) ,  respectively: 6k(g, ~) 
and max If (g ,  ~) ,  6 ( ~  g)] respectively: max [fik(g, J~), 6k(~, g)] will be denoted 
by A(N, Y) respectively: Ak(g, ~). 

If g, Y and fr are experiments then: O<6k(g,o~)<6k+~(g,o~)<6(g,~), 
6(g, g)=0, 6k(g, ~)~6(g, ~ )  as k--~ 00, and C~k(g, ~)<6k(g, f#) + 6k(f#, ~'~) SO that 
A 2, A 3, ..., A are all pseudometrics. 

Remark 1. Equivalent definitions may be obtained by replacing II Wll in (1) 
by [1Woll = sup [Wo (d)[ or by requiring that W__> 0 and at the same time replacing 

d 

e0 tl Wll by �89 0 II WII (or �89 II Wol[). This may be seen by noting that if W is a loss 
function then (O,d),~l]Woll-lWo(d) is a loss function bounded by 1, (O,d),~ 
W0(d)+ II Wlf is a nonnegative loss function bounded by 2 I1WII, and that W > 0  
implies that II ~11 < II w011, 0 e o  where l~0(d)=2W0(d)-II w011. 

If g = ((Z, ~r (P0: 0e O)) and Oo ~ O, the restricted experiment ((;~, ~r (P0: 0e Oo)) 
will be denoted by gOo or gol,o2 if Oo = {01, 0z}. 

From here on -un le s s  otherwise s t a t e d - O  will be assumed finite. The fol- 
lowing remark is on the significance of this restriction. 

Remark 2. Let O be an arbitrary (not necessarily finite) set. If for each finite 
subset 6) and each integer k > 2, go is e [o deficient relative to ~ ,  t h e n -  provided 
certain regularity conditions h o l d - t h e r e  is a randomization 4 M from (Z, sr to 
(~,N) such that (11/~[I =sup(l~f(x)#(dx)l"-l<f<l)) IIMPo-Qoll<=eo; OeO or 
equivalently: to each decision space (D, 5 #) and each operational characteristic 
(9 (. [0); 0 s O available in o ~ there is an operational characteristic (9'(. I 0); 0 e O 
available in ~ such that I1(9'('10)-(9('10)11 _-__e0; 0~O. We will refer to this result 
as the randomization criterion. 

1 W h e n  k = 2 :  tes t ing  problems.  
2 I.e., a measu rab l e  space. 
3 It  is a lways  to be unde r s tood  tha t  d,~ Wo(d ) is measu rab le  for each 0. 
4 I.e. M is a funct ion from Z x ~ to [0, 1] which  is measu rab le  in x for fixed B and  a p robab i l i t y  

measure  in B for fixed x. 
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It follows from [12] that a sufficient condition for this to hold is that (PO: 0~O) 
is dominated and that ~ is a complete separable metric space (or a Borel subset 
of such a space) with Borel class N. [Let ~ be a probability measure which is 
equivalent to (P0: 0~O) and let g and W be the corresponding experiments in 
the sense of [12]. The L-space of_~ is then LI(X, d ,  zc). By Theorem 3 of [12] and 
its proof, _g is e-deficient relative to _~ in the sense of [12]. By Proposition 7 
of [12] there is a positive normalized linear operator M from L106 d ,  n) to the 
L-space of ~ such that lIMP0- Qo [[ < Co; O e O. M rc and the MP0's are probability 
measures since the Qo's are, and the range of M is contained in LI(Y/, N, M~z). 
By Proposition V 4.4 of [16] the operator M is induced by a randomization.] 
If (P0: 0~ O) is dominated then e-deficiency (for k-decision problems) for all finite 
subsets of O impl ies-by weak compactness (Proposition IV.2.3 of [16])-e-  
deficiency (for k-decision problems). 

The product I-[ gt of a family ~ =((Zt, s~t); (Pot: 0~O)); t ~ T  of experiments is 
t ~ T  

the experiment ((1-[ Xt, I ]  sJ~); (I-I Pot: 0 ~ o)). Products are then commutative and 
t t t 

associative up to equivalence. If gl . . . . .  ~,, = g then [ I  d~ will be written d ~ 
i = 1  

Let ~ = ((X, d ) ,  (Po: 0 ~ O)) be an experiment and let A be the set of probability 
distributions on O. The convex extension of g is defined as the experiment d =  
((Z, ~4); (~ Po ;4dO); 2~A)).  

Criteria for >_ were given by Blackwell in [4]. They are generalized in Sec- -e 
tion 3 to criteria for e-deficiency for k-decision problems. The methods used 
(e.g., comparison of Bayes risks) are essentially the same as those of Blackwell 
in [4], the main difference being that the class of convex functions is replaced 
by the class of sublinear functions. 

It is shown in this section that convergence may be decided by comparison 
of testing problems alone. 

Comparison by testing problems is discussed in Section 4. In [4] Blackwell 
proved that for dichotomies, "being more informative', was the same as "being 
more informative for testing problems" and gave a simple criterion in terms of 
errors of the first and the second kind. It will be shown in Section 4 that this 
extends to ~-deficiency in a natural way. Blackwell proved in [3] that if 81 ..... E., 

i1 n 

. . . . .  ~ are experiments such that g i > ~ ;  i=  1 . . . .  , n then [ I g / >  IV] ~ / a n d  
i = 1  i = l  

raised the problem whether g2 > ~ 2  implies g___~ The answer is shown to be 
negative and a counter-example of the apparently weaker statement " g " > ~ "  
from a certain n on implies g > ~ "  is given. 

Since pairwise sufficiency implies sufficiency, one might ask about an analogue 
for e-deficiency. It is shown in Section 4 that comparison by testing problems is 
equivalent to pairwise comparison of the convex extensions of the experiments. 
It follows from the "error of first and second kind" criterion for dichotomies 
that a set of dichotomies have inf and sup. It is shown by counterexample that 
this does not hold when ~ O > 3. 

If a statistician observes a random experiment according to a known (i.e., 
not depending on 0) distribution on a set {~} of experiments and then performs 
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the observed experiment ~, the resulting "total  experiment" performed will be 
called a mixture of the experiments in {g}. It is shown by Birnbaum in [13 that 
any dichotomy is a mixture of a totally ordered set of double dichotomies. It is 
shown in Section 5 that any experiment is a mixture of complete experiments, 
and that the complete experiments are characterized as those minimal sufficient 
experiments whose standard measures are concentrated on the vertices of a 
simplex. 

Some of the notations which will be used are: 

~ ( X ) = t h e  law of X 

V X t = sup X t and A X t = inf X t 
t t t t 

X + = X V 0  and X - = ( - X )  + 

-- the class of all subsets of O. 

For each 0 ~ 0  the vector eoeR ~ is defined by: 

eo (0')= 1 or 0 as 0 '=  0 or 0'4= 0 

e =  2 e0 
0 

K = { x :  x E R ~  and ~ x 0  =1} 
0 

# A = the number of elements in A if A is finite 

:~ A = ~ if A is infinite 

dP2/dP1 ~-the density relative to P~ of the P~-absolutely continuous part of P2. 

]]fl] : s u p  If(x)[ and ]lpll =sup{[Sf(x) I~(dx)l:l[fll < 1}. 
x 

The L6vy distance between distribution functions F and G on R": 

A(F, G)=inf{h: h>O, F ( x l - h ,  ..., x , - h ) - h <  G(xl, ..., x,) 

<__F(x~+h, . . . , x , + h ) + h  for all (x~ . . . .  ,x,)eR"}. 

If the s y m b o l - " ( k ) ' - a p p e a r s  in a statement, then it may either be replaced 
throughout the statement by "k"  or be deleted throughout the statement. 

2. Comparison by k-Decision Problems 

Let k>=2 be an integer, put Dk= {1, ..., k}, let ~ be the class of all subsets 
olD k and consider (Dk, 5Pk) as a decision space. Then we have the following average 
risk criterion for e-deficiency for k-decision problems. 

Theorem 1. Let $=((Z, ~r (Po: 0~0)) and ~-=((Y/, ~'), (Qo: 0~0))  be two ex- 
periments and 0"~o  a nonnegative function on 0.  

Then ~ is ~-deficient relative to ~ for k-decision problems if and only if: 
To each loss function W on 0 • Dk and each risk function r available in 

there is a risk function r' available in g so that: 

y r'(O)<__ Y r(O) + y. % ]l Wol] ; 0 ~ 0 .  (1) 
0 0 0 
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Remark. As in Remark 1 after the definition we may restrict attention to non 
negative W's provided e0 is replaced by e0/2. In this case (1) may be replaced by 
the minimax criterion ~ V r'(O)< V ~ (r(O)+(eo/2)II W01]). 

We m a y - i n  (1)-restrict attention to W's such that 

Ve Wo(d)+/xa Wo(d)=O; Oe6), since Vfo(d)= Wo(d)- dV Wo(d)- aA Wo(d) (2) 

satisfies this condition. 

Proof of the Theorem. Let a be any decision procedure in ~. By assumption 
there i s - f o r  each W - a  decision procedure p in g so that: 

~(pPoW0-~QoW0-%[IW0l[)~0 i.e. sup m i n ~ < 0 .  
o I lWll -  -<1 P o 

It follows, by weak compactness,- since ~ is affine in p and concave in W- tha t  
0 

sup and rain may be interchanged-i.e, p may be chosen independently of W. 
This implies ]lpPo-aQo]J <Co; 0~6). 0 

Another proof of the randomization criterion described in Remark 2 after 
the definition follows from this proof. (p may always be modified so that 
ZpPo Z  Qo.) 
0 0 

The criterion given in Theorem 1 may also be expressed as a convex function 
criterion. Let ~ ,  k=  1, 2 .... be the set of functions on R ~ which are pointwise 
maximum of k-linear functionals on R ~ Let 7/be the class of all sublinear func- 
tionals on R~ i. e. the class of all functions ~ such that ~9(t x) = t ~(x) and ~(x + y) < 
~p(x)+tp(y) when t > 0  and x, y eR  ~ Clearly ~ ~2 =c ... ~ ku and each Oe 7 ~ may 
be written as lim'~Ok where OkS ~ ,  k= 1, 2, .... 

