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Summary. In this note we improve a theorem of Lai on the convergence rate
in the Marcinkiewicz-Zygmund strong law for stationary mixing sequences.

1. Introduction

Let X,,X,,... be a sequence of random variables which is strongly stationary,
and for neN let §,=X,+---+X,. The convergence rate in the strong law of
large numbers can be expressed by

(L1) Y n* ?P{max|S|>en"}<oo for all ¢>0.

1 jzn
For independent random variables Baum and Katz ((1965), p. 112, Theorem 3)
proved that if «>1/2, pa>1, and EX; =0 in case «a <1, then (1.1) is equivalent to

(12) E[X,IP<oo.

Lai ((1977), p. 695, Theorem 1) proved this equivalence for ¢-mixing and strong
mixing sequences of random variables. He needs an additional assumption on
bivariate tail probabilitics: There exists §>>1 and a positive integer m such that
as X — oo

(1.3) sup P{IX,[>x, [X{|>x} =0(PP{|X ]| >x}).

To prove the equivalence of (1.1) and (1.2) Lai uses an approach completely
different from the classical Erdos-Katz approach and, in the ¢-mixing case, ends
up with conditions on ¢ involving f. It is the purpose of this note to show that —
in the ¢-mixing case — the equivalence of (1.1) and (1.2) can be proved using the
classical Erdds-Katz methods, leading to weaker conditions on ¢ not involving
B. The same methods also work in the case of strong mixing random variables.
However, our conditions on the mixing coefficients are weaker than those in Lai
(1977) only if p is close to 2. Unfortunately, a lemma of Dvoretzky ((1972), p.
528, Lemma 5.4) stating that strong mixing implies ¢-mixing, is wrong (see
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Ibragimov and Linnik ((1971), Chapter 17, § 3). The results and proofs can be
found in Section 2. Auxiliary lemmas, which might be of independent interest,
are defered to Section 3.

2. The Results

Let X,,X,, ... be a sequence of random variables which is strongly stationary.
For nelN let 2 be the o-field generated by X,,...,X, and #" the o-field
generated by X, X,.;,.... Let ¢: N—[0,1] be nonincreasing and call the
sequence X, X,,... ¢-mixing if:
(2.1) For all i,jeN, B,e®,B,eF'*i

|P(B; N B,)—P(B,) P(B,)| < ¢(j) P(B,)

(see [8], p. 351, (L.1)).

Let o: N—[0,1/4] and call the sequence X, X,, ... strong mixing with mixing
coefficients afj) if:
(2.2) For all i,jeN, B,eZ, B,eF'*/
|P(B;nB,)—P(B,) P(B,)|=a(j)
(see [13]).

(2.3) Theorem. (i) Suppose oa>1/2, p>1/a, that EX =0 if <1, and that the
sequence X |, X ,, ... satisfies (1.3) and (2.1) where

(2.9) i¢(n)“"<oo for some 0>1.

Then E|X ||? < oo implies

25) Y nr* ? P{max|S|>en*} <o  for all &>0.

1 jsn

(ii) Suppose p>2, u>1/2, that EX,=0 if o<1, and that the sequence
X, X,, ... satisfies (1.3) and (2.2) where

(2.6) irx”"(n)< w  for some 0>max{f/(f—1)+2,
1 [ ep— D= py/ey- 1},
where y=max(y;,7,),
yi=a(l+(B=1)/B) and y,=(po+1)/(2p).

Then E|X P < co implies (2.5).

(2.7) Remark. Lemma 5(ii) in [11] yields that (2.5) implies (1.2) in the case
considered here. The relations (2.5) and (1.2) are therefore equivalent. For other
equivalent formulations of (2.5) including r-quick convergence see [11]. Notice
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that our assumption (2.4) is strictly weaker than assumption (2.14) in [11]. Other
restrictions on p could be dropped in the ¢-mixing case. Condition (2.6) is
weaker than the corresponding assumption in [11] for p close to 2.

As in [11], Theorem 2, we can prove (2.5) without assumption (1.3} if we
know that moments exist with order slightly higher than necessary.

(2.8) Theorem. (i) Suppose u>1/2, q>1/o, that EX =0 if «<1, and that the
sequence X |, X ,, ... satisfies (2.1) with

(2.9) iqﬁ(n)”"<oo for some 0> 1.

