Z. Wahrscheinlichkeitstheorie verw. Gebiete

42, 1-12 (1978)

Zeitschrift für
Wahrscheinlichkeitstheorie
und verwandte Gebiete
(C) by Springer-Verlag 1978

How Big are the Increments of a Multi-Parameter Wiener Process? ${ }^{\star}$

M. Csörgö ${ }^{1}$ and P. Révész ${ }^{2}$
${ }^{1}$ Department of Mathematics, Carleton University, Colonel By Drive, Ottawa, Canada K1S 5 B 6
${ }^{2}$ Mathematical Institute of the Hungarian Academy of Sciences, 1053 Budapest, Reáltanoda u. 13-15, Hungary

Summary. Let $\beta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{-\frac{1}{2}}, 0<a_{T} \leqq T<\infty$ and let R^{*} be the set of sub-rectangles of the square $\left[0, T^{\frac{1}{2}}\right] \times\left[0, T^{\frac{1}{2}}\right]$, having an area a_{T}. This paper studies the almost sure limiting behaviour of $\beta_{T} \sup _{R \in R^{*}}|W(R)|$ as $T \rightarrow \infty$, where W is a two-time parameter Wiener process. With $a_{T}=T$, our results give the well-known law of iterated logarithm and a generalization of the latter is also attained. The multi-time parameter analogues of our twotime parameter Wiener process results are also stated in the text.

1. Introduction

In [2] we have proved the following
Theorem A. Let $W(t)(0 \leqq t<\infty)$ be a standard Wiener process and let a_{T} be a non-decreasing function of T for which
(i) $0<a_{T} \leqq T \quad(T \geqq 0)$,
and
(ii) $T a_{T}^{-1}$ is non-decreasing.

Then
(1) $\quad \limsup \sup _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T}\left|W\left(t+a_{T}\right)-W(t)\right|$

$$
=\limsup _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \sup _{0 \leqq s \leqq a_{T}} \beta_{T}|W(t+s)-W(t)|=1
$$

w.p.1. where $\beta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{-\frac{1}{2}}$.

If we also have
(iii) $\lim _{T \rightarrow \infty} \frac{\log T a_{T}^{-1}}{\log \log T}=\infty$,

[^0]then
(2) $\lim _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \beta_{T}\left|W\left(t+a_{t}\right)-W(t)\right|$
$=\lim _{T \rightarrow \infty} \sup _{0 \leqq t \leqq T-a_{T}} \sup _{0 \leqq s \leqq a_{T}} \beta_{T}|W(t+s)-W(t)|=1 \quad$ w.p.1.
In order to demonstrate what this theorem is all about we mention that the special case $a_{T}=T$ gives the well-known law of iterated logarithm, while the case $a_{T}=c \log T(c>0)$ implies the Erdös-Rényi law of large numbers ([3]) when it is applied to a Wiener process.

In this paper we intend to state and prove an analogue of this theorem for a multi-time parameter Wiener process. At first we formulate our results for a two-time parameter Wiener process. The multi-time parameter analogues of these results are given in Section 4 without proofs, for they are entirely similar to the two-time parameter case. The same can be said about the proof of Theorem A.

In order to formulate a possible two-time parameter analogue of Theorem A we introduce the following notations:

Let $\mathrm{R}_{T}=\mathrm{R}\left(a_{T}\right)$ be the set of rectangles

$$
R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right] \quad\left(0 \leqq x_{1}<x_{2} \leqq T^{\frac{2}{2}}, 0 \leqq y_{1}<y_{2} \leqq T^{\frac{1}{2}}\right)
$$

for which $\lambda(R)=\left(x_{2}-x_{1}\right)\left(y_{2}-y_{1}\right) \leqq a_{T}$. Let $\mathrm{R}_{T}^{*}=\mathrm{R}^{*}\left(a_{T}\right) \subset \mathrm{R}_{T}$ be the set of those elements R of R_{T} for which $\lambda(R)=a_{T}$. For a 2-parameter Wiener process $W(x, y)$ $(0 \leqq x, y<\infty)$ define the Wiener measure of a rectangle $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ by

$$
W(R)=W\left(x_{2}, y_{2}\right)-W\left(x_{1}, y_{2}\right)-W\left(x_{2}, y_{1}\right)+W\left(x_{1}, y_{1}\right) .
$$

Now we state our
Theorem 1. Let $W(x, y)(0 \leqq x, y<\infty)$ be a Wiener process and let a_{T} be a nondecreasing function of T satisfying conditions (i) (ii) of Theorem A. Then
(3) $\quad \lim \sup _{T \rightarrow \infty} \sup _{R \in R_{T}} \beta_{T}|W(R)|=\limsup \sup _{T \rightarrow \infty} \beta_{R \in R_{T}^{*}}|W(R)|=1$
w.p.1, where $\beta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \log T\right)\right)^{-\frac{1}{2}}$.

If a_{T} also satisfies condition (iii) of Theorem A, then
(4) $\lim _{T \rightarrow \infty} \sup _{R \in \mathbb{R}_{T}} \beta_{T}|W(R)|=\lim _{T \rightarrow \infty} \sup _{R \in \mathbb{R}_{T}^{*}} \beta_{T}|W(R)|=1 \quad$ w.p.1.