Theorem 2. Let g=((Z, sJ), (Po: 0E6))) and Y = ( ( ~ ,  ~), (Qo: 0~6))) be two ex- 
periments. Put 

d Foo: ' dEQo 
0 0 

and let O,~e o be a non-negative function on 6). Then o ~ is e-deficient relative to 
(for k-decision problems) if and only if: 

for each 

such that 

~ o fd  ~ Po >= f 0 o g d ~ Qo- ~ eo O(eo) (3) 
0 0 0 

~k(- e0)= ~(e0); 0~O. (4) 

Remark 1. If the P0's are given by densities ho: 0 ~ 0 relative to some positive 
measure p and ~k~ 7 ~, then it follows from the positive homogenity of ~p that 
S ~ o f d ~  Po=S 0o h dlz where h denotes the map: x'~(ho(x): 0~0). 

0 
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Remark 2. Equivalent conditions may be obtained by 

(i) Requiring that 0 be monotonically increasing (decreasing) dropping the 
requirement (4) and replacing (3) with 

~b o ( - f )  d Z Po> I ~b o ( - g ) d Z Q o - Z � 8 9  
0 0 0 

(I O ~  d 2  Po >= I 0 ~ g d E  Q o - Z  �89 
0 0 0 

(ii) Dropping the requirement (4) and replacing (3) with 

I 0 ~  0 ~ g d 2  Oo-E�89 �9 
0 0 0 

(ii) follows by noting that if 0 e tp then 

x-~ ~,(x) - 2 4'(e0) - ~'( - e0) 
o 2 Xo 

satisfies (4), and (i) may be deduced from (ii) using the fact that x '~O(x ) -  
0 (eo)Xo is monotonically decreasing in x when 0 e ~ .  Since ~, (e0)< 0, 0 s O for 

0 

each monotonically decreasing 0 e  ~P, (i) implies (ii). Note that the set of 0's which 
satisfies (ii) is a convex cone and that ~, satisfies (ii) provided 0 = ~ on K and 
0(-  e0) > ~( - e0); 0 e O where ~ satisfies (ii). 

It may be shown that 8 being e-deficient relative to ~,~ for k-decision problems 
does not imply (3) for all 0 E ~ .  

Proof of the Theorem. Any 0 e ~ is a maximum of k linear functionals and 
may therefore be written: 

0(x l=  v (2  ~ - w0(d)x0); x RO 

for some constants W0(d); OeO, deD. Since ~ , ( -e0)= V W0(d) and ~b(e0)= 

V - W0(d), the condition (4) for 0 is equivalent to the condition (2) (in the remark 
d 

after Theorem 1) for W. If the condition holds, then ~'(e0)= II W011. 
Now 

_ e(o)- i o ofaEo Co= e (o)-' I (go  (a)Io) ago a 
a n d  - 4+-(O)-' ~ O o g d Z  Q o 

o 

are the Bayes risks relative to W for the uniform distribution on O. Hence the 
theorem follows from the remark after Theorem 1. B 

Corollary 3. Let F(k ) be the set of functions y ~ ~k) such that 7 ( - e o ) =  7 (eo); 0 e O 
and ~7(e0)=  1. Then A(k)(g, Y )  may be written: 

0 

A(k)(~ , o~)= sup I~ 7 ~  7 ~ gdZQo[. 
~eF(k) 0 0 

6(~, ~ )  clearly attains its maximum when the P0's are all equal and the Qo's 
have disjoint supports. In this case ~ 0 ofd Z P0 = ~b (e) and ~ ~,o g d ~ Qo = Z ~ (eo). 

0 0 0 
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Define 7 by % 
?(x)= V xo-  ~ ~ xo where n - ~ # O .  

n 0 n 0 

Then ?~F and 

~7ogdZQo-~7o fdZPo=2 - z ~  so that A ( g , ~ ) > 2  
2 

0 0 n n 

(This y corresponds to the estimation problem (D, ~ W) where D = O and W0(d) = 1 
or 0 as d4 =0 or d=0.) 

On the other hand yjl  
for any family P~ . . . . .  P, of probability measures on ~4. Hence 

2 
a(8, 5 ) = 2 - - -  

n "  

It will follow from Corollary 6 that 

2 
6k(#' ~ kAn 

Hence 2 
6k(#, J ) < 2  

kA4~O 

for any pair #, ~ of experiments and " = "  is obtained for 8 and ~- specified as 
above. It may be shown that 62 (8, @)= 1 ~=~ there are prior distributions 2 and 
p such that 

~,2(0)P0=~#(0)P0 and ~2(O)QoA~#(O)Qo=O, 
0 0 0 0 

and that 2 
6(#, ~ ) =  2 - - -  ~*P0 

n 

does not depend on 0 and Qo A Q, = 0 when 0 4= r/. 

Corollary 4. Let 8i be ei-deficient relative to ~i (for k-decision problems); 
i=- 1 . . . .  , n. Then ~ ~i is F, ei-deficient relative to ]~ ~ (for k-decision problems) 
(el; i= 1, ..., n are nonnegative functions on 0). 

Proof It suffices to consider the case n=2. The proof is based on the fact 
that if OE~P(%) and Co: OeO are constants, then x"~,(CoXo: 0~0) belongs to 
~(~), Put gi=((Z~, ~) ,  (Pod 0~O)) and ~,~=((~, ~) ,  (qo~: 0~O)); i=1, 2 and let 
~e  ~(~).  The notations which we have used so far for two experiments 8 and ~- 
will be adapted to this situation by using i as a subscript. Thus: 

d(Po~ x P02) 
d[(Z P0 ) x (Z e02)] =fo  x fo , 

0 0 

d(Q.o ~ x Qo2) 
d[(X OoO• Oo )] =go  • 

0 0 
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By Fubini's theorem: 

O(So~ • so~; 0~o)  d[(E e0,) • (E e0~)] 
0 0 

=I E eo~ (axe)S o(7o, .fo~(x~); o~o)d Z Po~ 
0 0 

~S 2Po2(dx2) [~ O(gol "fo2(X2); OcO) d E Qo, 
0 0 

-- E 1 '~01 (0  ( -- eo) + 0 (eo)) fOE (x2)] 
o 

= ~ E Qo~ (dyl) I 0 (go, (Y).) f02; 0 E O) d Z Po 2 - Z �89 Cox (0 ( - eo) + 0 (eo)) 
0 0 0 

>=S E Qo,(dyO [~ 0(go~(y,) go~; o~ o) d E Qo: 
0 0 

-- Z �89 eo 2 (0 ( -- eo) + 0 (eo)) go (Yt)] - Z �89 eo, (0 ( - e0) + 0 (eo)) 
0 

=I o(go~ • go~; o~o)d[(2 eo,)• eo~)]-s ~o, +~o~ o o o 2 (0 ( - eo) + 0 (eo)). 

and 

Remark 3. It follows that: 

~(~ r 4 =< ~(k)(4,4). 
= = i = 1  

n 

In particular if 6~i_> 4 ;  i=  1 .. . .  , n, then [ ]  ~ i_  > _ ]~ 4 .  This was proved by Blackwell 
i = 1  i ~ l  

in [-3]. For equal factors this implies that " g > ~  ~ gn>_~n,,. Blackwell asked 
in [3] if the converse was true (for n--2). We shall see in the next section that the 
answer is no. 

It may be shown, however, that g " ~ "  ~ g ~  [The Laplace transform 
of an experiment # is defined by: 

Lr (t) = j" (l-[ fo ~~ d E Po; t 6 K. (5) 
0 0 

If g > W  then Le<_L ~ (since x , ~  Xto ~ is concave for t e K ) - t h e  converse, 
o 

however, is not true. An experiment i s - u p  to equivalence-determined by its 
Laplace transform and we have 

L ,  = f i L e , .  (6) 
i=1  i = 1  

It follows that it would be useful to have a criterion for > in terms of them.] 

Corollary 6 below generalize results in [4] to the case of e-deficiency. The 
method of proof is essentially that of I-4]. 

Corollary 5. I f  N contains at most 2 k sets then ~ is e-deficient relative to ~ if 
and only if g is e-deficient relative to ~ for k-decision problems. 
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Proof. The "only if" follows as in the proof(by choosing a as the identity map) 
of Theorem 1. D 

Corollary 6. E is e-deficient relative to ~ for k-decision problems if and only 
if ~ is s-deficient relative to every experiment ((Y4, ~), (Qo~: OeO)) where ~ is a 
sub a-algebra of ~ containing at the most 2 ~ sets. 

