Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1979

On Limit Processes for a Class of Additive Functionals of Recurrent Diffusion Processes

Yuji Kasahara and Shin'ichi Kotani

Department of Mathematics, Kyoto University, Kyoto 606, Japan

§0. Introduction

Limit theorems for a class of additive functionals, especially occupation times of Markov process, have been studied by many authors, e.g., Darling-Kac [1], Dobrushin [2], Karlin-McGregor [6], C. Stone [12] and Kasahara [7, 8]. So far, these theorems except [12] dealt with the convergence at each fixed time only, but recently Papanicolaou-Stroock-Varadhan [10] discussed the convergence as *stochastic processes*: for example, if b(t) is a 1-dimensional Brownian motion and l(t, x) is its local time (i.e., $2 \int_{E} l(t, x) dx = \int_{0}^{t} I_{E}(b(s)) ds$ for every Borel subset E) and V(x) is a bounded Borel function with compact support, it is easy to see that the processes $t \rightarrow \frac{1}{\lambda} \int_{0}^{\lambda^{2}} V(b(s)) ds$ converge, in the sense of probability law on the space of continuous functions, to the process $t \rightarrow 2\overline{V}l(t, 0)$ as $\lambda \rightarrow \infty$, where $\overline{V} = \int_{0}^{\infty} V(x) dx$. When $\overline{V} = 0$, the limit process is trivial but as they showed in [10] if we change the scaling as

$$t \rightarrow \frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^{2}t} V(b(s)) \, ds,$$

then the laws of these processes converge to that of the process $t \rightarrow \sqrt{\langle V \rangle} \tilde{b}(l(t,0))$ as $\lambda \rightarrow \infty$, where $\langle V \rangle$ is the energy of the charge V(x) dx and $\tilde{b}(t)$ is another Brownian motion independent of b(t). The purpose of this paper is to study similar problems for 2-dimensional Brownian motion and 1-dimensional recurrent diffusion processes.

Let B(t) be a 2-dimensional Brownian motion and V(x); $x \in \mathbb{R}^2$ be a bounded Borel function with compact support. Kallianpur-Robbins [5] and Kasahara [7], [8] have proved that the distributions of $\frac{1}{u(\lambda)} \int_{0}^{\lambda} V(B(s)) ds$ (where $u(\lambda) = \log \lambda$) converge to an exponential distribution as $\lambda \to \infty$, and if $\overline{V} = \int_{\mathbb{R}^2} V(x) dx = 0$, with $u(\lambda) = \sqrt{\log \lambda}$ the above random variables converge in law to a bilateral exponential distribution. As to the convergence of processes Stroock proposed the following problem: What is the limit process, as $\lambda \rightarrow \infty$, of the processes

$$A_{\lambda}(t) = \frac{1}{u(\lambda)} \int_{0}^{e^{\lambda t}} V(B(s)) \, ds$$

where $u(\lambda) = \lambda$ or $\sqrt{\lambda}$ according as $\overline{V} \neq 0$ or $\overline{V} = 0$? Here, it should be noted that the processes $t \rightarrow \frac{1}{\log \lambda} \int_{0}^{\lambda t} V(B(s)) ds$ converge to a degenerate one (i.e., independent of time parameter t). For this problem we have obtained the following results: the limit process of $A_{\lambda}(t)$ is given as

$$2\,\overline{V}l(M^{-1}(t)),\tag{0.1}$$

where $M(t) = \max_{s \le t} b(s)$ and l(t) is the local time at 0 of b(t) and, in the case of $\overline{V} = 0$, as

$$\sqrt{\langle V \rangle} \tilde{b}(l(M^{-1}(t))), \tag{0.2}$$

where $\tilde{b}(t)$ is another Brownian motion independent of b(t) and

$$\langle V \rangle = -\frac{4}{\pi} \int_{\mathbb{R}^2} \int_{\mathbb{R}^2} \log |x-y| V(x) V(y) dx dy.$$

Our method is as follows. First we represent a 2-dimensional Brownian motion as a Brownian motion $X(t) = (b(t), \theta(t))$ on a cylinder $\mathbb{R} \times (\mathbb{R}/2\pi\mathbb{Z})$ run with the clock $S^{-1}(t)$ (where $S(t) = \int_{0}^{t} e^{2b(s)} ds$). Then, by random time change depending on the parameter λ (see § 3), our problem is reduced to that of finding the limit process of an addidive functional $\frac{1}{u(\lambda)} \int_{0}^{\lambda^{2}t} f(X(s)) ds$. Since the process $\theta(t)$ is strongly ergodic, only b(t) plays an essential role, which enables us to treat the above functional in a way similar to Papanicolaou-Stroock-Varadhan [10] in the case of 1-dimensional Brownian motion.

We explain the content of this paper. In §1 and §2 we give two limit theorems for a class of additive functionals of the Brownian motion X(t) on the cylinder. In §3 we show that $A_{\lambda}(t)$ converge in law to the above limit processes (0.1) and (0.2). The process (0.1) is not a Markovian but its inverse is a Markov process (cf. S. Watanabe [13]). Further an interesting fact here is that the process (0.1) increases only with jumps although $A_{\lambda}(t)$ are continuous. Therefore the convergence is neither in the ordinary weak topology nor in Skorokhod's *J*topology. We will see that M_1 -convergence introduced by Skorokhod [11] is most suitable. In the final section, we give similar limit theorems for a broad class of 1-dimensional diffusion processes.

Lastly the authors wish to thank D. Stroock for suggesting them this problem and S. Watanabe for his helpful discussions with them.

§1. Limit Processes for Additive Functionals of a Brownian Motion on the Cylinder (Positively Charged Case)

As it will be seen later in §3, the study of limit processes of functionals of a 2dimensional Brownian motion can be reduced to that of a Brownian motion on the cylinder $G = \mathbb{R} \times (\mathbb{R}/2\pi\mathbb{Z})$. Therefore first we establish limit theorems relating to a Brownian motion on G.

A Brownian motion X(t) on G is defined as the product process of a 1dimensional Brownian motion b(t) and another 1-dimensional Brownian motion $\theta(t)$ independent of b(t) and viewed in modulo 2π . It has the transition density $p_t(z-z')$ with respect to the Haar measure $d\mu(z) = dx d\theta$ ($z = (x, \theta)$), which can be represented in two ways:

$$p_t(z) = \frac{1}{2\pi t} \exp\left(-|x|^2/2t\right) \sum_{n=-\infty}^{\infty} \exp\left[-(\theta + 2\pi n)^2/2t\right]$$
(1.1)

$$= \frac{1}{4\pi^2} \int_{G^*} \exp\left(-|\xi|^2 t/2 - i\xi z\right) d\mu^*(\xi), \tag{1.2}$$

where $G^* = \mathbb{R} \times \mathbb{Z}$, $d\mu^*(\xi) = d\lambda \delta_{\{n\}}$ for $\xi = (\lambda, n)$, $|\xi|^2 = \lambda^2 + n^2$ and $\xi z = \lambda x + n\theta$. Set

$$\Gamma_0(z) = -\frac{1}{2\pi} \log |e^{i\theta} - e^{-|x|}|^2.$$

Then we have

$$\begin{split} \Gamma_1(z) &= \frac{\partial \Gamma_0}{\partial x} = -\frac{1}{\pi} \frac{(\cos \theta - e^{-|x|}) e^{-2|x|}}{|e^{i\theta} - e^{-|x|}|^2} \operatorname{sgn} x, \\ \Gamma_2(z) &= \frac{\partial \Gamma_0}{\partial \theta} = -\frac{1}{\pi} \frac{e^{-|x|} \sin \theta}{|e^{i\theta} - e^{-|x|}|^2}, \end{split}$$

where sgn x = 1 for x > 0 and = -1 for x < 0.

Setting $\Gamma_k f(z) = \Gamma_k * f(z)$ (k = 0, 1, 2), for any sufficiently smooth function f we have

$$\frac{1}{2} \Delta \Gamma_0 f(z) = \frac{1}{2} \left(\frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial \theta^2} \right) \Gamma_0 f(z) = -f(z) + \frac{1}{2\pi} \bar{f}(z), \qquad (1.3)$$

where $\overline{f}(z) = \int_{-\pi}^{\pi} f(x, \theta) d\theta$.

