On Limit Processes for a Class of Additive Functionals of Recurrent Diffusion Processes

Yuji Kasahara and Shin'ichi Kotani
Department of Mathematics, Kyoto University, Kyoto 606, Japan

§0. Introduction

Limit theorems for a class of additive functionals, especially occupation times of Markov process, have been studied by many authors, e.g., Darling-Kac [1], Dobrushin [2], Karlin-McGregor [6], C. Stone [12] and Kasahara [7, 8]. So far, these theorems except [12] dealt with the convergence at each fixed time only, but recently Papanicolaou-Stroock-Varadhan [10] discussed the convergence as stochastic processes: for example, if $b(t)$ is a 1 -dimensional Brownian motion and $l(t, x)$ is its local time (i.e., $2 \int_{E} l(t, x) d x=\int_{0}^{t} I_{E}(b(s)) d s$ for every Borel subset E) and $V(x)$ is a bounded Borel function with compact support, it is easy to see that the processes $t \rightarrow \frac{1}{\lambda} \int_{0}^{\lambda 2} V(b(s)) d s$ converge, in the sense of probability law on the space of continuous functions, to the process $t \rightarrow 2 \bar{V} l(t, 0)$ as $\lambda \rightarrow \infty$, where $\bar{V}=\int_{-\infty}^{\infty} V(x) d x$. When $\bar{V}=0$, the limit process is trivial but as they showed in [10] if we change the scaling as

$$
t \rightarrow \frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^{2} t} V(b(s)) d s
$$

then the laws of these processes converge to that of the process $t \rightarrow \sqrt{\langle V\rangle} \tilde{b}(l(t, 0))$ as $\lambda \rightarrow \infty$, where $\langle V\rangle$ is the energy of the charge $V(x) d x$ and $\tilde{b}(t)$ is another Brownian motion independent of $b(t)$. The purpose of this paper is to study similar problems for 2-dimensional Brownian motion and 1-dimensional recurrent diffusion processes.

Let $B(t)$ be a 2-dimensional Brownian motion and $V(x) ; x \in \mathbb{R}^{2}$ be a bounded Borel function with compact support. Kallianpur-Robbins [5] and Kasahara [7], [8] have proved that the distributions of $\frac{1}{u(\lambda)} \int_{0}^{\lambda} V(B(s)) d s$ (where $u(\lambda)=\log \lambda)$ converge to an exponential distribution as $\lambda \rightarrow \infty$, and if $\bar{V}=\int_{\mathbb{R}^{2}} V(x) d x=0$, with $u(\lambda)=\sqrt{\log \lambda}$ the above random variables converge in
law to a bilateral exponential distribution. As to the convergence of processes Stroock proposed the following problem: What is the limit process, as $\lambda \rightarrow \infty$, of the processes

$$
A_{\lambda}(t)=\frac{1}{u(\lambda)} \int_{0}^{e^{\lambda t}} V(B(s)) d s,
$$

where $u(\lambda)=\lambda$ or $\sqrt{\lambda}$ according as $\bar{V} \neq 0$ or $\bar{V}=0$? Here, it should be noted that the processes $t \rightarrow \frac{1}{\log \lambda} \int_{0}^{\lambda_{t}} V(B(s)) d s$ converge to a degenerate one (i.e., independent of time parameter t). For this problem we have obtained the following results: the limit process of $A_{\lambda}(t)$ is given as

$$
\begin{equation*}
2 \bar{V} l\left(M^{-1}(t)\right) \tag{0.1}
\end{equation*}
$$

where $M(t)=\max _{s \leqq t} b(s)$ and $l(t)$ is the local time at 0 of $b(t)$ and, in the case of \bar{V} $=0$, as

$$
\begin{equation*}
\sqrt{\langle V\rangle} \tilde{b}\left(l\left(M^{-1}(t)\right)\right), \tag{0.2}
\end{equation*}
$$

where $\tilde{b}(t)$ is another Brownian motion independent of $b(t)$ and

$$
\langle V\rangle=-\frac{4}{\pi} \int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{2}} \log |x-y| V(x) V(y) d x d y .
$$

Our method is as follows. First we represent a 2-dimensional Brownian motion as a Brownian motion $X(t)=(b(t), \theta(t))$ on a cylinder $\mathbb{R} \times(\mathbb{R} / 2 \pi \mathbb{Z})$ run with the clock $S^{-1}(t)$ (where $\left.S(t)=\int_{0}^{t} e^{2 b(s)} d s\right)$. Then, by random time change depending on the parameter λ (see $\S 3$), our problem is reduced to that of finding the limit process of an addidive functional $\frac{1}{u(\lambda)} \int_{0}^{\lambda^{2} t} f(X(s)) d s$. Since the process $\theta(t)$ is strongly ergodic, only $b(t)$ plays an essential role, which enables us to treat the above functional in a way similar to Papanicolaou-Stroock-Varadhan [10] in the case of 1-dimensional Brownian motion.

We explain the content of this paper. In $\S 1$ and $\S 2$ we give two limit theorems for a class of additive functionals of the Brownian motion $X(t)$ on the cylinder. In $\S 3$ we show that $A_{\lambda}(t)$ converge in law to the above limit processes (0.1) and (0.2). The process (0.1) is not a Markovian but its inverse is a Markov process (cf. S. Watanabe [13]). Further an interesting fact here is that the process (0.1) increases only with jumps although $A_{\lambda}(t)$ are continuous. Therefore the convergence is neither in the ordinary weak topology nor in Skorokhod's J topology. We will see that M_{1}-convergence introduced by Skorokhod [11] is most suitable. In the final section, we give similar limit theorems for a broad class of 1 -dimensional diffusion processes.

[^0]
§ 1. Limit Processes for Additive Functionals of a Brownian Motion on the Cylinder (Positively Charged Case)

As it will be seen later in §3, the study of limit processes of functionals of a 2 dimensional Brownian motion can be reduced to that of a Brownian motion on the cylinder $G=\mathbb{R} \times(\mathbb{R} / 2 \pi \mathbb{Z})$. Therefore first we establish limit theorems relating to a Brownian motion on G.

A Brownian motion $X(t)$ on G is defined as the product process of a 1dimensional Brownian motion $b(t)$ and another 1-dimensional Brownian motion $\theta(t)$ independent of $b(t)$ and viewed in modulo 2π. It has the transition density $p_{t}\left(z-z^{\prime}\right)$ with respect to the Haar measure $d \mu(z)=d x d \theta(z=(x, \theta))$, which can be represented in two ways:

$$
\begin{align*}
p_{t}(z) & =\frac{1}{2 \pi t} \exp \left(-|x|^{2} / 2 t\right) \sum_{n=-\infty}^{\infty} \exp \left[-(\theta+2 \pi n)^{2} / 2 t\right] \tag{1.1}\\
& =\frac{1}{4 \pi^{2}} \int_{G^{*}} \exp \left(-|\xi|^{2} t / 2-i \xi z\right) d \mu^{*}(\xi), \tag{1.2}
\end{align*}
$$

where $G^{*}=\mathbb{R} \times \mathbb{Z}, d \mu^{*}(\xi)=d \lambda \delta_{\{n\}}$ for $\xi=(\lambda, n),|\xi|^{2}=\lambda^{2}+n^{2}$ and $\xi z=\lambda x+n \theta$.
Set

$$
\Gamma_{0}(z)=-\frac{1}{2 \pi} \log \left|e^{i \theta}-e^{-|x|}\right|^{2} .
$$

Then we have

$$
\begin{aligned}
& \Gamma_{1}(z)=\frac{\partial \Gamma_{0}}{\partial x}=-\frac{1}{\pi} \frac{\left(\cos \theta-e^{-|x|}\right) e^{-2|x|}}{\left|e^{i \theta}-e^{-|x|}\right|^{2}} \operatorname{sgn} x, \\
& \Gamma_{2}(z)=\frac{\partial \Gamma_{0}}{\partial \theta}=-\frac{1}{\pi} \frac{e^{-|x|} \sin \theta}{\left|e^{i \theta}-e^{-|x|}\right|^{2}},
\end{aligned}
$$

where $\operatorname{sgn} x=1$ for $x>0$ and $=-1$ for $x<0$.
Setting $\Gamma_{k} f(z)=\Gamma_{k} * f(z)(k=0,1,2)$, for any sufficiently smooth function f we have

$$
\begin{equation*}
\frac{1}{2} \Delta \Gamma_{0} f(z)=\frac{1}{2}\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial \theta^{2}}\right) \Gamma_{0} f(z)=-f(z)+\frac{1}{2 \pi} \bar{f}(z) \tag{1.3}
\end{equation*}
$$

where $\bar{f}(z)=\int_{-\pi}^{\pi} f(x, \theta) d \theta$.
From now on we denote by E_{z} the expectation with respect to the measure P_{z} of a Brownian motion starting at z and write simply E in place of E_{0}. We prepare several estimates here.

