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Summary. Let f iT : (2 aT(lOg Ta  r 1 + log log T))-  ~, 0 < a T G T <  oo and let R* 
be the set of  sub-rectangles of  the square [0, T -~] x [0, T~], having an area a T. 
This paper studies the almost  sure limiting behaviour  of  fiT sup I W(R)I as 

R~R* 
T ~  oo, where W is a two-t ime parameter  Wiener process. With a T= T, our 
results give the well-known law of iterated logari thm and a generalization of  
the latter is also attained. The multi- t ime parameter  analogues of  our  two- 
time parameter  Wiener process results are also stated in the text. 

1. Introduction 

In [2] we have proved the following 

Theorem A. Let  W(t)  (0__<t<oo) be a standard Wiener process and let a T be a 
non-decreasing function o f  T for  which 

(i) O<aT<=r ( r > o ) ,  

and 

(ii) T a T 1 

Then 

is non-decreasing. 

(1) l imsup  sup f i T ] W ( t + a r ) - - W ( t ) l  
T~c~ O<_t<_T--aT 

= lira sup sup sup f i r I W ( t + s ) - - W ( t ) ] = l  
T~c~ O<_t<_T--aT O<=s<=aT 

w.p.1, where f i t  = (2 aT(lOg T a T 1 + log log T))-  �89 
I f  we also have 

(iii) lira log T a  T 1 _ oo, 
T~ 3o log log T 

* Research  par t ia l ly  suppor ted  by a C a n a d i a n  N R C  gran t  and  a C a n a d a  Counci l  Leave Fel low- 
ship 

0044-3719/78/0042/0001/$02.40 



2 M. Cs6rg6 and P. R6v6sz 

then 

(2) lim sup fiT [W(t +at ) -  W(t) l 
T ~ o o  O < t < = T - - a T  

= lim sup sup f l r I W ( t + s ) - W ( t ) ] = l  w.p.i. 
T ~ c r  O < t < T - - a T  O<=s<=aT 

In order to demonstrate what this theorem is all about we mention that the 
special case a r = T gives the well-known law of iterated logarithm, while the case 
a T = c log T (c >0) implies the Erd6s-R6nyi law of large numbers ([3]) when it is 
applied to a Wiener process. 

In this paper we intend to state and prove an analogue of this theorem for a 
multi-time parameter  Wiener process. At first we formulate our results for a 
two-time parameter  Wiener process. The multi-time parameter  analogues of 
these results are given in Section 4 without proofs, for they are entirely similar to 
the two-time parameter  case. The same can be said about  the proof  of 
Theorem A. 

In order to formulate a possible two-time parameter  analogue of Theorem A 
we introduce the following notations: 

Let RT= R(aT) be the set of rectangles 

R=[xl ,x2]  x [Yl, Y2] (O<=xl<x2<=T�89 T~) 

for which 2 ( R ) = ( x 2 - x l ) ( y 2 - y l ) < a r .  Let R * =  R*(ar)C R r be the set of those 
elements R of R r for which 2 ( R ) = a  r. For a 2-parameter Wiener process W(x, y) 
(0<x ,  y < oo) define the Wiener measure of a rectangle R = [x 1, x2] x [Yl, Y2] by 

W(R) = W(x2, Y2)- W(xl, Y2)- W(x2, Yl) + W(x1, Yl)" 

Now we state our 

Theoreml .  Let W(x,y) (0__<x,y<oo) be a Wiener process and let a r be a non- 
decreasing function of T satisfying conditions (i)-(ii) of Theorem A. Then 

(3) lim sup sup/3 r [W(R)] -- l im sup sup/3 r [W(R)[ --- 1 
T ~  oo R ~ R T  T ~  oo R ~ R *  

w.p. 1, where fir = (2 a T (log T a T 1 + log log T))-  ~. 
I f  a T also satisfies condition (iii) of Theorem A, then 

(4) lim supfiT[W(R)[=lim supflT]W(R)[=l w.p.1. 
T ~ o o  R E R T  T ~ o ~  R ~ R *  T 

It is clear that this Theorem can be considered as an analogue of Theorem A 
in the 2-parameter case. However it does not imply the law of iterated logarithm 
for the multi-parameter Wiener process in its full richness. Especially the 
following result does not follow from our Theorem 1' 

Theorem B ([4-7]). We have 

IW(x,y)l 
lim sup = 1, 

x~oo ] /4xy log logxy  
y ~  oo 
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that is to say 

Iw(x,y)t 
lira sup = 1 w.p.1. 
r~oo x>=r]/4xyloglogxy 

y>=T 

It is somewhat strange that in this Theorem the usual constant 2 of the 
denominator  is replaced by 4. Some explanation of this phenomenon is given in 
[-5] and our Theorem 2 will give a further explanation. We also emphasize that 
in Theorem B it is assumed that both x and y go to infinity. It is natural to ask 
what happens if this is not the case. Our next Theorem is somewhat stronger 
than Theorem B and gives an answer to the latter question. 

