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Summary. In this note we improve a theorem of Lai on the convergence rate 
in the Marcinkiewicz-Zygmund strong law for stationary mixing sequences. 

1. Introduction 

Let X1,X2,... be a sequence of random variables which is strongly stationary, 
and for hEN let S,=XI +... +X,. The convergence rate in the strong law of 
large numbers can be expressed by 

co 

(1.1) ~nP~-2P{maxlS;l>~n~}<oo for all e>0.  
1 j < n  

For independent random variables Baum and Katz ((1965), p. 112, Theorem 3) 
proved that if c~> 1/2, pc~> 1, and EX~ =0  in case c~< 1, then (1.1) is equivalent to 

(1.2) EfXalP<oo. 

Lai ((1977), p. 695, Theorem 1) proved this equivalence for @mixing and strong 
mixing sequences of random variables. He needs an additional assumption on 
bivariate tail probabilities: There exists/3 > 1 and a positive integer m such that 
as x--, oo 

(1.3) supP{]Xll >x,  IXil >x} =O(PP{IXa] >x}). 
i>m 

To prove the equivalence of (1.1) and (1.2) Lai uses an approach completely 
different from the classical Erd6s-Katz approach and, in the @mixing case, ends 
up with conditions on Cb involving/~. It is the purpose of this note to show that 
in the @mixing case the equivalence of (1.1) and (1.2) can be proved using the 
classical Erd6s-Katz methods, leading to weaker conditions on q5 not involving 
/~. The same methods also work in the case of strong mixing random variables. 
However, our conditions on the mixing coefficients are weaker than those in Lai 
(1977) only if p is close to 2. Unfortunately, a lemma of Dvoretzky ((1972), p. 
528, Lemma 5.4) stating that strong mixing implies ~b-mixing, is wrong (see 

* This work was done while the author was a research fellow at Twente University of Technology, 
The Netherlands 

0044-3719/79/0049/0049/$02.80 



50 C. Hipp 

Ibragimov and Linnik ((1971), Chapter 17, w 3). The results and proofs can be 
found in Section 2. Auxiliary lemmas, which might be of independent interest, 
are defered to Section 3. 

2. The Results 

Let X 1, X z, ... be a sequence of random variables which is strongly stationary. 
For n e N  let N, be the a-field generated by X1, . . . ,X,  and o~" the a-field 
generated by X, ,X ,+  ~ . . . . .  Let q): N - ,  [0, 1] be nonincreasing and call the 
sequence X 1, X2, ... @mixing if: 

(2.1) For all i , jeN,  B l e ~ , B 2 E 9  i+j 

]P(B 1 c~ B2) - P(B1) P(B2) I < 4)(j) P(B ~) 

(see [8], p. 351, (1.1)). 

Let c~: N ~  [0, 1/4] and call the sequence X 1 , X  z .... strong mixing with mixing 
coefficients ~(]) if: 

(2.2) For all i , jeN,  Ble~/,  B 2 e ~  i+~ 

[P(BI c~ B2)-  P(B1) P(B2)L <-- ~(J) 

(see [13]). 

(2.3) Theorem. (i) Suppose a > l / 2 ,  p> l /~ ,  that EX~=O if a<=l, and that the 
sequence X 1, X 2 . . . .  satisfies (1.3) and (2.1) where 

(2.4) i ~ ( n ) l / ~  forsome 0>1. 
1 

Then E [X 1[ v < oo implies 

(2.5) inV~-2P{maxlS~[>en~}<oo for all e>O. 
1 j < n  

(ii) Suppose p>2,  e>1/2,  that EXI=O if ~<1, and that the sequence 
X 1 , X  z . . . .  satisfies (1.3) and (2.2) where 

oo 

(2.6) ~at/~ for some 0>max{f l / ( f l -1 )+2 ,  

[1 + (~ p -  1)/(~- ?)] p ?/(p 7 - 1)}, 

where 7=max(~l ,  72), 
?~=c~(l +(fi-1)/fl) and ?2=(pa+l)/(2p).  

Then EIX~lP < ~ implies (2.5). 

(2.7) Remark. Lemma 5(ii) in [11] yields that (2.5) implies (1.2) in the case 
considered here. The relations (2.5) and (1.2) are therefore equivalent. For other 
equivalent formulations of (2.5) including r-quick convergence see [-11]. Notice 
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that  our assumption (2.4) is strictly weaker than assumption (2.14) in [11]. Other 
restrictions on p could be dropped  in the qS-mixing case. Condi t ion (2.6) is 
weaker than the corresponding assumption in [-11] for p close to 2. 

