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1~ Introduction 

Let F be a distribution function with mean zero and variance one. Then on 
some probability space there exist a sequence {Xj, j__>I} of independent ran- 
dom variables with common distribution function F and a sequence {Yj, j >  1} 
of independent standard normal random variables such that 

(1.1) n x/2 max[ ~ X j -  Yj[ ~ 0  in probability 
k<= n j<=k 

* Both authors were partially supported by NSF grants. This work was done while the second 
author was visiting the M.I.T. Mathematics Department 
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(Freedman, 1971, (130), p. 83; Major, 1976). This result improves upon and is 
conceptually much simpler than Donsker's functional central limit theorem, 
commonly stated in terms of laws on C[0, 11 (see e.g. Billingsley, 1968, p. 68). 

There is an additional benefit to be gained when we formulate the corre- 
sponding result on empirical distribution functions in the spirit of (1.1). Let 
{xj, j > l }  be a sequence of independent random variables each having a 
uniform distribution over [0, 1]. The empirical distribution function of a sam- 
ple of size n is defined as 

F,(s)--n -~ ~ l{xj<s}, 0_<s_<l. 
j<=n 

Let 

(1.2) X~(s)=l{xj<=s} -s, 0_<s_<l. 

Then {Xj,j=>I} is a sequence of independent identically distributed 
(D[0, 1], H" I[)-valued random variables with mean zero and uniformly bounded 
by 1 and s~n(F,(s)-s) is the n-th partial sum of this sequence. (Here I['H 
denotes the supremum norm.) Komlds, Major and Tusnfidy (1975, Theorem 4) 
proved that: on some probability space there exist a sequence {xj, j > l }  of 
independent random variables each having uniform distribution over [0, 1] 
and a sequence {Yj, j > I }  of independent C[0, 1J-valued random variables, 
each with the distribution of the standard Brownian bridge, such that for the 
Xj defined by (1.2) 

(1.3) PI ~ x j -  ~11 =(9(logn) 2 a.s. 
j<n 

This improved on the original theorem of Kiefer (1972), the first of this type, 
which gave an error term (9(n~+1/3), e>0.  Such a result not only improves (it 
implies for instance the Smirnov-Chung law of the iterated logarithm) and is 
conceptually simpler than Donsker's theorem on empirical distribution func- 
tions, but also avoids the problems of measurability and topology caused by 
the fact that (D[0, 1], It" I[) is not separable (see e.g. Billingsley, 1968, p. 153). 

In this paper we shall use this idea to reformulate and strengthen the 
results of [12, 14, 15, 43] on empirical processes while removing the measur- 
ability conditions in most of them. We do this by proving invariance principles 
for sums of not necessarily measurable random elements with values in a not 
necessarily separable Banach space and by showing that empirical processes fit 
easily into this setup. 

Before we state our main results we need to introduce some notation. Let 
(A, d ,  P) be a probability space. To provide an adequate setting for our results 
we consider (A ~, ~4 ~ P~), the countable product of copies of (A, ~4, P), with 
coordinates {xj}j>_l and define ((2, X, Pr) as the product of (A ~, d ~, po~) and a 
copy of the unit interval with Lebesgue measure. This last makes f2 rich enough. 

Let (S, [[.[1) be a Banach space and let h be a mapping: X~S,  not 
necessarily measurable. We call X~=h(xj), j > l ,  a sequence of independent 
identically formed random elements. We also define 
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Pr* (E)=inf {Pr (B): BDE, B~Z}, Ecf2 .  

For not necessarily measurable real-valued functions g, on #2 we say g,---,0 
in probability iff l imPr*{Ig, ]>8}=0 for every e>0. We say g , ~ 0  in L v iff 

n ~ o o  

there is a sequence { s  of measurable functions f.>_-lgnl with f , ~ 0  in 
L; (f2, 2, Pr). 

Theorem 1.1. Let {X~, j> 1} be a sequence of independent identically formed S- 
valued random elements Xj=h(xj),  j >  1. Suppose that for each m> 1 there is a 
mapping Am: S--*S with the following properties: 

(1.4) The linear span L m S of A m S is finite-dimensional, m > 1. 

(1.5) For each m> l there is an no=no(m ) such that for all n>n o 

Pr* {n -1/21] ~ Xj-AraXj[  ] > l /m}<l /m .  
j<=n 

(1.6) For each m>=l the mapping Amoh is a measurable function from ( A , d )  
into LmS. 

