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Summary, Measure-theoretical and topological mixing properties of dynamical 
systems arising from substitutions are considered. It is shown that such systems 
are neither measure-theoretically strongly mixing, nor topologically strongly 
mixing of all orders. In the case of the substitution 

0-+001 
t/: 1--,111 O0 

it is shown that the corresponding dynamical system is measure-theoretically 
weakly but not strongly mixing, and topologically strongly mixing of order two 
but not of order three. 

Substitution minimal set provide useful examples in topological dynamics (as 
minimal flows) and in ergodic theory (as strictly ergodic dynamical systems). In 
general, the topological and measure-theoretic structure of a substitution minima[ 
set is difficult to determine. Throughout this paper, we shall be primarily concerned 
with the substitution 

0-+001 
t/: 1-+11100, 

its orbit closure X under the shift transformation T, and its unique invariant 
probability measure ~ ([12]). For basic definitions and a coherent development of 
the theory of substitutions, we refer to [4]. 

The first part of our investigation concerns measure-theoretic mixing proper- 
ties. After using an idea due to Kakutani [11] to show that the dynamical system 
(X, #, T) is weakly mixing, we prove that no system arising from a substitution can 
be strongly mixing. Thus our particular system arising from ~/provides yet another 
example (and perhaps the simplest to describe) of weak but not strong mixing ([8, 5, 
Zl, 13). 
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The second section of our work is concerned with topological mixing. We show 
that the minimal flow (X, T) arising from t/is topologically strongly mixing of order 
two, but not of order three, providing the first example of a minimal flow with these 
properties. (If minimality is not required, an example can be found in [6].) It is also 
proved that no minimal flow arising from a substitution can be topologically 
strongly mixing of all orders. 

The last paragraph contains a remark on a substitution closely related to ~/, 
whose corresponding dynamical system has arisen in [10] and [15], and we 
indicate how our method applies to this case. 

w 1. Measure-Theoretic Mixing Properties 

Throughout  the paper, (X, #, T) will be used to denote the dynamical system arising 
from the substitution 

0 ~ 0 0 1  

1 ~ 1 1 1 0 0 .  

We prepare the first result by introducing a change of symbols. Writing a = 00 and b 
= 1, we see that 

t/(a) = ~/(00) = 0 0  1001 =abab, 

t/(b)=t/(1) =11  100 =bbba. 

This leads to the consideration of the substitution 

a~abab 
0: 

b~bbba. 

The dynamical system arising from 0 will be denoted by (Y, v, S). 
It is convenient to prove results for t/ by using 0. This is possible because 

(X,/~, T) can be represented as a tower over (Y,, v, S) with respective heights 2 over 
the cylinder [a] and 1 over the cylinder [b] (cf. [3] Th. 4.1 and Ex. 4.8). (Here and in 
the sequel, a set {y~Y: yo=Co ... .  , y ,=c , }  will be denoted by [Co...c,] or by EC], 
where C=CoCl...c . is a block (finite sequence) of symbols over the alphabet 
considered, in this case {a, b}. These sets and their translates by powers of the shift 
are called cylinders. A cylinder [C] will be non-empty if and only if the block C 
occurs in O'a for some n; such blocks are called admissible.) 

Theorem 1. The dynamical system (X, #, T) is weakly mixing. 

Proof Let f be an eigenfunction of T with eigenvalue 4. Since T is ergodic, we may 
assume I f [ -  1 -141, and we must show that 4 = 1. By the tower representation of X 
over Y, there is a function g on Yof constant modulus one (obtained by restr ict ingf 
to the base of the tower) such that 

Sg=4hg, 
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where 

2 for ye [a ]  
h(y) = 

1 for ye [b] .  

For  n>  1, set 

4 n -  I 

hn= ~ Sth. 
t = 0  

Then 

S~"g=2h-g. 