As in [11], Theorem 2, we can prove (2.5) without  assumption (1.3) if we 
know that  moments  exist with order  slightly higher than necessary. 

(2.8) Theorem. (i) Suppose c~>1/2, q>l/c~, that EXI=O if c~<l, and that the 
sequence X1, X2, ... satisfies (2.1) with 

oo 

(2.9) 2 ~(n)1/~ < oo for some 0>1.  
1 

Then EIXI[q< oe implies that (2.5) holds for all p~(1/c~,q). 
(ii) Suppose ~>1/2 ,  q > 2 ,  ElXxlq<oo, that EXI=O if ~<1, that pe(1/a,q), 

and the sequence Xi,  Xz, ... satisfies (2.2) with 

(2.10) ~ c d / ~  oe for some O>[2+q/(q-p)] ep/(ctp-1). 
1 

Then (2.5) holds. 

Proof of the Theorems. (i) For  i~{1 . . . . .  r e + l }  and j e N  l e t  Sji=s 
where the summat ion  extends over all l E N u { 0 }  with l ( m + l ) < j - i .  Since 
IS j[ > en ~ implies [S j, i l > e n~/(m + 1) for at least one i~ { 1, ..., m + 1 } it suffices to 
prove 

oo 

n p ~- ; P {max [S~, i[ > e n ~} < oe 
1 j<=n 

for all e > 0  and i~{1 . . . . .  r e + l } .  

Fix ie{1 . . . .  , r e + l } .  For  l e N  and n e N  with l (m+l )<n<( l+l ) (m+l )  we have 

np= 2 P { m a x  ISj, il >end} 
j < n  

<(rn+l)P~-2max{lP~-2,(l+l)p~-2}P{ max [Sj, il>el~(rn+l)~}. 
j < ( t +  1) (m+ 1) 

Since there are at most  m + 1 of these n it suffices to show that  for all e > 0 

0(3 

(2.11) ~ / p ~ - 2 p {  max ISj, gl>~l=}<oo. 
1 j <= l(m+ 1) 

For  all l e N  let Yl=Xi+( l_ l ) (m+l) .  

Then 
J 

max IS j, i[ < max ~ Yk- 
j<.l(m+ l) j<=l 1 

Hence it suffices to prove (2.5) for the sequence Y1, Y2 . . . .  which is strictly 
stat ionary,  ~b-mixing with the same function ~b and strong mixing with the 
same function c~ (because of the monotonic i ty  of 4) and ~), and satisfies (1.3) for 
m = 0 .  After this reduct ion of the problem we proceed as in [6J and [10]. Let  A, 



52 c. Hipp 

= {IYll >en~/2 for at least one /e{1, ..., n}}, let 7e(1/2, c 0 which will be specified 
later, and let 

Bn= {there exist 11,/2if{1 . . . . .  n} ,  l I #12, with 

I g j > n  7 and IY~2l>n~} 

and 

C. = {max IS~l > end/2} 
j<n  

J 
where S~ = ~ '  Y~ and where the summation extends over all 

1 

/e{1 .... ,j} with IY~I =< n'. 

Then 

and therefore (2.11) follows from 

co 

(2.12) ~nP~-ZP(A,)<c~, 
1 

co 

(2.13) ~np~-2p(B.)<~ 
1 

and 

(2.14) 
co 

~nP~-z P(C,)< oo. 
1 

(ii) The proof of (2.12) is exactly the same as in the independent case. We 
have 

np~- 2 p(An) <np~ 1 p{iyl[ >~n~/2} =<(2/z)(p~- 1)/~ ElYllp- 1/~1{ir11>~,~/2}. 