TheoremB.1. For any c~>�89 we have 

[W(x,y) l [W(x,y)l 
(5) lim sup sup - l i m  sup sup.  = 1 

r-.oo (x,y)~D~-]/4TloglogT r ~  (x,y)~Du 

w.p.1, where 

Dr=Dr(T~)={(x ,y):  xy<__T, O < x < T  ~, O<y<T~}, 

D*= D*(T~)= {(x, y): x y =  T, O<_x<_ T ~, O< y< T~}. 

Applying this Theorem for ~--1, it can be seen that it is not necessary to 
asume in Theorem B that both variables go to infinity. (Cf. Consequence 2.) In 
our next Theorem we investigate the question of how the function T ~ of 
Theorem B.1 can be replaced by an arbitrary increasing function b r. We have 

Theorem2. Let br> T ~ be a non-decreasing function of T and define 

Yr = (2 T [log(log b r T -  ~ + 1) + log log T ] ) -  ~, 

D r =  Dr(br)={(x,y): xy<T ,  O<__x<br, O<y<br},  

D * =  D*(br)={(x,y): xy=T ,  O < x < b t ,  O<y<br}.  

Suppose that 
(i) ?r is a non-increasing function of T, 

(ii) for any z > 0 there exists a 0 o = Oo(e ) > 1 such that 

lim sup ?0k 
k ~  Y0k+l  < l + a  

/f 1 < 0 < 0 o .  
Then 

(6) l imsup sup YrlW(x,y)[=l imsup sup y r l W ( x , y ) l = l  
T ~  c~ ( x , y ) e D T  T ~  oo (x,y)eD~ 

w.p.1. 
I f  we also have 

(iii) lira log(log b T T -  ~ + 1) = oo, 
r~  co log log T 
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then 

(6*) lim sup 7TlW(x ,y ) l=l im sup 7TlW(x ,y) l=l  
r ~  co (x,y)eDT r ~  co (x,y)~D~. 

w.p.I. 

We mention some special cases of Theorem 2: 
1 ~ if b T =  T �89 we get the simplest form of the law of iterated logarithm (the 

constant in the denominator is the usual 2); 

2 ~ if 

b T = T~ e(1~ T), (7 > 0); 

then 7T~(2(7+l )T iog logT)  ~; that is to say for 7 = 0  we get again the law of 
iterated logarithm with the constant 2 and the constant is increasing as 7 is 
increasing; we get the constant 4 of Theorem B (or Theorem B.1) when 7 = 1; 

3 ~ if bT=e  r then 7T~(2T1og T)-~; that is even the order of magnitude of 7T 
has been changed. In this case (iii) of Theorem 2 holds, that is (6*) holds true; 

4 ~ i fbT=e eT then )~T~2 +T -1 
Now we can really say that Theorem2 is a generalization of TheoremB.1 

(and, a for t io r i ,  that of Theorem B). However, it is not a generalization of 
Theorem 1. Now we formulate our main result, which is generalization both 
Theorems 1 and 2. 

Theorem 3. Let 0 < a r < T, b T >= T ~ be non-decreasing functions of T and define 

6T=(2aT(lOgTaTl+log(lOgbTar + l) + log log T)) -~-. 

Further let k r =  IT(aT, bT) (resp. L*=L*(aT, bT) ) be the set of rectangles R 
: I x1 ,  X2] X [Yl, Y2] c D T(bT) f o r  w h i c h  2 ( R ) <  a T (resp.  2 ( R ) =  aT). 