From now on we denote by E_z the expectation with respect to the measure P_z of a Brownian motion starting at z and write simply E in place of E_0 . We prepare several estimates here.

Lemma 1.1.

$$\left| \int_{-\infty}^{x} \bar{f}(y) \, dy \right| \leq \|f\|_{1}, \tag{1.4}$$

$$|\Gamma_0 f(z)| \le C \, \|f\|_p \quad (1$$

$$\|\Gamma_i f(z)\| \le C \|f\|_p \quad (2
$$\|\Gamma_i f\|_1 \le C \|f\|_1 \quad for \ i = 1, 2,$$
 (1.6)$$

$$|E_z f(X_t)| \le p_t(0)^{1/p} ||f||_p \quad (1 \le p \le \infty),$$
(1.7)

where C is a constant independent of f.

Proof. (1.4) is trivial. The others can be deduced from the fact that $\Gamma_0 \in L^q(G)$ $(1 \leq q < \infty)$ and $\Gamma_k \in L^q(G)$ (0 < q < 2) for k = 1, 2. Using the fact that $p_t(z) \leq p_t(0)$ and $\int_G p_t(z) d\mu(z) = 1$, we can prove (1.7) as follows:

$$\begin{split} |E_{z}f(X_{t})| &\leq \int_{G} p_{t}(z-z') |f(z')| \, d\mu(z') \\ &\leq \{\int_{G} p_{t}(z')^{q} \, d\mu(z')\}^{1/q} \, \|f\|_{p} \\ &\leq p_{t}(0)^{\frac{q-1}{q}} \, \|f\|_{p} = p_{t}(0)^{1/p} \, \|f\|_{p}. \quad \text{Q.E.D.} \end{split}$$

Lemma 1.2. Suppose $f \in L^1(G) \cap L^p(G)$ for some 1 . Then we have

$$\lim_{t \to \infty} \frac{1}{t} E\left(\int_{0}^{t} f(X_{s}) \, ds \right)^{2} = \frac{1}{4 \, \pi^{2}} \, (\bar{f})^{2},$$

where $\overline{f} = \int_{G} f(z) d\mu(z)$.

Proof. The proof is divided into three parts.

1°)
$$E\left(\int_{0}^{a} |f(X_{s})| ds\right)^{2} < \infty$$
 for any $a < \infty$.

Setting $P_t f(z) = p_t * f(z)$, we have an equality:

$$I = E\left(\int_{0}^{a} |f(X_{s})| \, ds\right)^{2} = 2 \iint_{0 \le u \le s \le a} P_{u}(|f| P_{s-u}|f|)(0) \, du \, ds.$$

Applying the inequality (1.7), we see

$$I \leq 2 \|f\|_p^2 \iint_{0 \leq u \leq s \leq a} \{p_u(0) \, p_{s-u}(0)\}^{1/p} \, du \, ds.$$

On the other hand, the expression (1.1) implies

$$p_u(0) \leq \frac{C}{u}$$
 for any $u \leq a$.

Hence $I < \infty$ follows.

2°)
$$E(\iint_{\substack{1 \le u \le s \le t \\ s-u \le 1}} |f(X_u) f(X_s)| \, du \, ds) = O(\sqrt{t}) \quad \text{as } t \to \infty.$$

From the inequality (1.7) we have

$$E |f(X_u) f(X_s)| = P_u(|f| P_{s-u}|f|)(0)$$

$$\leq p_{s-u}(0)^{1/p} p_u(0) ||f||_1 ||f||_p,$$

which implies that

$$J = E\left(\iint_{\substack{1 \le u \le s \le t \\ s - u \le 1}} |f(X_u) f(X_s)| \, du \, ds \right)$$

$$\leq \| f \|_p \| f \|_1 \iint_{\substack{1 \le u \le s \le t \\ s - u \le 1}} p_{s - u}(0)^{1/p} \, p_u(0) \, ds \, du$$

$$\leq \| f \|_p \| f \|_1 \left(\iint_{1}^t p_u(0) \, du \right) \left(\iint_{0}^1 p_s(0)^{1/p} \, ds \right).$$

Here noting $p_s(0) \leq C s^{-1}$ for $s \leq 1$ and $p_u(0) \leq C \sqrt{u^{-1}}$ for $u \geq 1$, we easily see that $J = O(\sqrt{t})$ as $t \to \infty$.

3°)
$$\lim_{t \to \infty} \frac{1}{t} E(\iint_{\substack{1 \le u \le s \le t \\ s - u \ge 1}} f(X_u) f(X_s) du ds) = \frac{1}{8\pi^2} (\overline{f})^2.$$

Let $\hat{f}(\xi) = \int_{G} e^{i\xi z} f(z) d\mu(z)$. First we note that

$$P_{s}f(z) = \frac{1}{4\pi^{2}} \int_{G^{*}} \exp\left(-i\xi z - \frac{s|\xi|^{2}}{2}\right) \hat{f}(\xi) d\mu^{*}(\xi)$$

and

$$\widehat{fP_{s-u}f}(\xi_1) = \frac{1}{4\pi^2} \int_{G^*} \widehat{f}(\xi_1 - \xi_2) \widehat{P_{s-u}f}(\xi_2) d\mu^*(\xi_2)$$
$$= \frac{1}{4\pi^2} \int_{G^*} \exp\left(-|\xi_1|^2 \frac{u}{2} - |\xi_2|^2 \frac{(s-u)}{2}\right) \widehat{f}(\xi_2) \widehat{f}(\xi_1 - \xi_2) d\mu^*(\xi_2).$$

Hen

$$E f(X_u) f(X_s) = P_u(fP_{s-u}f)(0)$$

= $\frac{1}{16\pi^4} \iint_{G^* \times G^*} \exp\left(-|\xi_1|^2 \frac{u}{2} - |\xi_2|^2 \frac{(s-u)}{2}\right) \hat{f}(\xi_2) \hat{f}(\xi_1 - \xi_2) d\mu^*(\xi_1) d\mu^*(\xi_2).$

Changing the variables (u, s) and $(\xi_1 = (\lambda_1, n), \xi_2 = (\lambda_2, m))$ to (ta, tb) and $((\sqrt{t} \lambda_1, n), (\sqrt{t} \lambda_2, m))$ respectively, and setting $D_t = \begin{cases} (a, b); & \frac{1}{t} \leq a \leq b \leq 1, \\ 1 & 1 \end{cases}$ $b-a \ge \frac{1}{t}$, we have

$$E\left(\int_{\substack{1 \leq u \leq s \leq t \\ s-u \geq 1}} f(X_u) f(X_s) du ds\right)$$

= $\frac{t}{16\pi^4} \iint_{D_t \times G^* \times G^*} \exp\left(-\frac{a}{2}(\lambda_1^2 + tn^2) - \frac{(b-a)}{2}(\lambda_2^2 + tm^2)\right)$
 $\cdot \hat{f}\left(\frac{\lambda_2}{\sqrt{t}}, m\right) \hat{f}\left(\frac{\lambda_1 - \lambda_2}{\sqrt{t}}, n-m\right) d\mu^*(\xi_1) d\mu^*(\xi_2) da db.$

We divide the integral into two parts:

$$\begin{split} I_1(t) &= \iiint_{D_t \times G^*} \exp\left(-\frac{a}{2}\lambda_1^2 - \frac{(b-a)}{2}\lambda_2^2\right) \hat{f}\left(\frac{\lambda_2}{\sqrt{t}}, 0\right) \hat{f}\left(\frac{\lambda_1 - \lambda_2}{\sqrt{t}}, 0\right) d\lambda_1 d\lambda_2 da db, \\ I_2(t) &= \iiint_{\substack{D_t \times G^* \times G^* \\ m^2 + n^2 \neq 0}} \exp\left(-\frac{a}{2}(\lambda_1^2 + tn^2) - \frac{(b-a)}{2}(\lambda_2^2 + tm^2)\right) \\ &\quad \cdot \hat{f}\left(\frac{\lambda_2}{\sqrt{t}}, m\right) \hat{f}\left(\frac{\lambda_1 - \lambda_2}{\sqrt{t}}, n - m\right) d\mu^*(\xi_1) d\mu^*(\xi_2) da db. \end{split}$$

