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Summary. Let Br=(2ar(logTas'+loglogT))" % 0<a,<T<oo and let R*
be the set of sub-rectangles of the square [0, T%] x [0, T*], having an area a,.
This paper studies the almost sure limiting behaviour of f;sup|W(R)| as

ReR*

T— oo, where W is a two-time parameter Wiener process. With ap,=T, our
results give the well-known law of iterated logarithm and a generalization of
the latter is also attained. The multi-time parameter analogues of our two-
time parameter Wiener process results are also stated in the text.

1. Introduction

In [2] we have proved the following

Theorem A. Let W(t) (0=t<w) be a standard Wiener process and let a, be a
non-decreasing function of T for which

(i) O<ap=T (T20)
and

(i) Tay'! is non-decreasing.
Then

(1) limsup sup S |W(t+ay)—W()|

T-ow O0Zt=T-ar

=limsup  sup sup BriW(it+s)—-W(t)|=1
T—ow O=t<T—ar O0=s=ar
w.p.l. where Br=(2a,(logTa; ' +loglogT))"%.
If we also have

. . logTa;*
(i) lim M:@Q
T-x loglogT
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then

(2) lim sup  BpIW(t+a)—W(t)|

Tow 0Zt=T-ar

=lim  sup sup B IWE+s)—W@)|=1 wpl.
T—w 02tsT—ay O=s=Zar

In order to demonstrate what this theorem is all about we mention that the
special case ap =T gives the well-known law of iterated logarithm, while the case
a_=clogT (c>0) implies the Erdos-Rényi law of large numbers ([3]) when it is
applied to a Wiener process.

In this paper we intend to state and prove an analogue of this theorem for a
multi-time parameter Wiener process. At first we formulate our results for a
two-time parameter Wiener process. The multi-time parameter analogues of
these results are given in Section 4 without proofs, for they are entirely similar to
the two-time parameter case. The same can be said about the proof of
Theorem A.

In order to formulate a possible two-time parameter analogue of Theorem A
we introduce the following notations:

Let Rp=R(a;) be the set of rectangles

R=[x3, %] x[y1,¥2] (0=x,<x,<T%0=y, <y, <T?)

for which A(R)=(x, —x)}(y, —y)=ar. Let RE=R*(a;) =R, be the set of those
elements R of Ry for which A(R)=ay. For a 2-parameter Wiener process W(x,y)
(0= x,y<c0) define the Wiener measure of a rectangle R=[x,,x,] %[y, y,] by

W(R)=W(x2,y5) = W(x1,y5) = Wk, p1) + WXy, y1)-

Now we state our

Theorem 1. Let W(x,y) (0=<x,y<o0) be a Wiener process and let a; be a non-
decreasing function of T satisfying conditions (1){(ii} of Theorem A. Then

(3) limsup supfr|W(R)|=limsup sup iy |W(R)|=1
T—-ow ReRr T—o ReR%

—1
Z

w.p.1, where B,.=(2ar(logT az' +loglogT))
If a; also satisfies condition (iii} of Theorem A, then

4 lim supf;|W(R)|=1lim supf,;|WR)}=1 w.p.l

T— o ReRy T-w RER’;..

It is clear that this Theorem can be considered as an analogue of Theorem A
in the 2-parameter case. However it does not imply the law of iterated logarithm
for the multi-parameter Wiener process in its full richness. Especially the
following result does not follow from our Theorem 1:

Theorem B ([4-7]). We have

. Wl
lim sup 1

e V4xyloglogxy -
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that is to say

lim sup W, )l =1 wp.l

T E;]/A,xyloglogxy

It is somewhat strange that in this Theorem the usual constant 2 of the
denominator is replaced by 4. Some explanation of this phenomenon is given in
[5] and our Theorem 2 will give a further explanation. We also emphasize that
in Theorem B it is assumed that both x and y go to infinity. It is natural to ask
what happens if this is not the case. Our next Theorem is somewhat stronger
than Theorem B and gives an answer to the latter question.