Lemma 1.1.

$$
\begin{equation*}
\left|\int_{-\infty}^{x} \bar{f}(y) d y\right| \leqq\|f\|_{1}, \tag{1.4}
\end{equation*}
$$

$$
\begin{align*}
&\left|\Gamma_{0} f(z)\right| \leqq C\|f\|_{p}(1<p \leqq \infty) \tag{1.5}\\
&\left|\Gamma_{i} f(z)\right| \leqq C\|f\|_{p}(2<p \leqq \infty) \\
&\left\|\Gamma_{i} f\right\|_{1} \leqq C\|f\|_{1} \quad \text { for } \quad i=1,2 \tag{1.6}\\
& \mid E_{z} f\left(X_{t}\right) \leqq p_{t}(0)^{1 / p}\|f\|_{p} \quad(1 \leqq p \leqq \infty) \tag{1.7}
\end{align*}
$$

where C is a constant independent of f.
Proof. (1.4) is trivial. The others can be deduced from the fact that $\Gamma_{0} \in L^{q}(G)$ $(1 \leqq q<\infty)$ and $\Gamma_{k} \in L^{q}(G)(0<q<2)$ for $k=1,2$. Using the fact that $p_{t}(z) \leqq p_{t}(0)$ and $\int_{G} p_{t}(z) d \mu(z)=1$, we can prove (1.7) as follows:

$$
\begin{aligned}
\left|E_{z} f\left(X_{t}\right)\right| & \leqq \int_{G} p_{t}\left(z-z^{\prime}\right)\left|f\left(z^{\prime}\right)\right| d \mu\left(z^{\prime}\right) \\
& \leqq\left\{\int_{G} p_{t}\left(z^{\prime}\right)^{q} d \mu\left(z^{\prime}\right)\right\}^{1 / q}\|f\|_{p} \\
& \leqq p_{t}(0)^{\frac{q-1}{q}}\|f\|_{p}=p_{t}(0)^{1 / p}\|f\|_{p} . \quad \text { Q.E.D. }
\end{aligned}
$$

Lemma 1.2. Suppose $f \in L^{1}(G) \cap L^{p}(G)$ for some $1<p \leqq \infty$. Then we have

$$
\lim _{t \rightarrow \infty} \frac{1}{t} E\left(\int_{0}^{t} f\left(X_{s}\right) d s\right)^{2}=\frac{1}{4 \pi^{2}}(\bar{f})^{2},
$$

where $\bar{f}=\int_{G} f(z) d \mu(z)$.
Proof. The proof is divided into three parts.

$$
\left.1^{\circ}\right) \quad E\left(\int_{0}^{a}\left|f\left(X_{s}\right)\right| d s\right)^{2}<\infty \quad \text { for any } a<\infty
$$

Setting $P_{t} f(z)=p_{t} * f(z)$, we have an equality:

$$
I=E\left(\int_{0}^{a}\left|f\left(X_{s}\right)\right| d s\right)^{2}=2 \iint_{0 \leqq u \leqq s \leqq a} P_{u}\left(|f| P_{s-u}|f|\right)(0) d u d s .
$$

Applying the inequality (1.7), we see

$$
I \leqq 2\|f\|_{p}^{2} \iint_{0 \leqq u \leqq s \leqq a}\left\{p_{u}(0) p_{s-u}(0)\right\}^{1 / p} d u d s
$$

On the other hand, the expression (1.1) implies

$$
p_{u}(0) \leqq \frac{C}{u} \quad \text { for any } u \leqq a
$$

Hence $I<\infty$ follows.
$\left.2^{\circ}\right) \quad E\left(\underset{\substack{1 \leq u \leq \leq \leq t \\ s-u \leq 1}}{ }\left|f\left(X_{u}\right) f\left(X_{s}\right)\right| d u d s\right)=O(\sqrt{t}) \quad$ as $t \rightarrow \infty$.

From the inequality (1.7) we have

$$
\begin{aligned}
E\left|f\left(X_{u}\right) f\left(X_{\mathrm{s}}\right)\right| & =P_{u}\left(|f| P_{s-u}|f|\right)(0) \\
& \leqq p_{s-u}(0)^{1 / p} p_{u}(0)\|f\|_{1}\|f\|_{p}
\end{aligned}
$$

which implies that

$$
\begin{aligned}
J & =E\left(\underset{\substack{1 \leq u \leq s \leq t \\
s-u \leqq 1}}{ }\left|f\left(X_{u}\right) f\left(X_{s}\right)\right| d u d s\right) \\
& \leqq\|f\|_{p}\|f\|_{1} \iint_{\substack{1 \leq u \leq s \leq t \\
s-u \leqq 1}} p_{s-u}(0)^{1 / p} p_{u}(0) d s d u \\
& \leqq\|f\|_{p}\|f\|_{1}\left(\int_{1}^{t} p_{u}(0) d u\right)\left(\int_{0}^{1} p_{s}(0)^{1 / p} d s\right) .
\end{aligned}
$$

Here noting $p_{s}(0) \leqq C s^{-1}$ for $s \leqq 1$ and $p_{u}(0) \leqq C \sqrt{u^{-1}}$ for $u \geqq 1$, we easily see that $J=O(\sqrt{t})$ as $t \rightarrow \infty$.

$$
\left.3^{\circ}\right) \lim _{t \rightarrow \infty} \frac{1}{t} E\left(\underset{\substack{1 \leq u \leq s \leq t \\ s-u \leq 1}}{ } f\left(X_{u}\right) f\left(X_{s}\right) d u d s\right)=\frac{1}{8 \pi^{2}}(\bar{f})^{2}
$$

Let $\hat{f}(\xi)=\int_{G} e^{i \zeta z} f(z) d \mu(z)$. First we note that

$$
P_{s} f(z)=\frac{1}{4 \pi^{2}} \int_{G^{*}} \exp \left(-i \xi z-\frac{s|\xi|^{2}}{2}\right) \hat{f}(\xi) d \mu^{*}(\xi)
$$

and

$$
\begin{aligned}
& \qquad \begin{aligned}
\widehat{f P_{s-u} f}\left(\xi_{1}\right) & =\frac{1}{4 \pi^{2}} \int_{G^{*}} \hat{f}\left(\xi_{1}-\xi_{2}\right) \widehat{P_{s-u} f}\left(\xi_{2}\right) d \mu^{*}\left(\xi_{2}\right) \\
& =\frac{1}{4 \pi^{2}} \int_{\mathbf{G}^{*}} \exp \left(-\left|\xi_{1}\right|^{2} \frac{u}{2}-\left|\xi_{2}\right|^{2} \frac{(s-u)}{2}\right) \hat{f}\left(\xi_{2}\right) \hat{f}\left(\xi_{1}-\xi_{2}\right) d \mu^{*}\left(\xi_{2}\right) .
\end{aligned} \\
& \text { Hence }
\end{aligned}
$$

$$
\begin{aligned}
& E f\left(X_{u}\right) f\left(X_{s}\right)=P_{u}\left(f P_{s-u} f\right)(0) \\
& \quad=\frac{1}{16 \pi^{4}} \iint_{G^{*} \times G^{*}} \exp \left(-\left|\xi_{1}\right|^{2} \frac{u}{2}-\left|\xi_{2}\right|^{2} \frac{(s-u)}{2}\right) \hat{f}\left(\xi_{2}\right) \hat{f}\left(\xi_{1}-\xi_{2}\right) d \mu^{*}\left(\xi_{1}\right) d \mu^{*}\left(\xi_{2}\right)
\end{aligned}
$$

Changing the variables (u, s) and $\left(\xi_{1}=\left(\lambda_{1}, n\right), \xi_{2}=\left(\lambda_{2}, m\right)\right.$) to ($\left.t a, t b\right)$ and $\left(\left(\sqrt{t} \lambda_{1}, n\right), \quad\left(\sqrt{t} \lambda_{2}, m\right)\right) \quad$ respectively, and setting $\quad D_{t}=\left\{(a, b) ; \quad \frac{1}{t} \leqq a \leqq b \leqq 1\right.$, $\left.b-a \geqq \frac{1}{t}\right\}$, we have

$$
\begin{aligned}
E(& \left.\iint_{\substack{1 \leqq u \leq s \leq t \\
s-u \leqq 1}} f\left(X_{u}\right) f\left(X_{s}\right) d u d s\right) \\
= & \frac{t}{16 \pi^{4}} \iiint_{D_{t} \times G^{*} \times G^{*}} \exp \left(-\frac{a}{2}\left(\lambda_{1}^{2}+t n^{2}\right)-\frac{(b-a)}{2}\left(\lambda_{2}^{2}+t m^{2}\right)\right) \\
& \cdot \hat{f}\left(\frac{\lambda_{2}}{\sqrt{t}}, m\right) \hat{f}\left(\frac{\lambda_{1}-\lambda_{2}}{\sqrt{t}}, n-m\right) d \mu^{*}\left(\xi_{1}\right) d \mu^{*}\left(\xi_{2}\right) d a d b .
\end{aligned}
$$