(1.7) E(AmX~)=O, E[[AmXa[12<oo, m>l .  

Let T be the completion of the linear span of U AreS, so T is a separable 
m > l  

Banach space. Then there exists a sequence {Y#, j >  1} of independent identically 
distributed T-valued Gaussian random variables defined on (s ~, Pr) such that 

(1.8) E~  1 =0  

(1.9) E(s(Y~) t(YD)= lim E{s(AmX~)t(A,, XJ},  s, t~T', 
m ~ o o  

where T' is the dual space of T, and as n ~ oo 

(1.10) n 1/2 max I] ~ Xj-- YjI[--*0 in Pr. and in LPforanyp<2.  
k ~ n  j<=k 

Moreover, if there is a function F>= [[XIH with EF 2 < oo then the convergence 
in (1.10) is also in L 2. 

Remarks. Condition (1.5) can be viewed as a tightness condition, close to the 
"fiat concentration" condition of A. de Acosta (1970, p. 279) in separable Ba- 
nach spaces, ef. also Pisier (1975, Th~or6me 3.1). 

In our current applications (Theorem 1.3 and Sects. 6, 7 below) the maps 
A m will be linear. We allow them to be non-linear in view of some difficulties 
of linear approximation shown to exist by Enflo (1973). Kuelbs (1976, Lem- 
ma 2.1) defines linear A m in case S is separable and E IIX 1112< oo. In any case 
non-linearity of A m makes little difference in our proofs. 

In w 8 below we show that if S is separable in Theorem 1.1, then Xj  must 
actually be measurable for (1.10) to hold (although for applications to empiri- 
cal processes we do need non-measurable X~ in non-separable spaces S). This 
suggests that the finite-dimensional measurability assumption (1.6) is not too 
restrictive. 
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We also note that (1.10) and an argument given by Pisier (1975, p. III.10) 
imply the existence of a function F >  IlXl Pl with EF p < ov for any p < 2 (proved 
first, as Pisier states, by Jain, 1976a, Theorem5.7, at least for symmetric 
variables) but not for p = 2  (Jain, 1976b ). 

We define (as have others) the function L by setting Lx=log(x  v e) and L 2 
= L L = L o L .  Pisier (1975) showed that in a separable Banach space, the central 
limit theorem and E [IX 1112< oo imply a compact law of the iterated logarithm. 
Heinkel (1979) proved a refinement, replacing E [IX1H 2 by E IIXl[12/g2 HXl[[, 
partly based on methods of K.uelbs and Zinn (1979) who also (independently, 
as Heinkel notes) proved the refinement (Goodman, Kuelbs and Zinn, 1981). 
Our next result further improves these facts in different directions, dropping 
separability and weakening measurability assumptions and strengthening the 
conclusion to an almost sure invariance principle. 

Theorem l.2. I f  in addition to the hypotheses of Theorem l.1 there exists a 
measurable function F> ]IX 1 [] with E(F2/LLF)< 0% then the sequence {Yj, j>= 1} 
can be chosen such that (instead of (1.10)) there are measurable functions U, with 

(1.11) I1 ~ X~-Yjl] <U,=o((nLLn) 1/2) a.s., n--.oo. 
j__<n 

Since {Yj, j >  1} is a sequence of independent identically distributed Gauss- 
ian random variables with values in a separable Banach space, {Yj, j > I }  
satisfies a compact as well as a functional law of the iterated logarithm. Hence 
it is an immediate consequence of Theorem 1.2 that {Xj, j>  1} also satisfies the 
compact and the functional law of the iterated logarithm. (For details and 
precise statements of these results in separable spaces see [-44, (1.4), (1.5), (1.19), 
(1.20)].) 

The significance of Theorems 1.1 and 1.2 primarily lies in their applications 
to empirical processes. The empirical measure P, is defined as 

(1.12) P,(BI=n -1 ~ l{xjeB}, B e d  
j<n 

and the normalized empirical measure v, as 

( 1 . 1 3 )  v ,  = n 1/2 (P,  - P ) .  

Theorem 1.3. Let ] ~ S f 2 ( A ,  ~4, P) be a class of functions such that 

(1.14) je is totally bounded in 2z 2. 

(1.15) For any e > 0  there is a 3 > 0  and n o such that for all n>=n o 

Pr* [-sup {[~(f-g)dv,[ :  f ,  g e J ,  ~ ( f_g)2  dp < 6~2} >e l  <e. 