It is clear that this Theorem can be considered as an analogue of Theorem A in the 2-parameter case. However it does not imply the law of iterated logarithm for the multi-parameter Wiener process in its full richness. Especially the following result does not follow from our Theorem 1:
Theorem B ([4-7]). We have

$$
\limsup _{\substack{x \rightarrow \infty \\ y \rightarrow \infty}} \frac{|W(x, y)|}{\sqrt{4 x y \log \log x y}}=1
$$

that is to say

$$
\lim _{T \rightarrow \infty} \sup _{\substack{x \geqq T \\ y \cong T}} \frac{|W(x, y)|}{\sqrt{4 x y \log \log x y}}=1 \quad \text { w.p.1. }
$$

It is somewhat strange that in this Theorem the usual constant 2 of the denominator is replaced by 4 . Some explanation of this phenomenon is given in [5] and our Theorem 2 will give a further explanation. We also emphasize that in Theorem B it is assumed that both x and y go to infinity. It is natural to ask what happens if this is not the case. Our next Theorem is somewhat stronger than Theorem B and gives an answer to the latter question.
Theorem B.1. For any $\alpha>\frac{1}{2}$ we have
(5) $\limsup _{T \rightarrow \infty} \sup _{(x, y) \in \mathrm{D}_{T}} \frac{|W(x, y)|}{\sqrt{4 T \log \log T}}=\limsup _{T \rightarrow \infty} \sup _{(x, y) \in \mathrm{D}_{T}^{*}} \frac{|W(x, y)|}{\sqrt{4 T \log \log T}}=1$
w.p.1, where

$$
\begin{aligned}
& \mathrm{D}_{T}=\mathrm{D}_{T}\left(T^{\alpha}\right)=\left\{(x, y): x y \leqq T, 0 \leqq x \leqq T^{\alpha}, 0 \leqq y \leqq T^{\alpha}\right\} \\
& \mathrm{D}_{T}^{*}=\mathrm{D}_{T}^{*}\left(T^{\alpha}\right)=\left\{(x, y): x y=T, 0 \leqq x \leqq T^{\alpha}, 0 \leqq y \leqq T^{\alpha}\right\}
\end{aligned}
$$

Applying this Theorem for $\alpha=1$, it can be seen that it is not necessary to asume in Theorem B that both variables go to infinity. (Cf. Consequence 2.) In our next Theorem we investigate the question of how the function T^{α} of Theorem B. 1 can be replaced by an arbitrary increasing function b_{T}. We have
Theorem 2. Let $b_{T} \geqq T^{\frac{1}{2}}$ be a non-decreasing function of T and define

$$
\begin{aligned}
\gamma_{T} & =\left(2 T\left[\log \left(\log b_{T} T^{-\frac{1}{2}}+1\right)+\log \log T\right]\right)^{-\frac{1}{2}}, \\
\mathrm{D}_{T} & =\mathrm{D}_{T}\left(b_{T}\right)=\left\{(x, y): x y \leqq T, 0 \leqq x \leqq b_{T}, 0 \leqq y \leqq b_{T}\right\}, \\
\mathrm{D}_{T}^{*} & =\mathrm{D}_{T}^{*}\left(b_{T}\right)=\left\{(x, y): x y=T, 0 \leqq x \leqq b_{T}, 0 \leqq y \leqq b_{T}\right\} .
\end{aligned}
$$

Suppose that

(i) γ_{T} is a non-increasing function of T,
(ii) for any $\varepsilon>0$ there exists a $\theta_{0}=\theta_{0}(\varepsilon)>1$ such that

$$
\limsup _{k \rightarrow \infty} \frac{\gamma_{\theta} k}{\gamma_{\theta} k+1} \leqq 1+\varepsilon
$$

if $1<\theta \leqq \theta_{0}$.
Then
(6) $\quad \limsup \sup _{T \rightarrow \infty} \gamma_{(x, y) \in \mathrm{D}_{T}} \gamma_{T}|W(x, y)|=\underset{T \rightarrow \infty}{\lim \sup } \sup _{(x, y) \in \mathrm{D}_{T}^{*}} \gamma_{T}|W(x, y)|=1$
w.p.1.

If we also have
(iii) $\lim _{T \rightarrow \infty} \frac{\log \left(\log b_{T} T^{-\frac{1}{2}}+1\right)}{\log \log T}=\infty$,
then
(6*) $\lim _{T \rightarrow \infty} \sup _{(x, y) \in \mathrm{D}_{T}} \gamma_{T}|W(x, y)|=\lim _{T \rightarrow \infty} \sup _{(x, y) \in \mathrm{D}_{T}^{*}} \gamma_{T}|W(x, y)|=1$
w.p.1.

We mention some special cases of Theorem 2:
1° if $b_{T}=T^{\frac{1}{2}}$, we get the simplest form of the law of iterated logarithm (the constant in the denominator is the usual 2);
2° if
$b_{T}=T^{\frac{1}{2}} e^{(\log T)^{\gamma}} \quad(\gamma \geqq 0) ;$
then $\gamma_{T} \approx(2(\gamma+1) T \log \log T)^{-\frac{1}{2}}$; that is to say for $\gamma=0$ we get again the law of iterated logarithm with the constant 2 and the constant is increasing as γ is increasing; we get the constant 4 of Theorem B (or Theorem B.1) when $\gamma=1$;
3° if $b_{T}=e^{T}$ then $\gamma_{T} \approx(2 T \log T)^{-\frac{1}{2}}$; that is even the order of magnitude of γ_{T} has been changed. In this case (iii) of Theorem 2 holds, that is $\left(6^{*}\right)$ holds true;
4° if $b_{T}=e^{e^{T}}$ then $\gamma_{T} \approx 2^{-\frac{1}{2}} T^{-1}$.
Now we can really say that Theorem 2 is a generalization of Theorem B. 1 (and, a fortiori, that of Theorem B). However, it is not a generalization of Theorem 1. Now we formulate our main result, which is generalization both Theorems 1 and 2.