Since $\hat{f}(\xi)$ is a bounded continuous function on G^* , we easily see that

$$\lim_{t \to \infty} I_1(t) = \hat{f}(0)^2 \iiint_{D_{\infty} \times R^2} \exp\left(-\frac{a}{2}\lambda_1^2 - \frac{(b-a)}{2}\lambda_2^2\right) d\lambda_1 d\lambda_2 da db$$
$$= 2\pi^2 \hat{f}(0)^2.$$

On the other hand, the boundedness of \hat{f} implies

$$\begin{split} |I_2(t)| &\leq C \iiint_{D_t \times R^2} \exp\left(-\frac{a}{2}\lambda_1^2 - \frac{(b-a)}{2}\lambda_2^2\right) \\ & \cdot \sum_{m^2 + n^2 \neq 0} \exp\left(-\frac{a}{2}tn^2 - \frac{(b-a)}{2}tm^2\right) d\lambda_1 d\lambda_2 da db \\ &= C \iiint_{0 \leq a \leq b \leq 1} J_t(a, b) \frac{da db}{\sqrt{a(b-a)}}, \end{split}$$

where $J_t(a, b) = I_{D_t}(a, b) \sum_{m^2 + n^2 \neq 0} \exp\left(-\frac{a}{2}tn^2 - \frac{(b-a)}{2}tm^2\right)$. $(I_{D_t}$ is the characteristic function of D_t .) Then noting

$$J_t(a, b) \leq \sum_{m^2 + n^2 \neq 0} \exp\left(-\frac{n^2 + m^2}{2}\right) < \infty$$

and $J_t(a, b) \rightarrow 0$ as $t \rightarrow \infty$ for each (a, b), by the Lebesgue dominated convergence theorem we see

 $I_2(t) \rightarrow 0$ as $t \rightarrow \infty$.

Consequently we obtain the lemma. Q.E.D.

In null charged case we can get the following convergence in probability:

Lemma 1.3. Suppose $f \in L^1(G) \cap L^p(G)$ for some $1 , and <math>\int_G f(z) d\mu(z) = 0$. Then for each T > 0 and $\varepsilon > 0$,

$$P\left\{\sup_{0\leq t\leq T}\left|\frac{1}{\lambda}\int_{0}^{\lambda^{2}t}f(X_{s})ds\right|>\varepsilon\right\}\to 0\quad as\quad \lambda\to\infty\,.$$

Proof. 1°) Let $f \in L^1(G) \cap L^p(G)$ for some $1 and <math>\int_G f(z) d\mu(z) = 0$. Define F(z) by

Additive Functionals of Diffusion Processes

$$F(z) = -\frac{1}{2\pi} \int_{0}^{x} dy \int_{-\infty}^{y} \bar{f}(u) \, du + \Gamma_0 f(z).$$
(1.8)

Then

$$M_t = F(X_t) - F(0, 0) + \int_0^t f(X_s) ds$$

becomes a martingale. This is easily seen if f is a smooth function with compact support because by (1.3) we have

$$\frac{1}{2}\Delta F = -f.$$

For a general function f, set $f_{\varepsilon} = P_{\varepsilon}f$. Then $\int_{G} f_{\varepsilon}(z) d\mu(z) = 0$ and f_{ε} converges to f in both $L^{1}(G)$ and $L^{p}(G)$. Hence from (1.4), (1.5) and (1.7) it follows that M_{t} is a martingale even in this case.

2°) For each $\varepsilon > 0$, $P\left\{\sup_{0 \le t \le T} \frac{1}{\lambda} |M_{\lambda^2 t}| > \varepsilon\right\} \to 0$ $(\lambda \to \infty)$. Since $|M_t|$ is a submartingale, we have

$$P\left\{\sup_{0\leq t\leq T}\frac{1}{\lambda}|M_{\lambda^{2}t}|>\varepsilon\right\}\leq \frac{1}{\varepsilon\lambda}E|M_{\lambda^{2}T}|.$$

Lemma 1.2 together with $\overline{f} = 0$ implies

$$E\left|\int_{0}^{\lambda^{2}T} f(X_{s}) ds\right| = o(\lambda) \text{ as } \lambda \to \infty.$$

Let g(x) be the first term in the expression (1.8). Then it is easy to see from g(x) = o(x) that

$$E|g(b_{\lambda^2 T})| = o(\lambda)$$
 as $\lambda \to \infty$

Noting that the remainder terms of M_t are bounded, we have

$$P\left(\sup_{0 \le t \le T} \frac{1}{\lambda} |M_{\lambda^2 t}| > \varepsilon\right) \to 0 \quad \text{as} \quad \lambda \to \infty.$$

3°)
$$E\left(\sup_{0 \le t \le T} |g(b_{\lambda^2 t})|\right) = o(\lambda) \quad \text{as} \quad \lambda \to \infty.$$

Let $m_t^{\pm} = \sup_{\substack{0 \le s \le t \\ same \text{ distribution, we have}}} (\pm b_s)$ and $h(x) = \sup_{|y| \le x} |g(y)|$. Then noting m_t^+ and m_t^- have the

$$E \sup_{0 \le t \le T} |g(b_{\lambda^2 t})| \le E h(m_{\lambda^2 T}^+ \lor m_{\lambda^2 T}^-)$$
$$\le 2E h(m_{\lambda^2 T}^+).$$

Since m_t^+ has the density dominated by $\frac{C}{\sqrt{t}}e^{-x^2/2t}$ and h(x) = o(x), it follows that $Eh(m_{\lambda^2 T}^+) = o(\lambda)$, which implies the expected estimate. Q.E.D.

Let l(t) be the local time at 0 of a 1-dimensional Brownian motion starting at 0. Denote $\int f(z) d\mu(z)$ by \overline{f} . Then our first theorem is as follows:

Theorem 1.1. Suppose $f \in L^1(G) \cap L^p(G)$ for some 1 . Then

$$\left\{\frac{1}{\lambda}\int\limits_{0}^{\lambda^{2}t}f(X_{s})\,ds,\,\frac{1}{\lambda}\,b(\lambda^{2}\,t)\right\}$$

converges weakly in $C([0, \infty) \rightarrow \mathbb{R}^2)$ to the process $\{2\overline{fl}(t), b(t)\}$.

Proof. Since we have proved the theorem in case $\overline{f}=0$ in Lemma 1.3, we may assume $\overline{f} \neq 0$. Set

$$\tilde{f} = f - \bar{f}.$$

Then $\tilde{f} \in L^1(G) \cap L^p(G)$ and $\int_G \tilde{f}(z) d\mu(z) = 0$. Therefore by Lemma 1.3 we see as $\lambda \to \infty$

$$\sup_{0 \le t \le T} \frac{1}{\lambda} \left| \int_{0}^{\lambda^{2}t} \tilde{f}(X_{s}) ds \right| \to 0 \quad \text{in probability.}$$

On the other hand, $\frac{1}{\lambda} \int_{0}^{\lambda^{2}t} \bar{f}(b_{s}) ds = \lambda \int_{0}^{t} \bar{f}(b_{\lambda^{2}s}) ds$ holds. Hence noting the equivalence of the two processes $\{b_{\lambda^{2}s}\}$ and $\{\lambda b_{s}\}$, in place of the original process we may consider

$$\lambda \int_{0}^{t} \bar{f}(\lambda b_{s}) ds = 2 \int_{-\infty}^{\infty} \bar{f}(x) l\left(t, \frac{x}{\lambda}\right) dx,$$

where l(t, x) is the local time of the Brownian motion at x. Since supp $l(t, \cdot) = [-m_t^-, m_t^+]$ and m_t^{\pm} are continuous in time-parameter, we easily see that w.p.l.,

$$\sup_{0 \le t \le T} 2 \left| \int_{-\infty}^{\infty} l\left(t, \frac{x}{\lambda}\right) \bar{f}(x) \, dx - \int_{-\infty}^{\infty} l(t, 0) \, \bar{f}(x) \, dx \right| \to 0$$

holds as $\lambda \to \infty$ for any $\overline{f} \in L^1(\mathbb{R})$. Q.E.D.