We divide the integral into two parts:

$$
\begin{aligned}
I_{1}(t)= & \iiint_{D_{t} \times R^{2}} \exp \left(-\frac{a}{2} \lambda_{1}^{2}-\frac{(b-a)}{2} \lambda_{2}^{2}\right) \hat{f}\left(\frac{\lambda_{2}}{\sqrt{t}}, 0\right) \hat{f}\left(\frac{\lambda_{1}-\lambda_{2}}{\sqrt{t}}, 0\right) d \lambda_{1} d \lambda_{2} d a d b, \\
I_{2}(t)= & \iiint_{\substack{D_{t} \times G^{*} \times G^{*} \\
m^{2}+n^{2} \neq 0}} \exp \left(-\frac{a}{2}\left(\lambda_{1}^{2}+t n^{2}\right)-\frac{(b-a)}{2}\left(\lambda_{2}^{2}+t m^{2}\right)\right) \\
& \cdot \hat{f}\left(\frac{\lambda_{2}}{\sqrt{t}}, m\right) \hat{f}\left(\frac{\lambda_{1}-\lambda_{2}}{\sqrt{t}}, n-m\right) d \mu^{*}\left(\xi_{1}\right) d \mu^{*}\left(\xi_{2}\right) d a d b .
\end{aligned}
$$

Since $\hat{f}(\xi)$ is a bounded continuous function on G^{*}, we easily see that

$$
\begin{aligned}
\lim _{t \rightarrow \infty} I_{1}(t) & =\hat{f}(0)^{2} \iiint_{D_{\infty} \times R^{2}} \exp \left(-\frac{a}{2} \lambda_{1}^{2}-\frac{(b-a)}{2} \lambda_{2}^{2}\right) d \lambda_{1} d \lambda_{2} d a d b \\
& =2 \pi^{2} \hat{f}(0)^{2}
\end{aligned}
$$

On the other hand, the boundedness of \hat{f} implies

$$
\begin{aligned}
\left|I_{2}(t)\right| \leqq & C \iiint \iint_{D_{t} \times R^{2}} \exp \left(-\frac{a}{2} \lambda_{1}^{2}-\frac{(b-a)}{2} \lambda_{2}^{2}\right) \\
& \cdot \sum_{m^{2}+n^{2} \neq 0} \exp \left(-\frac{a}{2} t n^{2}-\frac{(b-a)}{2} t m^{2}\right) d \lambda_{1} d \lambda_{2} d a d b \\
= & C \iiint_{0 \leqq a \leqq b \leqq 1} J_{t}(a, b) \frac{d a d b}{\sqrt{a(b-a)}},
\end{aligned}
$$

where $J_{t}(a, b)=I_{D_{t}}(a, b) \sum_{m^{2}+n^{2} \neq 0} \exp \left(-\frac{a}{2} t n^{2}-\frac{(b-a)}{2} t m^{2}\right) .\left(I_{D_{t}}\right.$ is the characteristic function of D_{t}.) Then noting

$$
J_{t}(a, b) \leqq \sum_{m^{2}+n^{2} \neq 0} \exp \left(-\frac{n^{2}+m^{2}}{2}\right)<\infty
$$

and $J_{t}(a, b) \rightarrow 0$ as $t \rightarrow \infty$ for each (a, b), by the Lebesgue dominated convergence theorem we see

$$
I_{2}(t) \rightarrow 0 \quad \text { as } \quad t \rightarrow \infty .
$$

Consequently we obtain the lemma. Q.E.D.
In null charged case we can get the following convergence in probability:
Lemma 1.3. Suppose $f \in L^{1}(G) \cap L^{p}(G)$ for some $1<p \leqq \infty$, and $\int_{G} f(z) d \mu(z)=0$.
Then for each $T>0$ and $\varepsilon>0$,

$$
P\left\{\sup _{0 \leqq r \leqq T}\left|\frac{1}{\lambda} \int_{0}^{\lambda^{2} t} f\left(X_{s}\right) d s\right|>\varepsilon\right\} \rightarrow 0 \quad \text { as } \quad \lambda \rightarrow \infty .
$$

Proof. 1°) Let $f \in L^{1}(G) \cap L^{p}(G)$ for some $1<p \leqq \infty$ and $\int_{G} f(z) d \mu(z)=0$. Define $F(z)$ by

$$
\begin{equation*}
F(z)=-\frac{1}{2 \pi} \int_{0}^{x} d y \int_{-\infty}^{y} \bar{f}(u) d u+\Gamma_{0} f(z) \tag{1.8}
\end{equation*}
$$

Then

$$
M_{t}=F\left(X_{t}\right)-F(0,0)+\int_{0}^{t} f\left(X_{s}\right) d s
$$

becomes a martingale. This is easily seen if f is a smooth function with compact support because by (1.3) we have

$$
\frac{1}{2} \Delta F=-f
$$

For a general function f, set $f_{\varepsilon}=P_{\varepsilon} f$. Then $\int_{G} f_{\varepsilon}(z) d \mu(z)=0$ and f_{ε} converges to f in both $L^{1}(G)$ and $L^{p}(G)$. Hence from (1.4), (1.5) and (1.7) it follows that M_{t} is a martingale even in this case.
2°) For each $\varepsilon>0, P\left\{\sup _{0 \leqq t \leqq T} \frac{1}{\lambda}\left|M_{\lambda^{2} t}\right|>\varepsilon\right\} \rightarrow 0 \quad(\lambda \rightarrow \infty)$. Since $\left|M_{t}\right|$ is a

$$
P\left\{\sup _{0 \leqq t \leqq x} \frac{1}{\lambda}\left|M_{\lambda^{2} t}\right|>\varepsilon\right\} \leqq \frac{1}{\varepsilon \lambda} E\left|M_{\lambda^{2} T}\right|
$$

Lemma 1.2 together with $\bar{f}=0$ implies

$$
E\left|\int_{0}^{\lambda^{2} T} f\left(X_{s}\right) d s\right|=o(\lambda) \quad \text { as } \quad \lambda \rightarrow \infty
$$

Let $g(x)$ be the first term in the expression (1.8). Then it is easy to see from $g(x)$ $=o(x)$ that

$$
E\left|g\left(b_{\lambda^{2} T}\right)\right|=o(\lambda) \quad \text { as } \quad \lambda \rightarrow \infty
$$

Noting that the remainder terms of M_{t} are bounded, we have

$$
\begin{aligned}
& P\left(\sup _{0 \leqq r \leqq T} \frac{1}{\lambda}\left|M_{\lambda^{2} t}\right|>\varepsilon\right) \rightarrow 0 \quad \text { as } \lambda \rightarrow \infty . \\
& \left.3^{\circ}\right) \quad E\left(\sup _{0 \leqq r \leqq T}\left|g\left(b_{\lambda^{2} t}\right)\right|\right)=o(\lambda) \text { as } \lambda \rightarrow \infty .
\end{aligned}
$$

Let $m_{t}^{ \pm}=\sup _{0 \leqq s \leq t}\left(\pm b_{s}\right)$ and $h(x)=\sup _{|y| \leqq x}|g(y)|$. Then noting m_{t}^{+}and m_{t}^{-}have the same distribution, we have

$$
\begin{aligned}
E \sup _{0 \leqq t \leqq T}\left|g\left(b_{\lambda^{2} t}\right)\right| & \leqq E h\left(m_{\lambda^{2} T}^{+} \vee m_{\lambda^{2} T}^{-}\right) \\
& \leqq 2 E h\left(m_{\lambda^{2} T}^{+}\right) .
\end{aligned}
$$

Since m_{t}^{+}has the density dominated by $\frac{C}{\sqrt{t}} e^{-x^{2} / 2 t}$ and $h(x)=o(x)$, it follows that $E h\left(m_{\lambda^{2} T}^{+}\right)=o(\lambda)$, which implies the expected estimate. Q.E.D.

Let $l(t)$ be the local time at 0 of a 1 -dimensional Brownian motion starting at 0 . Denote $\int_{G} f(z) d \mu(z)$ by \bar{f}. Then our first theorem is as follows:

Theorem 1.1. Suppose $f \in L^{1}(G) \cap L^{p}(G)$ for some $1<p \leqq \infty$. Then

$$
\left\{\frac{1}{\lambda} \int_{0}^{\lambda^{2} t} f\left(X_{s}\right) d s, \frac{1}{\lambda} b\left(\lambda^{2} t\right)\right\}
$$

converges weakly in $C\left([0, \infty) \rightarrow \mathbb{R}^{2}\right)$ to the process $\{2 \overline{f l}(t), b(t)\}$.
Proof. Since we have proved the theorem in case $\bar{f}=0$ in Lemma 1.3, we may assume $\bar{f} \neq 0$. Set

$$
\tilde{f}=f-\bar{f}
$$

Then $\tilde{f} \in L^{1}(G) \cap L^{p}(G)$ and $\int_{G} \tilde{f}(z) d \mu(z)=0$. Therefore by Lemma 1.3 we see as

$$
\sup _{0 \leqq t \leqq r} \frac{1}{\lambda}\left|\int_{0}^{\lambda^{2} t} \tilde{f}\left(X_{s}\right) d s\right| \rightarrow 0 \quad \text { in probability. }
$$

On the other hand, $\frac{1}{\lambda} \int_{0}^{\lambda^{2} t} \bar{f}\left(b_{s}\right) d s=\lambda \int_{0}^{t} \bar{f}\left(b_{\lambda^{2} s}\right) d s$ holds. Hence noting the equivalence of the two processes $\left\{b_{\lambda^{2} s}\right\}$ and $\left\{\lambda b_{s}\right\}$, in place of the original process we may consider

$$
\lambda \int_{0}^{t} \bar{f}\left(\lambda b_{s}\right) d s=2 \int_{-\infty}^{\infty} \bar{f}(x) l\left(t, \frac{x}{\lambda}\right) d x
$$

where $l(t, x)$ is the local time of the Brownian motion at x. Since supp $l(t, \cdot)=$ $\left[-m_{t}^{-}, m_{t}^{+}\right]$and $m_{t}^{ \pm}$are continuous in time-parameter, we easily see that w.p.l.,

$$
\sup _{0 \leqq t \leqq T} 2\left|\int_{-\infty}^{\infty} l\left(t, \frac{x}{\lambda}\right) \bar{f}(x) d x-\int_{-\infty}^{\infty} l(t, 0) \bar{f}(x) d x\right| \rightarrow 0
$$

holds as $\lambda \rightarrow \infty$ for any $\bar{f} \in L^{1}(\mathbb{R})$. Q.E.D.

