Approximation and the Spectral Multiplicity of Special Automorphisms

G.R. Goodson and P.N. Whitman
Department of Mathematics, University of the Witwatersrand Johannesburg, South Africa

Summary. Conditions have been given [7] under which a special automorphism over an automorphism admitting a simple approximation again admits a simple approximation, and so has simple spectrum.

In this paper using different techniques to those employed in [7], we obtain improved results in the same direction. Specifically, conditions are given for a special automorphism over an automorphism, which admits either a simple approximation, or an approximation with suitable speed, to have bounded spectral multiplicity. Furthermore, we obtain as a corollary a result on primitive automorphisms, which partially generalises a result appearing in [4].

1. Preliminaries

Throughout (X, F, μ) is a measure space isomorphic to the unit interval with Lebesgue measure. A measure-preserving invertible point transformation of X is an automorphism of (X, F, μ).

An ordered collection $\xi=\left\{C_{i}: i=1,2, \ldots\right\}$ of pairwise-disjoint measurable sets in X is called a partition. In most cases our partitions will be finite.

If $A \in F$, we write $A \leqq \xi$, if A is a union of members of ξ.
If $A \in F$, we denote by $A(\xi)$ a set such that $A(\xi) \leqq \xi$ and $\mu(A \Delta A(\xi))$ is a minimum.

A sequence $\{\xi(n)\}$ of partitions converges to the unit partition, written $\xi(n) \rightarrow \varepsilon_{X}$, provided that for each measurable set $A, \mu(A \Delta A(\xi(n))) \rightarrow 0$ as $n \rightarrow \infty$.

We are interested in the following two related, but different types of approximation of automorphisms.

Definition 1. The automorphism T admits an approximation with speed $f(n)$ if there exists a sequence of partitions $\{\xi(n)\}$ with $\xi(n)=\left\{C_{i}(n): 1 \leqq i \leqq q(n)\right\}$ such that:
(i) $\xi(n) \rightarrow \varepsilon_{X}$ as $n \rightarrow \infty$;
(ii) $\mu\left(C_{i}(n)\right)=\mu\left(C_{i+1}(n)\right), 1 \leqq i \leqq q(n)-1$;
(iii) $\sum_{i=1}^{q(n)-1} \mu\left(T C_{i}(n) \Delta C_{i+1}(n)\right)<f(q(n))$.

Definition 2. The automorphism T admits a simple approximation if there exists a sequence of partitions $\{\xi(n)\}$ with $\xi(n)=\left\{C_{i}(n): 1 \leqq i \leqq q(n)\right\}$ such that:
(i) $\xi(n) \rightarrow \varepsilon_{X}$ as $n \rightarrow \infty$;
(ii) $T C_{i}(n)=C_{i+1}(n), 1 \leqq i \leqq q(n)-1$.

Stepin [5] has shown that if T admits an approximation with speed θ / n, $\theta<2 m /(m+1)$ then T has spectral multiplicity at most m, and Baxter [1] has shown that if T admits a simple approximation then T has simple spectrum.

Definition 3. We say a partition $\eta=\left\{A_{i}: 1 \leqq i \leqq N\right\}$ is approximated with speed $g(n)$ by a sequence of finite partitions $\{\xi(n)\}$, such that $\xi(n) \rightarrow \varepsilon$, if there exist sets $A_{i}(n) \leqq \xi(n)$ such that

$$
\mu\left[\bigcup_{i=1}^{N}\left(A_{i} \Delta A_{i}(n)\right)\right]<g(q(n))
$$

where $q(n)$ is the number of elements in $\xi(n)$.
Let T be an automorphism of X. Denote by \mathbb{N} the set of non-negative integers, and let $f: X \rightarrow \mathbb{N}$ be an integrable function. Put $B(k, n)=\{(x, n): x \in X$, $f(x)=k\}$, and define

$$
X(f)=\bigcup_{k \leqq 0} \bigcup_{n=0}^{k} B(k, n) .
$$

We identify X with the set $\bigcup_{k \geqq 0} B(k, 0)$.
We may regard each set $B(k, n), 0<n \leqq k$, as a copy of $B(k, 0)$. Consequently we may extend μ to $X(f)$ and form a normalised measure μ^{f} on $X(f)$ in the obvious way.