Then E|X || < oo implies that (2.5) holds for all pe(l/, q).
(i) Suppose a>1/2, ¢>2, E|X||"< o0, that EX;=0 if a<1, that pe(l/a, q),
and the sequence X, X,, ... satisfies (2.2) with

(2.10) Zoc”‘9 n)j<oo for some 0>[2+q/(q—p)]oap/ap—1).

Then (2.5) holds.

Proof of the Theorems. (i) For ie{l,...,m+1} and jeN let ;=3 X, |4 1)
where the summation extends over all leN U {0} with l(m+1)§]—l Since
IS;|>en* implies |S; ;|>en®/(m+1) for at least one ie{l,...,m+1} it suffices to
prove

Zn"“ ?P{max|§; |>en"} <oo forall £>0 and ie{l,...,m+1}.
JEn
Fix ie{l,...,m+1}. For leN and neN with Im+1)<n=<(I+1)(m+1) we have

n?* =2 P{max|S; |>en"}

JjsEn

SmA1P " max {IP*72 (I+ 172} P{  max |S; |>el(m+1)}.

Jsd+1)ym+1)
Since there are at most m+ 1 of these n it suffices to show that for all e>0
(2.11) Zl”“ P{ max |[S; |>el}<c0.
JiSlm+1)

For all [eN let V=X

i+(I—-1)m+ 1)
Then

j
max |S; |<max|} Y,
jslm+1) it |7

Hence it suffices to prove (2.5) for the sequence Y,,Y,,... which is strictly
stationary, ¢-mixing with the same function ¢ and strong mixing with the
same function « (because of the monotonicity of ¢ and 2), and satisfies (1.3) for
m=0. After this reduction of the problem we proceed as in [6] and [10]. Let 4,
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={]Y|>e&n*/2 for at least one.le{l,...,n}}, let ye(1/2, ) which will be specified

later, and let

B, ={there exist {,,,e{1,...,n}, |, *1,, with
Y,/>n' and [¥,|>n")

and

C,={max|S}|>en"/2}
JjEn

J
where S}=Z’ Y, and where the summation extends over all
1

le{l,....j} with |Y|<n".
Then

j
max |y Y,
Jjgn |1

and therefore (2.11) follows from

>sn°‘}CAnuBnu C,

(212) Ywr2P(4,)< o,
1

(2.13) Z nP*~2P(B)< o0
1
and

Qﬂ)iwﬂquw
1

(ii) The proof of (2.12) is exactly the same as in the independent case. We

have

nP* 2 P(A,) <nr* L P{|Y,|>en®/2} S (2/e) P D ENY P 1/“1{|Y1|>£,,a/2}.

Now the well known moments lemma (see [12], p. 242) implies (2.12).

(iiiy Here we show that under the assumption of Theorem (2.2)(i) there exists
a neighbourhood U of « such that for yeU with y<u relation (2.13) holds. We

have

P(B)<n) P{|Y,[>n" and |Y|>n"}.
2

Using (1.3) for m=0 we obtain with r=[n?"#~1"2] (where [x] denotes the

integral part of xelR)

Y P{|Y,|>n" and |Y;|>n"}
2

_S_rPﬁ {|Y1| >nV} grn“’”}(ED’l |p)lf :O(n*m—pv(ﬁ— 1)/2).
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Using (2.1) we obtain

Z P{|Y,|>n" and |Y|>m}<z (@) P{|Y,|>n"} + P2{|Y,|>n"})

r+1

=n PE[Y ] Z(fﬁ () +n" P E[Y,[?).

Assumption (2.4) implies that there exists 6> 1 with ) ¢(I)!"* < co. With a lemma

in [1], p. 113 we obtain that I¢(]) is bounded. Hence there exists te(1,6) such
that

th‘l¢(l)§zl_l‘“"”s1?p Po(l) < .

1 1

For this t we obtain
En:Q{)(Z)ZO(}‘_(T_1))20(1’171”_(’:_1)11)'(‘?71)/2)_

Choose U such that yeU implies
pa<py+py(f—1)/2, pa<2py—1, and pa<py+(r—1)py(f—1)2.

Then (2.13) holds for ye U, y <a.
(iv) Now we show that under the assumptions of Theorem (2.8) there exists
a neighbourhood U of « such that ye U and y <« implies (2.13). We have

PB)=nP{IY|>n"} <n' " E|Y 9.

