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w Introduction 

Limit theorems for a class of additive functionals, especially occupation times of 
Markov process, have been studied by many authors, e.g., Darling-Kac [1], 
Dobrushin [2], Karlin-McGregor [-6], C. Stone [-12] and Kasahara [7, 8]. So 
far, these theorems except [-12] dealt with the convergence at each fixed time 
only, but recently Papanicolaou-Stroock-Varadhan [,10] discussed the con- 
vergence as stochastic processes: for example, if b(t) is a 1-dimensional Brownian 

t 

motion and l(t, x) is its local time (i.e., 2 S l(t, x) dx = ~ 1E(b(s)) ds for every Borel 
E 0 

subset E) and V(x) is a bounded Borel function with compact support, it is easy 
1 z2 

to see that the processes t~#  ~ V(b(s)) ds converge, in the sense of probability 
,to 

law on the space of continuous functions, to the process t~2fll(t,O) as 2~oo ,  

where V =  ~ V(x)dx. When V=0,  the limit process is trivial but as they showed 

in [,,10] if we change the scaling as 

1 ~2t 

then the laws of these processes converge to that of the process 
t~(1/~-V~O(l(t,O)) as 2~oo,  where (V)  is the energy of the charge V(x)dx and 
/)(t) is another Brownian motion independent of b(t). The purpose of this paper 
is to study similar problems for 2-dimensional Brownian motion and 1-dimen- 
sional recurrent diffusion processes. 

Let B(t) be a 2-dimensional Brownian motion and V(x); xe lR  2 be a 
bounded Borel function with compact support. Kallianpur-Robbins [5] and 

1 A 

! V(B(s)) ds (where Kasahara [7], [8] have proved that the distributions o f ~  
- -  k ' - ]  

u(2)=log2) converge to an exponential distribution as 2~oo,  and if 

V= ~ V(x)dx=O, with u ( 2 ) = ~  the above random variables converge in 
IR 2 
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law to a bilateral 
Stroock proposed 
the processes 

A 1 ez, 

exponential distribution. As to the convergence of processes 
the following problem: What is the limit process, as 2 ~  o% of 

V(B(s))ds, 

where u(2)=2 or 1/2 according as V4=0 or V=0?  Here, it should be noted that 
1 zt - - !  the processes t ~ l o g  2 V(B(s))ds converge to a degenerate one (i.e., inde- 

pendent of time parameter t). For this problem we have obtained the following 
results: the limit process of Az(t) is given as 

2 VI(M- l(t)), (0.1) 

where M(t)=maxb(s) and l(t) is the local time at 0 of b(t) and, in the case of V 
= 0 ,  a s  s<=t 

(1/~ b(l(M-1 (t))), (0.2) 

where/~(t) is another Brownian motion independent of b(t) and 

( V ) =  4 S S l ~  
IR 2 R 2 

Our method is as follows. First we represent a 2-dimensional Brownian motion 
as a Brownian motion X(t)=(b(t), O(t)) on a cylinder IR x (1R/2~g) run with the 

( ' ) clock S-1(0 where S(t)=~ e2b(S~ds . Then, by random time change depending 
0 

on the parameter ). (see w 3), our problem is reduced to that of finding the limit 
1 ) '2 t  

process of an addidive functional ~ j f(X(s))ds. Since the process 0(0 is 
u t ~ )  0 

strongly ergodic, only b(t) plays an essential role, which enables us to treat the 
above functional in a way similar to Papanicolaou-Stroock-Varadhan [10] in 
the case of 1-dimensional Brownian motion. 

We explain the content of this paper. In w 1 and w we give two limit 
theorems for a class of additive functionals of the Brownian motion X(t) on the 
cylinder. In w 3 we show that Aa(t ) converge in law to the above limit processes 
(0.1) and (0.2). The process (0.1) is not a Markovian but its inverse is a Markov 
process (cf. S. Watanabe [13]). Further an interesting fact here is that the process 
(0.1) increases only with jumps although Az(t ) are continuous. Therefore the 
convergence is neither in the ordinary weak topology nor in Skorokhod's d- 
topology. We will see that Ml-convergence introduced by Skorokhod [11] is 
most suitable. In the final section, we give similar limit theorems for a broad 
class of 1-dimensional diffusion processes. 

Lastly the authors  wish to thank D. Stroock for suggesting them this problem and S. Watanabe  
for his helpful discussions with them. 
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w 1. Limit Processes for Additive Functionals of a Brownian Motion 
on the Cylinder (Positively Charged Case) 

As it will be seen later in w 3, the study of limit processes of  functionals of  a 2- 
d imensional  Brownian  mot ion  can be reduced to that  of  a Brownian  mo t ion  on 
the cylinder G = I R  x (lR/2rcg). Therefore  first we establish limit theorems relat- 
ing to a Brownian  mo t ion  on G. 

A Brownian  mot ion  X(t) on G is defined as the produc t  process of  a 1- 
d imensional  Brownian  mo t ion  b(t) and another  1-dimensional  Brownian  mot ion  
O(t) independent  of  b(t) and viewed in modu lo  2re. It  has the t ransi t ion density 
pt(z-z') with respect  to the H a a r  measure  dkt(z)=dx dO ( z=(x ,  0)), which can be 
represented in two ways:  

1 
p~(z)=f~texp(-[xl2/2t ) exp[-(O+27rn)2/2t] (1.1) 

n =  - o o  

1 
-4z r2  G~ * exp(-l~[2t/2-i~z)dp*(~), (1.2) 

where G* = I R  x Z,  d#*(~)=d26~,~ for 4=(2 ,  n), [~J2=2Z+n2 and ~z=2x+nO. 
Set 

F~ = - 1  log l e i ~  - Ixl[2. 