It is known [-2] that the system (Y, v, S) has discrete spectrum and that its eigenvalue 
group is the group of all 4"-th roots of unity. Thus 

lim k/1 --')chn[]2= lim HSg"g-gll2=0. 
n ~ o o  n ~ o o  

For each n > 1, consider the set A, defined by 

4 " ~ -  1 

A,= U S-t[O"(bb)] �9 
t = 0  

We shall show that 

1) v(A,)>v([bb]), 

2) h ,= �89  on A" 

for each n >  1. It then follows from v([-bb])>0 and from 

lira S ] l-j~h"12dv=0 
n ~  A n  

that 

lim 2 +(4"+1 1)= 1, 
n ~ o o  

and this implies easily 2 = 1. 
To prove 1), we use the fact [-4] that the measure of [bb] is just the limit of the 

occurrence frequency ofbb in Oma as m tends to infinity, and the corresponding fact 
for the measure of A,. Obviously any occurrence of bb in O"a yields an occurrence 
of O"(bb) in O"+ma, and hence 4" "occurrences" of A, in this block. The length of 
O"+ma being 4" times the length of O"a, 1) follows. 

To see 2), note that for any y~A, 

h,(y) = 2N~(O"b) + Nb(O"b), 

where Ni( ')  denotes the number of occurrences of i in a block. If now 

[N.(0a) N (0a)] L=[21 
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then 

L "  = [ N~176 Nb(O"a)] 
kN~(0"b) Nb(0"b)J' 

and an easy calculation yields 

1 [4"+2 2,4"-2] 
L " = ~ / 4 , _ 1  2.4"+11" 

Therefore 

h,(y) =2(4 " -  1)+�89 1)=+(4 "+' - 1) 

for any yeA,. 

We indicate briefly the range of application of this method to substitutions. Let 
be a substitution on two symbols whose matrix has relatively prime integral 

eigenvalues and such that the lengths of (0 and ~ 1 are also relatively prime. (If these 
conditions are not fulfilled, it can be shown that a non-constant continuous 
eigenfunction exists), In this situation, it is always possible ([3] Th. 5.1, Rem. 5.4) to 
find a substitution 0 of constant length related to ~ as above, but in general 0 will be 
defined on an alphabet of more than two symbols. If the dynamical system arising 
from 0 has discrete spectrum, then an analogous argument shows that the system 
corresponding to ~ has continuous spectrum. In particular, if we consider 
substitutions ~ having the same matrix as t/, we obtain 16 substitutions which are 
not obviously isomorphic. One of these is periodic, and 13 have continuous 
spectrum by the above. However, the substituion 

0-~001 
1~10110 

and the coding a=O01, b=101, c=lO yield 

a~aabc 
O: b~bcab 

c--,cbca 

(noting that c always follows b and is always preceded by b), and 0 is known to have 
partly continuous spectrum [3]. We do not know whether ~ has continuous 
spectrum. One other substitution of this class has an analogous behavior. 

We next prove a general result. Let ff be a substitution which, for simplicity in 
the proof, we shall assume to be defined on {0, 1}, and let (Z, ~, U) be the dynamical 
system arising from ~. We suppose that card Z > 1. 

Theorem 2. The dynamical system (Z, n, U) is not strongly mixing. 

Proof. We may obviously restrict our attention to Z infinite and, interchanging 0 
and 1 if necessary, suppose that n([00])> 0, Let us denote by s, the length of ~"0. 

Let B be an admissible block for ~. For each n > 1, we set 

D .  = [ B ]  r~ U -  ~o [ B ] .  



Mixing Properties of Substitutions 27 

If (Z, 7c, U) were strongly mixing, we would have 

lira ~z(D.) = ~([B]) 2. 
n ~ o o  

We shall show, on the contrary, that there exists a constant 7 > 0 independent of the 
choice of B such that 

lira inf ~(D,)_>_ 7~([B]). (.) 

Since the measure of [B] can be made arbitrarily small by choosing B long enough, 
the proof will be finished if we succeed in establishing (*). 