Now the well known moments lemma (see [12], p. 242) implies (2.12). 
(iii) Here we show that under the assumption of Theorem (2.2)(i) there exists 

a neighbourhood U of c~ such that for ';eU with '?<c~ relation (2.13) holds. We 
have 

n 

P(B.)<=n~P{IYII>n' and IY~l>n~}. 
2 

Using (1.3) for m = 0  we obtain with r=[n p~(~-1)/2] 
integral part of xelR) 

(where [x] denotes the 

r 

~P{IYII>n ~ and IYll>n~} 
2 

<rP ~ {IYI[ >n  ~} < r n  P~P(EIY l [p)p =O(n P~-P~r 1)/2). 
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Using (2.1) we obtain 

n 

~, P{IYII>n~ and IYzl>n~}~(dp(1)P{lY~l>n~}+PE{]Y1l>n'~}) 
r+1 r 

n 

--<,-P'elLI~ F,(q ~ (0 + ~-P~ ~ILI~). 
r 

Assumption (2.4) implies that there exists 0 > 1 with ~ 0(01/~ oo. With a lemma 

in [1], p. 113 we obtain that l~ is bounded. Hence there exists rE(l,0) such 
that 

~,, co 

I z - 1 (~ (1) ~ 2 l - 1 - (0 - r) sup 1 ~ ~ (1) < oo. 
1 1 l 

For this z we obtain 

@(1) = O ( r  - ( z -  1)) = O ( H  p ) , - ( z -  1)py(fl 1)/2). 

r 

Choose U such that yc U implies 

p~<pT+pT( f i -1 ) /2 ,  pc~<2pT-1,  and p~<pT+(r -1 )pT( f i - 1 ) / 2 .  

Then (2.13) holds for 7E U, 7<e .  
(iv) Now we show that under the assumptions of Theorem (2.8) there exists 

a neighbourhood U of e such that 7e U and 7<c~ implies (2.13). We have 

P(B,)<n P{lY1]>n'} <nl-q'~ ElY~] q. 

If we choose U such that 7eU and 7<c~ implies pc~<q7 then (2.13) holds. 

(v) Now we can show that under the hypothesis of Theorem (2.3)(ii) the 
relation (2.13) holds for all 7 satisfying 

(2.1.5) 7>~(1+6)/fi  where 6=(f i-1)/ f i ,  

and 

(2.16) 2 p 7 - 1  >pc~. 

Let r =  [nPC~]. By (2.6) there exists 0>  1/6+2 with ~ ~1/~ oo. The lemma in 
1 

[1], p. 113 implies that l~ is bounded. Let p > l  such that 0>p/6+2 .  Then 
with q = 1 - 1/0 

l p/~ ct (1) < ~ cd/~ (l) sup (P/oq a (1)) q 
1 1 l 

and 

p/(6 q) = (p/6)/q < (0 - 2)/q = 0 ( 0 -  2)/(0 - 1) < O. 
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Hence ~ P/~ a(l) < oe. 
1 

Now (1.3) is applied for m=0,  and (2.2) yields 

P(B.)<= nrP~ {1111[ >n~} +n  ~ (~(1)+p2 {11111 >n'}) 
r + l  

oo 

<nrn P~a(ElYllp)a +nr-P/o~ Uoc~(l)+nn-2p~(ElYllp) 2. 

C. Hipp 

Using pc~+pe6-pTf l<O , pc~-ppc~<O, and (2.16), we obtain (2.13). 

(vi) Now we show that under the hypothesis of Theorem (2.3)(i) and 
Theorem (2.8)(i) there exists a neighbourhood U of ~ such that 7EU and 7 < e  
implies (2.14). For h e n  and/~{1, ...,n} let 

J 
Y,t=YII~Iy, I__<,,~ and T~=~Y,I. 

1 

Then 

P(C,) =P {max In-~ Tj] > end-'/2}. 
j<n 

Hence (2.14) holds for all 7<c~ for which we can show that 

(2.17) for all k>3  there exists C(k)>0 such that for all h e n  

E max In-~ Tj[ k < C (k). 
j<n 

We first show that there exists a neighbourhood U of e such that for all 7E U, 
7 < e, the following holds: 

(2.18) for all k > 2  there exists C(k)>0 such that for all h e n  

Eln -~ T, lk< C(k). 

Choose a neighbourhood U of c~ such that 7~U, 7<e ,  implies (3.22). Then 
Corollary (3.20) implies (2.18). Now, Theorem B in 1-14] applied for g(n)--n 2~ 
and Xz= Y,,l, l=  1, 2, ... implies (2.17) for all 7e U, 7<e .  Serfling states that his 
constant K in (3.2) on p. 1231 may depend on k, 7, and the joint distribution 
of the sequence X l = Y,, l l=  1, 2 . . . . .  which in the case considered here depends 
on n. However, looking at the defining equation (3.7) for K on p. 1232 it is easily 
seen that K can be chosen independent of n. 