Theorem B.1. For any o>+ we have

(5) limsup sup Wi, y)l =limsup sup W (x, y)l

e ]
T-w  (yedr /4T ]loglogT  T-= @y»edy./4TloglogT

w.p.1, where
Dr=D,(T*)={(xy): xysT, 0=x=T" 0Sy<T*,
DF=DHT*)={(x,y): xy=T 0 0

Applying this Theorem for =1, it can be seen that it is not necessary to
asume in Theorem B that both variables go to infinity. (Cf. Consequence 2.) In
our next Theorem we investigate the question of how the function T% of
Theorem B.1 can be replaced by an arbitrary increasing function by. We have

Theorem 2. Let b= T* be a non-decreasing function of T and define
yr=02T[log(logh, T *+1)+loglogT]) 3,
Dy =Dy (br)={(x,)): xy<T, 0Sx by, 0<y<by),
Df=D3(b,)={(x,»): xy=T, 0<x<by, 0<y<by}.

Suppose that

(1) yg is a non-increasing function of T,

(it) for any £>0 there exists a 0,=0,(¢)>1 such that
Yok

limsup——=1+¢
kqoop'ye +1——

if 1<6=06,.
Then
(6) limsup sup yp|W(x,y)|=limsup sup y;|W(x,y)|=1

T—owo (x,y)eDr T- (Jc,y)eD’,‘;w

w.p.l.
If we also have

log(logh, T~*+1
(i) lim 08U08PrT 741D
T loglogT

>
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then

(6*) lim sup yp|W(x,y)|=1lim sup y;[W(x,y)|=1

T~ (x,y)eDr T—oo (x,y)eD%,
w.p.l.

We mention some special cases of Theorem 2:
1°if b, =T?, we get the simplest form of the law of iterated logarithm (the
constant in the denominator is the usual 2);

2° if
by=T*el™"  (320);

then yr&(2(y+1)TloglogT) %; that is to say for y=0 we get again the law of
iterated logarithm with the constant 2 and the constant is increasing as y is
increasing; we get the constant 4 of Theorem B (or Theorem B.1) when y=1;

3°if bp=e” then y,~(2Tlog T)"*; that is even the order of magnitude of y,
has been changed. In this case (iil) of Theorem 2 holds, that is (6*) holds true;

4°if by=e" then y,~2 ¥ T1

Now we can really say that Theorem?2 is a generalization of Theorem B.1
(and, a fortiori, that of Theorem B). However, it is not a generalization of
Theorem 1. Now we formulate our main result, which is generalization both
Theorems 1 and 2.

Theorem 3. Let 0<a; < T, b= T* be non-decreasing functions of T and define
Sr=Qar(logTar; ' +log(loghraz*+1)+loglogT)) %

Further let Ly=L(a;,by) (resp. LE=L%(ar,by)) be the set of rectangles R
=[xy, %1 X [y1, Y21 =D(by) for which A(R) = ay (resp. A(R)=ay).
Suppose that
(i) 87 is a non-increasing function of T,
(ii) Tar ' is a non-decreasing function of T,
(iti) for any £>0 there exists a 8,=0,(c)>1 such that

lim su 9k <l+¢
P 1=

if 1<8=0,.
Then

S
T—ow RelLr T—

(7) limsup sup é; |[W(R)|=limsup supd, |W(R)|=1
Rel¥

w.p.1.
If we also have

(v fim logTar*+log(loghyar®+1) —
To oo loglog T ’
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then

(8) lim supé; |W(R)|= lim supé W (R)|=1
T—ow RelT T Re

w.p.l.

2. An Inequality

The main aim of this section is to prove the following inequality:

Theorem 4. For any >0 there exists a C= C(g)>0 such that

©) P{Sup [W(R)| zua}}

u2

<C7(1+10gTa;1)(1+10ngaT He 2+c (u>0),

where Ly=Ly(ar, by) is the class of rectangles defined in Theorem3 and ar and by
also satisfy the conditions of the latter.

At first we introduce some notations and prove a lemma.
Let u=u(T) be the smallest integer for which

uzloghrarp*

and, for any integer g, let @ =Q(g)=2% Define the following sequences of real
numbers:

zi=2(q)=z,(q, T)=az(brar *)'%*  (i=0,+1,£2,..., £Qp),
x{()=x,;G,T)=jzQ ' (j=0,1,2,...),
yi)=y,GT)=jarz; *Q™"  (j=0,1,2,...),

and the following rectangles
R;=Ri(q)=[0,2z]x[0,arz '],
R;(j: ) =Ri(q, J, 1) =R+ (x,(i), y,(}))-

Let L¥(g) be the set of rectangles R;(q,j,l) contained in the domain D, (by).
For any R=[x,x,] x [y, y,] €L define the rectangle R(g)eL%(q) as follows: let
io=1Io(R) denote the smallest integer for which: z; =x, —x,; and let j,=j,(R), [,
=1y(R) denote the largest integers for which x; (i,) £ x,, y;,(ig) <y, and now let

R(q) = (x;,(io), ¥, (i) + [0, 2,1 x [0, a7 z;5 1]
Lemma 1.