Proof It follows directly from Corollary 5 that the condition is necessary, so 
suppose the condition of the corollary holds. Let ~ ~ .  Then we may write 

k 

= V L~ where Lt, .. , Lk~ ~ .  Let (B~, .. , Bk) be a ~-measurable partition ofaJ 
/ i = i  ' " 

such that ~ o g = ~ L~ o g 1~. Let ~ be the algebra generated by this partition, put 

~ =  ((~, ~), (Qo~: O~O)) 
and define 

dQo~ " OeO) g=(dEQ0  
0 

Then, since ~ is ~-measurable: 

But 

O (eo) + (u(-eo) fO~ 
o o o 2 

0 i Bi O 

ii )) 
0 

=E O(Qo(B,): OsO)>--E L~(Qo(B~): OsO) 
i i 

=E Li( I g d E  Qo)=Z ~ Liogd Z Qo=y OogdE Qo. 
i B i 0 i B i 0 0 

So that 

S 0 o f d ~  Po>~O ogd~  Qo-~�89 ). 
0 0 

Let Y be the experiment given by the Markov matrix" 

~ x  1 2 3 4 

l!4_~ ~ 

Let ~ i  be the sub experiment of ~ obtained by adding the /-th and the j-th 
columns. It follows from Corollary6 that I ] { ~ /  l < i < j < 4 } > ~ .  1 ] { ~ j :  
1 <i<j=<4} is not, however, more informative than ~ since: c3) 

= o - - . j = - , ~ -  4 " 9 1 4 -  ~ ,  �89 
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It has been shown by Stein, see Blackwell [4], t h a t - i n  gene ra l -  > does not 
imply > .  k 

k + l  

Corollary 7. g >_ ~ if and only if 

I tpof d ~ Po>=_~ ~pogd~, Qo 
0 0 

for every ip e ~kt" 

Proof Follows directly from Theorem 2. 

This is the same criterion as that of (3) of Theorem 9 in [4] since any linear 
function p agrees on K with a homogenous linear function. 

Remark 4. The convex function (or average risk) criterion may be interpreted 
as convex set relations as follows. For  each nonnegative function 0 "~e0 on O 
let U: R~215 be the function: W , , ~  o IlWd, i.e. the support function of 
D={W:~,lWo(d)l<eo;OeO}. For  each experiment 6~  

d 

Fg: R ~ • Dk__. R be the function 

W,~ I [ V ~ - Wo (d) fo]d 2 P0 = V - 2 P0 P W0 = - ~ O [Bayes risk] 
0 0 o 0 

i.e. the support function of - A ~  where A e is the set of all operational charac- 
teristics. Theorem 2 may now be formulated as Fe+ U>F~ or equivalently 
A r  D ~ A~. These relations are, however, direct consequences of the definition 
of z-deficiency. Another proof of the randomization criterion follows from this 
observation. 

Finally some remarks on convergence for the pseudometrics A2 . . . .  , A. If 
g = ((Z, d ) ,  (P0:0 e O)) is an experiment, the standard experiment [3, p. 94] g '  of g 
is the experiment ((K, Borel class), (P0 f - I  : 0E O)). Since f is a sufficient statistic in 
g, A(g, g ' )=0 .  Moreover g '  is its own standard experiment and an experiment 
((K, Borel class), (Qo: OeO)) is a standard experiment if and only if x "~xo is a 
version of dQo/d ~ Qo for each 0~ O. This shows that a standard experiment is 

0 
uniquely determined by its standard measure ~ Qo. A positive measure S on the 

0 
Borel subsets of K is a standard measure if and only if ~ x S(dx)= e. We shall see 
later (Proposition 18) that if g and ~ are standard experiments and A 2 (g, ~ ) =  0 
then g = ~ Assume for a moment  that this has been shown. It follows that if 
g and ~ are any experiments then A 2 ( g , ~ ) = 0  ~ A ( g , ~ ) = 0 .  So that the 
equivalence relations induced by A z, ..., A are all the same. 

Let Jr denote the set of all standard measures. The pseudometrics A2 . . . . .  A 
define metrics on J/l w h i c h - b y  abuse of no ta t ions -aga in  will be denoted by 
A 2 . . . .  , A. Another metric on Jg may be obtained by using the Levy-distance A 
on the set of standard measures. It has been shown in [13-] that A and A are 
equivalent. Since Ak< A and J/l is compact for A this implies that the metrics 
A2, ..., A and A are all equivalent. This may also be concluded from Corollary 3 
as follows. Let L(N, ~ )  denote the Prohorov distance (based upon the norm 
x ,~ V ~ [Xol) between the normalized standard measures of g and ~ By Theorem 11 

in Strassen's paper [18], there is a probability measure R on K x K with marginals 
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[ #  O]-1  ~ Po and [ #  O] -1 E Q0 SO that R(D)<__L(g, ~ )  where 
0 0 

D =  {(x, y): V Ixo-yol >L(g, ~)} .  
0 

Let 7eF.  T h e n - u s i n g  the inequality, 7 ( x ) - 7 ( y ) <  ~ V [Xo-Yo],-we get: 

[-* O ] - '  [I 7d0~ P0- I  7d ~ ~ Qo]=I [7(x)-7(y)]R(d(x, y))N I Volxo-Yo] R(d(x, y)) 

= f + ~ <=R(D)+L(g, ~ )  R(D~)<=2L(g, ~ ) .  
D D e 

It follows from Corollary 3 that: 

A(g, ,~-) < 2 # OL(g, ~) .  

The equivalence of the metrics A and L (or equivalently A and A) follows now by 
a standard compactness argument. 

We formulate this as: 

Proposition 8. The equivalence relations induced by A 2 , As . . . .  , A are the same. 
Their restrictions to the set of standard experiments define metrics which all are 
equivalent to the Levy distance for standard measures. 

Example9. (The factorization theorem.) Let g = ( ( Z , d ) ,  (P0: 0~O)) be an 
experiment and let ~ = ((Z, M), Po~: 0~ O)) be the subexperiment of g determined 

by the sub a-algebra M of M. Put n = 1 ~, P0 Then go= E~fo; O~ O. Hence 
# 0  0 " 

A (g, ~ ) =  0 ~ ,  ~ ( f ) =  S~ ( g ) ~ * f =  g a.e. n, using the fact that two real random 
variables on the same probability space, having the same distribution, are equal 
a.e., provided one of them is the conditional expectation of the other relative to 
some o--algebra. [If the random variables are X and E ~ X  and EX2< oo then 

E ( X - E ~ X ) 2 = E X 2 - E ( E ~ X ) 2 = O  since ~(X)=~Lf(E~X). 

More generally, suppose that the random variables are X and E ~ X  and 
E IX[ < ~ .  Let (p be a real valued continuous and convex function defined on an 
interval I so that X eI  a.s. By assumption E cp (E ~ X ) =  E q~ (X). Since E~(p (X)__> 
cp (E ~ X) (Jensen's inequality) this implies 

so that 

In particular 

E~ tp(X)=q~(E~ X) a.s. 

 e( o(e x))= 

~(E a X -+) = ~ ( X  -+). 

It follows that we m a y -  without loss of generality - assume X > 0. Since t ,,~ - l /~  
is convex on [0, oe [ we have 

Hence - s ince  E(]/-X) 2 < ~ -  E~ 1 / ~ =  V ~ a.s. so that 

E g ~  E "~ (E'~' V ~)x 2 a~s.(E,.~ V ~  ) 2 a~ss. X . ]  

16 z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 16 



230 E.N. Torgersen: 

More general ly- le t  g,=((Z,,~r (P0,: 0eO)), n=  1, 2 . . . .  be a sequence of 
experiments, and for each n let ~ be the subexperiment determined by a sub 

dPo. dPo.~. 
a-algebra ~ ,  of ~r Put fo, = d ~ Po, ' go, = d ~ P0,~. ; 0~ O, n = 1, 2,...  and put 

1 0 0 
n , -  # O  ~ P0,; n =  1, 2 . . . . .  T h e n - u s i n g  the uniform boundedness of {f,} and 

u 

{g,} and an asymptotic version of the fact mentioned a b o v e - w e  get: 

l imA(g , ,~ )=O<=>l imA(~ , . ( f , ) ,~ . (g , ) )=O<=>l iml lPo , -go ,  n,n=O, OeO. 
n n n 

3. Comparison by Testing Problems 5 

Theorem 2 applied to the case k = 2 yields: 

Theorem 10. ~ is e-deficient relative to ~ for testing problems if and only if 

IIZ aoPoll IIZ a0 Q011- E e0 la01 (1) 
o o o 

for each vector a~R ~ 

Proof By the identity a V b = � 8 9  any ~e~2 may he written in 
the form L1 + IL21 where L1, L z e ~ .  Hence by Theorem 2 it suffices to require 
that ~ l L o f l d ~ P o > ~ l L o g l d ~ Q o - ~ e o l L ( e o ) l  for each L e ~ .  By writing 

o o o 

L: x ,~ ~ a o x o we obtain the above criterion. D 
0 

Theorem 10 has a geometric interpretation as follows. Let ~ = ((Z, d ) ,  (P0: 0e O)) 
be an experiment. The set of all critical functions in g (i. e., the measurable functions 
from Z to [0, 1]) will be denoted by c# e and Ve shall denote the subset of [0, 1] ~ 
consisting of all vectors of the form ((~ 6 dP0): 0 ~ O) where 6 ~ ,  i.e., Ve is the set 
of available power functions. Finally put for x, y~R  ~ lt~ ' yl = {z: x < z < y}. Then 
we have: 

Corollary 11. g is e-deficient relative to ~ for testing problems if and only if 

1 v , +  ~ It . . . .  1= V~. 

Proof If # is a finite measure on a measurable space (Z ,d)  then {[#[r = 
[-2 sup/~(6)]-/~(Z) where sup is taken over all measurable functions from Z to 
[-0, 1]. It follows that the support function He of Ve is given by: 

I1~, aoPoll + ~ ao 
He(a)= sup~Po(b) ao= o o . a~R  o 

~e~e 0 2 ' 

and that the support function H~ of V~ is: 

IIZ aoQoll + Z ao 
H ~ ( a ) -  o o . a~R o 

2 

5 Throughout  this section, we will use the notat ions of Theorem 2 for experiments g and ~.  
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while the support function of �89 It_t, +~1 is: 

H(a)=�89 ~ laol eo; O~R ~ 
0 

The inequality of the corollary now follows since He + H > H w. D 

In terms of power functions this may be expressed as: 

Corollary 12. do is e-deficient relative to ~ for testing problems if and only if 
for each testing problem H: 0~0o against K: 0r 0 o and each power function fI~ 
available in o~ there is a powerfunction H e available in do such that. 