Now the measure of D, is just the limit of the occurrence frequency of two B's at 
distance s, in the block ("0, as m tends to infinity. Combining this with the fact that 
such an occurrence inside of a block of the form ("0~"0 happens at least as often as 
B occurs in ( '0, we obtain 

NB(~"0) N00((m-"0) 
u(D,) > lira 

m ~ c o  S ~  

where NE(F) denotes the number of occurrences of E in F. 
Let 2 denote the largest eigenvalue of the matrix of ~. Then s,, which is the first 

row sum of the n-th power of this matrix, is asymptotically equal to ~2" for some 
positive constant g. Therefore 

Noo(( ' - "0)  s m ,  
lira =rc([00]) lira - =rc( [00])2-"  

m ~ o o  Srn m ~ ~ 1 7 6  Sm 

and 

lira inf re(D,) > r~([00]) lim NB(~" 0) 2-"  ---- re([0 0]) 7c([B]) e. 
t l ~ c o  n ,~oo  

Setting 7=~rc([00]), we obtain the desired result. 

w 2. Topological Mixing Properties 

Recall that the substitution 

O~OOi 
t/: 

1 - - ,11100  

gives rise to a minimal flow denoted by (X, T). Our first goal in this paragraph is to 
prove the following theorem. The proof will consists of a series of lemmas. 

Theorem 3. The minimal flow (X, T) is topologically strongly mixing. 

Let 0 and (Y,, v, S) be as in w 1. To prove the theorem, it suffices to show that for 
any fixed n and for all t" sufficiently large, a block of the form 

~"(1) c'~"(1) 
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and of length t" is admissible for r/(i.e., appears in some t/m0). In terms of 0, this 
means that for any fixed n and for all sufficiently large t, there is a P-admissible 
block of the form 

Bt = On(b) CtOn(b) 

such that 

2Nn(Bt) + Nb(Bt) = t. 

This is the content of Lemma 8. 
In the following, the length of a block B will be denoted by N(B) = Na(B) + Nb(B). 

We also define the excess e(B) of B by 

e(S) = 2Na(B) - Nb(B). 

Its properties are: 

Lemma 4. 

(i) e(AS) = e(A) + e(B), 

(ii) e(On)=e(S), 

(iii) ~ e (Yo Y l. . .  Yk-1) dv (y) = 0 
r 

for all blocks A and B and all k > 1. 

Proof (i) is immediate from the definition; (iii) follows from v([a])= 1 -  v([b])= �89 
and from (i). To show (ii) it suffices to remark that (2, - 1) is a right eigenvector of 

the 0-matrix L = [21 ~] with eigenvalue one. 

Lemma 5. For each k > 2 we can choose an admissible block Bk of length k, beginning 
in b and ending in a, such that 

lira e(Bk)= + o~. 
k~oo  

Proof Suppose that Bk has been chosen for some fixed k. Then 

OBk =bbbaDabab ,  

and we can define 

B~k_ l =bbba  D aba, 

B~k_ 2=bba D aba, 

B4k_ 3 =ha D aba, 

B , k _ 4 = b b a D a .  
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If e(Bk)=e, then by Lemma4 (i), (ii) we have 

e(B4k_l)=e+ 1, 

e(B4k- 2) = e + 2, 

e(B4k_3) = e +  3, 

e(B4k_4)=e+ 1. 

Now set B2 =ha and B 3 =bba, and proceed by induction. 

Our next task is to investigate the possible excess values for all admissible 
blocks Of a given length k. If B and B' are admissible blocks of length k, then they 
both appear in some Oma. Therefore we can proceed from B to B' by a sequence of 
admissible blocks, each block in the sequence being obtained from the preceding 
one by deleting a symbol from one end and adding a symbol to the other end. This 
addition-delection process either leaves the excess unchanged or changes it by 3. 
Thus for given k, B, and B', necessarily e(B) = e(B') mod 3, and all values e between 
e(B) and e(B') with e = e(B)rood 3 occur as excess values of admissible blocks of 
length k. Examining blocks of length one, it is now obvious that e(B)= - k  mod 3 if 
B has length k. 

Lemma6.  Let eo>=O. Then for all k sufficiently large and each O<-e<-eo with e= 
- k  rood 3, there exists an admissible block of length k and excess e. 

Proof By Lemma 4 (iii), there exists for each k an admissible block B of length k 
such that e(B)<O. Our conclusion then follows from Lemma5 and the above 
remarks. 

Unfortunately, Lemma6 is not powerful enough to conclude the proof of 
Theorem 3, since we do not know whether such blocks can be chosen also to begin 
and end with a fixed symbol. 