(10) cardL$(g)<480Q°Tar'(1+logTar')(1+loghyar?),



6 M. Csbrgo and P. Révész

(11) for each Rel} we have J(RoR(q))<6a;Q "', where A is the Lebesgue
measure and the operation o stands for symmetric difference,

(12) AMR)=ar foreach Rel¥(qg).

Proof. At first we evaluate the number of rectangles R,(g,/,l) belonging to L¥(q)
for a fixed i. Clearly if R,(g,j,!) belongs to the set L%(g) then its right-upper
vertex belongs to the domain

A={(y): z;2x=z,Taz’, apz; 'SysTx™ '},

and we have A(A)<TlogTaz'. Since for any fixed i the square [0,b,] x [0, b,]
contains at most

=(brQz '+ 1)(z,Q0brar* +1)
elements of the sequence (x;(i), y;(i)), A will contain at most
Nb;2TlogTar*+3Qa; {(T—a;)S12Q*Tar (logTaz '+ 1)=My

elements of the sequence (x;(i),y,(i)). That is for a fixed i the number of

rectangles R,(q, j,!) belonging to L#(g) is not more than M. Since the number of

possible values of i is not more than 2Q u+1=<40(log bTaT #4+1), we get (10).
Now (11) resp. (12) simply follow from the definition of R(g) resp. that of

(@)

In the proof of Theorem 4 the following will also be used:

Lemma A [6]. Let R=[x,,x,] X [vy,y,] be any rectangle and let
S=[s1, 521 x[t1,1,]  (0=x,55,<s5,2%,, 02y Sty <13 2Y,).
Then we have for any u>0,

P{ggg (W(S)|zu} =4P{{W(R)| Zu}.

Now we turn to the

Proof of Theorem4. For any Rely, the symmetric difference R(g)o R(g+1) is
the sum of at most 4 rectangles, say R(g)e R(g+1)=R, (¢} + R, (g)+ R;{g)+ R4(q).
Denote the class of rectangles R;(q) (i=1, 2, 3, 4) by L%(q). Then we have

(13) sup [W(R)|< sup sup|W(S) |+4Z sup sup |W(S)l,
Relr Rel%.(¢) S=R i=0 Reli.(qg+i) SR

where s is a rectangle with edges parallel to the coordinate axes.
Then by Lemmas | and A we have

(14) P{ sup sup|W(S)|=xar?} S4cardLi(g)e ¥/

Rel% () S=R
and

(15) P{ sup sup|W(S)|=y;(6a,Q 1279 }<4cardL (g+i)e ¥,

RsLi‘r(q-H) ScR
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Since card L#(g+1)<4card Li(g+1), by (13), (14) and (15) we get
(16) P{

SuplW(R)|>xaT+4Zyl(60rQ 2T )}

<4cardL%(g)e ‘x2/2+16z card LE(g+i)e 2,
i=0
Choosing y;=(6i+x?%)%, we have

(17 xaT+4Zyl(6aTQ 12-iyt

i=0

1

2

<xaT{1—|—4(6Q 1y 22 ‘/2}+24aTQ 2(12
Sxaj(1+Q 1 A4)+

aTQ~§

<(l+¢)xat,

provided that Q is big enough, where 4=46*) 2792 and B=24) (i27)3%;
i=0 i=0

further

(18) 4cardLi(q)e > +16 ) card L¥(q+i)e /2
i=0

<CTa;'(1+logTaz;*)(1+loghyar)e 2

Choosing (1+¢)x=u, (9) follows from (16), (17) and (18)
3. The Proof of Theorem 3

The proof will be given in three steps
Step 1. Let

A(T)=sup 37 [W(R)|.

Suppose that conditions (i), (ii), (ili) of Theorem3 are fulfilled. Then
(19) limsupA4(T)=1

= w.p.l.
T— o0

Proof. By Theorem 4 we have

P{A(T)>1+s}<C< )(1+logTa H(1+loghpar¥)~*(logT)~'°

Let T,=6* (0>1). Then

Y P{A(T)21+8} <o
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for every £>0, 8> 1, hence, by the Borel-Cantelli lemma,

(20) limsupA(T)<1 wp.lL
k— o

Since

(21) liminféyl, sup Or<limsupdrl, sup d,=1+e
k— o TeETETr+1 k> 0 Tu£TETe+1

for any ¢>0, if 6 is near enough to 1, (19) follows from (20) and (21).