§2. Limit Processes for Additive Functionals of a Brownian Motion on the Cylinder (Null Charged Case)

As we have seen in Lemma 1.3, in null charged case ($\bar{f}=0$), the limit process of $\frac{1}{\lambda} \int_{0}^{\lambda^{2} t} f\left(X_{s}\right) d s$ degenerates to a trivial one. Therefore it is necessary to change the normalization to $\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^{2 t}} f\left(X_{s}\right) d s$. The case where the underlying process X_{t} is a 1-dimensional Brownian motion has been considered by [10] as a corollary of their general limit theorem. Although we are considering a Brownian motion on G, because of the strong ergodicity of a Brownian motion θ_{t} on a torus, only a
slight modification of their procedure is necessary for the proof of our theorem. Let $f \in L^{1}(G) \cap L^{p}(G)$ for some $2<p \leqq \infty$, and assume $\bar{f}=0$ and

$$
\begin{align*}
& \int_{-\infty}^{\infty}|\bar{f}(x)||x| d x<\infty . \text { Set } \\
& \quad \Gamma f(z)=F(z)=-\frac{1}{2 \pi} \int_{-\infty}^{x} d y \int_{-\infty}^{y} \bar{f}(u) d u+\Gamma_{0} f(z) . \tag{2.1}
\end{align*}
$$

Lemma 1.1 implies that F belongs to C^{1}-class and its derivatives are bounded, which allows us to put

$$
M_{t}=\int_{0}^{t} \frac{\partial F}{\partial x}\left(X_{s}\right) d b_{s}+\int_{0}^{t} \frac{\partial F}{\partial \theta}\left(X_{s}\right) d \theta_{s}
$$

As we have remarked in (1.3), for a smooth function f with compact support, F satisfies

$$
\frac{1}{2} \Delta F=-f .
$$

This together with Itô's formula gives an identity

$$
\begin{equation*}
\int_{0}^{t} f\left(X_{s}\right) d s=F(0,0)-F\left(X_{t}\right)+M_{t} \tag{2.2}
\end{equation*}
$$

For a non-smooth f, by the method of approximation we see that (2.2) is still valid. Since F is bounded, we can consider $\frac{1}{\sqrt{\lambda}} M_{\lambda^{2} t}$ in place of $\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^{2 t}} f\left(X_{s}\right) d s$,
which is easier to treat. Set

$$
g(z)=\left\{\frac{\partial F}{\partial x}(z)\right\}^{2}+\left\{\frac{\partial F}{\partial \theta}(z)\right\}^{2}
$$

Since Lemma 1.1 implies that $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial \theta}$ are bounded and belong to $L^{2}(G), g$ is also bounded and belongs to $L^{1}(G)$. Set

$$
y_{t}=\int_{0}^{t} g\left(X_{s}\right) d s \quad \text { and } \quad Z_{\lambda}(t)=\left(\frac{1}{\sqrt{\lambda}} M_{t}, \frac{1}{\lambda} y_{t}, \frac{1}{\lambda} b_{t}\right)
$$

Lemma 2.1. The laws P_{λ} of the processes $Z_{\lambda}\left(\lambda^{2} t\right)$ form a tight family.
Proof. From the Birkholder-Gundy inequality [3], we have

$$
E\left(M_{t}-M_{s}\right)^{6} \leqq C E\left(y_{t}-y_{s}\right)^{3} \quad \text { for } t \geqq s \geqq 0
$$

Hence all we have to do is to show that

$$
E\left(y_{t}-y_{s}\right)^{3} \leqq C \sqrt{t-s}^{3} \quad \text { for } t \geqq s \geqq 0
$$

where C is a constant independent of t, s. Since $g \in L^{1}(G) \cap L^{\infty}(G)$, we easily see

$$
0 \leqq p_{u} g(z) \leqq C \sqrt{u}^{-1} \quad \text { for any } u \geqq 0
$$

which implies

$$
\begin{aligned}
E\left(y_{t}-y_{s}\right)^{3} & =3!\iiint_{s \leqq u \leqq v \leqq w \leqq t} p_{u} g p_{v-u} g p_{w-v} g(0) d u d v d w \\
& \leqq C\left(\int_{s}^{t} \frac{d u}{\sqrt{u}}\right)^{3} \leqq C \sqrt{t-s}
\end{aligned}
$$

Let ϕ be a smooth function from \mathbb{R}^{d} to \mathbb{R}^{1}. We denote $\frac{\partial^{2} \phi}{\partial x_{j} \partial x_{k}}$ by $\phi_{j k}$. The limit process can be characterized by the following martingale problem:
Lemma 2.2. Let P be a probability measure on $\left\{\omega ; \omega:[0, \infty) \rightarrow \mathbb{R}^{3}\right.$ continuous and $\omega(0)=0\}$ such that for all $\phi \in C_{0}^{\infty}\left(R^{3}\right)$

$$
\phi(\omega(t))-\frac{1}{2} \int_{0}^{t} \phi_{11}(\omega(s)) d \omega_{2}(s)-\frac{1}{2} \int_{0}^{t} \phi_{33}(\omega(s)) d s
$$

becomes a martingale and $\omega_{2}(t)=\lim _{\varepsilon \rightarrow 0} \frac{c}{4 \varepsilon} \int_{0}^{t} I(-\varepsilon, \varepsilon)\left(\omega_{3}(s)\right) d s$ holds P a.s., where c is a positive nonrandom constant. Then P coincides with the probability measure induced by the process $\left(b_{2}\left(c l_{1}(t)\right), c l_{1}(t), b_{1}(t)\right)$, where $\left(b_{1}, b_{2}\right)$ is a 2-dimensional Brownian motion and $l_{1}(t)$ is the local time at 0 of b_{1}.
Proof. Under the law P, it is easy to see that ω_{3} is a 1 -dimensional Brownian motion. Therefore $\omega_{2}(t)=c l_{1}(t)$. Furthermore restricting P to $\left(\omega_{1}, \omega_{3}\right)$, we see that $\omega_{1}(t)$ and $\omega_{3}(t)$ are locally square integrable martingales such that

$$
\begin{aligned}
& \left\langle\omega_{i}, \omega_{j}\right\rangle_{t}=0 \quad(i \neq j) \\
& \left\langle\omega_{1}, \omega_{1}\right\rangle_{t}=\omega_{2}(t)=c l_{1}(t) \\
& \left\langle\omega_{3}, \omega_{3}\right\rangle_{t}=t .
\end{aligned}
$$

Hence applying the theorem of Knight [9], we arrive at the conclusion of the lemma. Q.E.D.

For a suitable null charged function f, define

$$
\begin{aligned}
\langle f\rangle & =2 \int_{G}\left\{\left(\frac{\partial F}{\partial x}(z)\right)^{2}+\left(\frac{\partial F}{\partial \theta}(z)\right)^{2}\right\} d \mu(z) \\
& =4 \int_{G} f \Gamma f d \mu
\end{aligned}
$$

where $F=\Gamma f$ (see (2.1)). Then our second theorem is as follows:
Theorem 2.1. Suppose $f \in L^{1}(G) \cap L^{p}(G)$ for some $2<p \leqq \infty, \int_{G} f(z) d \mu(z)=0$ and $\int_{-\infty}^{\infty}|y||\bar{f}(y)| d y<\infty$. Then the processes $\left\{\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda_{t}} f\left(X_{s}\right) d s, \frac{1}{\lambda} b\left(\lambda^{2} t\right)\right\}$ converge in law to the process $\left\{\sqrt{\langle f\rangle} b_{2}\left(l_{1}(t)\right), b_{1}(t)\right\}$, where $l_{1}(t)$ is the local time at 0 of a 1 dimensional Brownian motion $b_{1}(t)$ and $b_{2}(t)$ is another Brownian motion independent of $b_{1}(t)$.