If we choose U such that yeU and y <« implies pa<qy then (2.13) holds.

(v) Now we can show that under the hypothesis of Theorem (2.3)(ii) the
relation (2.13) holds for all vy satisfying

(2.15) y>a(l+0)f  where 5=(8—1)/p.
and

(2.16) 2py—1>pa.

Let r=[n?*"]. By (2.6) there exists 0>1/6+2 with ioc”"(l)<oo. The lemma in

1
[1], p. 113 implies that Pu(l) is bounded. Let p>1 such that 6> p/0+2. Then
with g=1-1/0

le/"oc(l §Z o4 (1) sup(l”/‘”oz(l))q
1 1
and

p/(09)=(p/0)/q <(6—2)/q=0(0—2)/(0—1)<0.



Hence Y I"Pa(l) < co.
1

Now (1.3) is applied for m=0, and (2.2) yields

PBY<nr Y|} 0 S (al)+ P2 Y,|> 7))

r+1

<nrn b (E|Y1|p)ﬂ+nr"’/5zl”/"oc(l)-i—nn_zl’y(ElYlV’)z-

Using pa+pad—pyf <0, pa—ppa<0, and (2.16), we obtain (2.13).

(vi) Now we show that under the hypothesis of Theorem (2.3)(i) and
Theorem (2.8)(i) there exists a neighbourhood U of « such that yeU and y<a
implies (2.14). For nelN and le{1,...,n} let

J
Y, =Y 1lp,<m and T,=Z Y,
1

Then
P(C,)=P {max|n " T|>en*""/2}.

jgn
Hence (2.14) holds for all y <« for which we can show that
(2.17) for all k=3 there exists C(k)>0 such that for all nelN

Emax|n” " T*< C(k).
ign
We first show that there exists a neighbourhood U of « such that for all ye U,
y <a, the following holds:

(2.18) for all k=2 there exists C(k) >0 such that for all nelN
Eln™ T, < C(k).

Choose a neighbourhood U of a such that yeU, y<a, implies (3.22). Then
Corollary (3.20) implies (2.18). Now, Theorem B in [14] applied for g(n)=n2"
and X;=Y, ,,1=1,2,... implies (2.17) for all ye U, y <a. Serfling states that his
constant K in (3.2) on p. 1231 may depend on k, y, and the joint distribution
of the sequence X;=Y, ; [=1,2,..., which in the case considered here depends
on n. However, looking at the defining equation (3.7) for K on p. 1232 it is easily
seen that K can be chosen independent of .

Now fix some y <o which lies in the intersection of all neighbourhoods we
contructed. For this y the relations (2.13) and (2.14) hold, and with (2.12) this
proves the theorems in the ¢-mixing case.

(vii) Here we show that under the hypothesis of Theorem (2.8)(ii) relation
(2.14) holds. We proceed as in (vi} and use Proposition (3.7) instead of Corollary
(3.20). If k satisfies

(2.19) k(x—ap/q)>ap—1
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then we can find y <« for which a p<y g and
(2.20) k(a—9p)>ap—1

holds. There exists an even integer k=<(ap—1)/(a—op/q)+2 satisfying (2.19).
Assumption (2.10) implies that (3.8) holds for this k£ and all ye(1/p, a p/q), and
for ¢ instead of p. Relation (2.20) and Proposition (3.7) now imply (2.14).

(viii) Finally we show that under the hypothesis of Theorem (2.3)(ii) relation
(2.14) holds. We have to find an even integer k for which (2.20) holds, where y
satisfies (2.15) and (2.16), and where r=(k—1)py/(py—1) satisfies (3.8). With
vo=max(y;,v,), 71 =a2B—1)/B? 7,=(ap+1)/(2p) we obtain that (2.15) and
(2.16) hold for all y,<y<a. There exists an even integer k=<(xp— 1)/ —7vy)+2
such that for some ¢>0 (2.20) holds for y,—e<y<y,. Assumption (2.6) implies
that (3.8) holds for at least one of these y’s. Now we proceed as in (vii).