Then  we have 

Oro_ 
Fl(z)- ~x zr lei~ 2 

Fz(z)_~Fo_ 1 e- lXlsin0 
00 rc lei~ 2' 

1 (cosO-e-lXt)e -21xl 
sgn x, 

~oof(y ) dy <= II f [[~, (1.4) 

where sgn x -- 1 for x > 0 and = - 1 for x < 0. 
Setting Fkf(z ) =F k . f(z)  (k = 0, 1, 2), for any sufficiently smooth  function f we 

have  

~2 ~2 ~ 
1 AFof(z)=l  Fof(z)= -f(z)+~--~ f(z), (1.3) 

where f ( z ) =  i f(x, O)dO. 

F r o m  now on we denote  by E z the expectat ion with respect to the measure  Pz 
of a Brownian  mot ion  start ing at z and write s imply E in place of  E o. We  
prepare  several est imates here. 

Lemma 1.1. 
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IFof(Z)]<=CIJfllp (1 < p ~  oo), 

IF~f(z)l<Cllfl[p ( 2 < p <  oo), 

II~fll~ <=crlfll~ for i=  1,2, 

Ig~f(X31<p~(O) ~/p[Ifllp ( l<p<oo) ,  

where C is a constant independent o f f .  

Y. K a s a h a r a  et al. 

(1.5) 

(1.6) 

(1.7) 

Proof. (1.4) is trivial. The others can be deduced from the fact that FoeLq(G) 
( l < q < o o )  and Fk~Lq(G) (0<q<2)  for k = l , 2 .  Using the fact that p~(z)<pt(O ) 
and ~ p,(z)d#(z)= 1, we can prove (1.7) as follows: 

G 

[E z f(X3[ < ~ pr - z')[f(z')l d#(z') 
G 

< {S Pt(Z') q dP(z')} 1/~ []f/lp 
G 

q - 1  

<p,(O) q Hfllp=p~(O)l/plrfllp. Q.E.D. 

Lemma 1.2. Suppose f ~LI(G)c~LP(G) for some 1 <p< oo. Then we have 

l i m l E ( i f ( X s ) d s )  2 1 , . .  t = 7  (7)2, 

where fi= ~ f(z) d#(z). 
G 

Proof. The proof is divided into three parts. 

1 ~ E [f(Xs)lds < ~  for any a<oo .  

Setting Pt f(z) = Pt * f(z), we have an equality: 

I = E  If(Xs)lds =2 ~ P,(lflPs_,lf[)(O)duds. 
O<_u<_s<a 

Applying the inequality (1.7), we see 

I<2rlfll~ S$ {Pu(O)P~_,(O)} I/pduds. 
O<u<_s<_a 

On the other hand, the expression (1.1) implies 

pu(0)< C for any u<a. 
g 

Hence I < ~ follows. 

2 ~ ) E( S~ If(Xu)f(Xs)lduds)=O(l/~) as t ~ .  
1 <--u<-s<t 

s--u<=l 
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From the inequality (1.7) we have 

E If(X.)f (X~)I = P.(ifl P~_ ~[fl) (0) 

<P~_u(O)*/Pp,,(O) [Iflll Ilfllp, 
which implies that 

J=E( S~ If(S,,)f(X)lduds) 
l<_u<-s<_t 

<llfl lvl lf l l l  S~ ps-u(~176 dsdu 
1 <-u<-s<t 

s - u ~ l  

<=HfHv[]fH1 (ipu(O)du) (ips(O)l/Pds). 

Here noting p~(0) < C s- x for s < 1 and p,(0) __< C l /~ -  1 for u >= 1, we easily see that 
J = O (1/~) as t ~ oo. 

3 ~ ) lira t E (  i~ f(X,)f(Xs)duds)= (if)2. 
s - u ~ l  

Let f (~ )=  ~ ei~f(z)d#(z). First we note that 
G 

Psf(z)=12 ~,exp (-i~z s[2~[2 ) f(~)d#*(~) 

and 

fP~-uf(~)=~5~2 ~ f(~-~z)P~-uf(~2)d#*(~2) 
G* 

1 
= 4 rc 2 ~, 5-132[ f(~2) f(~a- ~2) d#*(~z). 

Hence 

E f (Xu) f (Xs) = P, (fPs-, f) (0) 
= ( 2u 2(s-u)) 

1 ~S exp -1~1[ ~-1~21 - ~ -  f(~2)f(~l-~2)d#*(~1)d#*(~2). 

Changing the variables (u,s) and ({1~(21,n), {2=(22,m)) to (ta, tb) and 

{ , ((1//t21, n), (1/t22, m)) respectively, and setting Dr= (a,b); -<_a<_b<_l, 
we ave 

E( ~5 f(X,)f(X,)duds) 
l <_u<_s<_t 

s - u > l  

_ t S ~  exp(_2(2~+tn2)_~(22+tm2) ) 
1694 Dt x G*xG* 

[ ) u - 2 2  -m) du*(~)d#*(~2)dadb. 
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We divide the integral into two parts: 

11(0= ~ exp ( - 2  22 (b-a)22)f  2(~ 0) f[21-22 0] 
D t •  2 2 ' ~ - '  ] d2td2zdadb' 

I2(t)=o~!~6!!e, exp (-2(22 + tn2)-(~-a)-(22 +tin2)) 
m2 +r/2 =~: 0 

Since f(~) is a bounded continuous function on G*, we easily see that 

limI~(t)=f(o) 2 S ~  e x p ( - 2 2 ~  (b-a) 222)d21d22dadb 
t~oo  D m x R  2 2 

= 2rc2f(O)2. 