Proof. 1°) Let P be an arbitrary limit point of $\left\{p_{\lambda}\right\}$. Then there exists some sequence $\left\{\lambda_{n}\right\}$ diverging to infinity such that $P_{\lambda_{n}}$ converge weakly to P. From Itô's formula it follows that under each law P_{λ} and for any $\phi \in C_{0}^{\infty}\left(\mathbb{R}^{3}\right)$

$$
\begin{gathered}
\phi(\omega(t))-\frac{1}{2} \int_{0}^{t} \phi_{11}(\omega(s)) d \omega_{2}(s)-\frac{1}{2} \int_{0}^{t} \phi_{33}(\omega(s)) d s \\
-\sqrt{\lambda} \int_{0}^{t} \phi_{13}(\omega(s)) \frac{\partial F}{\partial x}(\lambda \omega(s)) d s
\end{gathered}
$$

is a martingale. We first show that

$$
I_{\lambda}=E^{P \lambda}\left[\left.\left.\sup _{0 \leqq r \leqq T} \sqrt{\lambda}\right|_{0} ^{t} \phi_{13}(\omega(s)) \frac{\partial F}{\partial x}(\lambda \omega(s)) d s \right\rvert\,\right] \rightarrow 0, \quad \text { as } \quad \lambda \rightarrow \infty .
$$

Since ϕ_{13} is bounded, I_{λ} is dominated by

$$
C \sqrt{\lambda} E\left[\int_{0}^{T}\left|\frac{\partial F}{\partial x}\left(\lambda b_{s}, \lambda \theta_{s}\right)\right| d s\right]=C \sqrt{\lambda}-3 E\left[\int_{0}^{\lambda^{2} T}\left|\frac{\partial F}{\partial x}\left(b_{s}, \theta_{s}\right)\right| d s\right] .
$$

On the other hand, noting $\frac{\partial F}{\partial x} \in L^{1}(G) \cap L^{\infty}(G)$, we have by Lemma 1.1

$$
E\left[\int_{0}^{\lambda^{2}}\left|\frac{\partial F}{\partial x}\left(b_{s}, \theta_{s}\right)\right| d s\right]=O(\lambda) \quad \text { as } \quad \lambda \rightarrow \infty
$$

Hence $I_{\lambda}=O\left(\frac{1}{\sqrt{\lambda}}\right)$ as $\lambda \rightarrow \infty$.
2°) Let $\Phi(t, \omega)$ be a bounded continuous function. Then

$$
E^{P \lambda_{n}}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\right] \rightarrow E^{P}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\right] \quad \text { as } \quad \lambda \rightarrow \infty
$$

To prove this, first note that $\int_{0}^{t} \Phi(s, \omega) d \omega_{2}(s)$ is a continuous function of ω. This is comes from the following facts: if $\omega_{n} \rightarrow \omega$ then $\Phi\left(\cdot, \omega_{n}\right) \rightarrow \Phi(\cdot, \omega)$ uniformly on $[0, t]$ and $\left(\omega_{n}\right)_{2} \rightarrow \omega_{2}$ uniformly on [0,t] and hence $d\left(\omega_{n}\right)_{2} \rightarrow d \omega_{2}$ weakly on [0,t]. Let $f_{L}(x)$ be a smooth function such that $0 \leqq f_{L}(x) \leqq 1$ and

$$
f_{L}(x)= \begin{cases}1 & 0 \leqq|x| \leqq L \\ 0 & L+1 \leqq|x|<\infty\end{cases}
$$

Then we have

$$
\begin{aligned}
E^{P_{\lambda}} & {\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\right] } \\
& =E^{P_{\lambda}}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s) f_{L}\left(\omega_{2}(t)\right)\right] \\
& +E^{P_{\lambda}}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\left(1-f_{L}\left(\omega_{2}(t)\right)\right)\right]
\end{aligned}
$$

As we have seen above, $\int_{0}^{t} \Phi(s, \omega) d \omega_{2}(s)$ is a continuous function of ω. Hence $\int_{0}^{t} \Phi(s, \omega) d \omega_{2}(s) f_{L}\left(\omega_{2}(t)\right)$ is a bounded continuous function of ω. On the other hand, we have

$$
\begin{aligned}
\mid E^{P_{\lambda}} & {\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\left(1-f_{L}\left(\omega_{2}(t)\right)\right)\right] \mid } \\
& \leqq C E^{P_{\lambda}}\left[\omega_{2}(t): \omega_{2}(t) \geqq L\right] \\
& \leqq \frac{C}{L} E^{P_{\lambda}}\left[\omega_{2}(t)^{2}\right] \\
& =\frac{C}{L} E \frac{1}{\lambda^{2}}\left(\int_{0}^{\lambda^{2} t} g\left(X_{s}\right) d s\right)^{2} \\
& \leqq C t / L \quad \text { (see Lemma 1.2). }
\end{aligned}
$$

Therefore $E^{p \lambda_{n}}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\right] \rightarrow E^{P}\left[\int_{0}^{t} \Phi(s) d \omega_{2}(s)\right]$ as $\lambda_{n} \rightarrow \infty$.
3°) P satisfies the conditions of Lemma 2.2.
Under the probability measure $P,\left\{\omega_{3}(t)\right\}$ is a Brownian motion. Further from Theorem $1.1 \omega_{2}(t)$ is $2 \bar{g}$ time the local time at 0 of $\left\{\omega_{3}(t)\right\}$ (note $\left.g \in L^{1}(G) \cap L^{\infty}(G)\right)$. This together with the above arguments 1°) and 2°) shows that the measure P satisfies the conditions of Lemma 2.2. Q.E.D.

Remark. In the above two theorems, it is seen that the process $\left\{\theta_{t}\right\}$ has no influence on the results but on the change of the parameters of the limit processes. This comes from the strong ergodicity of $\left\{\theta_{t}\right\}$. Therefore it is natural to expect that any sufficiently ergodic process will lead us to the same conclusions.

§3. Two Limit Theorems for 2-Dimensional Brownian Motions

Let $D=D\left([0, \infty) ; \mathbb{R}^{n}\right)$ be the set of all \mathbb{R}^{n}-valued right-continuous functions with left-limits. We then define the graph $\Gamma_{x(t)}$ of $x(t) \in D$ as the smallest closed set in $\mathbb{R}^{n} \times[0, \infty)$ which contains all pairs (x, t) such that x belongs to the segment joining $x(t-)$ and $x(t)$. The pair of functions $(y(s), t(s))$ is called a parametric representation of the graph $\Gamma_{x(t)}$ if those and only those pairs (x, t) belong to it for which an s can be found such that $x=y(s), t=t(s)$, where $y(s)$ is continuous and $t(s)$ is continuous and nondecreasing. A sequence $\left\{x_{n}(t)\right\} \subset D$ is called $M_{1^{-}}$ convergent to $x_{0}(t)$ if there exist parametric representations $\left(y_{n}(s), t_{n}(s)\right)$ of $\Gamma_{x_{n}(t)}$ such that

$$
\lim _{n \rightarrow \infty} \sup _{0 \leq s \leq T}\left(\left|y_{n}(s)-y_{0}(s)\right|+\left|t_{n}(s)-t_{0}(s)\right|\right)=0
$$

for each $T>0$ (see Skorokhod [11]). Clearly, if $x_{n}(t)$ and $x_{0}(t)$ are continuous functions, M_{1}-convergence implies the convergence in C (i.e. the uniform
convergence on each compact set). We next define the weak M_{1}-convergence of stochastic processes. Let $\left\{X_{n}(t)\right\}$ be a sequence of D-valued stochastic processes. Then $\left\{X_{n}(t)\right\}$ is said to be weak M_{1}-convergent to $X_{0}(t)$ if there exists a sequence $\left\{\tilde{X}_{n}(t), n=0,1, \ldots\right\}$ such that
(i) For each $n \geqq 0, \tilde{X}_{n}(\cdot)$ is equivalent in law to $X_{n}(\cdot)$.
(ii) $\tilde{X}_{n}(\cdot)$ is M_{1}-convergent to $\tilde{X}_{0}(\cdot)$ a.s.

Theorem 3.1. Let $B(t)$ be a 2-dimensional Brownian motion and $V(x) ; x \in \mathbb{R}^{2}$ be a bounded function such that

$$
\int|V(x)||x|^{\alpha} d x<\infty
$$

for some $\alpha>0$. Then

$$
\frac{1}{\lambda} \int_{0}^{n(\lambda t)} V(B(s)) d s
$$

is weakly M_{1}-convergent to $2 \bar{V} l\left(M^{-1}(t)\right)$ as $\lambda \rightarrow \infty$, where $n(t)=t e^{2 t}, \bar{V}=\int V(x) d x$, $l(t)$ is the local time at 0 of a 1-dimensional Brownian motion $b(t)$ and $M(t)$ $=\max _{0 \leqq s \leqq t} b(s)$.
Theorem 3.2. Let $B(t)$ be a 2-dimensional Brownian motion and $V(x)$ be a bounded function such that $\int|V(x)||x|^{\alpha} d x$ for some $\alpha>2$ and $\int V(x) d x=0$. Then

$$
\frac{1}{\sqrt{\lambda}} \int_{0}^{n(\lambda t)} V(B(s)) d s
$$

is weakly M_{1}-convergent to $\sqrt{\langle V\rangle} b_{2}\left(l_{1}\left(M^{-1}(t)\right)\right)$ as $\lambda \rightarrow \infty$ where $n(t)=t e^{2 t},\langle V\rangle$ $=-\frac{4}{\pi} \iint \log |x-y| V(x) V(y) d x d y, b_{2}(t)$ is a 1 -dimensional Brownian motion, $l_{1}(t)$ the local time at 0 of a Brownian motion $b_{1}(t)$ which is independent of b_{2}, and $M(t)=\max _{0 \leqq s \leqq t} b_{1}(s)$.