Definition 4. Let the transformation T_{f} on $X(f)$ be defined by

$$
\begin{aligned}
T_{f}(x, n) & =(x, n+1), \quad 0 \leqq n<f(x) \\
T_{f}(x, f(x)) & =(T x, 0)
\end{aligned}
$$

T_{f} is called the special automorphism over T built under the function f.
If f is the characteristic function of a set $A \in F$, then the special automorphism T_{f} is denoted T^{A}, and called a primitive automorphism over T.

Order the sets $B(k, n), k \geqq 0,0 \leqq n \leqq k$, lexicographically.
Definition 5 . Let ξ be a partition such that every element of ξ is contained in exactly one of the sets $B(k, 0)$ for some k. Then ξ^{f} is the partition in $X(f)$ consisting of the elements $C \in \xi$, together with for each $C \in \xi$, where $C \subset B(k, 0)$, a copy of C in each of the sets $B(k, n), 0<n \leqq k$.

It is easily seen that if $\xi(n) \rightarrow \varepsilon_{X}$, then $\xi^{\xi}(n) \rightarrow \dot{\varepsilon}_{X(f)}$.

Definition 6. If U is a unitary operator on a Hilbert space H and $f \in H$, we put

$$
Z(f)=\overline{\left\{\ldots U^{-1} f, f, U f, \ldots\right\}}
$$

the closed subspace generated by the vectors $U^{n} f, n=0, \pm 1, \ldots$.
The principal tool used in the proof of our main theorems, is the following result of Chacon [2].

Theorem 1. If U is a unitary operator on a separable Hilbert space H, and if the spectral multiplicity of U is at least k, then there exist k orthonormal vectors $u_{1}, u_{2}, \ldots, u_{k}$ in H such that

$$
\sum_{i=1}^{k} d^{2}\left(u_{i}, Z(w)\right) \geqq k-1
$$

for any $w \in H$. (d is the matrix arising from the norm in H.)

2. Main Results

We first state without proof a simple lemma.
Lemma 1. Let $\{\xi(n)\}$ be a sequence of partitions, $\xi(n)=\left\{C_{i}(n): 1 \leqq i \leqq q(n)\right\}$ with $\xi(n) \rightarrow \varepsilon_{X}$. Let $\{\eta(n)\}$ be a sequence of partitions, $\eta(n)=\left\{D_{i}(n): 1 \leqq i \leqq q(n)\right\}$, and suppose that

$$
\rho(\eta(n), \xi(n))=\sum_{i=1}^{q(n)} \mu\left(D_{i}(n) \Delta C_{i}(n)\right) \rightarrow 0
$$

as $n \rightarrow \infty$. Then $\eta(n) \rightarrow \varepsilon_{X}$.
Suppose that $f: X \rightarrow \mathbb{N}$ is integrable. Let $\zeta=\{B(k): k \in \mathbb{N}\}$, where $B(k)$ $=B(k, 0)=f^{-1}(k)$.

Suppose further that $\{\xi(n)\}$ is a sequence of partitions, $\xi(n)$ $=\left\{C_{i}(n): 1 \leqq i \leqq q(n)\right\}$, with $\xi(n) \rightarrow \varepsilon_{X}$. Following Definition 3, we shall agree to say that ζ is approximated with speed $\delta / n, 0<\delta<m / m+1$, for some fixed $m \in \mathbb{N}$, if there exist sets $F_{k}(n) \leqq \xi(n)$ such that

$$
\mu\left[\bigcup_{k=0}^{\infty} B(k) \Delta F_{k}(n)\right]<\delta / q(n) .
$$

Note that it is implicit in this definition that all but a finite number of the sets $F_{k}(n)$ will be empty. Furthermore we can ensure that the sets $F_{k}(n)$ are pairwise disjoint and $\bigcup_{i=1}^{q(n)} C_{i}(n)=\bigcup_{k=0}^{\infty} F_{k}(n)$. That this equality holds is a consequence of the speed of approximation: Let

$$
I(n)=\left\{k: C_{k}(n) \subset \bigcup_{i=1}^{q(n)} C_{i}(n) \backslash \bigcup_{k=0}^{\infty} F_{k}(n)\right\} .
$$

Then

$$
\bigcup_{k \in I(n)} C_{k}(n) \subset \bigcup_{k=0}^{\infty}\left(B(k) \Delta F_{k}(n)\right)
$$