Step 2. Suppose that conditions (i), (ii), (iii} of Theorem3 are satisfied. Then for
any >0

(22) limsup sup 7 |W(R)=1—e w.p.l.

T—ow Rel%

Proof. Let 6>1 and M >1 to be specified later on, and set

lima, T '=p
T—oo

T,=¢0",

T—ar\" L
the largest integer for which ( TaT> brza; if p<l,

L=L(T)= . .
D the largest integer for which a3 M*<b, if p=1,

L, = maX(La 1)9 Lk :L(T;(),

Ri(T)=R;=
i+ 1 i
(e
T, Tt T+ _
I:(']—;(—aTk)i+1ka’(’I;{_aTk)ika] if p<1 and L,z1,
[TEMLTEM S X [To T PM L TEM ™71 if p=1 and L1,
[TL L TAIX[TE L TE] if Le=0

(i=0,1,2,...,L—1,k=1,2,...).
Now we have
Ryk)eDg,—Dy,_,

and
LzCTaz'(loghraz*+1)

if T is large enough, where C is a positive constant depending only on p resp. M.
We also have

ar (1—e) SAR(k) = ar,
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where ¢, can be an arbitrarily small positive number if § and M are sufficiently

large.
Since the sets R; (i=0,1,2,...,L —1) are disjoint we get

P{ max &r [W(R(k)|=1—¢}

0<i<L —
=1-(1- & (1 —¢)[2(log T, az, +log(loghraz * +1)+loglog T,]*)*
Z(logT)~ "%
if T is big enough, where ¢* >0 provided that @ and M are sufficiently large.
Then we get (22) applying the Borel-Cantelli lemma and the result of Step 1.
Step 3. Suppose that conditions (1)iv) of Theorem3 are satisfied. Then for any
e>0 we have

(23) liminfsup 6, |W(R)|=1—¢ w.p.l.

T—o Relf

Proof. Define p and L just like in Step 2. and set

T—a,\i+! T—a,\ i1 .

5 _ 1 — 0,—— f 1
f-rin-| |7 bT’( L RILT e S

(a3 M, af MP* ] x [0,a3 M 717 1] if p=1.

Since the sets R; (i=0,1,2,..., L—1) are disjoint, we have

P{ max o;|WR(T)|S1~¢}

O0sisL—1
S(1—@((1—e)[2(log T ar * +log(loghyar * +1)+loglog T)1%)
<exp(—(Tar 'y (loghyar*+1)"(logT)~ ¥

for a suitable &' >0 if T is large enough. Then (23) follows from condition (iv) of
Theorem 3. and the Borel-Cantelli lemma.

4. The Multi-Parameter Case
The multi-parameter analogue -of Theorem 3 is straightforward, hence only the
statement will be formulated.

Theorem3*. Let by =T, 0<ar<TY be non-decreasing functions of T and
define '
Sr=Q2ar(logTar +log(loghrar ¥ +1)"" 1 +loglog T))~*.

Further let Ly=Lr(ar,by) (vesp. Li=L%(ar,by)) be the set of rectangles R
d
=[] [x?,x$ 1= Dy(by) for which A(R)Say (resp. A(R)=ay) where
i=1

Dr=Ds(bp)={x"x?, . x9):xDx®  x@<T0<xP<b,}.

Suppose that conditions (i), (ii), (iii) of Theorem 3 holds. Then (7) will hold true.
If we also have (iv) of Theorem 3. then (8) also holds true.
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5. Applications and a Generalization

Theorem 2 easily implies:

Consequence 1. Let by be a function of T satisfying the conditions of Theorem?2
and define

BT= DT(bT)z U ng-

SET
Then

lim sup_ Yoy WO Y)=1  wp.L

© T (x,y)=Dr

The domain D; seems to be a rather artificial one. However using this
Consequence, one can get similar results for many concrete domains. As an
example we give:

Consequence 2. Let

Ev={(x,y): x21, yzU}.