3. Lemmas

We first prove an elementary lemma for strong mixing sequences which is then
used to compute upper bounds for moments of sums of truncated strong mixing
random variables. To avoid notational difficultics we use a more general frame-
work. Let (X, o, P} be a probability space, ke N. <7,, ... o, sub-g-fields of 7,
and for i=0, ..., k let 2 be the o-field generated by =/, ..., <, and &, the o-field
generated by o, o, 4, ..., .
Let o, ..., o, be real numbers satisfying
(3.1) fori=1,....k, BeZ_,, CeZ,

IP(Bn C)—P(B)P(C)l =0
and (w.l.g., see Appendix, (4.2)).
(32 o,=1/4, i=1,... k.

For re[l, 0) let | ||, be the norm defined by | f|,=(E|f)"", and let | ||, be
the essential supremum:

W fl,=mnf{c>0: P{f|>c}=0}, inf@=o0.
Let f,., ....f, be functions such that for i=0,....k

(3.3) f; is o/,-measurable,

(B34 [fll.=1
and
(3.5) Ef,=0

(3.6) Lemma. If s>2 and M=max{||f||,: i=0, ..., k}, then

il

0

k

§6M2 H (a§s~2)/(ks)+ 6M2)
1




56 C. Hipp

Proof. For k=1 the assertion follows from (4.6). Assume now that k=2 and the
assertion holds for k—1. Then

E];[fi—EJ]jfiEHfi +EJ];[ﬁEnfi‘)

é 6M2 min (aj(_s—Z)/s_i_ 6M2 1_[ ((xgs—Z)/(ks) + 6M2))

1)<k i%]

\Enfi

0

< min (
1=jsk

k
<6M? ] (=209 + 6 M?).
1

With Lemma (3.6) we now compute upper bounds for moments of sums of
truncated strong mixing random variables.

(3.7) Proposition. Let X, X,, ... be a strongly stationary sequence of random
variables which satisfies the strong mixing condition (2.2), where o.: N — [0, 1/4]
is nonincreasing. Let p>2,721/2, and ke IN and assume that forr=(k—1)py/(py—1)

(38) Y u"<oo.
1

Assume that E |X [P <co, and EX, =0 if y<1. For neN and le{l, ..., n} let
Xor=XiLyxzmy and 8,=) X,.
1

Then there exists C(k)>0 such that for all ne N |E(n~" S,)*| < C(k).

Proof. Let M be a positive generic constant. Let N be the set of all nonnegative

integral n-vectors v=(vy,...,v,) with Y v,=k. For R=1,...,k let N(R) be the
1

set of all ve N having exactly R nonzero components. For R=2, ...,k and
if,...,ig_1€NIet N(R, iy, ..., ig_4) be the set of all ve N(R) with nonzero elements
Vi Vigseees ]R,where]1<]2< - <jr, such that for [=1,...,R—1

(3-9) j1+1 ==

Then N(1) has n elements, and for R=2,...,p and i,,...,ip_;€N the set
N(R,i,,...,ix_,) has at most n elements. We have with W,=n"7X ,,i=1,....n,

ET] wy

1

E(n 7Syt Z(k'/ﬂv')Eﬁ WrSnEWSAM S Y

veN R=2 veN(R)

and for R=2, ...,k !

> |eTTwe= % ZEHW”‘
veN(R) 1 i1y s irn-1=1
where the second sum extends over all ve N(R, iy, ..., iz_1).

We first show that for jelN
(3.10) |EW/|EMn~!
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where M does not depend on n. With |W| =1 it suffices to prove (3.10) for
j=1landj=2.

If y<1, then EX, =0 by assumption, and
[EX 1| =IEX ) Ly, o SEIX Pn77® 0
which yields (3.10) for j=1.

Ify=1then E|W,|<n~"E|X,|<Mn~'.Inboth cases we have EW> <n~ 2" EX}
< Mn~. This proves (3.10). To compute an upper bound for

1

we want to apply Lemma (3.6) for f; being one of the functions Wt with v;=+0.
To do this we must first centralize the functions W, in order to satisfy (3.5). Let

Re{2, ...k}, iy, ..., ig_1€N, veN(R, iy, ..., i,_,) with nonzero components v, ,
Vigs ooes Vigo Where]1<]2< <jg. ForI=1, ..., R let
glOZEVVj:j1
and
81 :W Jl_glo
Then

n R
EU I’Vivi:ZUgm

where the summation extends over all d=(5,, ..., dz) in {0, 1}% and Eg,, =0 for
I=1,....R.
Fix 6e{0, 1}* let A={le{l,...,R}: §, =1} and B={1, ..., R} — A. Then