Suppose that 
(i) 6 r is a non-increasing function of T, 

(ii) Ta T 1 is a non-decreasing function of T, 
(iii) for any e > 0  there exists a 0o=0o(e)> 1 such that 

l imsup 60k < l + e  
k-co 6 o k + l :  

/f 1 < 0 < 0 o .  
Then 

(7) 
T~ ~ ReLT T~ co R~L* T 

w.p.1. 
I f  we also have 

(iv) lim l ~ 1 7 6 1 7 6  
T~ ~ log log T 

lim sup sup (~T [W(R) I = lim sup sup 6 T IW(R) I = 1 

=o(3,  
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then 

(8) lira sup6 T IW(R)I= lira sup@ IW(R)I=I 
T~oo RCLT T~oo R~[_~ 

w.p.1. 

2. An Inequality 

The main aim of this section is to prove the following inequality: 

Tlleorem4. For any e > 0  there exists a C =  C(e)>0 such that 

(9) P{sup I W ( R ) l > u a r }  
R~LT 

Z u2 

< C - - ( l + l o g T a ~ l ) ( l + l o g b r a r  )e  2+~ (u>0),  
a T 

where L r = Lr(ar,  br) is the class o f  rectangles defined in Theorem 3 and a r and b r 
also satisfy the conditions o f  the latter. 

At first we introduce some notations and prove a lemma. 
Let [2 =/2(T) be the smallest integer for which 

# ~ l o g b r a r  ~ 

and, for any integer q, let Q = Q ( q ) = 2  q. Define the following sequences of real 
numbers: 

z i = z i ( q ) = z i ( q , T ) = a ~ ( b r a ~ ) i / Q ~  ( i=0,  +1, +2, ..., ++_Q/2), 

xj(i) =x j ( i ,  T ) = j z i Q  -1 ( j=0 ,1 ,2  .. . .  ), 

y j ( i ) = y j ( i , T ) = j a r z i - l Q  -1 ( j=0,  1,2 .. . .  ), 

and the following rectangles 

R i =Ri(q) = [0, zi] x [0, a T z[- 1], 

R i (j, l) = R i (q, j, l) = R! + (x] (i), y, (i)). 

Let L*(q) be the set of rectangles Ri(q, j ,  l) contained in the domain DT(br). 
For  any R = Ix1, x2] x I-Y1, Y2] ~ IT define the rectangle R(q)~  k*(q) as follows: let 
i o = io(R ) denote the smallest integer for which: Z/o > x 2 - x ~  and let Jo =jo(R), lo 
= lo(R ) denote the largest integers for which x j o ( i o ) ~  X l, yto(io)< Y x and now let 

R (q) = (Xjo(io), y/o(io)) + 1-0, z J  x [0, a T z~o t].  

Lemma 1. 

(10) card k~(q)<48Q 3 T a  r ~(1 + l o g T a T  ~)(1 + l o g b T a T ~ ) ,  



6 M. Cs6rg6 and P. R6v6sz 

(11) for each ReL~ we have 2(RoR(q))<6aTQ -1, where 2 is the Lebesgue 
measure and the operation o stands for symmetric difference, 

(12) 2(R)-=ar foreach R~k*(q). 

Proof. At first we evaluate the number of rectangles Ri(q,j, l) belonging to k*(q) 
for a fixed i. Clearly if Ri(q,j, 1) belongs to the set L}(q) then its right, upper 
vertex belongs to the domain 

A =  {(x, y): zi K=xK=zi T ar 1, aTz71<= y< Tx-1},  

and we have 2(A)<TlogTar  1. Since for any fixed i the square [0, br] x [0, br] 
contains at most 

N = (b T Q z i  1 + 1)(z i Q b r a r  1 _1_ 1) 

elements of the sequence (xj(i), y~(i)), A will contain at most 

Nbr2 Tlog T aTl + 3Q aTl(r-ar)<=12Q2 Tarl(log T arl + l )=Mr 

elements of the sequence (xj(i),yl(i)). That is for a fixed i the number of 
rectangles R~(q,j, l) belonging to k*(q) is not more than M r. Since the number of 
possible values o f / i s  not more than 2QI~+ 1 <4Q(logbTar~+ 1), we get (10). 

Now (11) resp. (12) simply follow from the definition of R(q) resp. that of 
L}(q). 

In the proof of Theorem4 the following will also be used: 

LemmaA [6]. Let R=[xI ,x2]  • [Yl, Y2] be any rectangle and let 

S=[Sl,S2-] x [tt, t 2] (O~Xl~Sl<S2<~x2, O<=yl<=tl<t2<=Y2). 