Then there exists a sequence {Yj, j>I} of independent identically distributed 
Gaussian processes, defined on the probability space ~, indexed by f e J  and with 
sample functions of Y1 almost surely uniformly continuous on J in the ~(~2 norm 

such that 

(1.16) EYt( f )=O for all f ~ J ,  
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(1.17) EYI( f )  Y ~ ( g ) = S f g d P - S f d P . S g d P  for all f ,  g e J  

and as n--+ oo 

(1.18) n-1/2max sup l ~  f ( x j ) - S f d P -  ~(f)l-+O 
k~n f c ~  j ~ k  

in Pr. as well as in L p for any p < 2. 
I f  in addition, there is a function F>=lf[ for all f E J  with ~F 2 dP < oo then 

we also have L 2 convergence in (1.18). 
I f  only ~ F2/LLF dP < oo then the Y~ can be chosen such that, instead of 

(1.18), we have with probability 1 for some measurable U, 

(1.19) sup I ~ f ( x j ) -  ~ f d P  - Y~(f)l < U. = o((n LLn)~/2). 
f e J  j<=n 

Remark. If J = {lc: CeCg} for a collection cg of sets, then under a measurability 
condition on cg Theorem 1.2 of [12] states that the central limit theorem holds 
for empirical measures with respect to uniform convergence on cg if and only if 
both (1.14) and (1.15) hold. The corresponding result for a class of functions is 
[14, Theorem 1.3]. 

Thus Theorem 1.3 applies to all classes J or cg previously proved to be 
"Donsker classes" [-12, 14-16]. Those papers defined spaces Di(J, P) of bound- 
ed functions on J ,  analogous to the Skorohod space D[O, 1], but depending 
on P. On these spaces D, special a-algebras were defined, e.g. generated by 
coordinate evaluations and balls for the sup norm. The present formulation 
allows us to work more simply in the space of all bounded functions on J ,  
with no special a-algebra. We also pass (Theorem 1.2) from a central limit 
theorem to a law of the iterated logarithm under a sharp moment condition 
without further measurability assumptions such as those in [43], cf. also 
Kol~inski (1981b). 

Theorem 1.3 follows easily from Theorems 1.1 and 1.2 and Lemma 1.4 be- 
low which takes care of the uniform continuity" let m__> 1 and e= 1/m. Choose 6 
and n o according to (1.15). Let ee ( f , g )=(5 ( f -g )2dp )  1/2. Since by (1.14) ~r is 
totally bounded for e e there exist s  l_<k<N(cS), say, such that for 
each f e J  there is a k with 

(1.20) ep(f, s  < ~5, k = k( f )  minimal. 

Hence by (1.15) in view of (1.12) and (1.13), for all n>n o 

(1.21) Pr*{n 1/2supl~ ( f - - fk ) (X~)- -5( f - - fk )dP[>l /m}<l /m,  
f e ~  j<-n 

where fk are chosen according to (1.20). 
Now let S be the space of all bounded real-valued functions on J .  For ~ S  

let []ffH = sup {]t~(f)l :f~J}. Then (S, It" I/) is a Banach space (non-separable for 
J infinite). We define the mapping h : A ~ S  by setting h ( x ) ( f ) = f ( x ) - - S f d P  
for each x~A, and the mapping Am:S~S  by setting A m ff(f)=ff(fk)  with fk 
from (1.20), for each ~ S .  Letting Xi=h(xj)  (as usual), we have 

(1.22) (Am X j) ( f)  = (Am h(xa)) (f)  = fk(Xj) -- S fk dP, f e J .  
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Obviously, dimLmS=N(cS)<oo. Then (1.5) follows from (1.20) and (1.21) since 
we can assume without loss of generality that 6(e) decreases as e decreases. 
Next, (1.6) and (1.7) clearly hold. Now (T, H" []) is the closed linear span in S of 
the ranges of Am, a separable Banach space. Theorem 1.1 implies that there 
exist independent identically distributed Gaussian variables Y~eT satisfying 
(1.8), (1.9) and (1.10). 

We next state a Lemma to be proved in Sect. 3: 

Lemma 1.4. I f  (1.14) and (1.15) hold and Yj are i.i.d, variables in T satisfying 
(1.8), (1.9) and (1.10) then there is a Borel set W e T ,  consisting of functions 
uniformly continuous on J for ee, such that Yj6W a.s. 

Using this Lemma we now obtain Y~ as desired to satisfy (1.16), (1.17) and 
(1.18). Theorem 1.2 (to be proved in Sect. 5) then implies (1.19), proving Theo- 
rem 1.3. 