EH 815, —Engnngm
leA  ieB

and from (3.9)

(1Y) ][] golsMn™®

ieB

where b is the number of elements in B. We now apply Lemma (3.6) to obtain
upper bounds for

E[Tgnl if 4%8

leAd

Let K'=R—b—1 and f,, .... f,. the functions g;; with leA: if [, <l,<--<l.
are the elements of A then for i=0,... k'

f;:gziﬂ,l-
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For i=0,...,k" let o/ be the s-field generated by X . Since « is nonincreasing
and, from (3.9), 1

-]li+2_-]li+1 g-]li+1+1 —]li+1:lli+1

(3.1) is satisfied with a;=w (i), i=1,..., k.
The assumptions (3.3), (3.4) and (3.5) are now satisfied.
For s=2py we have | f}|,SMn~"2,i=0, ..., k. Lemma (3.6) implies

k’ k'
EJTAIsMa T] (=29 4 M n~Y).
0 1
Therefore with p=(s—2)/(k—1)s)
R R-1
Englél SMn! n (2 (i +Mn 1)
1 1
and hence
n R-1
EJIW sMn™! [T (a(ip +Mn™1)
1 1
for veN(R, iy, ..., ig_,). Summing up over all—at most n~veN(R, iy, ..., 15 ;)
and then over all i, ...,i,_, in {1, ..., n} gives
n n R-1
AN RA §M<Z<x(l)"+M> .
veN(R) 1 1

Summing up over Re{2, ..., k} and using (3.10) for ve N(1) yields the result.

(3.12) Remark. If we apply Proposition (3.7) for p>2 and y=1/2, then we
obtain that for all ke N there exists C(k)> 0 such that for all ne N

k

E <C(k)

n
n—1/2 Z an
1

provided ) a®(n)< oo for all 9>0. Notice that the proposition is true also for
non stationary sequences if instead of E|X|F<ococ we assume sup{E|X;":
ieN} < 0.

The following result improves upon a proposition of G. Jogesh Babu (1978).

(3.13) Proposition. Let X;,X,, ... be a sequence of random variables which is
@-mixing, where ¢: N — [0, 1/4] is nonincreasing and satisfies

(3.14) Y ¢’(m<oo
Jor some 0>0. Let p>0 such that

(3.15) supE|X,[P<c0.

In case p>1 we assume EX,=0 for all neIN. For d>1 and neN let

n

Ku:an{lx,,|§d} and Sn,h:.zy;wi'

i=1
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Then for each k=2 and 0<q<p there exists a constant K not depending on d
such that for all 1=n=<d?

(3.16) supE|S, JFSK@n"*+nd"~7).

Proof. G. Jogesh Babu proved (3.16) assuming (3.14) for 61 if p<1, and
d<max(1/p,1—1/p) if p>1. His proof is done by induction, and the stronger
condition on ¢ is used only for k=2. Here we prove (3.16) for k=2 under the

assumption that (3.14) holds for some 6 >0. We have sup {|[EY,|: ne N} S Md'~?,
where M =sup{E|Y,|”: neN}. Hence

(3.17) sup{|ES, 4|: he N} <M nd'~*.

For neN let D(n)=sup{ES;,: heN}. Fix heN, and for teN define Z,=
Yort ot Y £ =Zonyi— Lo and S, ,=Z, hyi—Zuir Then

(3.18) E(Z,+Z, ) SEZ2+EZ. ,+|EZ,EZ, |+2¢"*(t)(EZ;EZ] ).
With (3.17) we obtain
(3.19) E(Z,+Z,)*<2D(n)(1+o () +M?*n*d>~?

where ae(0, 1) depends on p and g only. Now the proof can be done as in [15]

showing that (3.16) holds for k=2 and n=2/, je N, and finally using a binary

decomposition of n for arbitrary positive integer n <d%. See also [7], p. 226-227.
An immediate consequence of Proposition (3.13) is the following

(3.20) Corollary. Let X,,X,,... be a sequence of random variables which is
strongly stationary and ¢-mixing, where ¢:IN— [0, 1] is nonincreasing and satisfies
Y @*(n)< oo for some 6>0. Let p>0 and y 2 1/2 satisfy py>1.