Then we have for any u > O, 

P{sup IW(S)I >u} <=4P{IW(R)I >u}. 
S ~ R  

Now we turn to the 

Proof of Theorem4. For any R~kr,  the symmetric difference R(q)oR(q+ 1) is 
the sum of at most 4 rectangles, say R(q) o R(q + 1) = R, (q) + Rz (q) + R 3 (q) + R4(q). 
Denote the class of rectangles R~(q) (i = 1, 2, 3, 4) by I_~ (q). Then we have 

o9 

(13) sup IW(R)I< sup suplW(S)[+4~,  sup suplW(S)l, 
RELT R~k~(q) S ~ R  i = 0  Rek*(q+i)  S c R  

where s is a rectangle with edges parallel to the coordinate axes. 
Then by Lemmas 1 and A we have 

(14) P{ sup sup IW(S)1>XaT ~}_-<4card k*(q) e x~/z 
Rel.~e(q) S=R 

and 

(15) P{ sup suplW(S)l>yi(6aTQ-12-i)~}<4cardf.}(q+i)e -y]/2. 
R~L~.(q+i) S c R  
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Since card [.*(q + i) __< 4 card L*(q+i), by (13), (14) and (15) we get 

t } (16) P suplW(R)l_xa~+4 yi(6arQ *2 ~)~ 
( R e k T  i = 0 

co 

__< 4 card k*(q) e-x~/2 + 16 ~ card k*(q + i) e-y]/2. 
i=0 

Choosing Yi = (6 i + x2) }, we have 

(17) xa~ +4 ~ yi(6arQ -1 2-i) ~ 
i = O  

< ~ [ 1)} 2 2 - i / 2  ~ - =xa}~l  +4(6(2-  +24a}Q ~- (i2-~) } 
i=0 ) i=0 

<=x@(1 +Q-}A)+arQ-}B<(1 +8)xar, 

provided that Q is big enough, 

further 

where A = 4 6  } ~  2 -i/2 and B = 2 4 ~ ( i 2 - i ) ~ ;  
i=0 i=0 

(18) 4 card k*(q) e -x2/2 + 16 ~ card l_}(q + i) e-  y~/2 
i=0 

< CTa~,I(1 +log Ta~ 1)(1 - �89 = + l o g b r  ar -) e-~2/2. 

Choosing (1 +g )x = u ,  (9) follows from (16), (17) and (18). 

3. The Proof of Theorem 3 

The proof will be given in three steps. 

Step 1. Let 

A(T) = sup b r [W(R)[. 
R ~ L T  

Suppose that conditions (i), (ii), (iii) of Theorem 3 are fulfilled. Then 

(19) l imsupA(T)<  1 w.p.1. 
T~oo 

Proof By Theorem 4 we have 

P{A(T)>I+e}<__C (l+logra~l)(l+logbrar~)-~(logr) -1-~ 

Let T k = O k (0 > 1). Then 

P {A(Tk) > 1 +e} < oo 
k=l  
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for every e > 0, 0 > 1, hence, by the Borel-Cantelli lemma, 

w.p.1. (20) lira sup A(Tk) < 1 
k ~ r  

Since 

(21) lira inf 6T~+ ~ sup 

M. Cs6rg6 and P. R6v6sz 

@ =< lim sup c~kl+, sup 3 z < l + e  
k~oo  Tk<_ T ~ T k +  I k ~ o o  Tk <=T< Tk+ , 

for any e>0, if 0 is near enough to 1, (19) follows from (20) and (21). 

Step 2. Suppose that conditions (i), (ii), (iii) of Theorem 3 are satisfied. Then for 
any e>0  

(22) limsup s up6T]W(R) [> l -~  w.p.l. 
T ~  oo R d . *  

Proof. Let 0 > 1 and M > 1 to be specified later onl and set 

l ima  r T -  1 = p 
T ~ o o  

rk = O k, 

I { r _ a r Y ~ b  > the largest integer for which~ T ] r = a r  i f  p < l ,  

L = L(T)= [the largest integer for which a r ML< b r if p = 1, 

E = max(L, 1), Lk=L(T~ ), 

Ri( rk) = R i = 

Tk--ar" '+ bTk, [Tk-ar~'~ b ] 
T - -  Tk \ j 

[ 7  . v + '  1 *k--i_ *k if p < l  and L k > l ,  
x [(Tk_ark)~+~br ~ (Tk--ar~) br~] 
[Tk'~ M~, Tk&M ~+~] x [Tk_ a Tk-~M-~,TkaM -~-~] if p = l  and L k > l ,  

[T~_ 1, Tk ~] x [Tk~_ 1, Tk ~] if Lk=0 

(i=0, 1,2 . . . . .  E--  1, k=  1,2,...). 