He(O)<=H~(O)+�89 OeOo, He(O)>H~(O)-�89 0r o. 

Remark. This corollary shows that for comparison of experiments by testing- 
problems it suffices to consider loss functions which are indicator functions. 

Let h be the Hausdorff-distance for compact subsets of R ~ for norm 
x ~ V x =  IIxll i.e., the distance between two compact subsets C and D of R ~ is: 

0 

Then we have: 

Corollary 13. 

h(C, D)= sup distance (x, D). 
x~C 

A~(< g)=2h(V~, v~). 

Proof. Let x~Ve. Then by Corollary 12 there is a yeV~ such that IIx-yll 
�89 A 2 (& Y). Hence 

distance (x, V.f)< �89 A 2 ( d~ ~ )  
so that 

2h(Ve, V~)< A2 (do, ~ ) .  

By the definition of h there is a y~ Vw such that 

IIx- ylt =distance(x, Vw) < h(Ve, Vw). 

Hence 
V e ~= V~ + It_h(Ve" L*), h(Ve, V~)1" 

It follows from Corollary 11 that 62(g,~)=_<2h(Ve, Vw). Similarily 62(~,E)~_ 
2h(Ve, V~) such that A2(g,~)<=2h(Ve, Vw). [3 

Remark. Clearly any set V e belongs to the class Y of subsets of r0, 1] ~ which 
are symmetric about (�89 ..., �89 compact, convex and containing 0; or equivalently 
any function He belongs to the class Z, ~ of functions ~ E 7 j such that a , ~ 2 5 ( a ) -  ~ ao 
is symmetric about 0 and 0 

(2ao)+<__O(a)<=2a~-; a c e  ~ 
0 0 

If ~ O = 2  then Y is precisely the set of Vfs. If ~ O > 2  this is no longer true, 
s ince -as  we shall s e e - t h e  set of standardexperiments is not a la t t ice- for  the 
ordering " > "  - while 3" is a lattice for "contains ' .  

2 
16" 
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A simple necessary condition for 8 > ~ is the following: 
T 

Corollary 14 (of Corollary 7). Let 8 and o~ be experiments with standard- 
measures Sg and S~ respectively. Suppose ~ >_ 0% Then the support 6 of S~ is con- 

tained in the convex hull of the support of Sr 

Proof. Let C be the convex hull of the support of Sr Let L~ ~ and a~R be 
such that C c_ [L < a]. By Corollary 7 - and the remark after: 

( L -  a) + S~(dx) <= ~ ( L -  a) + Sg (dx) = O. 

Hence S~(L > a)=  0. Since C c may be covered by a countable class of sets [L > a] 
such that C~[L<=a] we have S~(CC)--0. D 

It is proved in [4] that when # O = 2, then "being more informative for testing 
problems" was equivalent to "being more informative' .  The following theorem 
generalizes this to e-deficiency. 

Theorem 15. Let ~ and ~ be dichotomies. Then ~ is e-deficient relative to 
if and only if ~ is e-deficient relative to ~ for testing problems. 

Proof. Write O =  {1, 2}. Since only the " i f"  needs proof, suppose that ~ is 
e-deficient relative to f f  for testing problems and let ~ ~ ~ .  By definition (of ~ )  

k 
there are constants al, ..., a k and b 1 . . . . .  b k such that ~(Xl, x2)= iVl(ai x 1 + b i x2). 

$ 

By rearranging we may assume that there is a s so that ~(1, y) = iVl(ai= + b i y) when 

y is > 0, where the representation on the right is minimal in the sense that for 
each i<=s there is a y > 0  so that a i + b i y > V  {a j+b jy : j~ i ,  l<j<=s}. Then the 
numbers bl, b2, ..., b~ are all distinct, and we may - without loss of genera l i ty-  
assume that b 1 < b 2 < . . .  < b~. It follows that a 1 > a 2 > . . .  > a s and that ~ (x) = or > 
al Xl + bl x2 + ~ (aixx +b ix 2 - a i_ l  x l - b i _ l  x2) + as x ~ K  or xE{-eo;  0~0} .  The 

i>__2 

theorem now follows by Remark 2 after Theorem 2. D 

Remark. An alternative proof  was given in [19]. It was shown there, that to 
any dichotomy ff___((ag,~),(Qi; i=1,2))  one might construct another i f * =  
((qr N), Q*; i=  1, 2)) which represents the minimum of all dichtomies r (regard- 
less of sample space) which are (e,: i=  1, 2) deficient relative to o~ ~ *  was 
constructed such that Q~/el + Q*/e2 = Qff~l + Q2/e2 (provided el, e2 > 0) and 
II Q* - Qi[I < el, i = 1, 2 (with " =  " provided e t + e2 < l[ Q1 - Q2 II). 

Corollary 16. Put 

fl, (a) = sup {P2 (6): 8 ~ cgr P1 (6) < ~} 
and 

fl~(a)=sup{Q2(q)): ~oeCg~, Ql(qg)_-<,}; ~_>__0. 

Then ~ is (e~, e2) deficient relative to ~ if and only if flg(a + eff2)+ e2/2 > fio~(a); 
ot>O. In particular �89 o ~ )  is the Levy diagonal distance between fig and fl~ 
considered as distribution functions. 

6 More precisely: the smallest closed support.  
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Remark. If g is a d icho tomy- then  V~ may be any compact convex subset 
of [0, 1] ~ which is symmetric about (�89 �89 and contains (0, 0)-i.e.,  the restriction 
offl~ to [0, 1] may be any concave function fl from [0, 1] to [0, 1] such that fi(0 +) = 
fl(0) and fl(1)= i. The functions fl~ are distribution functions on [0, i] and the 
probability measures they define wi l l -  by abuse of nota t ions-  again be denoted 
by fl~. Note that the Lebesgue measure 2 on [0, 1] represents the minimum 
information experiment. We shall later apply the fact that 

~ ( ( [ 0 ,  I], Borel class), (2, fie))" 

Example 17. For each (~, rl)e[0, 1] 2 let ~r be the dichotomy defined by the 
Markov matrix: 

0 1 2 

1 o i~-~ 
2 r/ 1 - ~  0 

The Laplace transform of this experiment is" (q, t2 ) ,~(1-  ~)t~ (1-r/) t~ such that: 

i=1 i ' 
In particular: 

For each a > 0  let ~ denote the dichotomy ((]-o% +o  e[, Borel class), 
(N(0, a), N(1, a))). Then clearly ~"~o~a /1 /~ .  

By the Neyman Pearson fundamental lemma: 

fl~,,(~)= [ 1 - ~  ~+~]  A1; 
1 - q  

while 

f l~(~)= q~ ( 1 +  ~_~(~)) ; 

where 

~(x)= -oo ~ - ~  1/2~ 2 dr; x s R .  

eE[0, 13 

~e[o, 1] 

It follows from the symmetry of d~r r and o~ that the graphs of fle~, ~ and fig~ 
are both symmetric about the line {(x, y): x + y = 1}. Hence-s ince the graph of 
fle~, ~ is essentially linear with direction 1 :1 - i t  suffices to compare the inter- 
sections with this line. e +/?~, ~ (e) = 1 and c~ + fig~ (c0 = 1 have the unique solutions 

c~- ~ and c~= ~ - respectively. Hence 

while 

[ _  ( 1)]+ ,~(e~,~,N)=2 1-~2 e - T J  
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so that 

It follows from the inequality [9, p. 166] 

( ,  1 )  
�9 '(x) x - - ~  < l - ~ ( x ) < ~ 0 ' ( x ) l ;  x > 0  

that 
gg, e > 4 "  from a certain n on ~ ,  

1 

g~,~>~" for some n . ~ l - ~ < e  8~ 

[Using the fact that gm> ~m, g. > ~ .  =~ gin+. > ~m+..] 
1 

However 1 -  ~ < e ~ does not imply ge, e > ~ since 6 (ge, ~, 4 )  for fixed a 
1 

may obtain values-under the condition 1 -  ~ < e - ~ - - a s  close to the positive [1' number e - ~ -  �9 - as we wish. This answers a problem raised by 

Blackwell in [3], and raises 'other problems such as the problem of finding condi- 
tions for g">  o~, from a certain n on. Here are some remarks in this direction. 

If 8 is a double dichotomy then d ~" > o ~"  implies N > ~. This may be proved 
by first proving it in the case where o~ is also a double dichotomy [14, p. 112] 
and then applying Corollary 6. Let ~/r and J~0 denote the double dichotomies: 

0"~__ 0 1 

1 0 1 and i ~ respectively. 

2 1 0 

As n ~ oo - by the weak law of large numbers - g" --+Adl provided g + J/go. Some 
rough estimates of the speed of convergence may be obtained as follows: Suppose 
Jgl > g >  ~do. Then there is a ~e]0, 1[ and apE]0,}[  such that 

Hence 

~r e >__ g_>_ @p where Np is the double dichotomy 

0 1 

1 1 - p  p 

2 p 1 - p  

,~(gg, ~, ~1)<,~(~ ", Jgl)=<,5 ( ~ ,  ~r 
Now 

8(g~, ~, ~gl )=(1-  4)" and it may be shown from a consideration of the mass 
in the tail of the binomial distribution that 

6 ( ~ ,  Jgl) < 2 (4 p (1 - p))./2. 
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It may, by a direct generalization of these ideas, be shown t h a t - f o r  any 
finite O-c~(do", maximal informative experiment)---, 0 exponentially provided 
0 ~ P  0 is 1-1 and min{llP0,-P0,,ll:0'~0"}<2. This is in strong contrast to the 
examples on semigroups of translation experiments treated in [19]. In these 
examples 6(do", do"+"), for fixed a, was of the form [constant +o(1)]/n as n ~  oo. 