Lemma 7. Let eo>5.  Then for all sufficiently large k and each 5-<e-<e0 with e= 
- k rood 3, there exists an admissible block of length k and excess e which begins and 
ends in the symbol b. 

Proof The idea of the proof is to take a block as in Lemma 6 and apply 03, obtaining 
an admissible block with the same excess but 64 times as long. Then by deleting 
some symbols from the end and adding some symbols to the beginning of this block, 
we can obtain blocks beginning and ending in b with the desired properties. 

We begin by examining 03a and 03 b. For  each m with 1 < m_< 63 define blocks 
L(a, m), R(a, m), L(b, m) and R(b, m) by requiring that 

N (L(a, m)) = g (L(b, in)) = m 

and 

OBa =L(a, m) R(a, m), 

03b=L(b, m) R(b, m). 
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Now set 

S =  {4, 5, 6, 16, 20, 21, 22, 24, 25, 26, 29, 52, 53}. 

It is easily verified that: 

1) R(a, s) and R(b, s) begin in b for each sES, 

2) es=e(R(a,  s))=e(R(b,  s)) for each sES, 

3) m a x l e s - e t - - l l = 5 ,  and 
S, t~S 

4) any integer from - 3 1  to +32 is a difference of two elements of S. 

Now we can describe the announced deleting and adding. Let/C' be a positive 
integer, B' a block o f length/C' ending in the symbol j (j = a o r j  = b), and i a symbol (i 
= a  or i=b)  such that the block 

i B ' = i A ' j  

is admissible. Then if A = 03A ', the block 

03 i A 03j 

is also admissible, and hence for any s, teS,  the block 

C(s, t )= R(i, s) AL(j ,  t) b 

is admissible (since R(j, t) begins in b), and begins and ends in b. Moreover, 

N(C(s,  t ) )=64k '  + t - s +  1 

and 

e( C(s, t)) = e(B') + e~ - et - 1. 

It is important to note that by 2), the excess of C(s, t) does not depend on the values 
of i and j. 

Next we choose ko such that the conclusion ofLemma 6 is valid for eo + 5 and all 
k'>_ko, eo being the number of our hypothesis. Let 5-<e-<e0 and choose any 
k>64/co with e =  - k  rood 3. Then by 4) there exist/C =/Co and s, t~S  such that 

/c=64k'  + t - s +  1. 

Now set 

e ' = e - e s + e t +  1. 

By 3), 0Ne'__<eo + 5, so that we can apply Lemma 6 for e' and k' to obtain an 
admissible block B' ~ A ' j  of length k' and excess e' ( e '= - /C '  mod 3 because e =  
- k rood 3). The block C(s, t) corresponding to B', s and t as above, where i is chosen 
so that iB' is admissible, obviously has length/C, excess e, and begins and ends in b. 

Lemma 8. Let n >__ 1. Then for sufficiently large t there exists an admissible block of  the 
fo.. 

Bt= On(b) C, O'S(b) 
such that 

2Na (Bt) + Nb(Bt) = t. 
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Proof For any block B, the definition of e(B) yields 

2Na (B) + Nb (B) = �89 (4N(B) + e (B)), 

Let e o=4  "+1 + 4  and choose ko such that the conclusion of Lemma 7 holds for 
4 n + 1 k o 

k > ko. Then for any t > + 2 we can find k > ko and 5 _< e < 4 n + 1 + 4 such that 
3 

3t=k.4"+l  +e. 

Since e :  - k  rood 3, Lemma 7 gives us an admissible block B of length k and excess 
e beginning and ending in b. Thus B~ = O"B is of the desired form, and 

4 .4"k+e  
2N,,(Bt) + Nb(B,) = 3 t. 

This completes the proof of Theorem 3. It is not surprising that the proof was 
somewhat delicate, in view of the following result. 

Theorem 9. The minimal flow (X, T) is not topologically strongly mixing of order 
three. 

Proof It is easily verified by a calculation using the matrix of t / that for each n > 1, 

N(t/" (0 0)) = N(t/"(1)) + 1. 