To establish an invariance principle in the form (1.18) for empirical pro- 
cesses (or (1.19), if e.g. J is uniformly bounded) it is enough to prove (1.14) and 
(1.15). These two conditions have been established in [-12, 14-16, 37, 56b] in 
various cases. Here we mention only a few of these results and refer the reader 
to Sect. 7 for a more complete treatment of the subject. 

We consider the special case J = { l c :  C~Cg} for a collection c g c d  of sets. 
For each 6 > 0 we define N,(6)=Nx(6, ~, P) to be the smallest number d of sets 
A1, . . . , A d ~ d  with the following property. For each C ~  there exist A r and As, 
l < r , s < d  such that A r c C c A  s and P ( A s \ A , ) < 6 .  Recall that logNx(c~ ) is 
called a metric entropy with inclusion [12]. Inspection of the proof of Theo- 
rem 5.1 of [12] shows that, as Roy Erickson and Joel Zinn pointed out to us, 

i 
(1.23) ~ (log Ni(x2)) 1/2 dx < oo 

0 

without any further measurability assumptions implies both (1.14) and (1.15). 
Hence we have the following result. 

Theorem 1.5. Let cg c d be a class of sets for which the entropy condition (1.23) 
holds. Then there exists a sequence { Yj, j >  1} of independent identically distribut- 
ed Gaussian processes, defined on the same probability space, indexed by CEc~ 
and with sample functions of Y1 almost surely uniformly continuous on ~ in the 
de-pseudometric which is defined by 

(1.24) d e ( C , D ) = P ( C A D  ), C , D ~ d ,  

where { Y~, j > 1 } has the following properties: 

(1.25) Eu for all CeCg, 

(1.26) E { ]71(C) Y1 (D)} = P( C c~ D) - P( C) P(D) 

for all C, D ecg, and as n ~ oo 

(1.27) n-1/2 max sup J ~  1 { x j e C } - P ( C ) - Y j ( C ) I  ~ 0  
k<=n CE~ j<=k 
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in probability as well as in I~. Or, Yj can be chosen to satisfy, instead of (1.27), 
a s  n - +  oo 

(1.28) sup l ~  I { x ~ C } - P ( C ) -  ~(C) l :o ( (nL  2 n) 1/2) a.s. 
C s ~  j < n  

I.S. Borisov (1981) has shown that the sufficient condition (1.23) on N I 
cannot be weakened, being necessary in case cg is the collection of all subsets 
of a countable set X, where it is equivalent to ~ P{x}l /2< oo (cf. also [16]). 

x~X 

A collection ~ c ~r is called a Vapnik-Cervonenkis class if for some n < o% 
no set F witfi n elements has all its subsets of the form Cc~F, C~(g. The 
Vapnik-Cervonenkis number V(~g) denotes the smallest such n. 

Note. V(Cg) does not depend on P. 

For Vapnik-Cervonenkis classes cg satisfying some measurability conditions 
- which to a certain extent are also necessary [163 - it is shown [12, Theo- 
rem 7.1, Correction], [56a3, that (1.14) and (1.15) hold for J =  {1,: B ~ } ,  and 
hence all the conclusions of Theorem 1.5 will hold. Conversely, if Y~ exists as 
in Theorem 1.5 for all P on d ,  then V(Cg) < oo [16]. 

Bounds on the growth of d imL, ,S  as m ~  oo in (1.4) will give, in Sect. 6 
below, improvements of the error term in Theorem 1.2. Applying these results 
in Sect. 7 to empirical processes for classes of sets we obtain sharper error 
terms in (1.28), first if log Ni(x ) < c x  -~ for constants c <  oo and 0 < z  < 1. For 
Vapnik-Cervonenkis classes of sets we can improve the error term in (1.28) to 
(9(n 1/2- x), for any 2 < 1/(2700 V(~)). 

Let us recall that a) for any k-dimensional real vector space Y/" of functions 
on X, with k<  0% the collection ~ of all sets of the form {x~X: f (x )>O},  f~yF,, 
is a Vapnik-Cervonenkis class with V(Cg)=k+ 1 [12, Theorem 7.2]; b) for any 

with V(cg) < ao and m < c~, the collection of all sets formed from elements of 
~g by at most m Boolean operations (unions, intersections, and set differences) 
is also a Vapnik-Cervonenkis class [12, Proposition7.12]; c) if V(Cgz)<o% i 
= 1 .. . .  , m < o% then V( U ~ )  < oo. Combining a), b) and c) one obtains a good 

i<m 

supply of Vapnik-Cervonenkis classes; for example, polyhedra in IRk with at 
most m faces. The sets {y: yj<x~, t < j < k } ,  x~lR k, used in defining empirical 
distribution functions, form a still more special Vapnik-Cervonenkis class, with 
V(Cg) = k + 1 [63, Proposition 2.3]. 