On the other hand, the boundedness of f implies 

( 2 2 2 - ( b 2  a, ) JI2(t)l<C ~SSf exp - 222 
Dt x R 2 

( ) exp - 2 t n 2 - ~ t m  2 d21dk2dadb 
m2 +n2 :I= 0 

dadb 
= C SS J,(a, b) 

O<_a<_b<l a ( b ] / - ~ a ) '  

(2 where Jr(a, b)=iD~(a, b) ~ exp - tn 2 - -  tm 2 m2+.2,o 2 " (ID~ is the character- 

istic function of Dr. ) Then noting 

n2+m2\ 
Jt(a,b)< ~ exp ~ ) < o o  

mZ+n2q=0 

and Jr(a, b)--+O as t--+ oo for each (a, b), by the Lebesgue dominated convergence 
theorem we see 

I2(t)-*0 as t~oo .  

Consequently we obtain the 1emma. Q.E.D. 
In null charged case we can get the following convergence in probability: 

Lemma 1.3. Suppose f ~LI(G)nLP(G) for some 1<p<o% and S f(z)d#(z)=O. 
Then for each T > 0 and s > O, 

P~  sup laitf(X,)ds> } [o__<,__<r 2 e -+0 as 2~o0. 

Proof 1 ~ Let f~LI(G)nLP(G) for some 1 < p <  oo and Sf(z)d#(z)=O. Define 
F(z) by o 
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x y 
1 ! d y _ ~  f(u)du+Fof(Z). (1.8) F(z)= - ~  

Then 
t 

M t = F(X,) - F(O, O) + ~ f(X~) ds 
0 

becomes a martingale. This is easily seen if f is a smooth function with compact 
support because by (1.3) we have 

�89 - f  . 

For a general function f ,  set f~ = P J .  Then ~ f~(z)d#(z)=0 and f~ converges to f 
G 

in both L I(G) and LP(G). Hence from (1.4), (1.5) and (1.7) it follows that M t is a 
martingale even in this case. 

I 1 } 2 ~ For each e>0,  P sup ~lMa~,l>~ ~ 0  ; ~ o c ) .  Since IM, I is a 
submartingale, we have l~ 

P t s u p  1 ' M ~ 2 t I > g }  C,o<-t<-r 2 < ~  EIM~TI" 

Lemma 1.2 together with J~= 0 implies 

"~2T ds = E ! f(X~) 0(2) as 2--*oo. 

Let g(x) be the first term in the expression (1.8). Then it is easy to see from g(x) 
= o(x) that 

Elg(bx~r)l=o(2) as 2~oo.  

Noting that the remainder terms of M, are bounded, we have 

P ( s u p  ~ ] M ~ 2 t l > ~ ) - - r 0  as J~--+oo. 
\o<=t<T 

3 ~ ) E (  sup Ig(b~:t)l)=o(2) as 2--*oo. 
\O<t<T I 

Let mt -+= sup (+bs) and h(x)= suplg(y)l. Then noting rn~ + and m;- have the 
O<-s<-t [yl<x 

same distribution, we have 

E sup [g(b~2t)[<Eh(m+2rvm~2r) 
OGt<_T 

<2Eh(m~2r). 

C _x2/2t Since m + has the density dominated by 1/7e and h(x)=o(x), it follows that 
v ~ 

Eh(m+2r) =o(2), which implies the expected estimate. Q.E.D. 
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Let l(t) be the local time at 0 of a 1-dimensional Brownian motion starting at 
O. Denote ~f(z)d#(z) by J~ Then our first theorem is as follows: 

G 

Theorem 1.1. Suppose f eLI(G)c~LP(G) for some 1 <p< oo. Then 

f(Xs) ds, b(2 2t) 
0 

converges weakly in C([0, oo)~lR 2) to the process {2if/(0, b(t)}. 

Proof. Since we have proved the theorem in case i f = 0  in Lemma 1.3, we may 
assume f f~0.  Set 

f = f - f .  

Then f~Lt(G)c~LP(G) and ~f(z)d#(z)=O. Therefore by Lemma 1.3 we see as 
/~ ----~ o 0  G 

1 ~2t I 
sup - S f(Xs)dsl-~O in probability. 