Then
Wix,
@4 tim sup =N
U-w wyekv]/4x yloglogxy
or equivalently
w
(4% lim sup—P Iy

y—wxz1]/4dxyloglogxy

Proof. (24) follows from Consequence 1 and from the trivial relation

DT(T%)C By [_)U(U)

if T is big enough, (for example if T= U*).

Formula (24*) is very suitable to get a strong law for the Kiefer Process. We
recall that a Kiefer Process K(x,y) (0£x<1, 0Ly<o0) can be defined by the
following transformation of a two-time parameter Wiener Process.

25) K(xy)=(1—x) W(l—f—;,y> (0<x<1, 0<y< o).

Then (24*) and (25) imply

Consequence 3.

K
(26) lim sup Kl =
y—w 0<x<11/4x(1—x)yloglogy/x(1—x)

w.p.l.
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At the same time, it is well-known that

K
(27) lim sup KC) =
y—»ooe<x<1—a]/2x(1—x)yloglogy

w.p.1l.

for any 0<e<4. (In fact this result is also a special case of our Consequence 5.)

Comparing (26) and (27), it is natural to ask: what is the behaviour of a
Kiefer Process K(x,y) in an interval &, <x<1—eg, when ¢, is a non-increasing
positive function. In order to give an answer to this question we have to
generalize Theorem 2. Namely, the domains D, and D% of Theorem 2. resp. Dy
of Consequence 1 were symmetric to the line y=x. In the next Theorem the non-
symmetric case is studied.

Theorem 2*. Let b, =b,(T) and b, =b,(T) be two non-decreasing functions of T
for which by b, =T and define

yp=Q2T[log(logh, b, T™*+1)+loglog T]) "%,
Dr={(x,y): xy=T 0=x=b,(T), 0=y=b,(T)}
Df={(x,): xy=T, 0=x<b,(T), 0=y=h,(T)}.

Suppose that yy satisfies conditions (i), (ii) of Theorem?2. Then (6) holds true.
If we also have (iii) of Theorem 2. then (6*) will also hold true.

Applying the above Theorem the following analogue of Consequence 2. can
be obtained:

Consequenced. Ler f(y) be a non-decreasing function of y tending to + co and
define g(x)=xf~'(x) and
(28) 7xy=Cxy[log(logg ' (xy)+1)+loglogxy)])~*.

Suppose that v, satisfies the conditions (i), (ii) of Theorem 2.
Then

(29) limsup sup vy, |[W(x,»)I=1 wp.l.

y—o  12x=f(y)
Proof. Applying Theorem 2* for b, (y)=g~*(y) and b,(y)=y one gets (29).

Consequence 5. Let 0<e, <3 be a non-increasing function of y and define f(y)
=1/e, and g(x)=xf "' (x). Then

(30) limsup sup (2?)6(1‘” [1°g<l°gg_l(x—(iy??)) “)

Yoo gy=x=1-—gy

+loglog

y 1\F ~
x(l—x)]> |IK(x,»)|=1 wp.l.

Especially if e,=e™ %" (0<y<1), then

(31) limsup sup (2yx(1—x)(y+1)loglog

yow eySxS1l-sgy

y 3 3
x(l_x)) IK(X,y)!—l w.p.l.
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Let X,, X,, ... be a sequence of independent r.v.’s uniformly distributed over
[0,1] and let F,(x) be the empirical distribution function based on the sample
X X,,...,X,. The invariance principle ([8]) says that the empirical process
n*(F,(x)—x)=e,(x) can be approximated by a Kiefer Process such that

sup |K (x,n)—n? e, (x)|=0(log?n) w.p.l.

This result and our Consequence 5. imply

Consequence 6. Let n~ 'log*n<e, <3 be a non-increasing sequence of positive
numbers satisfying the conditions of ConsequenceS. Then

(32) limsup sup (2x(1 —x)log (logg_1 (L) + 1)

nosw  gnSxsl-—gy x(l—x)

x( ——x)) le,(x})]=1 w.p.l.

This result was proved at first by Csaki ([1]), who also evaluated the lim sup
of the sup of e, taking the sup over more general intervals (g,, 1 —¢,). Comparing
Consequence 5. and the result of Cséki one can see that the behaviour of the
Kiefer Process is the same as that of the empirical process if &,>d,n " " loglogn
where dq=0,236 ... and different if ¢, <dn~'loglogn where d<d,. However the
agreement of the two processes does not follow from the invariance principle
when ¢,=n"!(logn)* (0<a<3) or less.

+loglog
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