Asymptotic comparison of powers of dichotomies by comparison of Bayes 
risks may be based on the paper [8] by Chernoff. It is shown there that for any 
dichotomy d o = ((Z, ~r (P~, P2)): 

l imf /  inf ( 1 - ~ , ( c 0 + 2 a ) = i n f E e ,  ( dPz ]~ 
. o_<~_<1 \ d P 1  1" 

If do is t-deficient relative to o~ for testing problems then for each pair (01, 02) 
O X O, the dichotomy do0~, 0, is (t0~ , t0~ ) deficient relative to ~00;, 0~. The converse, 
however, is not true. In fact, as we now shall see, even pairwise equivalence does 
not imply equivalence. 

Let do = ((Z, d ) ,  (P~, P2, P3)) and Y = (0~, sJ), (Q~, Q2, Q3)) where Z = {1, 2, 3, 4}, 
d = c l a s s  of all subsets, QI=P1, Q2 =1~ and P1, P2, P3 and Q3 is given by the 
Markov-matrix. 

1 2 3 4 

1 1 ~ 0 0 

1 3 1 3 g g g 

1 2 2 1 g ~- g g 

1 1 2 
g 6 g 

Clearly do12=~2 and ~13~c7~13(do23 ~ 2 3  ) since do13 (do23) may be obtained from 
~ 3  (~3 )  by a permutation of the columns. Hence do and ~ are pairwise equiv- 
alent. However, A2(do , ~)-~>1__ since lIP1 - P 2 +  P31t -- Yi17 and rip1 _ p2 + Q31p = ~.13 

If do and ~- are comparable then - s ince  pairwise sufficiency implies suffi- 
c i ency-  pairwise equivalence implies equivalence. Another condition for equiv- 
alence follows from: 

Proposition 18. Let do=(0~, d ) ,  (P0: 0eO)) and J~=((~, ~), (Qo: 0~0)) be two 
experiments and O'~to a nonnegative function on O. Let A denote the set of prob- 
ability distributions on O. For each 2EA put P~=~ Po2(dO), Qx=~ Qo2(dO) and 
t~=ytoA(dO). Let ff and g be the convex extensions ((Z,d),(P~: 2eA)) and 
((~, ~), (Q~: 2eA)) of do and o ~ respectively. 

Then ~o is t-deficient relative to ~ for testing problems if and only if ff ?~ ~.~ is 
(t~, t~) deficient relative to ~,~ ~ for each pair (2~, 22)EA x A. 

Proof. Only the "if" needs proof. Suppose do~,x, is (tx~, ta,) deficient relative 
to ~ , , ~  when 2~, 22~A. Let asR ~ We must show that: 

112 aoPoll >-tl~ aoQoll - Z  [ao] %. (2) 
0 0 
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This inequality is trivial if E a~- = 0 or E ao = 0. Therefore, suppose ~ a~- > 0 
0 0 

and ~ a~->0. Let 21, ~,2 ~A be given by: 
0 

a+ 2 2 ( { 0 } ) = - -  y, 
0 

By assumption 

o 

a~- 
; 0~0 .  

Y ao 
0 

IlblPal +b2 PxEII ~ lib1Qxl +b2 Q~211-~, Ibd-ea2 IbEI 

for any numbers bl and b2. (2) now follows by putting bl = ~  aJ- and b2 = - ~  a~. 
0 0 

Proposition 19. (Notations as in Theorem 2.) The following conditions are 
equivalent: 

(i) A 2 (do, ~ )  = O. 

(ii) Ak(do, o~)=O for some k. 

(iii) I[E aoPo[[ = lie aoGll; a~R~ i.e., the map Po,~Qo is well defined and may 
0 0 

be extended to an isometry between the linear space generated by the Po's and the 
linear space generated by the Qo's. 

(iv) ~ is pairwise equivalent to 
(v) 6 o and ~ have the same standard experiments. 

(vi) A (do, g )  = O. 
.. . ~ (iii) 

Proof. 1. (v) ~ (vi) =*- (11) ~ (1) ,:~ (iv)" (v) ~ (vi) is a consequence of the suffi- 

ciency of the statistic f i n  do and the sufficiency of the statistic g in ~ (vi) => (ii) ~ (i) 
is clear since A2~Ak<A. (i) r (iii) and (i),~,(iv) follows from Theorem 10 and 
Proposition 18 respectively. 

2. It remains to show that (iv)=~ (v). Assume first that do and ~ are dicho- 
tomies and let us use the notations of Theorem 15 and Corollary 16. Then (iv) 
implies (vi). Let F~=~e~(dP2/dPO and F~=~e~(dQ2/dQO. Since A(do, o~)=O, 
fl~=fl~. So that 

1 1 

f l e ( cQ=l -~Fi~(1 -p )dp=f l~ (cQ=l -~Fja (1 -p )dp ,  0<c~_< 1. 
~t ~t 

Hence F~= F~. Let us return to the general situation. Let 20 be the uniform 
distribution on O and let 2 be any element of A. By assumption ~o.  ~,-~O~o, a. 
As we have just seen, this implies ~Vzo(dP;]dP~o)= ~Q~o(dQ~JdQ~o) i,e., 

Ga (~, 2({0}) fo)= ~o  _ ~ (~  2({0}) go) 
~o ~Po o ~o~o o 

where n = # O. Since this holds for any 2 e A we have: 

~ 1  IF, P, (E ao So)= ~Lf ~ x,~ (E aogo) 
n o  o 0 n o  T M  O 

for any a__> 0. This implies 
fo eZO ~o go 

Elzol,o e ~~176 =_Elzof2o �9 
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By the theory of exponential families [14, p. 50] this implies that ~ and 
have the same standard experiments, rl 

Remark. (iii) .*~ (vi) follows from the corollary of Proposition 12 in [12] and 
(v) ~ (vi) is a special case of the result in [13] referred to on p. 228. It was shown 
by Morse and Sacksteder [15] that o ~ o  ~-r I[V a0P0[[ = II V aoQo[]; a~K.  

If # O = 2, then the class of sets V~ is a lattice for "contains". It follows that 
the set of standard experiments is a lattice for > when # O = 2. That this is not 
true when # O >3  may be seen from the following proposition which is of 
interest in itself. 

Proposition 20. Let g = ( ( Z , d ) ,  (P0: 0cO)) and @=((YI, N), (Qo: OeO)) be 
experiments such that )~ and ~ are complete separable metric spaces (or Borel sub 
sets of  such spaces) with BoreI classes ~r and ~ respectively, and let 0 ,~ e o be a 
non-negative function on O. Suppose there exist experiments g ' =  ((Y., eft), (P0': 0 e O)) 
and ~ ' = ( ( ~ , ~ ) ,  (Q~: 0cO)) such that g ' >  g, N ' >  Y and IIPo'-Q'oJl <=eo; OeO. 

Then there are experiments g = (0~ x Y/, d x ~), (/5o: 0e O)) and ~ = (0~ x ~, 
d x ~), (Q0: 0sO)) such that g _ g >  g, ~ , ~ ' > ~ >  f f  and II1)o- Qol] <Co, Po ~;1 =Po, 
O_.orC~l=Qo; OeO where ~ and ~z are the projections on Z and ~ respectively. 

Remark. Loosely speaking, the theorem says that "minimal combinations" 
of experiments g and ~ may be constructed with (1 x ~,  s~ x N) as sample space. 

Proof of  the Proposition. By assumption there are Markov kernels M and N 
N ' such that P0=MP0 ' and Qo = (2o. Let M x N from ~ to ;( x ~t be defined by: 

( M x N ) ( A x B I z ) - - M ( A ] z ) N ( B [ z ) ,  A ~ C , B ~ N ,  z e ~ .  

Put/50 = (M x N) P0' and (20 = (M x N) Qb. Then 

Po ~ ; ' (A )  = Po (A x ~ )  = ~ M(AIz)  N(~] z) 1)o' (dz) 

=(MPo')(A)=Po(A); A6sJ .  

Similarly Oo~Z~l-=-Qo . Hence ~ and ~ contains g and f f  as subexperiments 
such that ~_>g and ~__>~-. By definition ~=<g' and ~ ' ,  and t]~-Ooll _-<~o; 
0 ~ 0  since [ [MxN[ t=I .  D 

Let g and ~" be experiments and let ~ be an experiment such that: 

(i) ~r ~ .  
(k) 

(ii) If Jig is an experiment such that ~f~ > g, o~, then ovf > ~. 
(~) 

Then, since (~ is unique up to equivalence, we may denote it by ~ V ~ .  
(k) 

Corollary 2L Let ~=((Z, ~), (e~: 0~0)) a.d ~=((~, ~), (~0: aeo)) be two 
experiments such that ;~ and d# are complete separable metric spaces (or Borel 
subsets of  such spaces) with Borel classes s t  and ~ respectively, and suppose 
g v~, ~ exists. Then there exists a family (Ro: 0 ~ 0 )  of probability measures on 
J x ~ such that: 

# v ~ ~ ((z x ~,  ~ x ~) ,  (Ro: 0 ~ 0))  
and 

Ro has marginals Po and Qo; 0 ~ 0 .  