Remark. Throughout this paper we mean a process starting at 0 whenever we speak of a Brownian motion. However, the assertions of Theorems 3.1 and 3.2 do not depend upon the starting point $x_{0}=B(0)$ as far as it is nonrandom since we can replace $V(x)$ by $V\left(x+x_{0}\right)$. So, in the proof of the theorem, we will assume $B(0)=(1,0)$, for convenience.

Proof. We will prove only Theorem 3.1, because the proof of Theorem 3.2 proceeds similarly. First we reduce the functional $\int_{0}^{t} V(B(s)) d s$ of 2-dimensional Brownian motion to that of Brownian motion on G.

Let $b(t)$ be a 1-dimensional Brownian motion and define

$$
S(t)=\int_{0}^{t} e^{2 b(s)} d s
$$

Since, as is well-known, $X(t)=b\left(S^{-1}(t)\right)$ is a diffusion process with generator
$\frac{1}{2} e^{-2 x} \frac{d^{2}}{d x^{2}}, e^{X(t)}$ turns out to be a Bessel process with exponent 2. Every 2 dimensional Brownian motion starting at $(1,0)$ can be represented by the skew product formula:

$$
\exp \left\{X(t)+i \theta\left(\int_{0}^{t} e^{-2 X(s)} d s\right)\right\}
$$

if we take a 1 -dimensional Brownian motion $\theta(t)$ which is independent of $b(t)$ (cf. Itô-McKean [4], p. 270). Therefore setting

$$
f(u, \theta)=V\left(e^{u+i \theta}\right) e^{2 u}, \quad(u, \theta) \in \mathbb{R} \times(\mathbb{R} / 2 \pi \mathbb{Z})
$$

we see that, as stochastic process, $V(B(t))$ is equivalent in law to

$$
f\left(b\left(S^{-1}(t)\right), \theta\left(S^{-1}(t)\right)\right) \exp \left\{-2 b\left(S^{-1}(t)\right)\right\}
$$

This implies that $\int_{0}^{n(\lambda t)} V(B(s)) d s$ is equivalent in law to

$$
A_{\lambda}(t)=\int_{0}^{s^{-1}(n(\lambda t))} f(b(s), \theta(s)) d s
$$

Let $T_{\lambda}(t)$ be defined by

$$
S^{-1}\left(n\left(\lambda T_{\lambda}(t)\right)\right)=\lambda^{2} t
$$

i.e., $T_{\lambda}(t)=\frac{1}{\lambda} n^{-1}\left(S\left(\lambda^{2} t\right)\right)$. Then our functional $\int_{0}^{n(\lambda t)} V(B(s)) d s$ can be reduced to

$$
A_{\lambda}\left(T_{\lambda}(t)\right)=\int_{0}^{\lambda^{2} t} f(b(s), \theta(s)) d s
$$

by the time change $t \rightarrow T_{\lambda}(t)$. If we can prove that $\left(\frac{1}{\lambda} A_{\lambda}\left(T_{\lambda}(t)\right), T_{\lambda}(t)\right)$ converges in law to $(2 \breve{V} l(t), M(t))$, then combining the definition of weak M_{1}-convergence with Skorohod's theorem ([11]) ${ }^{1}$ we can finish the proof of our theorem. It is easy to show that $f(u, \theta) \in L^{1}(G) \cap L^{p}(G)$ (for some $p>1$) and that

$$
\bar{f}=\int_{G} f(u, \theta) d \mu=\int_{\mathbb{R}^{2}} V(x) d x=\bar{V} .
$$

Therefore, by Theorem 1.1, $\left(\frac{1}{\lambda} A_{\lambda}\left(T_{\lambda}(t)\right), \frac{1}{\lambda} b\left(\lambda^{2} t\right)\right)$ converges in law to ($2 \vec{V} l(t), b(t)$) as $\lambda \rightarrow \infty$. On the other hand we will prove in Lemma 3.1 below that $\left(\frac{1}{\lambda} b\left(\lambda^{2} t\right), T_{\lambda}(t)\right)$ is weakly convergent to $(b(t), M(t))$. Let P_{λ} be the law induced on the space of continuous functions $C\left([0, \infty) \rightarrow \mathbb{R}^{3}\right)$ by the process

[^1]$\left(\frac{1}{\lambda} A_{\lambda}\left(T_{\lambda}(t)\right), \frac{1}{\lambda} b\left(\lambda^{2} t\right), T_{\lambda}(t)\right)$. Then the family $\left\{P_{\lambda}\right\}$ is tight because each component converges in law. Further it is easy to see from the above argument that any limit point P^{*} of $\left\{P_{\lambda}\right\}$ coincides with the law P induced by $(2 \bar{V} l(t), b(t), M(t))$. Hence, P_{λ} itself converges to P. Q.E.D.
Lemma 3.1. $\left(\frac{1}{\lambda} b\left(\lambda^{2} t\right), T_{\lambda}(t)\right)$ is weakly convergent to $(b(t), M(t))$ as $\lambda \rightarrow \infty$, where $M(t)=\max _{0 \leqq s \leqq t} b(s)$.
Proof. Set $\tilde{T}_{\lambda}(t)=\frac{1}{\lambda} n^{-1}\left(\lambda^{2} \int_{0}^{t} e^{2 \lambda b(s)} d s\right)\left(n(t)=t e^{2 t}\right)$. Then $\left(\frac{1}{\lambda} b\left(\lambda^{2} t\right), T_{\lambda}(t)\right)$ is equivalent in law to $\left(b(t), \tilde{T}_{\lambda}(t)\right.$), so we have only to show
$$
\lim _{\lambda \rightarrow \infty} \sup _{0 \leqq t \leqq T}\left|\tilde{T}_{\lambda}(t)-M(t)\right|=0 \quad \text { for every } T>0
$$

Fix $\varepsilon>0$ and $\delta>0$. Then for any $t \in[\delta, T]$ we have

$$
\begin{aligned}
\lambda^{2} \int_{0}^{t} e^{2 \lambda b(s)} d s & \leqq \lambda^{2} T e^{2 \lambda M(t)} \\
& \leqq \frac{T}{M(\delta)} \lambda e^{-2 \lambda \varepsilon} \lambda(M(t)+\varepsilon) e^{2 \lambda(M(t)+\varepsilon)}
\end{aligned}
$$

If we set $C_{\varepsilon}(T)=T(2 \varepsilon e M(\delta))^{-1}$, then noting the inequality $\lambda e^{-2 \lambda \varepsilon} \leqq(2 \varepsilon e)^{-1}$, we see

$$
\tilde{T}_{\lambda}(t) \leqq \frac{1}{\lambda} n^{-1}\left(C_{\varepsilon}(T) n(\lambda\{M(t)+\varepsilon\})\right)
$$

Since $n^{-1}(\cdot)$ is slowly varying, there exists $\lambda_{0} \geqq 0$ such that

$$
\begin{aligned}
n^{-1}\left(C_{\varepsilon}(T) n(\lambda\{M(t)+\varepsilon\})\right) & \leqq(1+\varepsilon) n^{-1}(n(\lambda\{M(t)+\varepsilon\})) \\
& =(1+\varepsilon) \lambda\{M(t)+\varepsilon\}
\end{aligned}
$$

holds for every $\lambda>\lambda_{0}$ and $t \in[\delta, T]$, which implies

$$
\begin{equation*}
\overline{\varlimsup_{\lambda \rightarrow \infty}} \sup _{\delta \leqq t \leqq T}\left\{\tilde{T}_{\lambda}(t)-M(t)\right\} \leqq 0 . \tag{3.1}
\end{equation*}
$$

The converse inequality

$$
\begin{equation*}
\underline{\lim } \inf _{\lambda \rightarrow \infty}\left\{\tilde{T}_{\lambda}(t)-M(t)\right\} \geqq T \tag{3.2}
\end{equation*}
$$

can be proved in the following way: Let $\phi(t)$ be the Lebesgue measure of $\{s \in[0, t] ; b(t) \geqq M(t)-\varepsilon\}$. Then w.p. $1, \phi(t)$ is a positive continuous function on $(0, \infty)$, and hence there exists a positive constant c such that $\phi(t) \geqq c$ for every $t \in[\delta, T]$. This gives an inequality

$$
\lambda^{2} \int_{0}^{t} e^{2 \lambda b(s)} d s \geqq \lambda^{2} c e^{2 \lambda(M(t)-\varepsilon)}
$$