Hence

$$
\mu\left[\bigcup_{k \in I(n)} C_{k}(n)\right]<\delta / q(n) .
$$

However

$$
\begin{aligned}
\mu\left[\bigcup_{k \in I(n)} C_{k}(n)\right] & =\operatorname{card}(I(n)) \mu\left(C_{1}(n)\right) \\
& >\operatorname{card}(I(n)) m /(m+1) q(n) \\
& >\operatorname{card}(I(n)) \delta / q(n) .
\end{aligned}
$$

Hence
$\operatorname{card}(I(n))=0$.
We define functions f_{n} as follows:

$$
\begin{array}{rlrl}
f_{n}(x)=k & & \text { if } x \in F_{k}(n), \\
& =0 & & \text { if } x \in X \backslash \bigcup_{i=1}^{q(n)} C_{i}(n) .
\end{array}
$$

Then

$$
\left\{x: f_{n}(x) \neq f(x)\right\} \subset \bigcup_{k=0}^{\infty}\left(B(k) \Delta F_{k}(n)\right)
$$

Hence

$$
\mu\left\{x: f_{n}(x) \neq f(x)\right\}<\delta / q(n) .
$$

Following is our main result.
Theorem 2. Let T admit an approximation with speed θ / n w.r.t. $\{\xi(n)\}$, and suppose that ζ can be approximated with speed δ / n, where $\theta+2 \delta<2 m / m+1$, by $\{\xi(n)\}$. Then T_{f} has spectral multiplicity at most m.

Proof. Put

$$
D(n)=\bigcap_{i=0}^{q(n)-1} T^{-i}\left[C_{i+1}(n) \cap\left\{x: f_{n}(x)=f(x)\right\}\right]
$$

then we claim

$$
\mu\left(C_{1}(n)\right)-\mu(D(n))<(\theta+2 \delta) / 2 q(n) .
$$

For, putting

$$
K(n)=\bigcap_{i=0}^{q(n)-1} T^{-i} C_{i+1}(n)
$$

then

$$
T^{i-1} K(n) \subset C_{i}(n) \quad i=1, \ldots, q(n)
$$

and

$$
\begin{aligned}
\mu(D(n)) & =\mu\left(K(n) \cap \bigcap_{i=0}^{q(n)-1} T^{-i}\left\{x: f_{n}(x)=f(x)\right\}\right) \\
& =\mu(K(n))-\mu\left(K(n) \backslash \bigcap_{i=0}^{q(n)-1} T^{-i}\left\{x: f_{n}(x)=f(x)\right\}\right) \\
& =\mu(K(n))-\mu\left(\bigcup_{i=0}^{q(n)-1}\left(K(n) \backslash T^{-i}\left\{x: f_{n}(x)=f(x)\right\}\right)\right. \\
& \geqq \mu(K(n))-\sum_{i=0}^{q(n)-1} \mu\left[T^{i} K(n) \backslash\left\{x: f_{n}(x)=f(x)\right\}\right] \\
& =\mu(K(n))-\mu\left[\bigcup_{i=0}^{q(n)-1} T^{i} K(n) \backslash\left\{x: f_{n}(x)=f(x)\right\}\right] \\
& \geqq \mu(K(n))-\mu\left\{x: f_{n}(x) \neq f(x)\right\} .
\end{aligned}
$$

But

$$
K(n) \supset C_{1}(n) \backslash \bigcup_{i=0}^{q(n)} T^{-i}\left(T C_{i}(n) \cap\left(X \backslash C_{i+1}(n)\right)\right)
$$

so

$$
\mu(K(n)) \geqq \mu\left(C_{1}(n)\right)-\theta / 2 q(n)
$$

hence

$$
\mu\left(C_{1}(n)\right)-\mu(D(n))<(\theta+2 \delta) / 2 q(n) .
$$

It follows that $\mu(D(n))>0$.
Now define $\eta(n)=\left\{\left(C_{i}(n) \cap\left\{x: f_{n}(x)=f(x)\right\}\right): 1 \leqq i \leqq q(n)\right\}$. Then,

$$
\rho(\eta(n), \xi(n)) \rightarrow 0
$$

as $n \rightarrow \infty$ and so $\eta(n) \rightarrow \varepsilon_{X}$ by Lemma 1. Consequently $\eta^{f}(n) \rightarrow \varepsilon_{X(f)}$. Let $\eta^{f}(n)$ have $q^{f}(n)$ elements, and $C_{k}^{f}(n)$ be the element of $\eta^{f}(n)$ containing $T_{f}^{k-1} D(n)$.