O < t < _ T ~  0 

1 " ~ ' 2 t  - -  

On the other hand, ~ ! f(bs)ds=2 i o f(ba~)ds holds. Hence noting the equiva- 

lence of the two processes {b~2s} and {2bs}, in place of the original process we 
may consider 

2~f(Xbs)ds=2 f(x)l t, 7 dx, 
0 - -co  

where l(t,x) is the local time of the Brownian motion at x. Since suppl(t, . )=  
[-mi-,m~ +] and m~ are continuous in time-parameter, we easily see that w.p.1., 

7 sup 2 1 t ,~ 
O < t < T  _ - o o  

holds as 2--+oo for any feLl(lR). Q.E.D. 

w 2. Limit Processes for Additive Functionals of a Brownian Motion 
on the Cylinder (Null Charged Case) 

As we have seen in Lemma 1.3, in null charged case (if=0), the limit process of 
1 ~2t 

! f(Xs) ds degenerates to a trivial one. Therefore it is necessary to change the 
u 

1 ~'2t 

normalization to ~-~ ! f(Xs)ds. The case where the underlying process X~ is a 

1-dimensional Brownian motion has been considered by [10] as a corollary of 
their general limit theorem. Although we are considering a Brownian motion on 
G, because of the strong ergodicity of a Brownian motion 0 t on a torus, only a 
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slight modification of their procedure is necessary for the proof of our theorem. 
Let f~LI(G)c~LP(G) for some 2 < p < o %  and assume f = 0  and 

I f  (x)l Ix[ dx < oo. Set 
- o o  

Ff(z)  = F ( z ) =  - ~  _ _ 

Lemma 1.1 implies that F belongs to Ca-class and its derivatives are bounded, 
which allows us to put 

t F 
M t = i  ~F 0 o~x (Xs) dbs+ ! ~ ( X s ) d O s  " 

As we have remarked in (1.3), for a smooth function f with compact support, F 
satisfies 

 AF= -f. 

This together with It6's formula gives an identity 

t 

f (Xs) d s = F (0, O) - F (X~) + M t. (2.2) 
o 

For  a non-smooth f, by the method of approximation we see that (2.2) is still 

valid. Since F is bounded, we can consider Mx2, in place of ~ f(Xs)ds,  
which is easier to treat. Set o 

 (zl= 

OF OF 
Since Lemma 1.1 implies that ~ and ~ are bounded and belong to L2(G), g is 

also bounded and belongs to L ~(G). Set 

t / 1  1 1 \ 
y,=~g(Xs) and Zx( t )=[~Mt , -2y , ,~b t ) .  

Lemma 2.1. The laws P~ of the processes Z~(~. 2 t) form a tight family. 

Proof From the Birkholder-Gundy inequality [3], we have 

E(Mt-M~)6<CE(yt-y~)  3 for t>s>O. 

Hence all we have to do is to show that 
_ _ 3  

E(y t - yg<=C t]/t~-s for t>_s>_O, 

where C is a constant independent of t, s. Since g6LI(G)~L~ we easily see 

O<pug(z)<=C]/u -1 for any u=>O, 
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which implies 

E(yt-ys)3=3!  yyy p, gp~_~gp~_~g(O)dudvdw 
s<=u<v<<_w<t 

-- s g  ~ 

by ~bjk. The 
8xj 8x k 

Let ~b be a smooth function from IR d to IR 1. We denote 

limit process can be characterized by the following martingale problem: 

Lemma 2.2. Let P be a probability measure on {0); 0): [0, oo)~lR 3 continuous and 
co(0)=0} such that for all ~beC~~ 3) 

t t 

r -�89 ~ r (0) (s)) d0)2(s) -�89 ~3 (0) (s)) ds 
0 0 

�9 C t 
becomes a martingale and 0) 2 (t)= llmo ~ ! I ( -  ~, e)(0)3 (s)) d s holds P a.s., where c is 

a positive nonrandom constant. Then P coincides with the probability measure 
induced by the process (b 2(cl 1 (t)), cl x(t), b 1 (t)), where (bl, b2) is a 2-dimensional 
Brownian motion and ll(t ) is the local time at 0 of b I. 

Proof. Under the law P, it is easy to see that 0)3 is a 1-dimensional Brownian 
motion. Therefore 0)2(t)=clx(t). Furthermore restricting P to (0)1,0)3), we see 
that 01 (t) and 0)3(0 are locally square integrable martingales such that 

40). 0)j),= 0 (i , j)  

( ( i 0  D ( ' 0 1 ) t  = (A)2 ( t )  = C l 1 ( t )  

(0)3, 0)3}, = t. 

Hence applying the theorem of Knight [9], we arrive at the conclusion of the 
1emma. Q.E.D. 

For a suitable null charged function f, define 

2 OF 2 ) 
=4 5 f F f d # ,  

G 

where F = F f  (see (2.1)). Then our second theorem is as follows: 

Theorem 2.1. Suppose f e L  l(G) c~LP(G) for some 2 <p < oo, 5 f(z)  d#(z) = 0 and 
G 

~ [ Y [ l f ( y ) l d Y < ~ 1 7 6 1 7 6  ~2* ~ } f (X , )ds ,  b(22t) converge in law 
- - o o  0 

to the process {] /@b2(l l ( t ) ) ,b l ( t )} ,  where ll(t ) is the local time at 0 of a 1- 
dimensional Brownian motion ba(t ) and b2(t ) is another Brownian motion inde- 
pendent of b 1 (t). 
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Proof. 1 ~ Let P be an arbitrary limit point of {P4}. Then there exists some 
sequence {2,} diverging to infinity such that Pz, converge weakly to P. From It6's 
formula it follows that under each law Pz and for any cb~C~(IR 3) 

t t 
(~(09(/~))--�89 ~ qb l l  ((O(S)) d (D2(S) - - �89 S ~)33 (O')(S)) Ms 

0 o 

-1/XS ~13(o~(s)) (,~o(st) ds 
0 

is a martingale. We first show that 

, ] i4=EV~ [ 0 sup ]/2 ~013(~o(s))~(,~co(s))ds --.0, as 2~oo.  
LO<_t<_T [0 UX 

Since q513 is bounded, 14 is dominated by 

~F r4)T c3F b 'ds] 
[i L o s 

3F 1 
On the other hand, noting ~-s (G)c~L~(G), we have by Lemma 1.1 

[ 7 ~  t~ '  0~/ ] E ds =0(2)  as 2~oo. 
L 0 

Hence 14=0 ( ~ )  as 2---,oo. 
V 

2 ~ Let ~(t, co) be a bounded continuous function. Then 

EVZ"[i~(s)dco2(s)]---~EV[i~(s)do2(s)] as 2~00. 