In Theorem7.5 we apply Theorem 1.3 to weighted empirical distribution 
functions, thereby improving the compact law of the iterated logarithm, due to 
Goodman,  Kuelbs and Zinn (1981), to an almost sure invariance principle. 

Throughout, for any functions f ,  g , f ~ g  means the same as f=(9(g),  i.e. f ig  
is bounded, as n ~ oo or under whatever is the designated condition. 

2. Independent Random Elements 

We need to generalize several lemmas on sums of independent random va- 
riables to random elements, not necessarily measurable, but independent in an 
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extended sense. Let (f2, 5e, P) be a probability space. Let ~e~ 50, P) be the set 
of 5e-measurable functions f :  f2-- , [ -oo,  oo]. Let L~  denote the set 
of equivalence classes of functions in 5e~ 5e, P) for the relation of equality 
P-almost surely. In L~ 5e, P) (which, with values + c~ allowed, is not a vector 
space) we define a metric by 

d(f ,  g) = inf{e > 0: P(Itan- a f _  tan-  1 gl > e) < ~}. 

Then (L ~ d) is a separable metric space. 
For given J c 5e ~ let 

j = ess. i n f J  

i f f j < h  almost surely for all h s J  and whenever g < h  almost surely for all h ~ J  
then g=<j almost surely. For all J cL,  e ~ the ess. i n f J  exists and is uniquely 
determined with probability 1. Indeed, we can choose a sequence {in, n > 1} in j 
with ~tan - l j ,  dP~in f{~ tan- l jdP:  j ~ J } .  Then minjk~,j=ess, infJeS~176 5~, P) 

k<=n 

(cf. e.g. Vulikh, 1967, pp. 79-79). The next two lemmas are straightforward. 
The notion of "measurable cover function" f *  was defined by Eames and May 
(1967), by a different method (for bounded functions) which turns out to be 
equivalent. See also May (1973). 

Lemma 2.1. For each function f :  (2 ~ [ - oo, oo] 

f *  = ess. inf {jeS(~~ (~2, ~ P):j  > f }  

exists and is 5e-measurable. Moreover, we can take f *  > f everywhere. Further, 
for all g : f 2 - ~ [ -  ~ ,  oo], 

( f+g)*  N f *  +g* a.s. /f both sums are defined a.s.; 

( f - g ) * >  f * - g *  a.s. /f both differences are defined a.s. 

Remark. If f > - oo and g > - oo everywhere then also f *  > - oo and g* > - oo 
everywhere so f + g  and f*  +g* are everywhere defined. 

Lemma 2.2. Let (S, It" II) be a vector space with a seminorm I1" I1. Then for all 
X, Y: f2~S ,  

IIX+ Nil* <(lIXll + II Yll) *< IIX/l* + II Nil* a.s., 

IIcXIl*=lcl IIXIl* a.s. for each ceN.  

Remarks. For many calculations Lemma2.2 allows us to treat IIXIl* much as 
IIXII. Can II'11" be made into an actual seminorm on a space of S-valued 
functions? Let ( f2 ,~P)  be any complete probability space and (S, [I'll) any 
seminormed vector space. Let J ~ ( S , P )  be the set of all bounded functions f 
from f2 into S. Then using a lifting of the space ~oo(~, ~ p) of real-valued 
functions (A. and C. Ionescu Tulcea, 1961) we can define tlfl[* so that for all 
co, f - ,  IIfN*(co) is actually a seminorm on J~176 For unbounded functions, 
however, unless P is atomic one does not have a lifting of LP(f2, ~ P), 1 <p  < oo 
(A. and C. Ionescu Tulcea, 1962, Theorem 7). 
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Lemma 2.3. Let (Aj, ~ ,  Pj) be any probability spaces. Let fj: Aj~[0 ,  ~ ]  be any 
n 

functions, j ~- 1,..., n. Then on the Cartesian product 1-I (Ad, d j ,  P~) with co- 
ordinate functions xj, j = 1 

(2.0) (xj) = fj*(xj) a.s. 
~ j = l  / j = l  

where we set O. oc=0. I f  n = 2  and f1=-1 then the same holds for any f2: A2--* 

Proof. Clearly < [ I  f~*. For the converse, by induction, we can take n 
- j ~ l  

=2. Suppose g is measurable on A~ xA 2 and for e>0  let 

c(e).. = {(x, y): g(x, y) + e < f?  (x) f2  (y)}. 