Our proof leans heavily on this fact. Now set Zo = [-0], Zl = [1 1], Z2 = [0 1 0], and 
t, =N(t/~ l) for each n__> 1. It suffices to show that 

Zo c~ T-tn Zl c~ T -  2tn Z2 =f~ 

for all n >= 1. If x belongs to this set, then the following five inequalities hold" 

1) Xo#Xt., 

2) x,. 4 = x2,., 

3) x0 #x2, ,+ 1, 

4) Xtn+14=X2tn+l, 
5) Xo#X~,+l. 

Now decompose x, for fixed n, into a sequence of blocks of the form r/"(0 0) or t/"(1). 
The coordinate Xo occupies a certain place, say k, in one of the blocks of this 
decomposition. In each of the following six cases, we arrive at the contradiction 
indicated: 

xo occupies place k in the first block of contradicts inequality 

t/"(1) t/"(1), 1), 

t/"(1) t/"(0 0) ~"(1) 3), 

t/"(1) ~"(0 O) t/"(O O) 4), 

r/n(0 0) t/"(1) t/n0) 2) if k > 0  

~"(o o) ~"(1) ~"(o o) 3), 
~"(o o) ~"(o o) 5). 
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This clearly exhausts all possibilities except k = 0 in the fourth case. In this case our 
hypothesis implies however that t/n(1) begins with 10, which is not true. 

The idea of the proof of Theorem 9 suffices to obtain a more general statement, 
at the cost of precision. Let ( be a substitution on two symbols which gives rise to a 
minimal flow (Z, U). We suppose that card Z > 1. 

Theorem 10. There exists an integer m such that the minimal flow (Z, U) is not 
topologically strongly mixing of order m. 

Proof If Z is finite, the result is obvious. Hence we may suppose with no loss of 
generality that the block 00 occurs with bounded gap in all points of Z. Since 
lim N((  n O)/N(( ~ 1) is finite and non-zero, there exists an integer m > 3 such that for 

n ~ o o  

all n > l ,  the block (n(00) occurs in all points of Z with a gap bounded by 
( m - 3 )  N(("0). Now let Z o = [0] and Z 1 = [1], and consider for each n the set 

Zo (~ U -  Sn Z l  O U -  2Sn Zo ('5...(3 u-(m-1)sn z i ,  

where i is 0 ifm is odd and 1 ifm is even. By our choice of m, this set is empty for all 
n > 1, so that (Z, U) cannot be strongly mixing of order m. 

The same proof (modulo some technical difficulties) goes through for sub- 
stitutions on a finite number of symbols. We do not know whether there exists 
substitutions on two symbols which are topologically strongly mixing of order 
three. 

w 3. A Remark about the Toeplitz Sequence 

At the end of the proof of Theorem 1, it was noted that the argument applies to 
other substitutions. In this vein, it is interesting to look at 

0 ~ 0 0 1  
if: 

1 ~ 1 1 0 0 1 ,  
whose matrix is the same as the matrix of r/. Setting a = 00 and b = 1 as in w 1, we 
obtain 

a - + a b a b  
0': 

b ~ b b a b  

which we recognize as the Toeplitz substitution ([7, 9, 10, 13, 15]). It was first 
announced in [10] that the system given by doubling the symbol a in O' is measure- 
theoretically weakly but not strongly mixing, and in [15] it was proved that this 
system is not topologically strongly mixing. We remark that the system obtained by 
doubling a's in 0' is just the system corresponding to t/'. (This seems to have gone 
unnoticed up to now.) Since O' has discrete spectrum ([13]), the result announced in 
[11] follows from our work in the first paragraph. It is also quite simple to derive 
the result of 1-15] using the technique of our second paragraph. In fact, a calculation 
of the excess values for 0'-admissible blocks of length 4" yields exactly two possible 
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values, 2 and - 1, in contrast to Lemma 5 for 0. From this follows (by using that 
blocks O'b necessarily occur at intervals divisible by 4) that if 

4"+5 
2N. (B) + Nb (B) -- , 

3 

then the block O'(b)BO'(b)  cannot occur. Thus t/' is not topologically strongly 
mixing. 
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