Theorem 3. Let $0<a_{T} \leqq T, b_{T} \geqq T^{\frac{1}{2}}$ be non-decreasing functions of T and define

$$
\delta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)+\log \log T\right)\right)^{-\frac{1}{2}} .
$$

Further let $\mathrm{L}_{T}=\mathrm{L}_{T}\left(a_{T}, b_{T}\right)$ (resp. $\mathrm{L}_{T}^{*}=\mathrm{L}_{T}^{*}\left(a_{T}, b_{T}\right)$) be the set of rectangles R $=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right] \subset \mathrm{D}_{T}\left(b_{T}\right)$ for which $\lambda(R) \leqq a_{T}\left(\right.$ resp. $\left.\lambda(R)=a_{T}\right)$.

Suppose that
(i) δ_{T} is a non-increasing function of T,
(ii) $T a_{T}^{-1}$ is a non-decreasing function of T,
(iii) for any $\varepsilon>0$ there exists a $\theta_{0}=\theta_{0}(\varepsilon)>1$ such that
$\underset{k \rightarrow \infty}{\limsup } \frac{\delta_{\theta} k}{\delta_{\theta} k+1} \leqq 1+\varepsilon$
if $1<\theta \leqq \theta_{0}$.
Then

$$
\begin{equation*}
\underset{T \rightarrow \infty}{\limsup } \sup _{R \in L_{T}} \delta_{T}|W(R)|=\limsup _{T \rightarrow \infty} \sup _{R \in L_{T}^{*}} \delta_{T}|W(R)|=1 \tag{7}
\end{equation*}
$$

w.p.1.

If we also have
(iv) $\lim _{T \rightarrow \infty} \frac{\log T a_{T}^{-1}+\log \left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)}{\log \log T}=\infty$,
then
(8) $\lim _{T \rightarrow \infty} \sup _{R \in L_{T}} \delta_{T}|W(R)|=\lim _{T \rightarrow \infty} \sup _{R \in L_{T}^{*}} \delta_{T}|W(R)|=1$
w.p.1.

2. An Inequality

The main aim of this section is to prove the following inequality:
Theorem 4. For any $\varepsilon>0$ there exists a $C=C(\varepsilon)>0$ such that

$$
\begin{align*}
& P\left\{\sup _{R \in L_{T}}|W(R)| \geqq u a_{T}^{\frac{1}{2}}\right\} \tag{9}\\
& \leqq C \frac{T}{a_{T}}\left(1+\log T a_{T}^{-1}\right)\left(1+\log b_{T} a_{T}^{-\frac{1}{2}}\right) e^{-\frac{u^{2}}{2+\varepsilon}} \quad(u>0),
\end{align*}
$$

where $\mathrm{L}_{T}=\mathrm{L}_{T}\left(a_{T}, b_{T}\right)$ is the class of rectangles defined in Theorem 3 and a_{T} and b_{T} also satisfy the conditions of the latter.

At first we introduce some notations and prove a lemma.
Let $\mu=\mu(T)$ be the smallest integer for which

$$
\mu \geqq \log b_{T} a_{T}^{-\frac{1}{2}}
$$

and, for any integer q, let $Q=Q(q)=2^{q}$. Define the following sequences of real numbers:

$$
\begin{aligned}
& z_{i}=z_{i}(q)=z_{i}(q, T)=a_{T}^{\frac{1}{T}}\left(b_{T} a_{T}^{-\frac{1}{2}}\right)^{i / Q \mu} \quad(i=0, \pm 1, \pm 2, \ldots, \pm Q \mu), \\
& x_{j}(i)=x_{j}(i, T)=j z_{i} Q^{-1} \quad(j=0,1,2, \ldots), \\
& y_{j}(i)=y_{j}(i, T)=j a_{T} z_{i}^{-1} Q^{-1} \quad(j=0,1,2, \ldots),
\end{aligned}
$$

and the following rectangles

$$
\begin{aligned}
& R_{i}=R_{i}(q)=\left[0, z_{i}\right] \times\left[0, a_{T} z_{i}^{-1}\right], \\
& R_{i}(j, l)=R_{i}(q, j, l)=R_{i}+\left(x_{j}(i), y_{l}(i)\right) .
\end{aligned}
$$

Let $L_{T}^{*}(q)$ be the set of rectangles $R_{i}(q, j, l)$ contained in the domain $D_{T}\left(b_{T}\right)$. For any $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right] \in \mathrm{L}_{T}$ define the rectangle $R(q) \in \mathrm{L}_{T}^{*}(q)$ as follows: let $i_{0}=i_{0}(R)$ denote the smallest integer for which: $z_{i_{0}} \geqq x_{2}-x_{1}$ and let $j_{0}=j_{0}(R), l_{0}$ $=l_{0}(R)$ denote the largest integers for which $x_{j 0}\left(i_{0}\right) \leqq x_{1}, y_{l_{0}}\left(i_{0}\right) \leqq y_{1}$ and now let

$$
R(q)=\left(x_{j_{0}}\left(i_{0}\right), y_{l_{0}}\left(i_{0}\right)\right)+\left[0, z_{i_{0}}\right] \times\left[0, a_{T} z_{i_{0}}^{-1}\right] .
$$

Lemma 1.

$$
\begin{equation*}
\operatorname{card} L_{T}^{*}(q) \leqq 48 Q^{3} T a_{T}^{-1}\left(1+\log T a_{T}^{-1}\right)\left(1+\log b_{T} a_{T}^{-\frac{1}{2}}\right) \tag{10}
\end{equation*}
$$

(11) for each $R \in L_{T}^{*}$ we have $\lambda(R \circ R(q)) \leqq 6 a_{T} Q^{-1}$, where λ is the Lebesgue measure and the operation \circ stands for symmetric difference,
(12) $\quad \lambda(R)=a_{T} \quad$ for each $R \in L_{T}^{*}(q)$.