Now we have 

Ri(k)~ Dr~- DTk_ 1 

and 

E >  C T  aTl ( logbTai~ + 1) 

if T is large enough, where C is a positive constant depending only on p resp. M. 
We also have 

ark(1 -- ~ 1) <= 2(Ri(k)) <= ark 
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where el can be an arbitrarily small positive number  if 0 and M are sufficiently 
large. 

Since the sets R i (i = O, 1, 2 . . . .  , E - 1) are disjoint we get 

P{ max f iT~lW(Ri(k))[>l--e  } 
O<=i<=L'- I 

> 1 - ( 1 -  �9 ((1 - 5) [2(log T k aT)  + log(log bT aT ~ + 1) + log log TJ~)) L' 

> (log rk)- 1 + ~* 

if T is big enough, where 5" > 0 provided that  0 and M are sufficiently large. 
Then we get (22) applying the Borel-Cantelli  lemma and the result of Step 1. 

Step3. Suppose that conditions (i)-(iv) of Theorem 3 are satisfied. Then for any 
> 0 we have 

(23) l i m i n f s u p 6 r l W ( R ) l > l - e  w.p.1. 
T ~  co ReL~ 

Proof. Define p and L just like in Step 2. and set 

T -  a r 
t ~ i = ~ i ( r ) = ~ [ \  r ] bT, ~ b T ] X [ O , ( r _ ~ b r  if p < l  

i ~ i + 1  [ [ a r M  , a T M  ] x [0, a r M  - i - i ]  if p = l .  

Since the s e t s /~  ( i=0 ,  1, 2 , . . . ,  L -  1) are disjoint, we have 

P{ max CST[W(I~(T))[<I--~ } 
O<_i<_L-1 

< (1 - �9 ((1- 5) [-2 (log r a T ~ + log(log b T a T ~ + 1) + log log r ) ]  ~)) 

<exp(-(TaT ~y'(log bT aT + + 1)~'(1og r ) -  1 +~' 

for a suitable g >  0 if T is large enough. Then (23) follows from condit ion (iv) of 
Theorem 3. and the Borel-Cantelli  lemma. 

4. The Multi-Parameter Case 

The mult i -parameter  analogue .of Theorem 3 is straightforward, hence only the 
statement will be formulated. 

Theorem3*. Let  bT>=T TM, O<ar<=T TM be non-decreasing functions of  T and 
define 

6 T = (2 aT(lOg T a T 1 + log (log b v a r 1/~ + 1)d- 1 + log log T))-  +. 

Further let L r = k r ( a r ,  bT) (resp. k~r=k*(ar, bT) ) be the set of  rectangles Ft 
d 

= [ ]  [x(~), x~ )] ~ DT(bT) for which 2 ( R ) < a  r (resp. 2(R)=aT)  where 
i = 1  

D r = Dr(bv) = {(x(i), x(2) . . . . .  x(d)): x(i)x(2) --. x(d) < T, 0 __< x (~ < br}. 

Suppose that conditions (i), (ii), (iii) of  Theorem 3 holds. Then (7) will hold true. 
I f  we also have (iv) of  Theorem 3. then (8) also holds true. 
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5. Applications and a Generalization 

Theorem 2 easily implies: 

Consequence 1. Let b T be a function of T satisfying the conditions of Theorem 2 
and define 

OT= OT(bT)= U D'~. 
S > T  

Then 

lim su~ ~rlW(x,y)l=l w.p.1. 
T ~ o o  ( x , y ) - D  T 

The domain Dr seems to be a rather artificial one. However using this 
Consequence, one can get similar results for many concrete domains. As an 
example we give: 

Consequence 2. Let 

Ev= {(x,y): x__>l, y> U}. 

Then 

I W(x, y)l 
(24) lim sup - 1  w.p.I. 

w co (x,yffE~ ]/4x ylog logxy 

or equivalently 

IW(x,y)l =1 w.p.1. (24*) lira sup 
y ~  ~>_ 1 ]/4xyloglogxy 

Proof (24) follows from Consequence 1 and from the trivial relation 

Or(T~)c Ev~ Dr(U) 

if T is big enough, (for example if T~  U4). 
Formula (24*) is very suitable to get a strong law for the Kiefer Process. We 

recall that a Kiefer Process K(x,y) (0__<x<l, 0 < y < o o )  can be defined by the 
following transformation of a two-time parameter Wiener Process. 