t 
To prove this, first note that ~ ~b(s, co)do)2(s ) is a continuous function of co. This 

o 
is comes from the following facts: if co,~co then ~(. ,co,)~b(. ,co) uniformly on 
[0, t] and (co,)2--*co 2 uniformly on [0, t] and hence d(co,)z--~dco 2 weakly on [0, t]. 
Let fL(X) be a smooth function such that O<fL(X)< 1 and 

fL(x)={ 1 O < l x l < L  
0 L+  l < ] x ] <  or. 

Then we have 

t 
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t 

As we have seen above, SO(s, co)dco2(s) is a continuous function of co. Hence 
i o 

O(s, co)dcoz(S)fL(coz(t)) is a bounded continuous function of co. On the other 
0 

hand, we have 

Ee~ [i O(s)dco2(s)(1-fL(coz(t))) ] 

<= CEP~ [co2 (t): co2 (t) >- L~ 

C e 2 
_<--E ~Eco2(t) ] 
- L  

/22t  2 

<= C t/L (see Lemma 1.2). 

ThereforeEP~,[iO(s)dco2(s)]--.Ee[iO(s)dco2(s)] as 2 --oo. 

3 ~ P satisfies the conditions of Lemma 2.2. 
Under the probability measure P, {co3(t)} is a Brownian motion. Further 

from Theorem1.1 co2(t) is 2~ time the local time at 0 of {co3(t)} (note 
geLl(G) ~L~176 This together with the above arguments 1 ~ and 2 ~ shows that 
the measure P satisfies the conditions of Lemma 2.2. Q.E.D. 

Remark. In the above two theorems, it is seen that the process {0t} has no 
influence on the results but on the change of the parameters of the limit 
processes. This comes from the strong ergodicity of {0t}. Therefore it is natural 
to expect that any sufficiently ergodic process will lead us to the same con- 
clusions. 

w 3. Two Limit Theorems for 2-Dimensional Brownian Motions 

Let D =D([0,  oo); IR") be the set of all lR"-valued right-c0ntinuous functions with 
left-limits. We then define the graph F~(t) of x(t)sD as the smallest closed set in 
IR"x [0, oo) which contains all pairs (x,t) such that x belongs to the segment 
joining x( t - )  and x(t). The pair of functions (y(s),t(s)) is called a parametric 
representation of the graph F~(~) if those and only those pairs (x, t) belong to it for 
which an s can be found such that x =y(s), t = t(s), where y(s) is continuous and 
t(s) is continuous and nondecreasing. A sequence {x,(t)}cD is called M I- 
convergent to Xo(t ) if there exist parametric representations (y,(s), t,(s)) of F~,(t ) 
such that 

lira sup (ly.(s)-yo(s)l+lt.(s)-to(s)l)=O 
n~oo O<~s<-T 

for each T > 0  (see Skorokhod [11]). Clearly, if x,(t) and Xo(t ) are continuous 
functions, Ml-convergence implies the convergence in C (i.e. the uniform 
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convergence on each compact set). We next define the weak Ml-convergence of 
stochastic processes. Let {X,(t)} be a sequence of D-valued stochastic processes. 
Then {X,(t)} is said to be weak Ml-convergent to Xo(t  ) if there exists a 
sequence {27,(0, n=0 ,  1,...} such that 
(i) For each n>0 ,  2 , ( . )  is equivalent in law to Xn(. ). 

(ii) Xn(. ) is Ml-convergent to 20 ( .  ) a.s. 

Theorem 3.1. Let B(t) be a 2-dimensional Brownian motion and V(x); x~lR 2 be a 
bounded function such that 

j IV(x)] ]xl~dx<oo 

for some ~ > O. Then 

1 ,,(.u) 
! V(S(s))ds 

is weakly M a-convergent to 2Vl (M- l ( t ) )  as 2 ~  o% where n(t)= t e 2t, V =  S V(x)dx ,  
l(t) is the local time at 0 of a I-dimensional Brownian motion b(t) and M(t) 
= max b(s). 

O<_s<_t 

Theorem 3.2. Let B(t) be a 2-dimensional Brownian motion and V(x) be a bounded 
function such that ~ IV(x)l [xl~dx for some a > 2  and ~V(x)dx=O. Then 

1 ~(zt) 
j V(B(s)) ds 

is weakly Ml-Convergent to ] / ~  b2(lx(M-x(t))) as 2--*oo where n( t )=te  2t, <V) 

~ log Ix -Yl V(x) V(y) dx d y, b2(t ) is a 1-dimensional Brownian motion, ll (t ) 

the local time at 0 of a Brownian motion bl(t ) which is independent of b2, and 
M(t) = max b 1 (s). 