Proof. At first we evaluate the number of rectangles $R_{i}(q, j, l)$ belonging to $L_{T}^{*}(q)$ for a fixed i. Clearly if $R_{i}(q, j, l)$ belongs to the set $L_{T}^{*}(q)$ then its right-upper vertex belongs to the domain

$$
A=\left\{(x, y): z_{i} \leqq x \leqq z_{i} T a_{T}^{-1}, a_{T} z_{i}^{-1} \leqq y \leqq T x^{-1}\right\}
$$

and we have $\lambda(A) \leqq T \log T a_{T}^{-1}$. Since for any fixed i the square $\left[0, b_{T}\right] \times\left[0, b_{T}\right]$ contains at most

$$
\mathrm{N}=\left(b_{T} Q z_{i}^{-1}+1\right)\left(z_{i} Q b_{T} a_{T}^{-1}+1\right)
$$

elements of the sequence $\left(x_{j}(i), y_{j}(i)\right), A$ will contain at most

$$
\mathrm{N} b_{T}^{-2} T \log T a_{T}^{-1}+3 Q a_{T}^{-1}\left(T-a_{T}\right) \leqq 12 Q^{2} T a_{T}^{-1}\left(\log T a_{T}^{-1}+1\right)=\mathrm{M}_{T}
$$

elements of the sequence $\left(x_{j}(i), y_{i}(i)\right)$. That is for a fixed i the number of rectangles $R_{i}(q, j, l)$ belonging to $L_{T}^{*}(q)$ is not more than M_{T}. Since the number of possible values of i is not more than $2 Q \mu+1 \leqq 4 Q\left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)$, we get (10).

Now (11) resp. (12) simply follow from the definition of $R(q)$ resp. that of $\mathrm{L}_{\mathrm{T}}^{*}(q)$.

In the proof of Theorem 4 the following will also be used:
Lemma A [6]. Let $R=\left[x_{1}, x_{2}\right] \times\left[y_{1}, y_{2}\right]$ be any rectangle and let

$$
S=\left[s_{1}, s_{2}\right] \times\left[t_{1}, t_{2}\right] \quad\left(0 \leqq x_{1} \leqq s_{1}<s_{2} \leqq x_{2}, 0 \leqq y_{1} \leqq t_{1}<t_{2} \leqq y_{2}\right)
$$

Then we have for any $u>0$,

$$
P\left\{\sup _{\mathrm{S} \subset R}|W(S)| \geqq u\right\} \leqq 4 P\{|W(R)| \geqq u\} .
$$

Now we turn to the
Proof of Theorem 4. For any $R \in \mathrm{~L}_{T}$, the symmetric difference $R(q) \circ R(q+1)$ is the sum of at most 4 rectangles, say $R(q) \circ R(q+1)=R_{1}(q)+R_{2}(q)+R_{3}(q)+R_{4}(q)$. Denote the class of rectangles $R_{i}(q)(i=1,2,3,4)$ by $L_{T}^{*}(q)$. Then we have
(13) $\sup _{R \in L_{T}}|W(R)| \leqq \sup _{R \in L_{T}^{*}(q)} \sup _{S \subset R}|W(S)|+4 \sum_{i=0}^{\infty} \sup _{R \in L_{T}^{*}(q+i)} \sup _{S \subset R}|W(S)|$,
where s is a rectangle with edges parallel to the coordinate axes.
Then by Lemmas 1 and A we have

$$
\begin{equation*}
P\left\{\sup _{R \in L_{T}^{*}(q)} \sup _{S \subset R}|W(S)| \geqq x a_{T}^{-\frac{1}{2}}\right\} \leqq 4 \operatorname{card} L_{T}^{*}(q) e^{-x^{2} / 2} \tag{14}
\end{equation*}
$$

and

$$
\begin{equation*}
P\left\{\sup _{R \in L_{T}^{*}(q+i)} \sup _{S \subset R}|W(S)| \geqq y_{i}\left(6 a_{T} Q^{-1} 2^{-i}\right)^{\frac{1}{2}}\right\} \leqq 4 \operatorname{card} \tilde{\mathrm{~L}}_{T}^{*}(q+i) e^{-y_{i}^{2} / 2} . \tag{15}
\end{equation*}
$$

Since card $\tilde{L}_{T}^{*}(q+i) \leqq 4 \operatorname{card} L_{T}^{*}(q+i)$, by (13), (14) and (15) we get
(16) $P\left\{\sup _{R \in \mathrm{~L}_{T}}|W(R)| \geqq x a_{T}^{\frac{1}{2}}+4 \sum_{i=0}^{\infty} y_{i}\left(6 a_{T} Q^{-1} 2^{-i}\right)^{\frac{1}{2}}\right\}$

$$
\leqq 4 \operatorname{card} L_{T}^{*}(q) e^{-x^{2} / 2}+16 \sum_{i=0}^{\infty} \operatorname{card} L_{T}^{*}(q+i) e^{-y_{i}^{2} / 2}
$$