Now fix some 7 < ~ which lies in the intersection of all neighbourhoods we 
contructed. For this 7 the relations (2.13) and (2.14) hold, and with (2.12) this 
proves the theorems in the ~b-mixing case. 

(vii) Here we show that under the hypothesis of Theorem (2.8)(ii) relation 
(2.14) holds. We proceed as in (vi) and use Proposition (3.7) instead of Corollary 
(3.20). If k satisfies 

(2.19) k(c~-c~ p/q)>c~ p - 1  ~ 
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then we can find 7 < ct for which ~ p < 7 q and 

(2.20) k ( e - 7 ) > c ~ p -  1 

holds. There exists an even integer k<(c~p-1) / (c~-ap/q)+2 satisfying (2.19). 
Assumption (2.10) implies that (3.8) holds for this k and all 7e(1/p, c~p/q), and 
for q instead of p. Relation (2.20) and Proposition (3.7) now imply (2.14). 

(viii) Finally we show that under the hypothesis of Theorem (2.3)(ii) relation 
(2.14) holds. We have to find an even integer k for which (2.20) holds, where 7 
satisfies (2.15) and (2.16), and where r = ( k - 1 ) p 7 / ( p v - 1 )  satisfies (3.8). With 
7o=max(71,?2), 71=~(2fi-1)/ f i2,  ?2=(c~p+l)/(2p) we obtain that (2.15) and 
(2.16) hold for all 7o <7 <e- There exists an even integer k < ( ~ p - 1 ) / ( e - 7 0 ) + 2  
such that for some e > 0 (2.20) holds for 7 o -  e < 7 < 7o. Assumption (2.6) implies 
that (3.8) holds for at least one of these y's. Now we proceed as in (vii). 

(3.3) 

(3.4) 

and 

(3.5) 

(3.6) 

3. Lemmas 

We first prove an elementary 1emma for strong mixing sequences which is then 
used to compute upper bounds for moments of sums of truncated strong mixing 
random variables. To avoid notational difficulties we use a more general frame- 
work. Let (X, ~ ,  P) be a probability space, k E N . . 4 o ,  . . . . 4  k sub-a-fields of d ,  
and for i=O, ..., k let ~ be the a-field generated by ~o ,  .-., ~ ,  and ~ / t h e  a-field 
generated by ~ ,  N/§ ..., ~k" 

Let at, ..., ~k be real numbers satisfying 

(3.1) f o r i = l  . . . . .  k , B ~ _ l ,  C ~  

IP(B c~ C) - P(B) P(C)] _-< c~, 

and (w.l.g., see Appendix, (4.2)). 

(3.2) cq__< 1/4, i= l , . . . , k .  

For r~E1, oo) let II Ilr be the norm defined by Ilfllr=(EIf[9 ~/', and let 1[ I[~ be 
the essential supremum: 

[Ifll o~ = i n f { c > 0 :  P{l f l>c}=O},  inf,3-- ~ .  

Let fo .. . .  ,fk be functions such that for i=0 , . . . ,  k 

f / i s  ,~i-measurable, 

[Ifl[~_-<l 

Ef t=0  

Lemma.  If s > 2  and M = m a x  {llf/ll=: i=0,  ..., k}, then 

E k k 
[ l  ~ fi < 6 M 2 I~ 1 (.I =- 2)~(ks) _~_ 6 M2) 
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Proof  For k=  1 the assertion follows from (4.6). Assume now that k > 2  and the 
assertion holds for k -  1. Then 

E o[ I f  i < min I I E [ I N - E H N E  N + E f i E  fi 
l<=j<k \1 o o 

=<6M 2 min (a}s-2) /S+6M2l~ (o~}s-2)/(ks)+6M2)) 
l < j < k  i,t:j 

k 

< 6 M 2 [ I  (~I s-  2)/(k~) + 6 M2). 

With Lemma (3.6) we now compute upper bounds for moments of sums of 
truncated strong mixing random variables. 

(3.7) Proposition. Let  X a , X 2 , . . .  be a strongly stationary sequence o f  random 
variables which satisfies the strong mixing condition (2.2), where c~" N--,  [0, 1/4] 
is nonincreasing. Le t  p > 2, ? > 1/2, and k E N and assume that for  r = ( k -  1) p 7 /(P ~ - 1) 

cx~ 

(3.8) ~ ~ / r <  oo. 
1 

Assume that E b X 11 p < oo, and E X  t = 0 if  ? < 1. For n ~ N  and 16 {1, ..., n} let 

X , , t - - -X l  l{ixzi_<,, } and S , -  X,~. 
t 

Then there exists C(k)> 0 such that for  all n~ N ]E(n -~ S',)kl < C(k). 