Suppose (P1 xP2)(C(0))>0. Then for some e>0, (P1 x~)(C(e))>0.  Fix such an 
e. For m = 1 , 2  . . . .  , let Bm={y: m<f f f ( y )<+oo} .  Then for some m, 
(Pt x P2) (C(~~ \ (A1 x B,,)) > 0. Fix such an m and let D= = C(e) \ (A s x Bin), D, 
:={y:  (x, y)eD}, and H :={x :  P2(D~)>0}. Suppose f l (x)f2(y)<g(x,  y) every- 
where. Let xeH.  If f~(x)=+oo,  then f 2 > 0  and for ~-almost  all yeDx, 
L(x)L(y)<f( ' (x) f~(y) ,  so g(y)=0=f*(y) ,  a contradiction. If 0<f~(x)<o% 
then for P2-almost all yeDx, f*(y)<-g(x, y)/fi(x), so 

f *  (y) < ( f  * (x) f ;* (y) - e)/f l (x). 

Then f * ( y ) < + o v ,  so f*(y)<m.  If f* (y)<0 ,  we get a contradiction since 
f* (x )>f l (x )>O.  So for any such y, O < f 2 ( y ) < m  and 

ft(x) < fi*(x) - e/re. 

If f l  =- 1 this is a contradiction and finishes the proof in that case. In the case 
fi--> 0, j = 1, 2, we have 

f l  (x) < max (0, f• (x) - c/m) 

for all xeH. If f * > 0  on some subset J of H with Pj(J) >0  this allows f~* to be 
chosen smaller, a contradiction. So f~ = f * = 0  a.e. on H, but then 0 < g < 0  on 
D, again a contradiction. Q.E,D. 

Lemma 2.4. Let 

(~2, ~, P) = ( ~  x ~  xQ~ ,~  x G x G ,  ~ x ~  xP9 

and denote the projections 7~df2--*s ). Then for any bounded non- 
negative function f 

E {f*(0)1, c%)[(rot, 7~2)- 1(51 x G)} = E  {f*(c%, 0)3)1~1-1(51)} a.s. (P). 
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Proof. By Lemma2.3 (with f2(co2)=l) f*(col,co3) equals P-almost surely a 
measurable function not depending on co 2 thus is independent of rtil(SP2). [] 

Recall the definitions of convergence in probability or in L p for non- 
measurable functions just above Theorem 1.1. 

Lemma 2.5. Let X: f2~]R. Then, for all t~IR and e>O 

P*(X > t) <=P(X* > t)<P*(X > t-e). 

For any X,:F2-+P,,X,--+O in probability or in L p if and only if [XnI*--+O in 
probability or in L p, respectively. 

Proof. Since {X > t} c {X*> t} which is measurable the first inequality follows. 
To prove the second inequality consider the sets C~={co:X>je}, jeZ.  Let 
Dj~C a be a measurable cover of Ca, i.e. P*(Ca)=P(Da). Without loss of 
generality we can assume that the sequence {Da} is non-increasing. We have 

D a = U C a = Q since X(co) > - Go for all co. Let 
J J 

Y(co):=(j+l)e on Oj\Da+ ~ j ~  

: = + o 0  on ~. Dj. 
J 

We claim that for all co 

(2.1) X* (co) < Y(co). 

Here Y is measurable. Where Y(co)= +oo the result is clear. Otherwise, 
coeDj\Dj+ 1 for some j and so coCCi+ 1. Thus X(@<( j+ l )e=Y(co) ;  this 
proves (2.1). 

Given tell( there is a unique je2~ such that j e_-< t <  (j+ 1)e. Then 

P(X* > t) <= P(X* >j e) < P(Y >j e). 

But {Y>je} =Dj_ I. Thus 

P(Dj_ a)=P*(Cj_ ,) =P*(X > ( ] -  1) e)< P*(X >= t - 2  e). 