Now suppose that $U_{T_{f}}$ has spectral multiplicity at least $m+1$. Then by Theorem 1 there exist $m+1$ orthonormal vectors $u_{1}, u_{2}, \ldots, u_{m+1}$ such that

$$
\sum_{i=1}^{m+1} d^{2}\left(u_{i}, Z(w(n))\right) \geqq m
$$

where $w(n)=\chi_{D(n)}$ and $Z(w(n))$ is the cycle generated by $w(n)$.
Since $\eta^{f}(n) \rightarrow \varepsilon_{X(f)}$, the u_{i} may be arbitrarily closely approximated by simple functions of the form

$$
u_{j}(n)=\sum_{k=1}^{q^{f}(n)} a_{k}^{j} \chi_{C_{k}^{f}(n)}, \quad 1 \leqq j \leqq m+1 .
$$

Define

$$
h_{j}(n) \in Z(w(n))
$$

by

$$
h_{j}(n)=\sum_{k=1}^{q^{f}(n)} a_{k}^{j} \chi_{T_{f}^{k-1}} D(n), \quad 1 \leqq j \leqq m+1 .
$$

Consider

$$
\begin{aligned}
d^{2}\left(u_{j}(n), Z(w(n))\right) & \leqq\left\|u_{j}(n)-h_{j}(n)\right\|^{2} \\
& =\int_{X(f)}\left|\sum_{k=1}^{q f(n)} a_{k}^{j} \chi_{C_{k}^{f}(n)}-\sum_{k=1}^{q f(n)} a_{k}^{j} \chi_{T_{f}^{k-1} D(n)}\right|^{2} d \mu^{f} \\
& =\sum_{k=1}^{q^{f(n)}}\left|a_{k}^{j}\right|^{2} \mu^{f}\left(C_{k}^{f}(n) \backslash T_{f}^{k-1} D(n)\right) .
\end{aligned}
$$

Now

$$
\begin{gathered}
\mu^{f}\left(C_{k}^{f}(n) \backslash T_{f}^{k-1} D(n)\right) / \mu^{f}\left(C_{k}^{f}(n)\right) \leqq \mu^{f}\left(C_{1}(n) \backslash D(n)\right) / \mu^{f}\left(C_{1}(n)\right) \\
=\mu\left(C_{1}(n) \backslash D(n)\right) / \mu\left(C_{1}(n)\right)<(\theta+2 \delta) / 2 q(n) \mu\left(C_{1}(n)\right) .
\end{gathered}
$$

Hence

$$
\begin{aligned}
d^{2}\left(u_{j}(n), Z(w(n))\right) & <\left[(\theta+2 \delta) / 2 q(n) \mu\left(C_{1}(n)\right)\right] \sum_{i=1}^{q^{f}(n)}\left|a_{k}^{j}\right|^{2} \mu^{f}\left(C_{k}^{f}(n)\right) \\
& =\left[(\theta+2 \delta) / 2 q(n) \mu\left(C_{1}(n)\right)\right]\left\|u_{j}(n)\right\|^{2} .
\end{aligned}
$$

So

$$
\sum_{j=1}^{m+1} d^{2}\left(u_{j}(n), Z(w(n))\right)<\left[(\theta+2 \delta) / 2 q(n) \mu\left(C_{1}(n)\right)\right] \sum_{j=1}^{m+1}\left\|u_{j}(n)\right\|^{2} .
$$

Thus

$$
\lim _{n \rightarrow \infty}\left[(\theta+2 \delta) / 2 q(n) \mu\left(C_{1}(n)\right)\right] \sum_{j=1}^{m+1}\left\|u_{j}(n)\right\|^{2} \geqq m
$$

which implies $(\theta+2 \delta)(m+1) / 2 \geqq m$; that is

$$
\theta+2 \delta \geqq 2 m / m+1,
$$

which contradicts

$$
\theta+2 \delta<2 m / m+1
$$

3. Special Automorphisms over Automorphisms Admitting a Simple Approximation

A similar result to that shown above can be obtained when the automorphism T admits a simple approximation.