Proo f  Let M be a positive generic constant. Let N be the set of all nonnegative 

integral n-vectors v = ( v l , . . . , v , )  with ~ v  i=k .  For R = l , . . . , k  let N ( R )  be the 
1 

set of all y e n  having exactly R nonzero components. For  R = 2 , . . . , k  and 
it, . . . ,  JR_ 16 N let N ( R, it, . . . ,  i R_ 1) be the set of all v ~ N ( R ) with nonzero elements 
vj~, vj2, ..., vjR, where Jt <J2 < ' "  <JR, such that for l=  1, ..., R -  1 

(3.9) j l + l - - j t = i l .  

Then N(1) has n elements, and for R = 2 , . . . , p  and i t . . . . .  i e _ t ~ N  the set 
N(R,  i t . . . .  , JR_l) has at most n elements. We have with W ~ = n - T X ,  i, i=1,  ..., n, 

( 0 ) 0  ' E(n-7 , k = s n ) = Z  k!/ E W,  <nEW?+MZ Z E 
v~N R = 2 y e N ( R )  

and for R =2, ..., k I 

where the second sum extends over all y e N ( R ,  i~, . . . ,  i R_ O. 
We first show that for j e N  

(3.10) IEW~JI<Mn -1 
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where  M does not  depend  on n. With  [IWllloo< 1 it suffices to prove  (3.10) for 
j =  1 and  j = 2 .  

If  y < 1, then E X  1 = 0 by assumpt ion,  and 

[EX ,1  [ = ] E X  1 l{ix~ I ~,,}1 < E IX  ll p n -7 (p -  *> 

which yields (3.10) for j =  1. 

If  7 > 1 then E ] W 1 1 _-< n - ~ E IX1[ < M n-  1. In  bo th  cases we have E W~ 2 <= n - ~ ~ EX21 

=<Mn -1. This  proves  (3.10). T o  compu te  an upper  bound  for 

we wan t  to apply  L e m m a  (3.6) for f / b e i n g  one of  the functions W~ ~' with v i#0 .  
To  do this we must  first centralize the functions W~ ~ in order  to satisfy (3.5). Let 
R~{2, . . . ,  k} ,  i 1 . . . .  , iR_ I ~ N ,  v ~ N ( R ,  il . . . . .  iR 1) with nonzero  componen t s  V~l, 
vj2, . . . .  vjR, where Jl <J2 < " "  <JR" For  l =  1, . . . ,  R let 

g - E W  ~j~ l 0 - -  J l  

and 

= w . V J l  _ 
gll  J1 glO" 

Then 

n R 

1 1 

where the s u m m a t i o n  extends over  all 6 =(c51, . . . ,  6R) in {0, 1} R, and Egzl = 0  for 
l = l ,  . . . ,  R. 

Fix a t{0 ,  1} R, let A = { / e { 1 ,  . . . ,R} :  d l =1} and B = { 1  . . . . .  R } - A .  Then 

R 

e l-I =eFlg,  l FIg o 
1 l e A  I ~ B  

and f rom (3.9) 

(3.11) 11-[ g~ot < M n  -b 

where b is the n u m b e r  of  elements  in B. We  now apply  L e m m a  (3.6) to obta in  
upper  bounds  for 

I E I - [ g z l  I if A#=~. 
l ~ A  

Let k ' = R - b - 1  and f0 , . . . , fk,  the functions gl~ with l e A :  if I i < I 2 < . . . < l k , + l  
are the elements of  A then for i = 0, . . . ,  k' 

~ l  ~[i+1~ i" 
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For i=  0, ..., k' let ~r be the 6-field generated by Xjt .  Since e is nonincreasing 
and, from (3.9), 

Jz~+ ~ -Jh +~ >Jr, + 1+ 1 - - J l  i + i  ~--- it, + i  

(3.1) is satisfied with ai=o~(il), i= 1, ..., k'. 
The assumptions (3.3), (3.4) and (3.5) are now satisfied. 
For s = 2 p y  we have [IfiHs<Mn -1/2, i = 0  . . . .  , k'. Lemma (3.6) implies 