§2. Limit Processes for Additive Functionals of a Brownian Motion on the Cylinder (Null Charged Case)

As we have seen in Lemma 1.3, in null charged case $(\bar{f}=0)$, the limit process of $\frac{1}{\lambda} \int_{0}^{\lambda^{2}t} f(X_{s}) ds$ degenerates to a trivial one. Therefore it is necessary to change the normalization to $\frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^{2}t} f(X_{s}) ds$. The case where the underlying process X_{t} is a 1-dimensional Brownian motion has been considered by [10] as a corollary of their general limit theorem. Although we are considering a Brownian motion on G, because of the strong ergodicity of a Brownian motion θ_{t} on a torus, only a

slight modification of their procedure is necessary for the proof of our theorem. Let $f \in L^1(G) \cap L^p(G)$ for some $2 , and assume <math>\overline{f} = 0$ and $\int_{-\infty}^{\infty} |\overline{f}(x)| |x| dx < \infty.$ Set $\Gamma f(z) = F(z) = -\frac{1}{2\pi} \int_{-\infty}^{x} dy \int_{-\infty}^{y} \overline{f}(u) du + \Gamma_0 f(z).$ (2.1)

Lemma 1.1 implies that F belongs to C^1 -class and its derivatives are bounded, which allows us to put

$$M_t = \int_0^t \frac{\partial F}{\partial x}(X_s) \, db_s + \int_0^t \frac{\partial F}{\partial \theta}(X_s) \, d\theta_s.$$

As we have remarked in (1.3), for a smooth function f with compact support, F satisfies

$$\frac{1}{2}\Delta F = -f.$$

This together with Itô's formula gives an identity

$$\int_{0}^{t} f(X_{s}) ds = F(0,0) - F(X_{t}) + M_{t}.$$
(2.2)

For a non-smooth f, by the method of approximation we see that (2.2) is still valid. Since F is bounded, we can consider $\frac{1}{\sqrt{\lambda}}M_{\lambda^2 t}$ in place of $\frac{1}{\sqrt{\lambda}}\int_{0}^{\lambda^2 t} f(X_s) ds$, which is easier to treat. Set

$$g(z) = \left\{\frac{\partial F}{\partial x}(z)\right\}^2 + \left\{\frac{\partial F}{\partial \theta}(z)\right\}^2.$$

Since Lemma 1.1 implies that $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial \theta}$ are bounded and belong to $L^2(G)$, g is also bounded and belongs to $L^1(G)$. Set

$$y_t = \int_0^t g(X_s) ds$$
 and $Z_{\lambda}(t) = \left(\frac{1}{\sqrt{\lambda}} M_t, \frac{1}{\lambda} y_t, \frac{1}{\lambda} b_t\right).$

Lemma 2.1. The laws P_{λ} of the processes $Z_{\lambda}(\lambda^2 t)$ form a tight family. *Proof.* From the Birkholder-Gundy inequality [3], we have

 $E(M_t - M_s)^6 \leq C E(y_t - y_s)^3 \quad \text{for } t \geq s \geq 0.$

Hence all we have to do is to show that

$$E(y_t - y_s)^3 \leq C\sqrt{t - s}^3 \quad \text{for } t \geq s \geq 0,$$

where C is a constant independent of t, s. Since $g \in L^1(G) \cap L^{\infty}(G)$, we easily see

$$0 \leq p_u g(z) \leq C \sqrt{u^{-1}} \quad \text{for any } u \geq 0,$$

which implies

$$E(y_t - y_s)^3 = 3! \iiint_{s \le u \le v \le w \le t} p_u g p_{v-u} g p_{w-v} g(0) \, du \, dv \, dw$$
$$\leq C \left(\int_s^t \frac{du}{\sqrt{u}}\right)^3 \le C \sqrt{t-s}^3. \quad \text{Q.E.D.}$$

Let ϕ be a smooth function from \mathbb{R}^d to \mathbb{R}^1 . We denote $\frac{\partial^2 \phi}{\partial x_j \partial x_k}$ by ϕ_{jk} . The limit process can be characterized by the following martingale problem:

Lemma 2.2. Let P be a probability measure on $\{\omega; \omega: [0, \infty) \rightarrow \mathbb{R}^3 \text{ continuous and } \omega(0)=0\}$ such that for all $\phi \in C_0^{\infty}(\mathbb{R}^3)$

$$\phi(\omega(t)) - \frac{1}{2} \int_{0}^{t} \phi_{11}(\omega(s)) \, d\omega_{2}(s) - \frac{1}{2} \int_{0}^{t} \phi_{33}(\omega(s)) \, ds$$

becomes a martingale and $\omega_2(t) = \lim_{\epsilon \to 0} \frac{c}{4\epsilon} \int_0^t I(-\epsilon, \epsilon)(\omega_3(s)) ds$ holds P a.s., where c is a positive nonrandom constant. Then P coincides with the probability measure induced by the process $(b_2(cl_1(t)), cl_1(t), b_1(t))$, where (b_1, b_2) is a 2-dimensional Brownian motion and $l_1(t)$ is the local time at 0 of b_1 .

Proof. Under the law P, it is easy to see that ω_3 is a 1-dimensional Brownian motion. Therefore $\omega_2(t) = c l_1(t)$. Furthermore restricting P to (ω_1, ω_3) , we see that $\omega_1(t)$ and $\omega_3(t)$ are locally square integrable martingales such that

$$\langle \omega_i, \omega_j \rangle_t = 0 \quad (i \neq j)$$

$$\langle \omega_1, \omega_1 \rangle_t = \omega_2(t) = c \, l_1(t)$$

$$\langle \omega_3, \omega_3 \rangle_t = t.$$

Hence applying the theorem of Knight [9], we arrive at the conclusion of the lemma. Q.E.D.

For a suitable null charged function f, define

$$\langle f \rangle = 2 \int_{G} \left\{ \left(\frac{\partial F}{\partial x}(z) \right)^2 + \left(\frac{\partial F}{\partial \theta}(z) \right)^2 \right\} d\mu(z)$$
$$= 4 \int_{G} f\Gamma f d\mu,$$

where $F = \Gamma f$ (see (2.1)). Then our second theorem is as follows:

Theorem 2.1. Suppose $f \in L^1(G) \cap L^p(G)$ for some $2 , <math>\int_G f(z) d\mu(z) = 0$ and $\int_{-\infty}^{\infty} |y| |\bar{f}(y)| dy < \infty$. Then the processes $\left\{ \frac{1}{\sqrt{\lambda}} \int_{0}^{\lambda^2 t} f(X_s) ds, \frac{1}{\lambda} b(\lambda^2 t) \right\}$ converge in law

to the process $\{\sqrt{\langle f \rangle} b_2(l_1(t)), b_1(t)\}$, where $l_1(t)$ is the local time at 0 of a 1dimensional Brownian motion $b_1(t)$ and $b_2(t)$ is another Brownian motion independent of $b_1(t)$. Additive Functionals of Diffusion Processes

Proof. 1°) Let P be an arbitrary limit point of $\{p_{\lambda}\}$. Then there exists some sequence $\{\lambda_n\}$ diverging to infinity such that P_{λ_n} converge weakly to P. From Itô's formula it follows that under each law P_{λ} and for any $\phi \in C_0^{\infty}(\mathbb{R}^3)$

$$\phi(\omega(t)) - \frac{1}{2} \int_{0}^{t} \phi_{11}(\omega(s)) d\omega_{2}(s) - \frac{1}{2} \int_{0}^{t} \phi_{33}(\omega(s)) ds$$
$$- \sqrt{\lambda} \int_{0}^{t} \phi_{13}(\omega(s)) \frac{\partial F}{\partial x}(\lambda \omega(s)) ds$$

is a martingale. We first show that

$$I_{\lambda} = E^{P_{\lambda}} \left[\sup_{0 \le t \le T} \sqrt{\lambda} \left| \int_{0}^{t} \phi_{13}(\omega(s)) \frac{\partial F}{\partial x}(\lambda \omega(s)) \, ds \right| \right] \to 0, \quad \text{as} \quad \lambda \to \infty.$$

Since ϕ_{13} is bounded, I_{λ} is dominated by

$$C\sqrt{\lambda}E\left[\int_{0}^{T}\left|\frac{\partial F}{\partial x}(\lambda b_{s},\lambda \theta_{s})\right|ds\right]=C\sqrt{\lambda^{-3}}E\left[\int_{0}^{\lambda^{2}T}\left|\frac{\partial F}{\partial x}(b_{s},\theta_{s})\right|ds\right].$$

On the other hand, noting $\frac{\partial F}{\partial x} \in L^1(G) \cap L^{\infty}(G)$, we have by Lemma 1.1

$$E\left[\int_{0}^{\lambda^{2}T} \left|\frac{\partial F}{\partial x}(b_{s},\theta_{s})\right| ds\right] = O(\lambda) \quad \text{as} \quad \lambda \to \infty$$

Hence $I_{\lambda} = O\left(\frac{1}{\sqrt{\lambda}}\right)$ as $\lambda \to \infty$.