O<_s<_t 

Remark. Throughout  this paper we mean a process starting at 0 whenever we 
speak of a Brownian motion. However, the assertions of Theorems 3.1 and 3.2 
do not depend upon the starting point x 0 =B(0) as far as it is nonrandom since 
we can replace V(x) by V(x +Xo). So, in the proof of the theorem, we will assume 
B(0) =(1, 0), for convenience. 

Proof. We will prove only Theorem 3.1, because the proof of Theorem 3.2 

proceeds similarly. First we reduce the functional i V(B(s))ds of 2-dimensional 
0 

Brownian motion to that of Brownian motion on G. 
Let b(t) be a 1-dimensional Brownian motion and define 

t 

S(t) = j e 2b{s) ds. 
0 

Since, as is well-known, X( t )=b(S - l ( t ) )  is a diffusion process with generator 
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1 2x d2  
e x(~ turns out to be a Bessel process with exponent 2. Every 2- ~e- "dx2, 

dimensional Brownian motion starting at (1, O) can be represented by the skew 
product formula: 

exp {X(t)+ iO (i e-ZX(~) ds)} , 

if we take a 1-dimensional Brownian motion O(t) which is independent of b(t) (cf. 
I t&McKean [4], p. 270). Therefore setting 

f(u, O) ~- V(e" +io) eZ,, (u, 0)elR x (1R/2 zc2g), 

we see that, as stochastic process, V(B(t)) is equivalent in law to 

f(b(S -~ (t)), O(S- ~ (t))) exp ( - 2b(S- ~ (t))}. 

n().t) 

This implies that [ V(B(s))ds is equivalent in law to 
S-l(n(At)) 0 

Ax(t)= ~ f(b(s),O(s))ds. 
o 

Let Ta(t) be defined by 

s - 1  L(O))  t, 

i.e., Tz(t ) =~n-1(S(2 2 t)). Then our functional S V(B(s))ds can be reduced to 
o 

Az(T~(O) = [. f(b(s), O(s)) ds 
o 

by the time change t-*Tz(t). If we can prove that (~A~(T~(t)),T~(t)) converges in 

law to (2Vl(t),M(t)), then combining the definition of weak Ml-convergence 
with Skorohod's theorem ([11]) 1 we can finish the proof of our theorem. It is 
easy to show that f(u, O)eLI(G)c~L;(G) (for some p > 1) and that 

Therefore, by Theorem1.1, Az(Tx(t)),~b(,~ 0 converges in law to 

(2V/(t), b(t)) as 2-* oo. On the other hand we will prove in Lemma 3.1 below that 

(~b()~2~),Ta(t)) is weakly convergent to (b(t),M(t)). Let Pz be the law in- 

duced on the space of continuous functions C([0, oo)-*IR 3) by the process 

1 The t h eo rem  asserts that the convergence in law of r andom variables on a separable complete 
metric space can be realized by an almost  everywhere convergence without changing the law of each 
random variable. 
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[ 1 1 2 \ 
I-)A~(T~(t)),~b(2 t),T~(t)~. Then the family {P~} is tight because each co ra -  

l 
ponent converges in law. Further it is easy to see from the above argument that 
any limit point P* of {Pz) coincides with the law P induced by (2 Vl(t), b(t), M(t)). 
Hence, P~ itself converges to P. Q.E.D. 

(~b(22t),T~(t)) is weakly convergent to (b(t),M(t)) as 2-~oe, where L e m m a  3.1. 

M(t) = max b(s). 
O<_s<_t 

~ 1 1 Proof Set T z ( t ) = ~ n -  ( ~ 2 i e 2 ~ b ( S ) d s ) ( n ( t ) = t e 2 t ) .  Then (~b(,~2t), Tz(t)) is 

equivalent in law to (b(t), T~(t)), so we have only to show 

lim sup ITz(t)-M(t)l=O for every T>0 .  
~ o ~  O<=t<--T 

Fix e > 0 and 

t 
,~2 ~ e2~b(s) 

0 

6>0.  Then for any t~[6, T] we have 

d s_-< 22 T e  2zM(t) 

T 
< 2 e - Z . ~ 2 ( m ( t ) + e ) e Z Z ( m ( t ) + ~ ) .  
=M(6)  

If we set C~(T)= T(2eeM(6))-1, then noting the inequality he-2~__<(2ee)-1, we 
see 

. 1 
Tx(t) <~ n- I(C,(T) n(2 {M(t) + e})). 

Since n-1( . )  is slowly varying, there exists 2 o > 0 such that 

n-  1 (Ce(T) n(~ {M(t) + 5})) < (1 + 5) n- 1(n(2 {M(t) + 5})) 

=0 +~)~{M(t)+~} 

holds for every 2>20 and ts[-8, T], which implies 

lim sup {Tz(t)-M(t)} <=0. (3.1) 
2~o~ 6<-t<--T 

The converse inequality 

lira inf {Tx(t)-M(t)}>O (3.2) 
2 ~  6<t<T 

can be proved in the following way: Let q~(t) be the Lebesgue measure of 
{se[0, t ] ; b ( t ) > m ( t ) - e } .  Then w.p. 1, ~b(t) is a positive continuous function on 
(0, ~),  and hence there exists a positive constant c such that (~(t)>c for every 
t~[6, T]. This gives an inequality 

t 
22 S e2"~b(s) d s >= 2 2 C e z~(M(~)- ~). 