E 0  k' fi < M n- 1 I~ (c~l ~- 2)/(k's) + M n- 1). 
1 

Therefore with p = (s - 2)/((k - 1) s) 

E ~  1 R-1 gz~ <= Mn-1  I~ (~( iY +Mn-1)  
1 

and hence 

< M n - 1  H (c~(iY +Mn-1)  
1 1 

for v~N (R, ix, . . . ,  iR_ l). Summing up over a l l - a t  most n -  v~N (R, i x . . . . .  JR_l) 
and then over all il, ..., i R_ 1 in {1 . . . . .  n} gives 

Summing up over R~{2 . . . . .  k} and using (3.10) for v~N(1) yields the result. 

(3.12) Remark. If we apply Proposition (3.7) for p > 2  and 7=1/2, then we 
obtain that for all k e N  there exists C(k)>0 such that for all n~N 

E n -1/2 il Xnl kN C(k) 

provided ~ c~a(n)< oo for all ~>0.  Notice that the proposition is true also for 
non stationary sequences if instead of ElXllP<oo we assume sup{ElXilV: 
i ~ N } <  oo. 

The following result improves upon a proposition of G. Jogesh Babu (1978). 

(3.13) Proposition. Let X1, X2, ... be a sequence of random variables which is 
(p-mixing, where ~0: N ~ [0, 1/4] is nonincreasing and satisfies 

(3.14) ~ qo~(n)< ~ 

for some (5 > O. Let p > 0 such that 

(3.15) sup ElXnf  < c~. 
rl 

In case p> 1 we assume EXn=O for all n~N. For d> 1 and h e n  let 

Yn=Xn I~IX, L<=d ~ and S,,h = ~ Yh+i. 
i = 1  
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Then for each k > 2  and 0 < q < p  there exists a constant K not depending on d 
such that for all 1 < n <- d q 

(3.16) supEISn, hlk<K(nk/2+ndk-P). 
n 

Proof. G. Jogesh Babu proved (3.16) assuming (3.14) for 6<_<1 if p < l ,  and 
c5 <max( l /p ,  1 -1 /p )  if p >  1. His proof is done by induction, and the stronger 
condition on cp is used only for k=2 .  Here we prove (3.16) for k = 2  under the 
assumption that (3.14) holds for some 6>0.  We have sup {IEY,]: heN} < M d  l-p, 
where M=sup{EIY,]P: neN}.  Hence 

(3.17) sup{IES,,hl" h e N }  < M n d  1-p. 

For n e N  let D(n)=sup{ESa,,h : heN}.  Fix heN,  and for t e n  define Z , =  
Yh+l + . . .  + Yh+,, Z , , t = Z 2 , + t - Z , + t ,  and Sn, t=Zn+h+t - -Zn+h .  Then 

(3.18) E(Z~+Z~ 2 2 2 , t) < E Z ,  + E Z , , t + l E Z ,  EZ  . tl+2@/2(t) (EZ.2 EZ,,2 t)1/2. 

With (3.17) we obtain 

(3.19) E(Zn+ Zn,r +@/2(t))+ M2n~d 2-p 

where ~ ( 0 ,  1) depends on p and q only. Now the proof can be done as in 1-15] 
showing that (3.16) holds for k = 2  and n = 2  j, j e N ,  and finally using a binary 
decomposition of n for arbitrary positive integer n < d q. See also [7], p. 226-227. 

An immediate consequence of Proposition (3.13) is the following 

(3.20) Corollary. Let X 1 , X  2 . . . .  be a sequence of random variables which is 
strongly stationary and O-mixing, where q5 : N ~ [0, 1] is nonincreasing and satisfies 

@(n)< Go for some 6>0.  Let p > 0  and 7>= 1/2 satisfy p T > 1. 
Assume that glXllP<oo,  and EXI=O if 7<1.  For n e N  and /e{1, . . . ,n} let 

X,, z = Xt l(lx~l-<~} 

and 

tl 
s'o=Exo . 

1 

Then for all k e n  there exists C(k)>0 such thatofor all n e N  

E In-  S;I k < C(k). 