Assume that E|X||P< o0, and EX,=0if y<1. For neIN and le {1, ...,n} let

Ko =X Lz <
and
S;:’ZI X
1
Then for all keN there exists C(k)>0 such that for all neIN
Eln77S,[F < C(k).

4. Appendix

Here we collect some general results on mixing conditions. Let (X, o, P) be a
probability space, and 2 and & two sub-o-fields of 7. The strong mixing
coefficient between # and & is defined as a=sup {{P(A~B)—P(4)P(B)|: Ac?,
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Be#}, and the ¢-mixing coefficient between & and %, regarding & as “past”
and & as “future” is defined as ¢=sup {|E(B|#)—P(B)| . : Be#}. We then
have

lleo

(41) ¢=1
and
42) «Z1/4

and these bounds are attained in many cases when # = 4. Relation (4.2) follows
from Holder’s inequality: Let f=1,—1/2, g=1,-1/2; then |f| =1/2,
gl ,=1/2, and |P(ANB)—P(4) P(B)|=|Efg—EfEg|=|Ef(g—EgI=lfl, llg
—Egll, = fl, gl =1/4

(43) ¢=inf{y:VAeP?, BeF: |P(AnB)—P(4) P(B)| Sy P(B)},

(4.4) ¢=inf{y:V fP-measurable, gF-measurable,
r,5>0 with 1/r+1/s=1
|Efg—EfEgI<2y"" | f1, g}

Relation (4.3) is due to Ibragimov [8]. Relation (4.4) follows from Lemma (1.1)
in [8] and r— oo, s—1.

Let r, s>0 satisfy 1/r+1/s=1. Then for all #-measurable f and %#-measur-
able g

(4.5) |Efg—EfEg|<40'" |g|l,, inf {|| f—pull,: neR}.

If r, s, >0 satisfy 1/r+1/s+1/t=1 then for all #-measurable f and #-measur-
able g

(46) |Efg—EfEg|<62™ | f]llgl,

With 6 replaced by 10 this is shown in [4], p. 871. See also [3].

Proof of (4.5). We may restrict the considerations on #-measurable functions f

:iﬂi 15, where meN, f, ..., f,€R and B,, ..., B,,e# are disjoint. We first
1

treat the case g=1, with Ae£. Then

IEfg—Engléi |Bil [IP(AnB;) —P(4) P(B))|

m

m 1/s 1/r
é(Z Bl 1P(AﬂBi)—P(A)P(Bi)|> (Z |P(AﬁBi)—P(A)P(Bi)|> :

Note first that for i=1, ..., m |P(AnB,)— P(A4) P(B,)| £2P(B)) and with
B=(J{B;: P(AnB)z P(4) P(B))}
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and
B = U {B;: P(AnB))<P(A4) P(B,)}

we obtain

i |P(4nB,)— P(A) P(B)| =P(4nB)—P(A) P(B)+ P(4) P(B)— P(AnB) < 20.

1

Hence |Efg—EfEg| <20 | fl,. Keep f fixed and let G be the set of all #-
measurable g with 0<g<1and |Efg—EfEg|<20'" | f],.

Then 1,€G for Ae#. Since G is convex and | | ,-closed we obtain that for
all & -measurable g with 0<g=<1 we have geG. This proves that for all #-
measurable f and % -measurable g we have |Efg—EfEg|<40™ || f], g -
Since the left hand side of this inequality remains unchanged if we substitute [
by f—p with peR (4.5) follows.

Proof of (4.6). Assume w.l.g. that |g|,=1. Let s'>0 be defined by 1/s+1/s'=1.
For N=o~ " ¢M=gl .y, gx=2—8", we obtain with (4.5) and Hélders
inequality

\Ef¢—EfEgl=|E(/—Ef)gV+E(f—Ef)gw)
SANa inf {|| f =l peR}+2[ Tl Ige

Markov’s inequality yields

! 1
lgo s =(Elgl Ly p)*™"*
SN—(I—S’)/S’(E‘gIZ)lls’ :N~(r,*s')/s’:a1/s’— l/t:(xllr‘

With Nol'/¥ =o' " 1t=4" we obtain |Efg—EfEg|<6a" | ||, which proves
the assertion.
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