The second sentence of the lemma follows directly. [] 

As in Sect. 1 let (A ~ ~4 ~176 poo) be the product of countably many copies of 
(A, aI, P). Then the sequence {xj , j> l} ,  where xj is the j-th coordinate of 
xeA% is a sequence of independent random variables with common distribu- 
tion P. We extend the concept of independence by calling {Xi , j> I}  a se- 
quence of independent dements, if we can write each Xj=ha(xj) for some 
function h/ with domain X. If h i is a measurable function from (A, d )  into 
some measurable space this implies the usual notion of independence. 

The next lemma is an extension of Lemma 2.1 of Kuelbs (1977). Notice that 
neither the existence (nor the vanishing) of EXj is needed. 
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Lemma 2.6. Let {X j, l <j<n} be an independent sequence where the random 
elements Xj=hj(xj) take values in some vector space (S, H'l[)- Let S,,= ~, Xj and 

i<=n 

zn> ~ E [IXjl1.2. Suppose that 
j<=, 

(2.2) ]kXjl] <M, 1 <j<n. 

Then for 0 < 7 < 1 / ( 2 M )  

(2.3) E exp(7 ]kS, LI*) <exp(3 72~,+7E IlS, Ik*/. 

It follows that for any K > 0  

(2.4) Pr {IhS,]l* > g }  __<exp(3 72 z , - 7 ( K - E  ]kS, H*)), 0<  7< 1/(2 M). 

Remarks. If K < E  IIs.Ik* then the infimum of the right side of (2.4) is attained at 
7=0.  If O<K--E]IS,[I*<3%/M then the infimum is attained at 7= 
( / ( - E  I[S.II*)/(6z.) and equals e x p ( - ( K - E  I[s.Ll*)2/(12v.)). If K - E  LIS, H* > 3z,/M 
then the infimum for 0 < 7 <  1/(2M) is at 1/(2M) and equals 

exp(3 %/(4 M z) - (K - E]l S, 11")/(2 M)) < e x p ( -  (K - E II S, 1l*)/(4 M)). 

Proof. We first observe that (2.2) is equivalent to [iXjll*<M, l<__j<n. 
Throughout the proof of Lemma2.1 of Kuelbs (1977) we replace I1"11 by [I'Ll* 
and note that Ek+ 111Yk][* =gk ]1Yk]l* by our Lemma 2.4 with co 1 = (X  1 .... ,Xk- 1), 
m 2 = X  k and C~3=(Xk+ 1 .... ,X,). (Trivial correction: in the first equation of 
(2.9) in [41] replace " - "  by "+" . )  After obtaining 1-41], (2.4) with II'll* in 
place of ]l" II we set 7=e/(2b,). Note that given 7 > 0  and M > 0  we can choose 
e, b, and c > 0  satisfying the three conditions 7 = ~/(2 b,), M__<b c and e c <__ 1, if 
and only if 7< 1/(2M). This gives our (2.3). Since for any K > 0 ,  

Pr {HS, LI* >K} < e x p ( -  7K) E exp( 7 IIS,[I*) 

relation (2.4) follows. [] 

We also need an extension of Ottaviani's inequality. 

Lemma 2.7. Let {X j, l <j<n} be an independent sequence where the random 
elements Xj assume values in a vector space (S, ]l']l). Write S.= ~ Xj and 

j<=n 
suppose that 

Then 

max Pr([]S, - SiLl* >c~) = c  < 1. 
j<-_n 

Pr(max [ISfl*>2c~)<(1 -c)  1. Pr(HS.]h*>~). 
j<n 

Proof. In Lemma 3.21 of Breiman (1968, p. 45) and its proof we replace I" I by 
11" 11" throughout using Lemmas 2.1 and 2.2, specifically IINjLI* _-< ]kS, II* + IlS,- S~]l* 
In the step where the independence is to be used we argue as follows. 
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Let co 1 =(xj+l , . . . ,xn) and c%=(x>. . . ,x i ) .  Then F(col, o )2)=S, -S  ~ only de- 
pends on 001 . By Lemma2.3 ]IS,-Sj][* only depends on o91 and thus is 
independent of the event {j* =j} in the usual sense. The remainder of the proof 
requires no changes. [] 

The following lemma is based on an argument of Kahane (1968, p. 16). 

Lemma 2.8. Let {X j, 1 <=j<n} be an independent sequence where the random 
elements Xj  assume values in a vector space (S, [l" [r). Write S ,=  ~ X i and S o =0. 

i n n  

Suppose that for some K > 0 

(2.5) Pr(HSj-SiI[*>K)<=�89 ONi<j<n.  