Proof The corollary follows by applying Proposition 20 to ? '  = i f '  = 4 ~ V ~.  [7 
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Corollary 22. Let g and ~ be two experiments such that g V ~ exists. Then 
( k )  

(~ V~)o, o2 ~Eo, o2 V ~ol,o2 for each pair (01, 02)~6) • 6). 
( k )  " ' 

Proof. Without loss of generality we may assume that ~ and ~ are standard 
experiments. Put f# = g (k)V ~ .  Clearly fr 02 (~) g01, 02' ~01, 02 SO that fr 02 > g01, 02 V 

~0,,02. By Corollary 21 we have g0,,02 V ~0,, 02"((g • ~,  d x ~), (Ro, Ro2)) where 
Ro, has marginals P0, and Qo,; i=1,2.  Put Ro=PoxQo when 0:~01,02 and 
~-=((X • Y / , d  x ~), (Ro: 0~6))). Then ~ contains g and ~ as subexperiments 
such that ~ > g, ~-. Hence ~ > f# so that 

go, 02V  ,02=Y41 �9 [3 
' ' (k) 

Remark. Similarly it may be proved that if g V ~ exists then (g V ~)eo 
8eo V ~Oo for each nonempty subset 6)o of 6). 

Corollary 23. I f  g and ~ are pairwise equivalent then g V ~ exists if and only 
i f  

Proof. Only the "only if" needs a proof, so suppose g and ~ are pairwise 
equivalent and that g V ~ exists. Without loss of generality we may assume that 
g and ~- are standard experiments. By Corollary 22 

(g o2=go, o2 V,,%o2=go o . 

Hence, since g V ~- > ~ ,  g V ,,~ ,-~ & Similarly g V ,,~--~,,~. D 

Remark. It follows that g V ~ does not exists for the experiments g and 
described just before Proposition 18. 

Example 24. Let g and ~- be the double dichotomies given by the matrices 

1 - P l  1 1 - q l  
and 

1 --P2 1 --q2 

1 

qa 

q2 
respectively. 

It follows from Corollary 21 that g V ~ has a version of the form: 

0 1 ~ 0 

0 1 - - p l - - q l + 2  i q l - - 2  i 0 1 - - p 2 - - q 2 + 2 2  

1 P1-21 21 1 P2 --"[2 

1 

q2 -22  

22 

and it may be shown that 21 and 22 are uniquely determined provided at least 
one of the experiments is different from the minimum information experiment. 

It may be seen from this that g V ~ does not exist in general when # O > 3, 
(k) 

since the existence of g V ~- imposes conditions on the dichotomies go,, o2 and 
(k) 

~01, o2; 01, 02 s O which - in general - are inconsistent. 
The minimum (maximum) of a set of dichotomies may be represented by 

inffir (sup H*) where inf (sup) is taken over the set. This follows from the fact that 
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the set of possible fi's is closed under pointwise infs while the set of possible H's 
is closed under pointwise sup's. 

If ~ = ((Z x ~ d x N), (Ro: 0e O)) is an experiment such that for each 0, Ro 
has marginals P0 and Qo, and ~ (g, ~)__< e and 6 (Y, (r < e, then A (& ~ )  < e. Le Cam 
has raised the problem of whether the converse is true, i.e., if A (& ~ )  < e implies 
the existence of an ~ of the above form such that 3 (do, ~)__< e and b (~, ~ ) <  e. By 
Proposition 20 the problem is equivalent to the problem of finding a ~__> 6", 
such that 6 (6 ~ N), 6 (~-, ~)__< e. In the case of dichotomies it is easily checked by 
Corollary 16 that ~q=do V ~  has these properties. [If do V~-  exists and ~ exists, 
then we may always take ~ = g V ~. ]  

If do =((X, d ) ,  (P0" 0~O)) and o~=(()C d), (Qo: 0~0)) where liP0-Q01l _-<~; 0~O, 
then (r may be constructed directly by choosing R o such that []Ro-Po T-ill-- 
]IRo-Qor-ll[=llPo-Qol[ where r i s  the map x,,,~(x,x) from Z to ;gx z. [Let P 
and Q be probability measures on d .  Define R on d by R =(P/x Q ) T - l +  
2[ [p_Qt  ] -1 [ ( p_ Q)+  x ( P -  Q)-]  when P#:Q, R=PT -1 when P=Q. Then 

ercf l=P,  R~ f l=Q,  [IR-PT-1II=IIR-QT-1II=IIP-Q[ ] . 
This construction shows also that 1 - � 8 9  [[ P - Q  [[ is the largest number of the form 
R*({(x, x): xe)~}) where R is a probability measure on d x d with marginals 
P and Q.] 

One might ask if A (do, ~)__< e implies the existence of experiments do' = ((~, (g), 
(P0': O~O))~do and o~'=((~,cg), (Q;: 0 e O ) ) - - , y  such that tiP0'- ' < (7011 =~; 0eO. 
By Proposition 20 we may always assume ~e =)~ x q/, cg= ~r x ~ and that the Z 
marginal of P0' is P0 while the ~ marginal of Q~ is Q0. Unfortunately do' and ~-' do 
not exist in general; as the following example will show. 

Example 25. Let g and ~ be given by the matrices 

0 1 1 

1 1 0 1 ~ 
and respectively. 

2 9 , 2 1 1 
lO lO ~ ~- 

It f o l l o w s - b y  simple ca lcula t ions-f rom Corollary 16 that ~(g, ~ ) = ~  while 
~(~,  do)=~.  So that e=A(do, ~ ) = ~ .  

Suppose now that there were versions do' and ~ '  with the above properties. 
We may assume that do' and ~ '  are given by the matrices 

0 1 Z 0 

P~': 0 a 1 - a  1 P~': 0 u 

1 0 0 0 1 v 

x ~  0 1 x ~  0 

Qi: o ~ - s  ~--t Qi: o } -~  

1 ~ s t 1 

1 Z 
9 9 

T0 - u  19 

1 1 
TO - v  19 

1 

�89 

1 
2 
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By assumption, the X projection is sufficient in 8' while the qr projection is 
a 10 s 6 t 4 

sufficient in ~ ' .  It follows that . . . .  and - - -  . Hence 
a+u 19'  s+ r  11 t+r l 9 

u = 9 a ,  s=6~ and t = ~ .  The inequalities Ile;-Qill_-<e and IlP2'-Qhll_-<e may 
then be written respectively: 

- 6 , -  3,+, 1 a + 4  2 .~_6 r_F4 a + ~ r  I - ~-q-~ ~r ~t/<Cs 

and 

(3) implies 

i.e. 

_]4. < 2  Hence4~ ~rl=~.  So that 

19 a+~-�89 a+n-�89162 

la+6 ~ - 3 +  1 - a + 4 r t -  ~-1+6 ~+4rt___A 

(3) 

(4) 

~+-~,~=<~. (5) 

~+~/<~s. (6) 

In the same way we get from (4) I~o - (4 + 7)1 < 2 ,  which by (6) yields ~ + r/= }8, 
which together with (5) gives ~ =0, r / = ~ .  Hence Iv-41 + 1~-v -~ / [  > 2 .  So that 
(4) implies 

1 9 a - � 8 9  a~-av--~19 9 2 4,<4_ ~ (7) 

while (3) now may be written: 

l a - ~ l  + I1 - a -4516 _ - 2 .  (8) 

Now we have arrived at a contradiction since (8) implies a>~ while (7) implies 
a <  3. 

4. Mixtures of Experiments 

It has been shown by Birnbaum in [1] that any dichotomy is equivalent to 
a mixture of double dichotomies. This will be generalized to an arbitrary finite 
O, and an alternative proof of the decomposition in [1] - based upon the exist- 
ence of a certain ancillary statistic-will be given. Most of the results in this 
section are "experiment-interpretations" of well known results from the theory 
of convex sets. 

Definition. Let (T, ~, n) be a probability space and 4 ;  t e T  a family of experi- 
ments with standard measures St; teT. If t ~St(E)  is measurable for each Borel 
set E then any experiment with standard measure ~ St n(dt) will be denoted by 

8tn(dt), and called a n-mixture of Et: teT. 

The motivation for this definition is: 

Proposition26. Let dt=((Z,d),(P0t: 0cO)); t e T  be a family of experiments 
and (T, 5r a probability space such that t~*Pot(A) is measurable; Ae~r OeO. 
Suppose ~r is separable. Then: 

j e~ ~(,~0 =((r • z,: • ~/), (Qo: o~o)) O) 
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where 
Qo(SxA)=~ Pot(A)rc(dt); S ~  A~r 0~0. 

S 

Proof Let ~ be the right hand side of( l )  and let S and St; te  T be the standard 
measures of ~ and gt; t eT  respectively. We must show that S=~St rc(dt). By 
the martingale convergence theorem and separability dPoffd ~ Pot may be speci- 
fied so that it is jointly measurable relative to 5 e x ~r 0 

It follows that for each Borel set E and each 0, t'~Pot((Xot: OEO)eE) is meas- 
urable and 

5 S,(E) ~ (dt) = ~ [Y Pot ((Xo,: 0 ~ O) ~ e)] ~ (dt) 
0 

= Z  Qo({( t, x): (Xo~(x): O60)~E}). 
0 

The theorem now follows, since (t, x),~Xot(X) is a version of dQo/d ~, Qo. D 
0 

In the situation described in the above theorem the statistic (t, x ) ,~  t alone 
provides no information on 0 since its distribution does not depend on 0. This 
does not mean, however, that (t, x ) ,~  x contains all information, i.e., that (t, x),~x 
is sufficient. ((t, x) ,~  x is sufficient i f - f o r  example - the  gt's are standard experi- 
ments.) 