Choosing $y_{i}=\left(6 i+x^{2}\right)^{\frac{1}{2}}$, we have
(17) $x a_{T}^{\frac{1}{2}}+4 \sum_{i=0}^{\infty} y_{i}\left(6 a_{T} Q^{-1} 2^{-i}\right)^{\frac{1}{2}}$

$$
\begin{aligned}
& \leqq x a_{\frac{1}{2}}^{\{ }\left\{1+4\left(6 Q^{-1}\right)^{\frac{1}{2}} \sum_{i=0}^{\infty} 2^{-i / 2}\right\}+24 a_{T}^{\frac{1}{2}} Q^{-\frac{1}{2}} \sum_{i=0}^{\infty}\left(i 2^{-i}\right)^{\frac{1}{2}} \\
& \leqq x a_{T}^{\frac{1}{2}}\left(1+Q^{-\frac{1}{2}} A\right)+a_{T}^{\frac{1}{2}} Q^{-\frac{1}{2}} B \leqq(1+\varepsilon) x a_{T}^{\frac{1}{2}},
\end{aligned}
$$

provided that Q is big enough, where $A=46^{\frac{1}{2}} \sum_{i=0}^{\infty} 2^{-i / 2}$ and $B=24 \sum_{i=0}^{\infty}\left(i 2^{-i}\right)^{\frac{1}{2}}$; further
(18) $4 \operatorname{card} L_{T}^{*}(q) e^{-x^{2} / 2}+16 \sum_{i=0}^{\infty} \operatorname{card} L_{T}^{*}(q+i) e^{-y_{i}^{2} / 2}$

$$
\leqq C T a_{T}^{-1}\left(1+\log T a_{T}^{-1}\right)\left(1+\log b_{T} a_{T}^{-\frac{1}{2}}\right) e^{-x^{2} / 2}
$$

Choosing ($1+\varepsilon$) $x=u$, (9) follows from (16), (17) and (18).

3. The Proof of Theorem 3

The proof will be given in three steps.
Step 1. Let

$$
A(T)=\sup _{R \in \mathrm{~L}_{T}} \delta_{T}|W(R)| .
$$

Suppose that conditions (i), (ii), (iii) of Theorem 3 are fulfilled. Then
(19) $\quad \limsup _{T \rightarrow \infty} A(T) \leqq 1 \quad$ w.p.1.

Proof. By Theorem 4 we have

$$
P\{A(T) \geqq 1+\varepsilon\} \leqq C\left(\frac{a_{T}}{T}\right)^{\varepsilon}\left(1+\log T a_{T}^{-1}\right)\left(1+\log b_{T} a_{T}^{-\frac{1}{2}}\right)^{-\varepsilon}(\log T)^{-1-\varepsilon}
$$

Let $T_{k}=\theta^{k}(\theta>1)$. Then

$$
\sum_{k=1}^{\infty} P\left\{A\left(T_{k}\right) \geqq 1+\varepsilon\right\}<\infty
$$

for every $\varepsilon>0, \theta>1$, hence, by the Borel-Cantelli lemma,
(20) $\quad \underset{k \rightarrow \infty}{\limsup } A\left(T_{k}\right) \leqq 1 \quad$ w.p.1.

Since
(21) $\liminf _{k \rightarrow \infty} \delta_{T_{k+1}}^{-1} \sup _{T_{k} \leqq T \leqq T_{k+1}} \delta_{T} \leqq \limsup _{k \rightarrow \infty} \delta_{T_{k+1}}^{-1} \sup _{T_{k} \leqq T \leqq T_{k+1}} \delta_{T} \leqq 1+\varepsilon$
for any $\varepsilon>0$, if θ is near enough to 1 , (19) follows from (20) and (21).
Step 2. Suppose that conditions (i), (ii), (iii) of Theorem 3 are satisfied. Then for any $\varepsilon>0$
(22) $\quad \limsup _{T \rightarrow \infty} \sup _{R \in L_{T}^{+}} \delta_{T}|W(R)| \geqq 1-\varepsilon \quad$ w.p.1.