0 
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Consequently we can prove (3.2) by a similar argument as above. (3.1) and (3.2) 
imply 

lim sup ITz(t)-M(t)l=O. 
2 ~  6 < t < T  

To complete the proof we have only to note that 

sup I~(t)-M(t)[ <= ~Fa(&)+ M(f) 
o<t<=6 

=< [7"~(5)-M(6)I + 2M(&) 

and that M(b)~O as b~0 .  

w 4. Limit Theorems for 1-Dimensional Diffusion Processes 

The idea we used in the previous section can be applied to some other diffusion 
processes. Let re(x) be a right-continuous, nondecreasing function defined on IR. 
Then we can define the Lebesgue-Stieltjes measure din(x). We exclude the trivial 
case that din(x) vanishes identically, so, without loss of generality we can assume 
that Oesuppdm(x) and that m(0)=0. Let b(t) be a Brownian motion and l(t,x) 
its local time. It is well known that X(t)=b(S-1(0 ) becomes a strong Markov 
process on the support of din(x) if S-1 (t) denotes the right-continuous inverse to 
S(t)=S(t, m)=~ l(t,x)din(x) (of. E 4, 121). X(t) is called the (generalized) diffusion 

d d 
process associated with re(x). The local generator of X(t) is given by dm dx" 

Lx(t, x )=  l(S-1 (t), x) is called the local time of X(t) because, for every bounded 
function f(x), we have 

t 

U(x(s)) ds = S Lx(t, x)f(x) dm(x). 
0 - - c o  

In this section we study limit theorems for an additive functional 
Lx(t,x)dF(x ) where dF(x) is any (signed) finite measure whose support is 

contained in that of din(x). Remark that if dF(x) is absolutely continuous with 
respect to din(x), then 

t 

Lx(t, x)dF(x)= ~ f (X (s)) ds 
- - o o  0 

dF(x) 
where f (x)-  din(x)" 

First we state two lemmas without proof since we need only a little 
modification to the proof of Theorems 1.1 and 2.1. 

Lemma 4.1. Let dF(x) be a finite (signed) Borel measure on IR. Then, for each 
T>O, 
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co 

l im sup ~ l ( t , x ) d F ( 2 x ) - F l ( t , O )  =0,  a.s., 
) ~ o o  O < t < T  - o o  

where F = F ( +  o o ) - F ( -  Go). 

L e m m a  4.2. Let dF(x)  be a finite Borel measure with compact support such that F 

= ~ dF(x)  = 0. Then, (1/2 ~ l(t, x) dF(4 x), b (t)) converges in law to (c b2 (11 (t)), b I (t)) 
as 2--,o% where (bl(t),bz(t)) is a 2-dimensional Brownian motion, ll(t ) the local 

time at 0 of  b 1 (t) and c = 2 (F (x) - F ( -  oo))2 d x . 

Before we state  our  theorem,  we remark  some propert ies  of  regularly varying 
functions. A function r(x) defined on (0, oo) is called a regularly varying function 
(at oo) with exponent  fl (0__<fl< oo) if and only if 

l im r ( 2 x ) = i f ,  2 > 0  (4.1) 
x.~o r(x) 

where 2 ~ = oo if 2 > 1 and = 0 if 0 < 2 < 1. A regular  varying function with 
exponent  0 is called a slowly varying function. It  is easy to see that  in case fl < oo 
a function r(x) varies regularly with exponent /3  if and only if r ( x ) = x r  for 
some slowly varying L(x). In case fl = Go we often call r(x) a rapidly increasing 
function. Not ice  that  an increasing, cont inuous  function r(x) varies regularly 
with exponent  /3 if and only if r - l ( x )  so does with exponent  1//3 including the 
c a s e / 3 = 0  or oo under  the convent ion 1 /0=  0o and 1/oo =0 .  Fo r  instance, l o g x  
varies slowly and e ~ increases rapidly. 

F r o m  now on we consider generalized diffusion processes associated with 
speed measures  din(x) satisfying the following condi t ion (C). There  exist a 
continuous,  increasing, regularly varying function n(2) with exponent  
(1 -<e-< oo) such that  
(i) i f  c~ < 0% 

1 2m(2) (>0) ,  lm - - = c  1 
~o~ n(2) 

2m(2) 
l im - - c 2 (=<0) 

( 0 < c  1 + c  2 < oo). 

(ii) if c~ = o% 

2m(2x)  [c~, a I <X 
lim - -  O, - - a 2 < x < a  1 
~oo n(2) - 0 %  x < - a  2 

( 0 < a 1 < o % 0 < a 2 < ~  or 0 < a l = < o o , 0 < a 2 < o o ) .  
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Set 

Ta(t) = l n -  1 (2~l(t, x) dm(Zx)) 

and 

f (p(t, ~) d m* (x)) '/~, T(t) 
/ m a x  ~ b(s), b(s);, 
(o<=s~t( al a 2 J 

where 

m*(x)={ CxX~-l' x > 0  
- e 2 1 x ?  -a, x<0 .  

Then we have 

Lemma 4.4. For every T > O, 

lim sup I ~ ( t ) - r ( t ) l = O  
Z~oo O<-t<_T 

a . s .  