Example 27. For each t~T let fit he a concave function from [0, 1] to [0, 1] 
such that flt(O+)=flt(O), flt(1)=l. For each t, consider the experiment g t=  
(([0, 1], Borel class), (2, fit)) Where 2 is the Lebesgue measure on [0, 1] while f l , -  by 
abuse of no t a t i o n - i s  the probability measure with distribution function fit. 
Suppose t-~flt (x) is measurable for each x ~ [0, 1]. Then we can defne the experi- 
ment 

o~=((T x [0, 1]; 5 e x Borel sets), (Qo: 0669)) by: 

Qx(S • A)= j 2(A) u(dt)= (u x 2) (A • S), 
S 

Qz(A • S)= ~ flt(A) zc(dt); S ~  A is Borel. 
s 

Let ~ be the subexperiment of #, obtained by restriction to the statistic 
(t, x) ,~ x. Then 

fld (00 = S fit (~) ~ (dt) 
while 

fl~(a)= sup ~ fit(at) n(dt) 

where sup is taken over all measurable functions t , ~  t from T to [0, 1] such 
that j" c~ t zc(dt)=a. 

If gt is et-deficient relative to ~ (for k-decision problems) for each t and 
~gtrc(dt), ~etn(dt) and ~ r c ( d t )  exists, then it follows from Theorem2 that 
f gt 7t(dt) is ~ et ~z(dt)-deficient relative to ~ ~ n(dt) (for k-decision problems). In 
particular g t > ~ ;  tET implies ~gt ~(dt)>S~zc(dt). The following proposition 
- w h i c h  is a direct application of a theorem of Strassen [18, p. 4 2 3 ] - g o e s  in 
the converse direction. 
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Proposition 28. Let g>=~ be two experiments, (T, 5 r n) a measurable space 
and ~t; t e T  a family of  experiments such that f f = ~ t T t ( d t ) .  Then there exists 
experiments ~t; t ~ T  such that 

(i) g = ~  gt n(dt). 

(ii) gt >_ ~ .  

Proof. Consider the Banach-space C(K) of continuous functions on K (with 
sup-norm). Let q~ denote the set of continuous concave functions on K. Let U, 
S and St; t r  be the standard measures of d ~, ~ and ~t;  tET respectively. For 
each f ~  C(K) and each Borel measure 2, define the functional px on C(K) by7: 

p~(f)=inf{2(cp): q ) ~ ;  q~>f}.  

Then Pz is sublinear and 

pz (f)  = 2 (inf {q~: ~o > f}) .  

By assumption ps=~pstn(dt) and U<=ps. It follows from Theorem 1 in [18] 
that there exist linear functionals #t; t6 T on C (K) such t h a t - f o r  each f ~  C ( K ) -  
t , ~ # t ( f )  is measurable, 

#,(f)<=pst(f); t ~ T  
and 

U( f )=~  #t( f)  n(dt). 

It remains to show that the #t's are standard measures. Let toT. I f f c  C(K), f<O,  
then 

#t ( f )<  p~t(f)<=pst(O) =0.  

It follows that #t__>0 such that #t is a positive Borel measure. Let L be linear 
on K. Then since L, - L  ~ ~, #t (L)= S t (L). In particular ~ Xo #t (dx)= 1, 0 ~ O. Hence 
#t is a standard measure. 

The set of standard measures is a convex subset of the linear space of bounded 
measures on the Borel subsets of K. The next proposition will give us the extreme 
points of this set: 

Proposition 29. Let t~R ~ Consider the set JH t of  probability measures S on the 
Borel class in R ~ such that ~ x o S (dx)= to, 0 ~ 6). This set is convex and S is extreme 
if and only if it is supported by the vertices of  a simplex. I f  S is extreme, then it is 
uniquely determined by its support 8 

Proof. 1. Suppose S is concentrated on the vertices of a simplex (a  1 . . . . .  ak). 
Put S({ai})=Ti; i=  1 . . . . .  k such that ~ a i= 1 and t=~  x S ( d x ) = ~  ~ a ~. Suppose 

i 
S=(1-O)  Q+OR where Q,R~Jgt and 0 < 0 < 1 .  Then S>>Q such that Q is sup- 
ported by {a 1, ..., ak}. Put Q({ai})=~; i= 1 . . . . .  k. Then 

t= S x Q(dx)= ~ ~'i ai. 

7 When convenient, ~f(x) #(dx) will be written/~(f). 
8 More precisely: smallest closed support. 



Compar ison of Experiments when the Parameter Space is Finite 243 

H e n c e -  since 0 = t - t = ~ (ei - e'i) ai and ~ ( a i -  a'i) = 0 
i i 

c~i=a~, i=1  . . . . .  k i.e. Q = S .  

Similarly R = S. It follows that S is extreme. 

2. Suppose S is extreme. Let p~ . . . .  , pk be points of increase 9 for S. We may 
then construct a measurable partition {V~, ..., Vk} of R ~ such that Vii is a neigh- 
borhood of pi; i--1 . . . .  ,k. Put 2i=S(Vi). Then 2~ . . . . .  2~>0 and ~ 2 ~ = 1 .  Let 

f i=2 i - l  lv~, such that ff~ d S =  1. S e J ,  implies 

t= S x S(dx)= Z 2, Z 2, 
i i 

where 
v xf (x) S(dx). 

Let px, ..., #k > 0 be constants such that ~ #z = 1 and ~ #~ v ~ = t. Then 
i 

and 

It follows that Q = ( ~  # z f ~ ) S e ~ .  Let a >  1 he a constant such that ~ # ~ f . < a .  

O =  a - t  = 0  I S - ( 1 - 0 ) Q ] .  Then S = ( 1 - O ) Q  + OR, 0 < 0 <  i, R, Qe~r Put and R a 

Since S is extreme, R = Q ,  such that S = Q .  Hence ~ # i f i =  1 a.e.S. Since S(V~)> 0 
there is axeV~ such that: 

1 = 

Hence 
p~=2i; i=  1, ..., k. 

We have shown that 

#~ . . . . .  /Zk>_0 , ~/11= 1, ~#ivi-=t~,=>l~i=ai, i=1,  ..., k. 

This implies that v ~, . . . ,  v k are gometrically independent. Consequently k < # O + 1. 
It follows that S is supported by a k' point set {q~ . . . .  , qk'} where k' < # O + 1. 
By the same reasoning, ql . . . .  , qk" are geometrically independent. Let 2] . . . .  ,2~, 
be the weight assigned to q1 . . . . .  qk, by S. Then we have 

e= ~ x S (dx )=  ~ 2'iq i. 
i 

It follows that 2~ . . . . .  2~ , - and  consequently S - i s  determined by ql . . . .  , qk'. 

Remark. A permutation n of O induces a permutation of R~ (Xo: 0 ~ 0 ) , ~  
(Xo~; OeO) which again will be denoted by re. Let G be a group of permutations 
n of O and consider the set dgt, a of probability measures in JILt which are invariant 
under G. By a modification of the proof  of Proposition 29 it may be shown that 

9 A point p e R  ~ is called a point  of increase for a positive Borel measure S if S (V)>0  for any 
measurable neighborhood of p. 
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S is extreme in ~/t, G if and only if S has a smallest support F of the form F = 
k 

F~ where F~ . . . . .  Fk are k distinct orbits for G (in R ~ such that the vectors 
i=1 

(F~)- ~ ~ x; i = 1 . . . .  , k are geometrically independent. If G is transitive on O, 
Fi 

then by geometrical independence, k<2 .  If G is transitive and # (O)  S is a 
standard measure then k = 1. 

Corollary 30. Any standard measure whose support is the set of vertices of a 
simplex is extreme. To any simplex which contains # (0) -1 (1, ..., 1) and is con- 
tained in K there corresponds an extreme standard measure which is supported by 
the set of vertices of the simplex. This correspondence is one to one and onto between 
the set of simplexes which contains # (0) -1 (1, ..., 1) and is contained in K on the 
one hand, and the set of extreme standard measures on the other. 

Corollary 31. Any experiment ~ is a mixture of experiments whose standard 
experiments are extreme. 

Proof. Let S be the standard experiment of ~ and consider the set of stand- 
ard measures as a subset of the set of bounded measures on the Borel class of 
K, topologized by the Levy distance. Let V denote the set of extreme standard 
measures. Then by a theorem of Choquet [17, p. 19] there is a probability measure 
n on the Borel class in r such that S=~  Vn(dV). D 

Remark 1. If B is a support of S then 

V(B) n(dV)= 1 
such that 

~({V: V(B)= 1})= 1. 

Remark 2. Let G be a group of permutations of O. In addition to the terminol- 
ogy used in the remark after Proposition 29 we introduce the following nota- 
tions: If 8=((Z, d ) ;  (P0; OeO)) and ~ is a permutation of 0 then 

d), (P0 ; o)). 
Then 

~(~2 g)  = (rq ~2) g,  6(k) (& ~) = 6(k)(n ~, rc o~). 

If S is the standard measure of g then S r~ -~ is the standard measure of reg. For  
each experiment g put G(g)={rc; rcg,,~g}. Then G(N) is a group and 

~ ~---~ G (g) = G (~-). 

Consider the set of standard measures S of experiments ~ such that G(g)~=G. 
The extreme elements of this set a r e - u p  to a factor ~ O - d e s c r i b e d  in the 
remark after Proposition 29. Since 41= (G)-I ~ S rc -1 is invariant under G for any 

standard measure S, it follows that any experiment is a "componen t"  of an 
" invariant"  experiment. Again by the theorem of Choquet, any invariant experi- 
ment is a mixture of experiments whose standard measures are extreme points 
for the set of standard measures of " invariant"  experiments. 
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In particular if O--{1,  ..., n} and G is the cyclic group generated by the 
permutation 1 ,~ 2 ,~ 3 ~,~... ,~ n ,~ 1, then (by restriction to "discrete" experi- 
ments) we get Lemmas 1 and 2 of [2]. 