Proof. Let $\theta>1$ and $M>1$ to be specified later on, and set

$$
\begin{aligned}
& \lim _{T \rightarrow \infty} a_{T} T^{-1}=\rho \\
& T_{k}=\theta^{k}, \\
& L=L(T)=\left\{\begin{array}{l}
\text { the largest integer for which }\left(\frac{T-a_{T}}{T}\right)^{L} b_{T} \geqq a_{T}^{\frac{1}{2}} \\
\text { the largest integer for which } a_{T}^{\frac{1}{2}} M^{L} \leqq b_{T}
\end{array} \quad \text { if } \rho<1,\right. \\
& L^{\prime}=\max (L, 1), \quad \text { if } \rho=1, \\
& L_{k}=L\left(T_{k}\right), \\
& \\
& \left\{\begin{array}{l}
{\left[\left(\frac{T_{k}-a_{T_{k}}}{T_{k}}\right)^{i+1} b_{T_{k}},\left(\frac{T_{k}-a_{T_{k}}}{T_{k}}\right)^{i} b_{T_{k}}\right]} \\
\times\left[\frac{T_{k-1} \cdot T_{k}^{i+1}}{\left(T_{k}-a_{T_{k}}\right)^{i+1} b_{T_{k}}}, \frac{T_{k}^{i+1}}{\left(T_{k}-a_{T_{k}}\right)^{i} b_{T_{k}}}\right] \quad \text { if } \rho<1 \text { and } L_{k} \geqq 1, \\
{\left[T_{k}^{\frac{1}{2}} M^{i}, T_{k}^{\frac{1}{2}} M^{i+1}\right] \times\left[T_{k-1} T_{k}^{-\frac{1}{2}} M^{-i}, T_{k}^{\frac{1}{2}} M^{-i-1}\right] \quad \text { if } \rho=1 \text { and } L_{k} \geqq 1,} \\
{\left[T_{k}^{\frac{1}{2}-1}, T_{k}^{\frac{1}{2}}\right] \times\left[T_{k}^{\frac{1}{2}-1}, T_{k}^{\frac{1}{2}}\right] \quad \text { if } L_{k}=0}
\end{array}\right. \\
& \left(i=0,1,2, \ldots, L^{\prime}-1, k=1,2, \ldots\right) .
\end{aligned}
$$

Now we have

$$
R_{i}(k) \subset \mathrm{D}_{T_{k}}-\mathrm{D}_{T_{k-1}}
$$

and

$$
L^{\prime} \geqq C T a_{T}^{-1}\left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)
$$

if T is large enough, where C is a positive constant depending only on ρ resp. M. We also have

$$
a_{T_{k}}\left(1-\varepsilon_{1}\right) \leqq \lambda\left(R_{i}(k)\right) \leqq a_{T_{k}}
$$

where ε_{1} can be an arbitrarily small positive number if θ and M are sufficiently large.

Since the sets $R_{i}\left(i=0,1,2, \ldots, L^{\prime}-1\right)$ are disjoint we get

$$
\begin{aligned}
& P\left\{\max _{0 \leqq i \leqq L^{\prime}-1} \delta_{T_{k}}\left|W\left(R_{i}(k)\right)\right| \geqq 1-\varepsilon\right\} \\
& \quad \geqq 1-\left(1-\Phi\left((1-\varepsilon)\left[2\left(\log T_{k} a_{T_{k}}^{-1}+\log \left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)+\log \log T_{k}\right]^{\frac{1}{2}}\right)\right)^{L^{\prime}}\right. \\
& \quad \geqq\left(\log T_{k}\right)^{-1+\varepsilon^{*}}
\end{aligned}
$$

if T is big enough, where $\varepsilon^{*}>0$ provided that θ and M are sufficiently large.
Then we get (22) applying the Borel-Cantelli lemma and the result of Step 1.
Step 3. Suppose that conditions (i)-(iv) of Theorem 3 are satisfied. Then for any $\varepsilon>0$ we have
(23) $\quad \liminf _{r \rightarrow \infty} \sup _{R \in L_{T}^{*}} \delta_{T}|W(R)| \geqq 1-\varepsilon \quad$ w.p.1.

Proof. Define ρ and L just like in Step 2. and set
$\tilde{R}_{i}=\tilde{R}_{i}(T)= \begin{cases}{\left[\left(\frac{T-a_{T}}{T}\right)^{i+1} b_{T},\left(\frac{T-a_{T}}{T}\right)^{i} b_{T}\right] \times\left[0, \frac{T^{i+1}}{\left(T-a_{T}\right)^{i} b_{T}}\right]} & \text { if } \rho<1 \\ {\left[a_{T}^{\frac{1}{2}} M^{i}, a_{T}^{\frac{1}{2}} M^{i+1}\right] \times\left[0, a_{T}^{\frac{1}{2}} M^{-i-1}\right]} & \text { if } \rho=1 .\end{cases}$
Since the sets $\tilde{R}_{i}(i=0,1,2, \ldots, L-1)$ are disjoint, we have

$$
\begin{aligned}
P\left\{\max _{0 \leqq i \leqq L-1} \delta_{T}\left|W\left(\tilde{R}_{i}(T)\right)\right| \leqq 1-\varepsilon\right\} \\
\quad \leqq\left(1-\Phi\left((1-\varepsilon)\left[2\left(\log T a_{T}^{-1}+\log \left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)+\log \log T\right)\right]^{\frac{1}{2}}\right)\right) \\
\quad \leqq \operatorname{cxp}\left(-\left(T a_{T}^{-1}\right)^{\varepsilon^{\prime}}\left(\log b_{T} a_{T}^{-\frac{1}{2}}+1\right)^{\varepsilon^{\prime}}(\log T)^{-1+\varepsilon^{\prime}}\right.
\end{aligned}
$$

for a suitable $\varepsilon^{\prime}>0$ if T is large enough. Then (23) follows from condition (iv) of Theorem 3. and the Borel-Cantelli lemma.