Theorem 3. Let T admit a simple approximation with respect to the sequence $\{\xi(n)\}$, and suppose that ζ can be approximated with speed $\delta / n, \delta<m / m+1$, by $\{\xi(n)\}$. Then the spectral multiplicity of T_{f} is at most m.

The Corollary below generalises a result appearing in [4].
Corollary 1. Let T admit a simple approximation with respect to a sequence of partitions $\{\xi(n)\}, \xi(n)=\left\{C_{i}(n): 1 \leqq i \leqq q(n)\right\}$, with $\xi(n) \rightarrow \varepsilon_{X}$, and such that

$$
\mu\left(X \backslash \bigcup_{i=1}^{q(n)} C_{i}(n)\right)<\varepsilon / q(n) .
$$

Let $A \in F$ be such that there exist sets $A(n) \leqq \xi(n)$ with $\mu(A \Delta A(n))<\delta / q(n)$.
If $\varepsilon+\delta<m / m+1$ then the spectral multiplicity of T^{A} is at most m.

4. Remarks

(i) In [7], it is shown that if T admits a simple approximation with respect to $\xi(n)$, and for each $C_{i}(n) \in \xi(n)$ there exists $K_{i}(n)$ such that

$$
\mu\left[C_{i}(n) \cap B\left(K_{i}(n)\right)\right]>(1-\delta(n)) \mu\left(C_{i}(n)\right)
$$

where $\delta(n)=o\left(\frac{1}{q(n)}\right)$, then T_{f} admits a simple approximation and so has simple
spectrum.
A considerable improvement to this result may be obtained using the techniques of Theorem 2. We can replace $\delta(n)$ by $\delta / q(n), \delta<m / m+1$, and conclude that the spectral multiplicity of T is at most m.
(ii) Using the same method as in [7] it can be shown that if T admits a cyclic approximation (see Katok and Stepin [5]) with speed θ / n^{2} and $\delta(n)$ in (i) above is taken to be $\delta(n)=\delta / q(n)^{2}$, then T_{f} admits a cyclic approximation with speed $\alpha / n, \alpha<1$ (provided θ and δ are chosen small enough). It follows that in this case T_{f} has simple and singular spectrum.
(iii) The relationship between the result of [7] mentioned in (i) above, and Theorem 2 may be clarified if we assume $\mu\left(X \backslash \bigcup_{i=1}^{q(n)} C_{i}(n)\right)=0$. Then the statement "for each $C_{i}(n)$ there exists $K_{i}(n)$ such that $\mu\left[C_{i}(n) \cap B\left(K_{i}(n)\right)\right]>(1$ $-\delta / q(n)) \mu\left(C_{i}(n)\right)$ " implies ζ is approximated with speed $2 \delta / n$ by $\{\xi(n)\}$. Conversely the statement " ζ is approximated with speed δ / n by $\{\xi(n)\}$ " implies that for each $C_{i}(n)$, there exists $K_{i}(n)$ such that $\mu\left[C_{i}(n) \cap B\left(K_{i}(n)\right)\right]>(1-\delta) \mu\left(C_{i}(n)\right)$.

References

1. Baxter, J.R.: A class of ergodic transformations having simple spectrum. Proc. Amer. Math. Soc. 27, 275-279 (1971)
2. Chacon, R.V.: Approximation and spectral multiplicity. Lecture Notes in Math. 160, 18-27, Berlin-Heidelberg-New York: Springer
3. Goodson, G.R.: Approximation and the spectral multiplicity of finite skew products. J. London Math. Soc. 14, 249-259 (1976)
4. Goodson, G.R.: Induced automorphisms and simple approximations. Proc. Amer. Math. Soc. 54, 141-145 (1976)
5. Katok, A.B., Stepin, A.M.: Approximations in ergodic theory. Russian Math. Surveys 22, 77-102 (1967)
6. Stepin, A.M.: On the connection between approximation and spectral properties of automorphisms. Mat. Zametki 13, 403-409 (1973)
7. Whitman, P.N.: Approximation of induced automorphisms and special automorphisms. Proc. Amer. Math. Soc. 70, 139-145 (1978)

Received April 1, 1978