2°) Let $\Phi(t, \omega)$ be a bounded continuous function. Then

$$E^{P_{\lambda_n}}\left[\int_0^t \Phi(s) \, d\omega_2(s)\right] \to E^P\left[\int_0^t \Phi(s) \, d\omega_2(s)\right] \quad \text{as} \quad \lambda \to \infty.$$

To prove this, first note that $\int_{0}^{\cdot} \Phi(s,\omega) d\omega_2(s)$ is a continuous function of ω . This is comes from the following facts: if $\omega_n \to \omega$ then $\Phi(\cdot, \omega_n) \to \Phi(\cdot, \omega)$ uniformly on [0, t] and $(\omega_n)_2 \to \omega_2$ uniformly on [0, t] and hence $d(\omega_n)_2 \to d\omega_2$ weakly on [0, t]. Let $f_L(x)$ be a smooth function such that $0 \le f_L(x) \le 1$ and

$$f_L(x) = \begin{cases} 1 & 0 \leq |x| \leq L \\ 0 & L+1 \leq |x| < \infty. \end{cases}$$

Then we have

$$\begin{split} E^{p_{\lambda}} \left[\int_{0}^{t} \Phi(s) \, d\omega_{2}(s) \right] \\ &= E^{p_{\lambda}} \left[\int_{0}^{t} \Phi(s) \, d\omega_{2}(s) f_{L}(\omega_{2}(t)) \right] \\ &+ E^{p_{\lambda}} \left[\int_{0}^{t} \Phi(s) \, d\omega_{2}(s) (1 - f_{L}(\omega_{2}(t))) \right]. \end{split}$$

As we have seen above, $\int_{0}^{t} \Phi(s,\omega) d\omega_2(s)$ is a continuous function of ω . Hence $\int_{0}^{t} \Phi(s,\omega) d\omega_2(s) f_L(\omega_2(t))$ is a bounded continuous function of ω . On the other hand, we have

$$\begin{split} E^{P_{\lambda}} \left[\int_{0}^{t} \Phi(s) \, d\omega_{2}(s) (1 - f_{L}(\omega_{2}(t))) \right] \\ & \leq C E^{P_{\lambda}} [\omega_{2}(t) : \omega_{2}(t) \geq L] \\ & \leq \frac{C}{L} E^{P_{\lambda}} [\omega_{2}(t)^{2}] \\ & = \frac{C}{L} E \frac{1}{\lambda^{2}} \left(\int_{0}^{\lambda^{2}t} g(X_{s}) \, ds \right)^{2} \\ & \leq C t/L \quad (\text{see Lemma 1.2}). \end{split}$$

Therefore $E^{P_{\lambda_n}} \left[\int_0^t \Phi(s) \, d\omega_2(s) \right] \to E^p \left[\int_0^t \Phi(s) \, d\omega_2(s) \right]$ as $\lambda_n \to \infty$.

 3°) *P* satisfies the conditions of Lemma 2.2.

Under the probability measure P, $\{\omega_3(t)\}$ is a Brownian motion. Further from Theorem 1.1 $\omega_2(t)$ is $2\bar{g}$ time the local time at 0 of $\{\omega_3(t)\}$ (note $g \in L^1(G) \cap L^{\infty}(G)$). This together with the above arguments 1°) and 2°) shows that the measure P satisfies the conditions of Lemma 2.2. Q.E.D.

Remark. In the above two theorems, it is seen that the process $\{\theta_t\}$ has no influence on the results but on the change of the parameters of the limit processes. This comes from the strong ergodicity of $\{\theta_t\}$. Therefore it is natural to expect that any sufficiently ergodic process will lead us to the same conclusions.

§3. Two Limit Theorems for 2-Dimensional Brownian Motions

Let $D = D([0, \infty); \mathbb{R}^n)$ be the set of all \mathbb{R}^n -valued right-continuous functions with left-limits. We then define the graph $\Gamma_{x(t)}$ of $x(t) \in D$ as the smallest closed set in $\mathbb{R}^n \times [0, \infty)$ which contains all pairs (x, t) such that x belongs to the segment joining x(t-) and x(t). The pair of functions (y(s), t(s)) is called a parametric representation of the graph $\Gamma_{x(t)}$ if those and only those pairs (x, t) belong to it for which an s can be found such that x = y(s), t = t(s), where y(s) is continuous and t(s) is continuous and nondecreasing. A sequence $\{x_n(t)\} \subset D$ is called M_1 convergent to $x_0(t)$ if there exist parametric representations $(y_n(s), t_n(s))$ of $\Gamma_{x_n(t)}$ such that

$$\lim_{n \to \infty} \sup_{0 \le s \le T} (|y_n(s) - y_0(s)| + |t_n(s) - t_0(s)|) = 0$$

for each T > 0 (see Skorokhod [11]). Clearly, if $x_n(t)$ and $x_0(t)$ are continuous functions, M_1 -convergence implies the convergence in C (i.e. the uniform

convergence on each compact set). We next define the weak M_1 -convergence of stochastic processes. Let $\{X_n(t)\}$ be a sequence of *D*-valued stochastic processes. Then $\{X_n(t)\}$ is said to be weak M_1 -convergent to $X_0(t)$ if there exists a sequence $\{\tilde{X}_n(t), n=0, 1, ...\}$ such that

(i) For each $n \ge 0$, $\tilde{X}_n(\cdot)$ is equivalent in law to $X_n(\cdot)$.

(ii) $\tilde{X}_n(\cdot)$ is M_1 -convergent to $\tilde{X}_0(\cdot)$ a.s.

Theorem 3.1. Let B(t) be a 2-dimensional Brownian motion and V(x); $x \in \mathbb{R}^2$ be a bounded function such that

$$\int |V(x)| \, |x|^{\alpha} \, dx < \infty$$

for some $\alpha > 0$. Then

$$\frac{1}{\lambda}\int_{0}^{n(\lambda t)}V(B(s))\,ds$$

is weakly M_1 -convergent to $2\overline{V}l(M^{-1}(t))$ as $\lambda \to \infty$, where $n(t) = t e^{2t}$, $\overline{V} = \int V(x) dx$, l(t) is the local time at 0 of a 1-dimensional Brownian motion b(t) and $M(t) = \max_{x \to \infty} b(s)$.

$$0 \leq s \leq t$$

Theorem 3.2. Let B(t) be a 2-dimensional Brownian motion and V(x) be a bounded function such that $\int |V(x)| |x|^{\alpha} dx$ for some $\alpha > 2$ and $\int V(x) dx = 0$. Then

$$\frac{1}{\sqrt{\lambda}}\int_{0}^{n(\lambda t)}V(B(s))\,ds$$

is weakly M_1 -convergent to $\sqrt{\langle V \rangle} b_2(l_1(M^{-1}(t)))$ as $\lambda \to \infty$ where $n(t) = t e^{2t}$, $\langle V \rangle = -\frac{4}{\pi} \iint \log |x - y| V(x) V(y) dx dy$, $b_2(t)$ is a 1-dimensional Brownian motion, $l_1(t)$ the local time at 0 of a Brownian motion $b_1(t)$ which is independent of b_2 , and $M(t) = \max_{\substack{0 \le s \le t}} b_1(s)$.