(25) K(x ,y)=(1-x)W ~ _ x , y  (0__<x<l, 0 < y < ~ ) .  

Then (24*) and (25) imply 

Consequence 3. 

LK(x,y)[ 
(26) lim sup - 1 w.p.1. 

y ~  O<x<l 1/4x(1 -x)yloglogy/x(1 -x )  
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At the same time, it is well-known that 

IK(x,y)l 
(27) lira sup =1 w.p.1. 

. . . .  1 - ~ / 2 X ( 1  r~ o~ - x) y log log y 

for any 0<e<�89 (In fact this result is also a special case of our Consequence 5.) 
Comparing (26) and (27), it is natural to ask: what is the behaviour of a 

Kiefer Process K(x, y) in an interval gy < x  < 1 -  sy when gr is a non-increasing 
positive function. In order to give an answer to this question we have to 
generalize Theorem2. Namely, the domains D r and D} of Theorem2. resp. DT 
of Consequence 1 were symmetric to the line y = x. In the next Theorem the non- 
symmetric case is studied. 

Theorem2*. Let b 1 = b l ( T  ) and b2=b2(T) be two non-decreasing functions of T 
for which b, b2 > T and define 

Yr = (2 T[log(log bl b 2 T -  1 + 1) +log log T]) -~, 

Dr={(x ,y) :  xy<T,  O<x<bl(T  ), O<y<b2(T)} 

D*= {(x,y): x y =  T, O<x<b~(T), O<y<b2(T)}. 

Suppose that Yr satisfies conditions (i), (ii) of Theorem 2. Then (6) holds true. 
I f  we also have (iii) of Theorem 2. then (6*) will also hold true. 

Applying the above Theorem the following analogue of Consequence 2. can 
be obtained: 

Consequence4. Let f(y) be a non-decreasing function of y tending to + oo and 
define g(x) =x f -  1 (X) and 

(28) yxy=(2xy[log(logg l(xy)+l)+loglogxy)])-r 

Suppose that 7xy satisfies the conditions (i), (ii) of Theorem 2. 
Then 

(29) limsup sup ~xylW(x,y)[=l w.p.1. 
y~oo l <x< f(y) 

Proof. Applying Theorem 2* for b 1 (y)= g-l(y) and b 2 (y)= y one gets (29). 

ConsequenceS. Let 0<ey<�89 be a non-increasing function of y and define f(y) 
= 1/ey and g ( x ) = x f -  l(x). Then 

I -  ~ 1 /  . \ \ 

\ L \ \ X ( J . - - X ) /  / 

Especially if ey = e-(~ogy), (0 < 7 < 1), then 

2 Y \ ~ (31) lira sup sup y x ( 1 - x ) ( 7 + l ) l o g l o g ~ )  [K(x,y)]=l w.p.1. 
y ~  ey_-<x= 1 - e y \  
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Let X1, X 2 . . . .  be a sequence of independent r.v.'s uniformly distributed over 
[0, 1] and let Fn(x ) be the empirical distribution function based on the sample 
Xa, X2 . . . . .  X,. The invariance principle ([8]) says that the empirical process 
n~(F,(x)-x) = e,(x) can be approximated by a Kiefer Process such that 

sup IK(x,n)-n~e,(x)[ = O(log2 n) w.p,1. 
X 

This result and our Consequence 5. imply 

Consequence6. Let n-llog4n<en<�89 be a non-increasing sequence of positive 
numbers satisfying the conditions of Consequence 5. Then 

(32) lim sup sup ( 2 x ( 1 - x ) l o g ( l o g g - l ( ~ t + l l  
n~oo e~<x<l-e~ \ 

n ~--~ 
+loglogx( l_x)  ] [en(x)l = 1 w.p.I. 

This result was proved at first by Csfiki ([1]), who also evaluated the lira sup 
of the sup of e, taking the sup over more general intervals (e,, 1-e,) .  Comparing 
Consequence 5. and the result of Csfiki one can see that the behaviour of the 
Kiefer Process is the same as that of the empirical process if en>d0 n ~ loglogn 
where d o =0,236 . and different if e, < dn-1 log log n where d<d o. However the 
agreement of the two processes does no t  follow from the invariance principle 
when e, = n-  1 (log n) ~ (0 < ~ <3) or less. 
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