Consequently we can prove (3.2) by a similar argument as above. (3.1) and (3.2) imply

$$
\lim _{\lambda \rightarrow \infty} \sup _{\delta \leqq t \leqq T}\left|\tilde{T}_{\lambda}(t)-M(t)\right|=0
$$

To complete the proof we have only to note that

$$
\begin{aligned}
\sup _{0 \leqq t \leqq \delta}\left|\tilde{T}_{\lambda}(t)-M(t)\right| & \leqq \tilde{T}_{\lambda}(\delta)+M(\delta) \\
& \leqq\left|\tilde{T}_{\lambda}(\delta)-M(\delta)\right|+2 M(\delta)
\end{aligned}
$$

and that $M(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

§4. Limit Theorems for 1-Dimensional Diffusion Processes

The idea we used in the previous section can be applied to some other diffusion processes. Let $m(x)$ be a right-continuous, nondecreasing function defined on \mathbb{R}. Then we can define the Lebesgue-Stieltjes measure $d m(x)$. We exclude the trivial case that $d m(x)$ vanishes identically, so, without loss of generality we can assume that $0 \in \operatorname{supp} d m(x)$ and that $m(0)=0$. Let $b(t)$ be a Brownian motion and $l(t, x)$ its local time. It is well known that $X(t)=b\left(S^{-1}(t)\right)$ becomes a strong Markov process on the support of $d m(x)$ if $S^{-1}(t)$ denotes the right-continuous inverse to $S(t)=S(t, m)=\int l(t, x) d m(x)$ (cf. [4, 12]). $X(t)$ is called the (generalized) diffusion process associated with $m(x)$. The local generator of $X(t)$ is given by $\frac{d}{d m} \frac{d}{d x}$. $L_{X}(t, x)=l\left(S^{-1}(t), x\right)$ is called the local time of $X(t)$ because, for every bounded function $f(x)$, we have

$$
\int_{0}^{t} f(X(s)) d s=\int_{-\infty}^{\infty} L_{X}(t, x) f(x) d m(x)
$$

∞ In this section we study limit theorems for an additive functional $\int_{-\infty} L_{X}(t, x) d F(x)$ where $d F(x)$ is any (signed) finite measure whose support is contained in that of $d m(x)$. Remark that if $d F(x)$ is absolutely continuous with respect to $d m(x)$, then

$$
\int_{-\infty}^{\infty} L_{X}(t, x) d F(x)=\int_{0}^{t} f(X(s)) d s
$$

where $f(x)=\frac{d F(x)}{d m(x)}$.
First we state two lemmas without proof since we need only a little modification to the proof of Theorems 1.1 and 2.1.

Lemma 4.1. Let $d F(x)$ be a finite (signed) Borel measure on \mathbb{R}. Then, for each $T>0$,

$$
\lim _{\lambda \rightarrow \infty} \sup _{0 \leqq t \leqq T}\left|\int_{-\infty}^{\infty} l(t, x) d F(\lambda x)-\bar{F} l(t, 0)\right|=0, \quad \text { a.s. }
$$

where $\bar{F}=F(+\infty)-F(-\infty)$.
Lemma 4.2. Let $d F(x)$ be a finite Borel measure with compact support such that \bar{F} $=\int d F(x)=0$. Then, $\left(\sqrt{\lambda} \int l(t, x) d F(\lambda x), b(t)\right)$ converges in law to $\left(c b_{2}\left(l_{1}(t)\right), b_{1}(t)\right)$ as $\lambda \rightarrow \infty$, where $\left(b_{1}(t), b_{2}(t)\right)$ is a 2-dimensional Brownian motion, $l_{1}(t)$ the local time at 0 of $b_{1}(t)$ and $c=\left\{2 \int_{-\infty}^{\infty}(F(x)-F(-\infty))^{2} d x\right\}^{1 / 2}$.

Before we state our theorem, we remark some properties of regularly varying functions. A function $r(x)$ defined on $(0, \infty)$ is called a regularly varying function (at ∞) with exponent $\beta(0 \leqq \beta \leqq \infty)$ if and only if

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{r(\lambda x)}{r(x)}=\lambda^{\beta}, \quad \lambda>0 \tag{4.1}
\end{equation*}
$$

where $\lambda^{\infty}=\infty$ if $\lambda>1$ and $=0$ if $0<\lambda<1$. A regular varying function with exponent 0 is called a slowly varying function. It is easy to see that in case $\beta<\infty$ a function $r(x)$ varies regularly with exponent β if and only if $r(x)=x^{\beta} L(x)$ for some slowly varying $L(x)$. In case $\beta=\infty$ we often call $r(x)$ a rapidly increasing function. Notice that an increasing, continuous function $r(x)$ varies regularly with exponent β if and only if $r^{-1}(x)$ so does with exponent $1 / \beta$ including the case $\beta=0$ or ∞ under the convention $1 / 0=\infty$ and $1 / \infty=0$. For instance, $\log x$ varies slowly and e^{x} increases rapidly.

From now on we consider generalized diffusion processes associated with speed measures $d m(x)$ satisfying the following condition (C). There exist a continuous, increasing, regularly varying function $n(\lambda)$ with exponent α $(1 \leqq \alpha \leqq \infty)$ such that
(i) if $\alpha<\infty$,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} \frac{\lambda m(\lambda)}{n(\lambda)}=c_{1} \quad(\geqq 0), \\
& \lim _{\lambda \rightarrow-\infty} \frac{\lambda m(\lambda)}{n(\lambda)}=-c_{2} \quad(\leqq 0) \\
& \left(0<c_{1}+c_{2}<\infty\right) .
\end{aligned}
$$

(ii) if $\alpha=\infty$,

$$
\left.\begin{array}{l}
\lim _{\lambda \rightarrow \infty} \frac{\lambda m(\lambda x)}{n(\lambda)}= \begin{cases}\infty, & a_{1}<x \\
0, & -a_{2}<x<a_{1} \\
-\infty, & x<-a_{2}\end{cases} \\
\left(0<a_{1}<\infty, 0<a_{2} \leqq \infty\right.
\end{array} \text { or } \quad 0<a_{1} \leqq \infty, 0<a_{2}<\infty\right) . . ~ \$
$$

Set

$$
\begin{equation*}
\tilde{T}_{\lambda}(t)=\frac{1}{\lambda} n^{-1}\left(\lambda \int l(t, x) d m(\lambda x)\right) \tag{4.2}
\end{equation*}
$$

and

$$
T(t)= \begin{cases}\left(\int l(t, x) d m^{*}(x)\right)^{1 / \alpha}, & \alpha<\infty \tag{4.3}\\ \max _{0 \leqq s \leqq t}\left\{\frac{b(s)}{a_{1}},-\frac{b(s)}{a_{2}}\right\}, & \alpha=\infty\end{cases}
$$

where

$$
m^{*}(x)=\left\{\begin{array}{cc}
c_{1} x^{\alpha-1}, & x>0 \\
-c_{2}|x|^{\alpha-1}, & x<0 .
\end{array}\right.
$$

Then we have
Lemma 4.4. For every $T>0$,

$$
\lim _{\lambda \rightarrow \infty} \sup _{0 \leqq r \leqq T}\left|\tilde{T}_{\lambda}(t)-T(t)\right|=0 \quad \text { a.s. }
$$

Proof. Since $l(t, x)$ is continuous in (t, x) and has compact support in $[0, T] \times \mathbb{R}$, it follows from (C) that

$$
\lim _{\lambda \rightarrow \infty} \frac{\lambda}{n(\lambda)} \int l(t, x) d m(\lambda x)=\int l(t, x) d m^{*}(x) .
$$

Note that $n^{-1}(\lambda)$ varies regularly with exponent $1 / \alpha$ because so does $n(\lambda)$ with exponent α. Therefore, if $\alpha<\infty$,

$$
\begin{aligned}
& \lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} n^{-1}\left(\lambda \int l(t, x) d m(\lambda x)\right) \\
&=\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} n^{-1}\left(n(\lambda) \int l(t, x) d m^{*}(x)\right) \\
&=\lim _{\lambda \rightarrow \infty} \frac{1}{\lambda} n^{-1}(n(\lambda)) T(t) \\
&=T(t),
\end{aligned}
$$

which proves the assertion because the convergence is clearly uniform in $t(\leqq T)$.
In case $\alpha=\infty$, notice that the support of $l(t, \cdot)$ is the interval $\left[M_{-}(t), M_{+}(t)\right]$ where $M_{-}(t)=\min _{0 \leqq s \leqq t} b(s)$ and $M_{+}(t)=\max _{0 \leqq s \leqq t} b(s)$. On the other hand, by (C), we
have

$$
\lim _{\lambda \rightarrow \infty} \frac{\lambda m(c \lambda)}{n(\lambda)}=\infty, \quad c>c_{1}
$$