Remark. Throughout this paper we mean a process starting at 0 whenever we speak of a Brownian motion. However, the assertions of Theorems 3.1 and 3.2 do not depend upon the starting point $x_0 = B(0)$ as far as it is nonrandom since we can replace V(x) by $V(x+x_0)$. So, in the proof of the theorem, we will assume B(0) = (1, 0), for convenience.

Proof. We will prove only Theorem 3.1, because the proof of Theorem 3.2 proceeds similarly. First we reduce the functional $\int_{0}^{t} V(B(s)) ds$ of 2-dimensional Brownian motion to that of Brownian motion on G.

Let b(t) be a 1-dimensional Brownian motion and define

$$S(t) = \int_0^t e^{2b(s)} ds$$

Since, as is well-known, $X(t) = b(S^{-1}(t))$ is a diffusion process with generator

 $\frac{1}{2}e^{-2x}\frac{d^2}{dx^2}$, $e^{X(t)}$ turns out to be a Bessel process with exponent 2. Every 2-dimensional Brownian motion starting at (1,0) can be represented by the skew product formula:

$$\exp\left\{X(t)+i\theta\left(\int_0^t e^{-2X(s)}\,ds\right)\right\},\,$$

if we take a 1-dimensional Brownian motion $\theta(t)$ which is independent of b(t) (cf. Itô-McKean [4], p. 270). Therefore setting

$$f(u, \theta) = V(e^{u+i\theta}) e^{2u}, \quad (u, \theta) \in \mathbb{R} \times (\mathbb{R}/2\pi\mathbb{Z}),$$

we see that, as stochastic process, V(B(t)) is equivalent in law to

$$f(b(S^{-1}(t)), \theta(S^{-1}(t))) \exp\{-2b(S^{-1}(t))\}$$

This implies that $\int_{0}^{n(\lambda t)} V(B(s)) ds$ is equivalent in law to

$$A_{\lambda}(t) = \int_{0}^{S^{-1}(n(\lambda t))} f(b(s), \theta(s)) ds.$$

Let $T_{\lambda}(t)$ be defined by

$$S^{-1}(n(\lambda T_{\lambda}(t))) = \lambda^2 t,$$

i.e.,
$$T_{\lambda}(t) = \frac{1}{\lambda} n^{-1} (S(\lambda^2 t))$$
. Then our functional $\int_{0}^{n(\lambda t)} V(B(s)) ds$ can be reduced to
 $A_{\lambda}(T_{\lambda}(t)) = \int_{0}^{\lambda^2 t} f(b(s), \theta(s)) ds$

by the time change $t \to T_{\lambda}(t)$. If we can prove that $\left(\frac{1}{\lambda}A_{\lambda}(T_{\lambda}(t)), T_{\lambda}(t)\right)$ converges in law to $(2\overline{V}l(t), M(t))$, then combining the definition of weak M_1 -convergence with Skorohod's theorem ([11])¹ we can finish the proof of our theorem. It is easy to show that $f(u, \theta) \in L^1(G) \cap L^p(G)$ (for some p > 1) and that

$$\overline{f} = \int_{G} f(u,\theta) \, d\, \mu = \int_{\mathbb{R}^2} V(x) \, d\, x = \overline{V}.$$

Therefore, by Theorem 1.1, $\left(\frac{1}{\lambda}A_{\lambda}(T_{\lambda}(t)), \frac{1}{\lambda}b(\lambda^{2}t)\right)$ converges in law to $(2\overline{V}l(t), b(t))$ as $\lambda \to \infty$. On the other hand we will prove in Lemma 3.1 below that $\left(\frac{1}{\lambda}b(\lambda^{2}t), T_{\lambda}(t)\right)$ is weakly convergent to (b(t), M(t)). Let P_{λ} be the law induced on the space of continuous functions $C([0, \infty) \to \mathbb{R}^{3})$ by the process

¹ The theorem asserts that the convergence in law of random variables on a separable complete metric space can be realized by an almost everywhere convergence without changing the law of each random variable.

 $\left(\frac{1}{\lambda}A_{\lambda}(T_{\lambda}(t)), \frac{1}{\lambda}b(\lambda^{2}t), T_{\lambda}(t)\right)$. Then the family $\{P_{\lambda}\}$ is tight because each component converges in law. Further it is easy to see from the above argument that any limit point P^{*} of $\{P_{\lambda}\}$ coincides with the law P induced by $(2\overline{V}l(t), b(t), M(t))$.

Hence, P_{λ} itself converges to P. Q.E.D.

Lemma 3.1. $\left(\frac{1}{\lambda}b(\lambda^2 t), T_{\lambda}(t)\right)$ is weakly convergent to (b(t), M(t)) as $\lambda \to \infty$, where $M(t) = \max_{0 \le s \le t} b(s)$.

Proof. Set $\tilde{T}_{\lambda}(t) = \frac{1}{\lambda} n^{-1} \left(\lambda^2 \int_{0}^{t} e^{2\lambda b(s)} ds \right) (n(t) = t e^{2t})$. Then $\left(\frac{1}{\lambda} b(\lambda^2 t), T_{\lambda}(t) \right)$ is equivalent in law to $(b(t), \tilde{T}_{\lambda}(t))$, so we have only to show

$$\lim_{\lambda \to \infty} \sup_{0 \le t \le T} |\tilde{T}_{\lambda}(t) - M(t)| = 0 \quad \text{for every } T > 0.$$

Fix $\varepsilon > 0$ and $\delta > 0$. Then for any $t \in [\delta, T]$ we have

$$\lambda^{2} \int_{0}^{t} e^{2\lambda b(s)} ds \leq \lambda^{2} T e^{2\lambda M(t)}$$
$$\leq \frac{T}{M(\delta)} \lambda e^{-2\lambda \varepsilon} \lambda(M(t) + \varepsilon) e^{2\lambda(M(t) + \varepsilon)}$$

If we set $C_{\varepsilon}(T) = T(2\varepsilon e M(\delta))^{-1}$, then noting the inequality $\lambda e^{-2\lambda\varepsilon} \leq (2\varepsilon e)^{-1}$, we see

$$\tilde{T}_{\lambda}(t) \leq \frac{1}{\lambda} n^{-1} (C_{\varepsilon}(T) n(\lambda \{ M(t) + \varepsilon \})).$$

Since $n^{-1}(\cdot)$ is slowly varying, there exists $\lambda_0 \ge 0$ such that

$$n^{-1}(C_{\varepsilon}(T)n(\lambda\{M(t)+\varepsilon\})) \leq (1+\varepsilon)n^{-1}(n(\lambda\{M(t)+\varepsilon\}))$$
$$= (1+\varepsilon)\lambda\{M(t)+\varepsilon\}$$

holds for every $\lambda > \lambda_0$ and $t \in [\delta, T]$, which implies

$$\overline{\lim_{\lambda \to \infty}} \sup_{\delta \le t \le T} \{ \tilde{T}_{\lambda}(t) - M(t) \} \le 0.$$
(3.1)

The converse inequality

$$\lim_{\lambda \to \infty} \inf_{\delta \le t \le T} \{ \tilde{T}_{\lambda}(t) - M(t) \} \ge 0$$
(3.2)

can be proved in the following way: Let $\phi(t)$ be the Lebesgue measure of $\{s \in [0, t]; b(t) \ge M(t) - \varepsilon\}$. Then w.p. 1, $\phi(t)$ is a positive continuous function on $(0, \infty)$, and hence there exists a positive constant c such that $\phi(t) \ge c$ for every $t \in [\delta, T]$. This gives an inequality

$$\lambda^2 \int_0^t e^{2\lambda b(s)} ds \ge \lambda^2 c e^{2\lambda (M(t)-\varepsilon)}.$$

Consequently we can prove (3.2) by a similar argument as above. (3.1) and (3.2) imply

 $\lim_{\lambda \to \infty} \sup_{\delta \leq t \leq T} |\tilde{T}_{\lambda}(t) - M(t)| = 0.$

To complete the proof we have only to note that

$$\sup_{0 \le t \le \delta} |\tilde{T}_{\lambda}(t) - M(t)| \le \tilde{T}_{\lambda}(\delta) + M(\delta)$$
$$\le |\tilde{T}_{\lambda}(\delta) - M(\delta)| + 2M(\delta)$$

and that $M(\delta) \rightarrow 0$ as $\delta \rightarrow 0$.