4. The Multi-Parameter Case

The multi-parameter analogue of Theorem 3 is straightforward, hence only the statement will be formulated.
Theorem 3*. Let $b_{T} \geqq T^{1 / d}, 0<a_{T} \leqq T^{1 / d}$ be non-decreasing functions of T and define

$$
\delta_{T}=\left(2 a_{T}\left(\log T a_{T}^{-1}+\log \left(\log b_{T} a_{T}^{-1 / d}+1\right)^{d-1}+\log \log T\right)\right)^{-\frac{1}{2}} .
$$

Further let $\mathrm{L}_{T}=\mathrm{L}_{T}\left(a_{T}, b_{T}\right)$ (resp. $\mathrm{L}_{T}^{*}=\mathrm{L}_{\underset{T}{*}}^{*}\left(a_{T}, b_{T}\right)$) be the set of rectangles R $=\prod_{i=1}^{d}\left[x_{1}^{(i)}, x_{2}^{(i)}\right] \subset \mathbf{D}_{T}\left(b_{T}\right)$ for which $\lambda(R) \leqq a_{T}$ (resp. $\lambda(R)=a_{T}$) where

$$
\mathrm{D}_{T}=\mathrm{D}_{T}\left(b_{T}\right)=\left\{\left(x^{(1)}, x^{(2)}, \ldots, x^{(d)}\right): x^{(1)} x^{(2)} \ldots x^{(d)} \leqq T, 0 \leqq x^{(i)} \leqq b_{T}\right\} .
$$

Suppose that conditions (i), (ii), (iii) of Theorem 3 holds. Then (7) will hold true. If we also have (iv) of Theorem 3. then (8) also holds true.

5. Applications and a Generalization

Theorem 2 easily implies:
Consequence 1. Let b_{T} be a function of T satisfying the conditions of Theorem 2 and define

$$
\overline{\mathrm{D}}_{T}=\overline{\mathrm{D}}_{T}\left(b_{T}\right)=\bigcup_{S \geqq T} \mathrm{D}_{S}^{*}
$$

Then

$$
\lim _{T \rightarrow \infty} \sup _{(x, y)=\bar{D}_{T}} \gamma_{x y}|W(x, y)|=1 \quad \text { w.p.1. }
$$

The domain $\overline{\mathrm{D}}_{T}$ seems to be a rather artificial one. However using this Consequence, one can get similar results for many concrete domains. As an example we give:

Consequence 2. Let

$$
\mathrm{E}_{U}=\{(x, y): x \geqq 1, y \geqq U\} .
$$

Then
(24) $\lim _{U \rightarrow \infty} \sup _{(x, y) \in E_{U}} \frac{|W(x, y)|}{\sqrt{4 x y \log \log x y}}=1 \quad$ w.p.1.
or equivalently
(24*) $\lim _{y \rightarrow \infty} \sup _{x \geqq 1} \frac{|W(x, y)|}{\sqrt{4 x y \log \log x y}}=1 \quad$ w.p.1.
Proof. (24) follows from Consequence 1 and from the trivial relation

$$
\overline{\mathrm{D}}_{T}\left(T^{\frac{3}{4}}\right) \subset \mathrm{E}_{U} \subset \overline{\mathrm{D}}_{U}(U)
$$

if T is big enough, (for example if $T \geqq U^{4}$).
Formula (24*) is very suitable to get a strong law for the Kiefer Process. We recall that a Kiefer Process $K(x, y)(0 \leqq x \leqq 1,0 \leqq y<\infty)$ can be defined by the following transformation of a two-time parameter Wiener Process.

$$
\begin{equation*}
K(x, y)=(1-x) W\left(\frac{x}{1-x}, y\right) \quad(0 \leqq x \leqq 1,0 \leqq y<\infty) . \tag{25}
\end{equation*}
$$

Then (24*) and (25) imply

Consequence 3.

(26) $\lim _{y \rightarrow \infty} \sup _{0<x<1} \frac{|K(x, y)|}{\sqrt{4 x(1-x) y \log \log y / x(1-x)}}=1 \quad$ w.p.1.

At the same time, it is well-known that
(27) $\lim _{y \rightarrow \infty} \sup _{\varepsilon<x<1-\varepsilon} \frac{|K(x, y)|}{\sqrt{2 x(1-x) y \log \log y}}=1 \quad$ w.p.1.
for any $0<\varepsilon<\frac{1}{2}$. (In fact this result is also a special case of our Consequence 5.)
Comparing (26) and (27), it is natural to ask: what is the behaviour of a Kiefer Process $K(x, y)$ in an interval $\varepsilon_{y}<x<1-\varepsilon_{y}$ when ε_{y} is a non-increasing positive function. In order to give an answer to this question we have to generalize Theorem 2. Namely, the domains D_{T} and D_{T}^{*} of Theorem 2. resp. $\overline{\mathrm{D}}_{T}$ of Consequence 1 were symmetric to the line $y=x$. In the next Theorem the nonsymmetric case is studied.

Theorem 2*. Let $b_{1}=b_{1}(T)$ and $b_{2}=b_{2}(T)$ be two non-decreasing functions of T for which $b_{1} b_{2} \geqq T$ and define

$$
\begin{aligned}
\gamma_{T} & =\left(2 T\left[\log \left(\log b_{1} b_{2} T^{-1}+1\right)+\log \log T\right]\right)^{-\frac{1}{2}} \\
\mathrm{D}_{T} & =\left\{(x, y): x y \leqq T, 0 \leqq x \leqq b_{1}(T), 0 \leqq y \leqq b_{2}(T)\right\} \\
\mathrm{D}_{T}^{*} & =\left\{(x, y): x y=T, 0 \leqq x \leqq b_{1}(T), 0 \leqq y \leqq b_{2}(T)\right\} .
\end{aligned}
$$

Suppose that γ_{T} satisfies conditions (i), (ii) of Theorem 2. Then (6) holds true. If we also have (iii) of Theorem 2 . then (6^{*}) will also hold true.