4. Appendix 

Here we collect some general results on mixing conditions. Let (X, ~4, P) be a 
probability space, and ~ and ~ two sub-a-fields of d .  The strong mixing 
coefficient between .~ and ~- is defined as c~=sup {IP(Ac~B)-P(A)P(B)]:  A e ~ ,  
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B ~ } ,  and the ~b-mixing coefficient between ~ and W, regarding ~ as "past" 
and ~ as "future" is defined as O=sup{[iE(BI~)-P(B)][~" B e g } .  We then 
have 

(4.1) ~__<1 

and 

(4.2) c~< 1/4 

and these bounds are attained in many cases when ~ = ~ .  Relation (4.2) follows 
from HSlder's inequality: Let f=lA--1/2 ,  g=lB--1/2 ;  then [[f[[~<l/2, 
Ilgl] o0 < 1/2, and [P(A~B)-P(A)  P(B)[ = [E fg -E fEg[  = [Ef(g-Eg)] < ][f[12 Jig 
-Eg[[2< [If it2 ][g[[2< 1/4. 

(4.3) ~=inf{q~: VAE~,B~W:  iP(Ac~B)-P(A)P(B)[<=~P(B)}, 

(4.4) ~b =inf{0:  Vf~-measurable,  gW-measurable, 

r, s > 0 with 1/r + 1/s = 1 

[E fg -E fEg[  < 2 ~  :/r ilfl[r IlgHs}. 

Relation (4.3) is due to Ibragimov [8]. Relation (4.4) follows from Lemma (1.1) 
in [8] and r--+ o% s --, 1. 

Let r, s > 0 satisfy 1/r + 1/s = 1. Then for all ~-measurable f and ~-measur-  
able g 

(4.5) IEfg-EfEgl<471/r  Ilgl[~ inf{llf-/~lls: #~IR}. 

If r, s, t > 0  satisfy l/r+ 1 /s+l / t=l  then for all ~-measurable f and Y-measur- 
able g 

(4.6) IEfg-EfEgl<6cd/~ ]lflls ][gll~. 

With 6 replaced by 10 this is shown in [4], p. 871. See also [3]. 

Proof of (4.5). We may restrict the considerations on ~-measurable functions f 

=~fi~lBi,  where m~N, p~, . . . , / ~ I R  and B~ . . . . .  B ~ N  are disjoint. We first 
1 

treat the case g = 1A with AeW. Then 

[E f g - g f Eg[ < ~, I/~l [P(Ac~Bi)-P(A) P(Br 
1 

Note first that for i= 1, ..., m IP(A~Bz)-P(A)P(BI)[ <2P(Bz) and with 

B = Q) {B,: P(A~B,)>=P(A)P(Bi) } 



Convergence Rates of the Strong Law for Stationary Mixing Sequences 61 

and 

B' = U {Bi: P(A ~Bi) < P(A) P(B~)} 

we obtain 

m 
IP(A ~B~)-  P(A) P(B,)[ =P(A ~ B ) -  P(A) P(B) + P(A) P(B')-  P(A ~ B )  < 2~. 

1 

Hence I E f g - E f E g l < 2 ~  I/" P[f[Ps. Keep f fixed and let G be the set of all 5 -  
measurable g with 0 < g <  1 and I E f g - E f E g l  <2cd/~ I[fl]~. 

Then 1A~G for A e ~ .  Since G is convex and [1 II o -closed we obtain that for 
all ~,~-measurable g with 0<g__<l we have geG. This proves that for all ~ -  
measurable f and ~-measurable g we have lE fg -EfEgl<4cd /" l [ f [ I ,  Ilgll~. 
Since the left hand side of this inequality remains unchanged if we substitute f 
by f - / l  w i th /~ IR  (4.5) follows. 

Proof of (4.6). Assume w.l.g, that [Igl[~= 1. Let s'>O be defined by 1/s+ 1Is'= 1. 
For N=c~ -l/t, g(N)=gl~lgl__sm, g(N)=g-g (x), we obtain with (4.5) and H61ders 
inequality 

IE f g - E f E gl = IE(f  - E f )  g(m + E ( f  - E f )  g(N)[ 

<4N~ ~/~' inf {[If-~lls:/~EIR} +2  II f I]~ [Ig<N)l[s' 

Markov's inequality yields 

Ilg(N)][~, =(E Igl s' l(igl> N;) 1Is' 
<=N-(t-~')/~" (E [g[~)l/~'=N-(t s')/s'=o:l/,'- l#=cd/~"" 

With N ~ t/~' = ~ ~/~' - 1/t = ~ ~/~ we obtain I E f g  - E f  E g[ < 6 c~/" ][ f II, which proves 
the assertion. 
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