§4. Limit Theorems for 1-Dimensional Diffusion Processes

The idea we used in the previous section can be applied to some other diffusion processes. Let m(x) be a right-continuous, nondecreasing function defined on \mathbb{R} . Then we can define the Lebesgue-Stieltjes measure dm(x). We exclude the trivial case that dm(x) vanishes identically, so, without loss of generality we can assume that $0 \in \operatorname{supp} dm(x)$ and that m(0) = 0. Let b(t) be a Brownian motion and l(t, x)its local time. It is well known that $X(t) = b(S^{-1}(t))$ becomes a strong Markov process on the support of dm(x) if $S^{-1}(t)$ denotes the right-continuous inverse to $S(t) = S(t,m) = \int l(t,x) dm(x)$ (cf. [4, 12]). X(t) is called the (generalized) diffusion process associated with m(x). The local generator of X(t) is given by $\frac{d}{dm} \frac{d}{dx}$. $L_X(t,x) = l(S^{-1}(t), x)$ is called the local time of X(t) because, for every bounded function f(x), we have

$$t \qquad \infty$$

$$\int_{0}^{\infty} f(X(s)) ds = \int_{-\infty}^{\infty} L_X(t, x) f(x) dm(x).$$

^{∞} In this section we study limit theorems for an additive functional $\int_{-\infty}^{\infty} L_X(t,x) dF(x)$ where dF(x) is any (signed) finite measure whose support is contained in that of dm(x). Remark that if dF(x) is absolutely continuous with respect to dm(x), then

$$\int_{-\infty}^{\infty} L_X(t, x) dF(x) = \int_{0}^{t} f(X(s)) ds$$

where $f(x) = \frac{dF(x)}{dm(x)}$.

First we state two lemmas without proof since we need only a little modification to the proof of Theorems 1.1 and 2.1.

Lemma 4.1. Let dF(x) be a finite (signed) Borel measure on \mathbb{R} . Then, for each T > 0,

Additive Functionals of Diffusion Processes

$$\lim_{\lambda \to \infty} \sup_{0 \le t \le T} \left| \int_{-\infty}^{\infty} l(t, x) \, dF(\lambda x) - \overline{F} \, l(t, 0) \right| = 0, \quad a.s.,$$

where $\overline{F} = F(+\infty) - F(-\infty)$.

Lemma 4.2. Let dF(x) be a finite Borel measure with compact support such that $\overline{F} = \int dF(x) = 0$. Then, $(\sqrt{\lambda} \int l(t, x) dF(\lambda x), b(t))$ converges in law to $(cb_2(l_1(t)), b_1(t))$ as $\lambda \to \infty$, where $(b_1(t), b_2(t))$ is a 2-dimensional Brownian motion, $l_1(t)$ the local time at 0 of $b_1(t)$ and $c = \left\{ 2 \int_{-\infty}^{\infty} (F(x) - F(-\infty))^2 dx \right\}^{1/2}$.

Before we state our theorem, we remark some properties of regularly varying functions. A function r(x) defined on $(0, \infty)$ is called a regularly varying function $(at \infty)$ with exponent β $(0 \le \beta \le \infty)$ if and only if

$$\lim_{x \to \infty} \frac{r(\lambda x)}{r(x)} = \lambda^{\beta}, \quad \lambda > 0$$
(4.1)

where $\lambda^{\infty} = \infty$ if $\lambda > 1$ and = 0 if $0 < \lambda < 1$. A regular varying function with exponent 0 is called a slowly varying function. It is easy to see that in case $\beta < \infty$ a function r(x) varies regularly with exponent β if and only if $r(x) = x^{\beta} L(x)$ for some slowly varying L(x). In case $\beta = \infty$ we often call r(x) a rapidly increasing function. Notice that an increasing, continuous function r(x) varies regularly with exponent β if and only if $r^{-1}(x)$ so does with exponent $1/\beta$ including the case $\beta = 0$ or ∞ under the convention $1/0 = \infty$ and $1/\infty = 0$. For instance, $\log x$ varies slowly and e^x increases rapidly.

From now on we consider generalized diffusion processes associated with speed measures dm(x) satisfying the following condition (C). There exist a continuous, increasing, regularly varying function $n(\lambda)$ with exponent α $(1 \le \alpha \le \infty)$ such that

(1) if
$$\alpha < \infty$$
,

$$\lim_{\lambda \to \infty} \frac{\lambda m(\lambda)}{n(\lambda)} = c_1 \qquad (\ge 0),$$
$$\lim_{\lambda \to -\infty} \frac{\lambda m(\lambda)}{n(\lambda)} = -c_2 \qquad (\le 0)$$
$$(0 < c_1 + c_2 < \infty).$$

(ii) if $\alpha = \infty$,

$$\lim_{\lambda \to \infty} \frac{\lambda m(\lambda x)}{n(\lambda)} = \begin{cases} \infty, & a_1 < x \\ 0, & -a_2 < x < a_1 \\ -\infty, & x < -a_2 \end{cases}$$
$$(0 < a_1 < \infty, 0 < a_2 \le \infty \quad \text{or} \quad 0 < a_1 \le \infty, 0 < a_2 < \infty).$$

Set

$$\widetilde{T}_{\lambda}(t) = \frac{1}{\lambda} n^{-1} (\lambda \int l(t, x) \, d\, m(\lambda \, x)) \tag{4.2}$$

and

$$T(t) = \begin{cases} \left(\int l(t, x) \, dm^*(x) \right)^{1/\alpha}, & \alpha < \infty \\ \max_{0 \le s \le t} \left\{ \frac{b(s)}{a_1}, -\frac{b(s)}{a_2} \right\}, & \alpha = \infty \end{cases}$$
(4.3)

where

$$m^{*}(x) = \begin{cases} c_{1} x^{\alpha - 1}, & x > 0\\ -c_{2} |x|^{\alpha - 1}, & x < 0. \end{cases}$$

Then we have

Lemma 4.4. For every T > 0,

 $\lim_{\lambda \to \infty} \sup_{0 \le t \le T} |\tilde{T}_{\lambda}(t) - T(t)| = 0 \quad a.s.$

Proof. Since l(t, x) is continuous in (t, x) and has compact support in $[0, T] \times \mathbb{R}$, it follows from (C) that

$$\lim_{\lambda \to \infty} \frac{\lambda}{n(\lambda)} \int l(t, x) \, dm(\lambda x) = \int l(t, x) \, dm^*(x).$$

Note that $n^{-1}(\lambda)$ varies regularly with exponent $1/\alpha$ because so does $n(\lambda)$ with exponent α . Therefore, if $\alpha < \infty$,

$$\lim_{\lambda \to \infty} \frac{1}{\lambda} n^{-1} (\lambda \int l(t, x) dm(\lambda x))$$

=
$$\lim_{\lambda \to \infty} \frac{1}{\lambda} n^{-1} (n(\lambda) \int l(t, x) dm^*(x))$$

=
$$\lim_{\lambda \to \infty} \frac{1}{\lambda} n^{-1} (n(\lambda)) T(t)$$

=
$$T(t),$$

which proves the assertion because the convergence is clearly uniform in $t (\leq T)$.