Corollary 32. Let g = ((X, d ) ,  (P0:0 e O)) be an experiment. Then: 

(i) The standard measure of g is extreme provided g is boundedly complete. 

(ii) ~ is complete provided 8 is extreme and ~ is minimal sufficient. 

Remark. It follows that 1) g is extreme and d is minimal sufficient if and 
only if it is boundedly complete. 2) g is complete if and only if it is boundedly 
complete. (This does not h o l d - i n  g e n e r a l - w h e n # O = ~ - s e e  [14, p. 152].) 
3) d has a complete and sufficient sub a-algebra if and only if g is extreme. 

Proof of the Corollary. Let S be the standard measure of & 

1. Suppose ~ is boundedly complete. Let U and V be standard measures 
such that S=�89 U+�89 Put u=dU/dS. Then 

e = I x U(dx) = ~ x u (x) S (dx) 
so that 

u ofdPo =- 1. 

By assumption u o f =  1 a.e. ~ P0 such that u = 1 a.e.S. 
0 

Hence U = V= S. It follows that S is extreme. 

2. Suppose ~ is extreme and ~r is minimal sufficient. Let h be ~ P0 integrable 
0 

and such that ~ h dP0--0. We m a y - s i n c e  d is minimal sufficient-assume h is 
of the form g o f  Then ~ g (x) S (dx)= 0. By geometrical independence of the verti- 
ces in the simplex corresponding to S, g = 0  a.e.S. Hence; h=O a.e. ~ P0. 

0 
Proposition 33. Let g be complete. Then the following conditions are equivalent: 

(i) ~____o< 

(ii) ~_-> ~ .  
2 

(iii) The support of ~ ' s  standard measure is contained in the simplex which 
corresponds to g. 

Proof 1. (i) ~ (ii) =~ (iii) follows from Corollary 14. 
2. (iii) ~ (i). 

Let S~ and S~ be the standard measures of ~ and ~,~ respectively, and let 
C= @1 . . . .  , v k) be the simplex corresponding to g. Each ye  C may be written 
in the form 

k 

y =  Y~ m(yrj) vJ (2) 
j = l  

where m(yll ) . . . .  ,m(y[k) are uniquely determined by y and hence affine in y. 
For each Borel set B put 

=• rh(B[j) 2j B m(ylj) S~(dy); j = l  . . . . .  k 

17 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 16 
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where 2j is the weight assigned to {v;} by S~; j=  1 . . . .  , k. It follows from (2) that 

e = ~ y S ~ ( d y ) =  ~ ~ m(ylj)S~(dy) 2jvj. 
C j = l  " 

Hence, since vt , . . . ,  v k are geometrically independent 

~ + m ( y [ j ) S ~ ( d y ) = l ;  j = l  . . . .  ,k  

thus rh defines a randomization from {vl, ..., v k} to C. Let (P0: 0~O) and (Qo: 0 ~ 0 )  
define the standard experiments of g and ~ respectively. Then 

(rh P0)(B)=~ m(B[j)P0({J})=~ ~ m(ylj) VJo S~(dy) 
j j B 

=~yoS~(dY)=Qo(B); 0eO. 1 
B 

Let m be a randomization from O to some finite set {1 . . . . .  N}. Then m defines 
an experiment g,,=({1, . . . ,N}, (class of all subsets),(P0: 0eO)) with standard 
measure S~ where Po({i})=m({i}[O); i= 1 . . . .  , N; OEO. 

The set Jr of all randomizations from O to O may be identified with a com- 
pact subset of R ~ o2. The open sub set -/go of J/l consisting of the non singular 
randomizations, exhausts the set of extreme experiments, and the correspondence 
i s - s ince  a permutation of columns does not change the equivalence c l a s s -  

O! to 1. It follows easily that any experiment may be represented (though not 
uniquely) as a random selection of points in J/lo. We summarize this as: 

Theorem 34. To any experiment g there is a probability measure ~ on the Borel 
class on .//go such that: 

g ~((Jgo x O, Borel class x ~ ) ,  (Qo: 0~0))  
where 

Qo(S x f ) =  ~ Pore(f) o'(dm); S~Borel class, f e ~  
S 

With the notations of the last theorem, let W be the projection on T from 
(T x O). Then Whas the following properties relative to ((M/o • O, Borel class x Y), 
(Qo: 0eO)): 

(i) It is ancillary, that is, its distribution does not depend on 0. 
(ii) It is # O to one. 
If conversely an experiment admits a statistic W such that (i) and (ii) hold, 

then the experiment may under regularity cond i t i ons -be  decomposed into 
experiments whose sample spaces are (O, ~ ) .  It has been shown by Birnbaum 
[1] that if # 6)= 2, then g may always be decomposed into double dichotomies 
such that the set of double dichotomies which appears in the decomposition is 
totally ordered. It will be shown below that this may be deduced from properties 
of a "natural"  two to one valued ancillary statistic. We use the notations of 
Corollary 16 and the following remark. The ancillarity is established by: 
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Proposition 35. Let P and Q be two probability measures on an interval [a, b] 
of the extended real line such that P({x})=Q({x}); x6[a, b]. Then the random 
variable x , ~ P  [a, x] - Q [a, x] has the same law under P as under Q. 

Proposition 36. Let ~ be a dichotomy such that fig(0)=0 and let us consider 
the representation Y = (([0, 1], ~),(A, fig))and the statistic T: x , ,~ f lg(x) -x  in ~. 
Then T is ancillary and the conditional distribution given T decomposes g into 
double dichotomies {~t} such that ~tL <-- ~t2 when t 1 > t 2 . 

Remark 1. The set up may be generalized to cover the case fig(0)>0 as well. 

Remark 2. It follows from Proposition 36 and the remark above that any 
distribution function concentrated on [0, 1] and having expectation �89 (i.e., 
essentially the �89 standard measure of a dichotomy) is a "totally ordered 1o,, mix- 
ture of two-point distributions on [0, 11 with expectations �89 Blackwelt and 
Dubins [6] have s h o w n -  by another a p p r o a c h - t h a t  the analogous result holds 
for distributions on the line. The decomposition is essentially unique, and is 
related to Frechet's maximal distribution [10, p. 162] as we now shall see. 

Let P be a probability distribution on the real line such that ~xP(dx)=O, 
and for each pair a, b, such that (a, b) = (0, 0) or a < 0 < b, let 6,, b be the two-point 
distribution with support {a, b} and expectation 0. Put C=~ x + P(dx) and let 
F~ and F2 be the probability distribution functions on the line corresponding to 
the probability measures with densities x ,~  C - I x  - and x ,~ C -1 x + respectively 
with respect to P. 

Then: 
1 F-~(1 _p)_Fz~(p)  

P=P({O})3o, o+C~ ~ Fl_a(l_p)F~_i(p) [ t~Fl - t ( l_p ) ,F i - , (p ) ]d  p .  (3) 

[The distribution in the plane induced from the rectangular distribution on 
[0, 1] by the map p ,,~ ( - F~- 1 (1 - p), F f  1 (p)) is the Frechet maximal distribution 
with marginals given by x , ~  1 -  F a ( - x - )  and F2.] The decomposition of dicho- 
tomies follows directly from (3). 

All "totally ordered" decompositions of P are "equivalent" to (3). To see 
this, note first that the Frechet maximal distributions are precisely those prob- 
ability distributions which possess supports which are totally ordered for the 
product order on R x R. [An indication of a proof  of this: Let n be a probability 
distribution in the plane, and suppose n has a totally ordered support. Then the 
minimal closed support F of ~z is totally ordered. Since F is totally ordered: 

and 
r e ( ] -  oo, x[ x R) = ~z(] - o% x[  x ] - o% y]) 

rc(R x ] - o% y [ )=  ~(] - o% x] x ] - ~ ,  y]) when x, y~F. 

It may be deduced from this that 

~ ( ] - ~ , x ] n ] - ~ , y ] ) = n ( ] - ~ , x ] x R ) A n ( R x ] - ~ , y ] )  foral l  (x,y)ER2.] 

lo The two-point distribution in (a, b} is greater than the two-point distribution in {c, d} for the 
ordering considered, if [a, b] ~ [c, d]. 
[7* 
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We m a y - w i t h o u t  loss of general i ty-assume P({0})=0. Suppose we have a 
"totally ordered n ' '  decomposition: 

P= I 6a, bn(d(a,b)) (4) 
a<O<b 

where n has a totally ordered support B. It follows from (4) that: 

and 

x-  f(x) P (dx) = I f (a) aa~b_b n (d (a, b)) 

x+ f(x) P (dx )=~f (b )~ -b  n(d(a, b)) when f > 0 .  

This may be written: 

S x-  f(x) P (dx) = ~ f(a) al (da) 
and 

x + f(x) P (dx) = ~ f(b) a2 (db) 

where o- 1 and o- 2 are the projections (into the coordinate spaces) of a where a 
is given by: 

da a,b- ab 
dn a - b  when a < 0 < b .  

It follows that C - l a  has marginals FI and F2. Let U(x, y)= ( - x ,  y); x, y E R. 
Then (C-1 a) U -1 has marginals x-,~ 1 - Fl( - x - ) and F2, and (C-1 a) U-I(U[B]) = 1. 
Since U[B] is totally ordered for the product order, (C- la )U -1 is a Frechet 
maximal distribution, and is consequently determined by its marginals. It follows 
that n is unique.  

Remark 3. When # O = 3, standard measures which do not permit "totally 
ordered" decompositions into experiments with extreme standard measures, may 
be constructed, by the remark after Corollary 31. 
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