This, combined with the continuity of the local time, implies

$$
\begin{aligned}
\lambda \int_{0}^{\infty} l(t, x) d m(\lambda x) & \geqq \text { const. } \cdot m\left(\lambda\left\{M_{+}(t)-\delta\right\}\right) \\
& \geqq n\left(\frac{\lambda}{c}\left\{M_{+}(t)-\delta\right\}\right)
\end{aligned}
$$

for all $c>c_{1}$ and all sufficiently large λ. Therefore,

$$
\begin{aligned}
& \varliminf_{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t) \\
& \quad \geqq \varliminf_{\lambda \rightarrow \infty} \frac{1}{\lambda} n^{-1}\left(\lambda \int_{0}^{\infty} l(t, x) d m(\lambda x)\right) \\
& \quad \geqq \frac{\varliminf_{\lambda \rightarrow \infty}}{} \frac{1}{\lambda}\left(\frac{\lambda}{c}\left(M_{+}(t)-\delta\right)\right) \\
& \quad=\frac{1}{c}\left(M_{+}(t)-\delta\right) .
\end{aligned}
$$

Letting $c \downarrow c_{1}$ and $\delta \downarrow 0$, we have

$$
\varliminf_{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t) \geqq \frac{1}{c_{1}} M_{+}(t)
$$

We can also prove

$$
\varliminf_{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t) \geqq-\frac{1}{c_{2}} M_{-}(t)
$$

and hence we have

$$
\begin{aligned}
\lim _{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t) & \geqq \max \left\{\frac{1}{c_{1}} M_{+}(t), \frac{-1}{c_{2}} M_{-}(t)\right\} . \\
& =T(t) .
\end{aligned}
$$

By a similar (but easier) argument we can obtain

$$
\varlimsup_{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t) \leqq T(t)
$$

Thus we have

$$
\lim _{\lambda \rightarrow \infty} \tilde{T}_{\lambda}(t)=T(t)
$$

It is easy to see that the convergence is uniform on every compact interval in $[0, \infty)$, which implies the assertion (see the proof of Lemma 3.1.).
Theorem 4.1. Assume (C) and let $d F(x)$ be a finite measure whose support is compact and contained in that of $d m(x)$. Then,
(i) $\frac{1}{\lambda} \int L_{X}(n(\lambda t), x) d F(x)$ is weakly M_{1}-convergent to $\bar{F} l\left(T^{-1}(t), 0\right)$ as $\lambda \rightarrow \infty$ where $\bar{F}=F(+\infty)-F(-\infty)$ and $T(t)$ is the process defined in (4.3).
(ii) In case $\bar{F}=0$,
$\left.\frac{1}{\sqrt{\lambda}} \int L_{X}(n(\lambda t)), x\right) d F(x)$ is weakly M_{1}-convergent to $\sqrt{\langle F\rangle} \tilde{b}\left(l\left(T^{-1}(t), 0\right)\right)$ as $\lambda \rightarrow \infty$ where $\langle F\rangle=2 \int_{-\infty}^{\infty}(F(x)-F(-\infty))^{2} d x$ and $\tilde{b}(t)$ is a Brownian motion which is independent of $b(t)$.

Proof. Define $\bar{T}_{\lambda}(t)=\frac{1}{\lambda} n^{-1}\left(\int l\left(\lambda^{2} t, x\right) d m(x)\right)$. We will prove that the joint distributions of

$$
\left.\left(\frac{1}{\lambda} \int L_{X}\left(n\left(\lambda \bar{T}_{\lambda}(t), x\right)\right), x\right) d F(x), \bar{T}_{\lambda}(t)\right)
$$

converge to that of $(\bar{F} l(t, 0), T(t))$. In fact it is easy to see that this implies (i) if we take into account of the Skorokhod theorem and the definition of weak $M_{1^{-}}$ convergence. First note, for $x \in \operatorname{supp} d m, \quad l\left(S^{-1}(S(t)), x\right)=l(t, x) \quad(S(t)=$ $\left.\int l(t, x) d F(x)\right)$ and hence

$$
\begin{aligned}
\frac{1}{\lambda} \int L_{X} & \left(n\left(\lambda \widetilde{T}_{\lambda}(t)\right), x\right) d F(x) \\
& =\frac{1}{\lambda} \int L_{X}\left(S\left(\lambda^{2} t\right), x\right) d F(x) \\
& =\frac{1}{\lambda} \int l\left(S^{-1}\left(S\left(\lambda^{2} t\right)\right), x\right) d F(x) \\
\quad & =\frac{1}{\lambda} \int l\left(\lambda^{2} t, x\right) d F(x)
\end{aligned}
$$

Furthermore, since $\frac{1}{\lambda} l\left(\lambda^{2} t, \lambda x\right)$ is the local time of $\frac{1}{\lambda} b\left(\lambda^{2} t\right)$, we easily see that $\left(\frac{1}{\lambda} \int l\left(\lambda^{2} t, x\right) d F(x), \frac{1}{\lambda} b\left(\lambda^{2} t\right), \bar{T}_{\lambda}(t)\right)$ is equivalent in law to

$$
\begin{equation*}
\left(\int l\left(t, \frac{x}{\lambda}\right) d F(x), b(t), \tilde{T}_{\lambda}(t)\right) \tag{4.4}
\end{equation*}
$$

where $\tilde{T}_{\lambda}(t)$ is defined in (4.2). Let $\left\{P_{\lambda}\right\}$ denote the law induced in $C\left([0, \infty) \rightarrow \mathbb{R}^{3}\right)$ by the process (4.4). Then $\left\{P_{\lambda}\right\}$ is precompact because $\left(\int l\left(t, \frac{x}{\lambda}\right) d F(x), b(t)\right)$ and $\left(b(t), \tilde{T}_{\lambda}(t)\right)$ are weakly convergent to $(\bar{F} l(t, 0), b(t))$ and $(b(t), T(t))$, respectively as we have seen in Lemmas 4.1 and 4.4. Let P^{*} be any limit point of $\left\{P_{\lambda}\right\}$ and denote by $(x(t), y(t), z(t))$ the element of $C\left([0, \infty) \rightarrow \mathbb{R}^{3}\right)$. Then, using Lemmas 4.1 and 4.4 again, we see that the marginal distribution of $(x(t), y(t))$ is equal to that of $(\bar{F} l(t, 0), b(t))$ and that the marginal distribution of $(y(t), z(t))$ equals that of
$(b(t), T(t))$. Therefore, noting that $T(t)$ and $l(t, x)$ are functionals of $b(t)$, we see that P^{*} equals the law of $(\bar{F} l(t, 0), b(t), T(t))$, which implies that $\left(\frac{1}{\lambda} \int l\left(\lambda^{2} t, x\right) d F(x), \frac{1}{\lambda} b\left(\lambda^{2} t\right), \tilde{T}_{\lambda}(t)\right)$ is weakly convergent to $(\bar{F} l(t, 0), b(t), T(t))$. This, as we have mentioned, proves (i). Similarly we can prove (ii), but we omit the details. Q.E.D.

Remarks. (i) In case $\alpha<\infty$, we can obtain similar limit theorems for $\int L_{X}(n(\lambda) t, x) d F(x)$ (see C. Stone [12]). But since $n(\lambda t) \sim t^{\alpha} n(\lambda)$, there is no crucial difference from the type we treated. So we omit the details.
(ii) Weak M_{1}-convergence, in general, does not necessarily imply the convergence of finite-dimensional marginals. However, in all our cases, the first implies the latter since the limit processes have no fixed-discontinuities.

References

1. Darling, D.A., Kac, M.: On occupation times for Markov processes. Trans. Amer. Math. Soc., 84, 444-458 (1957)
2. Doburusin, R.L.: Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk. 10, 139-146 (1955) (English translation)
3. Getoor, R.K., Sharpe, M.J.: Conformal martingales. Invent. Math. 16, 271-308 (1972)
4. Itô, K., McKean Jr., H.P.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965
5. Kallianpur, G., Robbins, H.: Ergodic property of the Brownian motion process. Proc. Nat. Acad. 39, 525-533 (1953)
6. Karlin, S., McGregor, J.L.: Occupation time laws for birth and death processes. Proc. 4th Berkeley Sympos. Math. Statist. Probab. Univ. Calif. vol. 2, 249-272 (1960)
7. Kasahara, Y.: Spectral theory of generalized second order differential operators and its applications to Markov processes. Japan. J. Math. 1, 67-84 (1975)
8. Kasahara, Y.: Limit theorems of occupation times for Markov processes. Publ. RIMS, Kyoto Univ. 12, 801-818 (1977)
9. Knight, F.B.: A reduction of continuous square-integrable martingale to Brownian motion. Lecture notes in Math. 190, 19-31. Berlin-Heidelberg-New York: Springer 1971
10. Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. Duke Univ. Mathematics series III, Statistical Mechanics and Dynamical systems, 1977
11. Skorokhod, A.V.: Limit theorems for stochastic processes. (English transi.) Theor. Probability Appl. 1, 261-290 (1956)
12. Stone, C.: Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7, 638-660 (1963)
13. Watanabe, S.: A limit theorem for sums of non-negative i.i.d. random variables with slowly varying tail probabilities. (To appear in Proc. 5th International Multivariate Analysis.)

[^0]: Lastly the authors wish to thank D. Stroock for suggesting them this problem and S. Watanabe for his helpful discussions with them.

[^1]: 1 The theorem asserts that the convergence in law of random variables on a separable complete metric space can be realized by an almost everywhere convergence without changing the law of each random variable.