In case $\alpha = \infty$, notice that the support of $l(t, \cdot)$ is the interval $[M_{-}(t), M_{+}(t)]$ where $M_{-}(t) = \min_{0 \le s \le t} b(s)$ and $M_{+}(t) = \max_{0 \le s \le t} b(s)$. On the other hand, by (C), we have

$$\lim_{\lambda \to \infty} \frac{\lambda m(c \lambda)}{n(\lambda)} = \infty, \quad c > c_1.$$

150

This, combined with the continuity of the local time, implies

$$\lambda \int_{0}^{\infty} l(t, x) dm(\lambda x) \ge \text{const.} \cdot m(\lambda \{M_{+}(t) - \delta\})$$
$$\ge n \left(\frac{\lambda}{c} \{M_{+}(t) - \delta\}\right)$$

for all $c > c_1$ and all sufficiently large λ . Therefore,

$$\begin{split} & \lim_{\lambda \to \infty} \tilde{T}_{\lambda}(t) \\ & \geq \lim_{\lambda \to \infty} \frac{1}{\lambda} n^{-1} \left(\lambda \int_{0}^{\infty} l(t, x) \, d \, m(\lambda \, x) \right) \\ & \geq \lim_{\lambda \to \infty} \frac{1}{\lambda} \left(\frac{\lambda}{c} (M_{+}(t) - \delta) \right) \\ & = \frac{1}{c} (M_{+}(t) - \delta). \end{split}$$

Letting $c \downarrow c_1$ and $\delta \downarrow 0$, we have

$$\underline{\lim_{\lambda \to \infty}} \, \tilde{T}_{\lambda}(t) \ge \frac{1}{c_1} M_+(t).$$

We can also prove

$$\lim_{\lambda \to \infty} \tilde{T}_{\lambda}(t) \ge -\frac{1}{c_2} M_{-}(t)$$

and hence we have

$$\lim_{\lambda \to \infty} \tilde{T}_{\lambda}(t) \ge \max \left\{ \frac{1}{c_1} M_+(t), \frac{-1}{c_2} M_-(t) \right\}^{-1}$$
$$= T(t).$$

By a similar (but easier) argument we can obtain

$$\overline{\lim_{\lambda \to \infty}} \, \tilde{T}_{\lambda}(t) \leq T(t).$$

Thus we have

$$\lim_{\lambda \to \infty} \tilde{T}_{\lambda}(t) = T(t).$$

It is easy to see that the convergence is uniform on every compact interval in $[0, \infty)$, which implies the assertion (see the proof of Lemma 3.1.).

Theorem 4.1. Assume (C) and let dF(x) be a finite measure whose support is compact and contained in that of dm(x). Then,

(i) 1/λ∫L_X(n(λt), x) dF(x) is weakly M₁-convergent to F̄l(T⁻¹(t), 0) as λ→∞ where F̄=F(+∞)-F(-∞) and T(t) is the process defined in (4.3).
(ii) In case F̄=0, 1/√λ∫L_X(n(λt)), x) dF(x) is weakly M₁-convergent to √⟨F⟩ b̃(l(T⁻¹(t), 0)) as λ→∞ where ⟨F⟩=2 ∫₀[∞] (F(x)-F(-∞))² dx and b̃(t) is a Brownian motion which is independent of b(t).

Proof. Define $\overline{T}_{\lambda}(t) = \frac{1}{\lambda} n^{-1} (\int l(\lambda^2 t, x) dm(x))$. We will prove that the joint distributions of

$$\left(\frac{1}{\lambda}\int L_{X}(n(\lambda\overline{T}_{\lambda}(t),x)),x)\,dF(x),\overline{T}_{\lambda}(t)\right)$$

converge to that of $(\overline{F}l(t, 0), T(t))$. In fact it is easy to see that this implies (i) if we take into account of the Skorokhod theorem and the definition of weak M_1 -convergence. First note, for $x \in \text{supp } dm$, $l(S^{-1}(S(t)), x) = l(t, x)$ $(S(t) = \int l(t, x) dF(x))$ and hence

$$\frac{1}{\lambda} \int L_X(n(\lambda \overline{T}_{\lambda}(t)), x) dF(x)$$

= $\frac{1}{\lambda} \int L_X(S(\lambda^2 t), x) dF(x)$
= $\frac{1}{\lambda} \int l(S^{-1}(S(\lambda^2 t)), x) dF(x)$
= $\frac{1}{\lambda} \int l(\lambda^2 t, x) dF(x).$

Furthermore, since $\frac{1}{\lambda}l(\lambda^2 t, \lambda x)$ is the local time of $\frac{1}{\lambda}b(\lambda^2 t)$, we easily see that $\left(\frac{1}{\lambda}\int l(\lambda^2 t, x) dF(x), \frac{1}{\lambda}b(\lambda^2 t), \overline{T}_{\lambda}(t)\right)$ is equivalent in law to

$$\left(\int l\left(t,\frac{x}{\lambda}\right)dF(x),b(t),\tilde{T}_{\lambda}(t)\right),\tag{4.4}$$

where $\tilde{T}_{\lambda}(t)$ is defined in (4.2). Let $\{P_{\lambda}\}$ denote the law induced in $C([0, \infty) \to \mathbb{R}^3)$ by the process (4.4). Then $\{P_{\lambda}\}$ is precompact because $\left(\int l\left(t, \frac{x}{\lambda}\right) dF(x), b(t)\right)$ and $(b(t), \tilde{T}_{\lambda}(t))$ are weakly convergent to $(\bar{F}l(t, 0), b(t))$ and (b(t), T(t)), respectively as we have seen in Lemmas 4.1 and 4.4. Let P^* be any limit point of $\{P_{\lambda}\}$ and denote by (x(t), y(t), z(t)) the element of $C([0, \infty) \to \mathbb{R}^3)$. Then, using Lemmas 4.1 and 4.4 again, we see that the marginal distribution of (x(t), y(t)) is equal to that of $(\bar{F}l(t, 0), b(t))$ and that the marginal distribution of (y(t), z(t)) equals that of (b(t), T(t)). Therefore, noting that T(t) and l(t, x) are functionals of b(t), we see that P^* equals the law of $(\overline{F}l(t, 0), b(t), T(t))$, which implies that $(\frac{1}{\lambda} \int l(\lambda^2 t, x) dF(x), \frac{1}{\lambda} b(\lambda^2 t), \tilde{T}_{\lambda}(t))$ is weakly convergent to $(\overline{F}l(t, 0), b(t), T(t))$. This, as we have mentioned, proves (i). Similarly we can prove (ii), but we omit the details. O.E.D.

Remarks. (i) In case $\alpha < \infty$, we can obtain similar limit theorems for $\int L_X(n(\lambda)t, x) dF(x)$ (see C. Stone [12]). But since $n(\lambda t) \sim t^{\alpha} n(\lambda)$, there is no crucial difference from the type we treated. So we omit the details.

(ii) Weak M_1 -convergence, in general, does not necessarily imply the convergence of finite-dimensional marginals. However, in all our cases, the first implies the latter since the limit processes have no fixed-discontinuities.

References

- 1. Darling, D.A., Kac, M.: On occupation times for Markov processes. Trans. Amer. Math. Soc., 84, 444-458 (1957)
- Doburusin, R.L.: Two limit theorems for the simplest random walk on a line. Uspehi Mat. Nauk. 10, 139-146 (1955) (English translation)
- 3. Getoor, R.K., Sharpe, M.J.: Conformal martingales. Invent. Math. 16, 271-308 (1972)
- 4. Itô, K., McKean Jr., H.P.: Diffusion processes and their sample paths. Berlin-Heidelberg-New York: Springer 1965
- 5. Kallianpur, G., Robbins, H.: Ergodic property of the Brownian motion process. Proc. Nat. Acad. **39**, 525–533 (1953)
- Karlin, S., McGregor, J.L.: Occupation time laws for birth and death processes. Proc. 4th Berkeley Sympos. Math. Statist. Probab. Univ. Calif. vol. 2, 249-272 (1960)
- 7. Kasahara, Y.: Spectral theory of generalized second order differential operators and its applications to Markov processes. Japan. J. Math. 1, 67-84 (1975)
- Kasahara, Y.: Limit theorems of occupation times for Markov processes. Publ. RIMS, Kyoto Univ. 12, 801–818 (1977)
- 9. Knight, F.B.: A reduction of continuous square-integrable martingale to Brownian motion. Lecture notes in Math. 190, 19-31. Berlin-Heidelberg-New York: Springer 1971
- 10. Papanicolaou, G.C., Stroock, D., Varadhan, S.R.S.: Martingale approach to some limit theorems. Duke Univ. Mathematics series III, Statistical Mechanics and Dynamical systems, 1977
- 11. Skorokhod, A.V.: Limit theorems for stochastic processes. (English transl.) Theor. Probability Appl. 1, 261-290 (1956)
- 12. Stone, C.: Limit theorems for random walks, birth and death processes, and diffusion processes. Illinois J. Math. 7, 638-660 (1963)
- 13. Watanabe, S.: A limit theorem for sums of non-negative i.i.d. random variables with slowly varying tail probabilities. (To appear in Proc. 5th International Multivariate Analysis.)

Received May 15, 1978