Applying the above Theorem the following analogue of Consequence 2. can be obtained:

Consequence 4. Let $f(y)$ be a non-decreasing function of y tending to $+\infty$ and define $g(x)=x f^{-1}(x)$ and

$$
\begin{equation*}
\left.\gamma_{x y}=\left(2 x y\left[\log \left(\log g^{-1}(x y)+1\right)+\log \log x y\right)\right]\right)^{-\frac{1}{2}} . \tag{28}
\end{equation*}
$$

Suppose that $\gamma_{x y}$ satisfies the conditions (i), (ii) of Theorem 2.
Then
(29) $\quad \limsup \sup _{y \rightarrow \infty} \sup _{1 \leqq x \leqq f(y)} \gamma_{x y}|W(x, y)|=1 \quad$ w.p.1.

Proof. Applying Theorem 2* for $b_{1}(y)=g^{-1}(y)$ and $b_{2}(y)=y$ one gets (29).
Consequence 5. Let $0<\varepsilon_{y}<\frac{1}{2}$ be a non-increasing function of y and define $f(y)$ $=1 / \varepsilon_{y}$ and $g(x)=x f^{-1}(x)$. Then
(30) $\quad \limsup \sup _{y \rightarrow \infty}\left(2 y x(1-x)\left[\log \left(\log g^{-1}\left(\frac{y}{x(1-x)}\right)+1\right)\right.\right.$
$\left.\left.+\log \log \frac{y}{x(1-x)}\right]\right)^{-\frac{1}{2}}|K(x, y)|=1 \quad$ w.p.1.
Especially if $\varepsilon_{y}=e^{-(\log y)^{\prime}}(0<\gamma<1)$, then
(31) $\limsup _{y \rightarrow \infty} \sup _{\varepsilon_{y} \leqq x \leqq 1-\varepsilon_{y}}\left(2 y x(1-x)(y+1) \log \log \frac{\mathrm{y}}{x(1-x)}\right)^{-\frac{1}{2}}|K(x, y)|=1 \quad$ w.p.1.

Let X_{1}, X_{2}, \ldots be a sequence of independent r.v.'s uniformly distributed over $[0,1]$ and let $F_{n}(x)$ be the empirical distribution function based on the sample $X_{1}, X_{2}, \ldots, X_{n}$. The invariance principle ([8]) says that the empirical process $n^{\frac{1}{2}}\left(F_{n}(x)-x\right)=e_{n}(x)$ can be approximated by a Kiefer Process such that

$$
\sup _{x}\left|K(x, n)-n^{\frac{1}{2}} e_{n}(x)\right|=O\left(\log ^{2} n\right) \quad \text { w.p.1. }
$$

This result and our Consequence 5. imply
Consequence 6. Let $n^{-1} \log ^{4} n<\varepsilon_{n}<\frac{1}{2}$ be a non-increasing sequence of positive numbers satisfying the conditions of Consequence 5. Then
(32) $\quad \limsup \sup _{n \rightarrow \infty} \sup _{\varepsilon_{n} \leqq x \leqq 1-\varepsilon_{n}}\left(2 x(1-x) \log \left(\log g^{-1}\left(\frac{n}{x(1-x)}\right)+1\right)\right.$

$$
\left.+\log \log \frac{n}{x(1-x)}\right)^{-\frac{1}{2}}\left|e_{n}(x)\right|=1 \quad \text { w.p.1. }
$$

This result was proved at first by Csáki ([1]), who also evaluated the lim sup of the sup of e_{n} taking the sup over more general intervals ($\varepsilon_{n}, 1-\varepsilon_{n}$). Comparing Consequence 5 . and the result of Csáki one can see that the behaviour of the Kiefer Process is the same as that of the empirical process if $\varepsilon_{n} \geqq d_{0} n^{-1} \log \log n$ where $\dot{d}_{0}=0,236 \ldots$ and different if $\varepsilon_{n} \leqq d n^{-1} \log \log n$ where $d<\bar{d}_{0}$. However the agreement of the two processes does not follow from the invariance principle when $\varepsilon_{n}=n^{-1}(\log n)^{\alpha}(0<\alpha<3)$ or less.

References

1. Csáki, E.: The law of the iterated logarithm for normalized empirical distribution function. Z. Wahrscheinlichkeitstheorie verw. Gebiete 38, 147-167 (1977)
2. Csörgö, M., Révész, P.: How big are the increments of a Wiener Process. Preprint 1976
3. Erdös, P., Rényi, A.: On a new law of large numbers. J. Analyse Math. 13, 103-111 (1970)
4. Paranjape, S.R., Park, C.: Laws of Iterated logarithm of Multiparameter Wiener Process. J. Multivariate Anal. 3, 132-136 (1973)
5. Park, W.J.: On Strassen's Version of the Law of the Iterated Logarithm for the Two-Parameter Gaussian Process. J. Multivariate Anal. 4, 479-485 (1974)
6. Pruitt, W.E. -Orey, S.: Sample functions of the N-parameter Wiener process. Ann. Probability 1, 138-163 (1973)
7. Zimmermann, G.: Some sample function properties of the two parameter Gaussian process. Ann. Math. Statist. 43, 1235-1246 (1972)
8. Komlós, J., Major, P., Tusnády, G.: An approximation of partial sums of independent r.v.'s and the sample d.f. I. Z. Wahrscheinlichkeitstheorie verw. Gebiete 32, 111-132 (1975)

[^0]: * Research partially supported by a Canadian NRC grant and a Canada Council Leave Fellowship