(4.2) 

(4.3) 

Proof Since l(t, x) is continuous in (t, x) and has compact support in [0, T] x IR, 
it follows from (C) that 

lim ~ ~ l(t, x) d m(2 x) = ~ l(t, x) d m* (x). 
ntJt) 

Note that n-1(2) varies regularly with exponent 1/e because so does n(2) with 
exponent c~. Therefore, if c~ < o% 

1 
lira ~ n-1 (2 ~ l(t, x) d m (2 x)) 

.?,~ oO 

1 
= lim ~ n-1 (n(2)~ l(t, x) d m* (x)) 

X ~ o O  

1 
= lim ~n-  1 (n(2)) T(t) 

= T(t), 

which proves the assertion because the convergence is clearly uniform in t (=< T). 
In case c~= oo, notice that the support of l(t, .) is the interval [M (t),M+(t)] 

where M_( t )=  min b(s) and M+(t )=  max b(s). On the other hand, by (C), we 
have O<_s<_t O<_s<_t 

lim 2 m(c Z) 
00,  C ~ C 1. 

~ n(,~) 
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This, combined with the continuity of the local time, implies 

oo 

2 S l(t, x) d m (2 x) > const. �9 m (2 {M + (t) - (5 }) 
0 

for all c > c 1 and all sufficiently large 2. Therefore,  

lim ~'~ (t) 

I) > lim n -1 2 ~ l ( t , x )dm(2x  
~ t ~  \ 0 

) z~ ~ 2 (M +(t) - c~) 

=-l  ( M + ( t ) -  b). 
C 

Lett ing c~,c 1 and bJ, O, we have 

lim T x ( t ) > l M  +(t). 
2 ~ o o  C 1 

We can also prove 

lim T~ (t) > - 1 M_ (t), 
2 ~  C 2 

and hence we have 

lim Tx( t )>max M +(t), M (t) " 

= r ( t ) .  

By a similar (but easier) argument  we can obtain 

lim Tx(t) _-< T(t). 

Thus we have 

lira Tz(t)= T(t). 

It is easy to see that  the convergence is uniform on every compact  interval in 
[0, oo), which implies the assertion (see the proof  of L e m m a  3.1.). 

Theorem 4.1. Assume (C) and let dF(x) be a finite measure whose support is 
compact and contained in that of din(x). Then, 
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1 
(i) ~ L x ( n ( 2  t), x) dF(x) is weakly Mx-convergent to ff l (T-  1 (t), O) as )L--+ ~ where 

F = F ( +  ~ ) - F ( - o r )  and T(t) is the process defined in (4.3). 
(ii) In case ff = O, 

~2~Lx(n(2t)) ,x)dF(x) is weakly Ml-convergent to (] /~b( l (T-  1(0 , 0)) as 

2 ~  where ( F ) = 2  S ( F ( x ) - F ( - ~ ) ) 2  dx and b(t) is a Brownian motion which 

is independent of b(t)_ ~ 

- 1 
Proof. Define Tz(t)=~n-l(~l(22t, x)dm(x)). We will prove that the joint distri- 
butions of 

( ]  ~ Lx(n(2 ~ (t), x)), x) d F (x), ~ (t)) 

converge to that of (ffl(t, 0), T(t)). In fact it is easy to see that this implies (i) if we 
take into account of the Skorokhod theorem and the definition of weak M 1- 
convergence. First note, for xesuppdm,  l(S-1(S(t)),x)=l(t,x) (S(t)= 

l(t, x) dF(x)) and hence 

1 
~ Lx(n(;~ T~ (t)), x) dF(x) 

1 2 = ~ L x ( S ( 2  t),x)dF(x) 

= ~ ~ l(S- 1 (S(,~2 t)), X)dF(x) 

=~l (22 t ,  x) dF(x). 

1 1 
Furthermore, since ~l(22t ,2x) is  the local time of ~b(22t), we easily see that 

[ 1 2 1 2 
I ~ / ( 2  t ,x)dF(x) ,~b(2 t),~(t)} is equivalent in law to 

where T~(t) is defined in (4.2). Let {P~} denote the law induced in C([0, oo)~lR 3) 

) by the process (4.4). Then {P~} is precompact because I t ,~ dF(x),b(t) and 

(b(t), 7"x(t)) are weakly convergent to (ff l(t, 0), b(t)) and (b(t), T(t)), respectively as 
we have seen in Lemmas4.1 and 4.4. Let P* be any limit point of {Px} and 
denote by (x(t), y(t), z(t)) the element of C([0, oo)~IR3). Then, using Lemmas 4.1 
and 4.4 again, we see that the marginal distribution of (x(t), y(t)) is equal to that 
of (ffl(t,O),b(t)) and that the marginal distribution of (y(t),z(t)) equals that of 
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(b(t), T(t)). Therefore, noting that T(t) and l(t,x) are functionals of b(t), we see 
that P* equals the law of (ifl(t,0),b(t),T(t)), which implies that 

Sl(22t, x)df(x),~b(220,7"x(t) is weakly convergent to (ifl(t,O),b(t),r(o). 
This, as we have mentioned, proves (i). Similarly we can prove (ii), but we omit 
the details. Q.E.D. 

Remarks. (i) In case c~<oo, we can obtain similar limit theorems for 
SLx(n(2)t,x)dF(x ) (see C. Stone [12]). But since n(2t)~r there is no 
crucial difference from the type we treated. So we omit the details. 

(ii) Weak Ma-convergence, in general, does not necessarily imply the con- 
vergence of finite-dimensional marginals. However, in all our cases, the first 
implies the latter since the limit processes have no fixed-discontinuities. 
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