Then for any t > K and s > 0 

Pr { I[S, I[* > 4 t +  s} =<4(Pr { HSnH * > t})2+ Pr {max [jX"l[ * >s}. 
" N n  

Proof. Let T(co)=rain {j__> 1" []Sj(co)l[* > 2  t}. Then by Lemma 2.1 

(2.6) Pr{[[Snl[*>__4t+s}= ~ Pr{T=m,][S, l l*>4t+s} 
l <_m<_n 

< ~ Pr{T=m,  [IS, l[*>4t+s , ][X"l[*<s} 
l <_m<n 

+ Pr {max [IX,. II* _-> s}. 
m<n 

By Lemma2.2, IIS.II*<lls,._lll*+][X,.ll*+ I]S,-S,.ll*, so the sum on the right 
side of (2.6) does not exceed 

Pr {T=m, IIS,-S,,I[*>2t} 
l <_m<_n 

= ~ Pr{T=m}'Pr{IrS,-S, , I[*>2 t} 
l <_m<_n 

< P r { m a x  ][Sn-S,.ll*>2t}. ~ P r { r = m }  
O<=m<n l<_m<_n 

< 2  Pr { jrs.jr * > t} .  Pr {max lIs"ll* > 2  t} 
mNn 

< 4(Pr { rJ S. [I * > t}) 2 

using Lemma2.7 twice, the first time reversing the order of summation. Also 
note that the independence is used in the same way as in the proof of 
Lemma 2.7. The lemma follows now from (2.6). 

A random element X will be called symmetric if X = h ( x ) - h ( x ' )  where 
h: A ~ S  and x and x' are independent A-valued random variables on O with 
the same law. The proofs of the next two lemmas follow those in the given 
references, with I1" [1" rep lac ing  I1" II and other changes just as in the proofs of 
Lemma 2.7 and 2.8 above. 
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Lemma 2.9 (P. Lhvy inequality). Let {X j, 1 <j < n} be a sequence of independent 
symmetric random elements with values in (S, N" II) and partial sums S k. Then 

Pr(max IISjlI* > a )<2  Pr(IIS, II* > ~). 
j<=n 

Proof. See Kahane (1968, p. 12). 

Lemma 2.10. Let {X j, 1 <j  < n} be as above. Then for all s, t > 0 

Pr { IIS, II* > 2  t+s}  <4 (P r  {11S, I1' >t}) 2 + Pr {max lIX,,][* >s}. 
m ~ n  

Proof See Kahane [35, p. 16], [26, p. 164], or [31, Lemma 3.4]. 

Lemma 2.11. Let S and T be Polish spaces and Q a law on S x T, with marginal 
# on S. Let (f2, ~ ,  P) be a probability space and X be a random variable on (2 
with values in S and law Y(X)---#. Assume that there is a random variable U on 
f2, independent of X, with values in a separable metric space R and law S ( U )  on 
R having no atoms. Then there exists a random variable Y on f2 with values in T 
and ~ ( ( X ,  Y))=Q.  

Proof First, we may assume R is complete, hence Polish. Now, any un- 
countable Polish space is Borel-isomorphic with [0, 1] (e.g. Parthasarathy, 
1967, p. 14). Every Polish space is Borel-isomorphic with some compact subset 
of [0, 1]. Thus there is no loss of generality in assuming that S = T = R  = [0, 1] 
with the usual topology, metric and Borel structure. 

Next, we take a disintegration of Q on [0, 1] x [0, 1] (e .g .N.  Bourbaki, 
1959, Chap. 6, pp. 58-59). Namely, there is a map S~Qs from S into the set of 
all laws on T and such that ~ Qs d#(s)=Q, i.e. for any bounded, Borel measur- 
able function f on [0, 1] x [0, 1] we have 

1 1 

~f(s, t)dQ(s, t)=~ ~ f(s ,  t)dQs(t)dg(s ) 
0 0 

where all these integrals are defined (possibly for the completion of N. 
For each s let F, be the distribution function of Qs and for 0< t_<l  let 

F,-l(t) =inf{z:  F,(z)> t}. We may assume that U has uniform distribution over 
[0, 1], since if H is the distribution function of U, which has no atoms, then 
H(U) is uniformly distributed over [0, 1]. Now for each t, the map s-~F;-l(t)  is 
measurable since Fs-l(t)<c~ iff Fs(c~)>t, and since the map s~F~(~)=Q,([O, ~]) 
is measurable by a property of the disintegration. Since F Z 1(.) is non-decreas- 
ing and left-continuous we have 

F~-l(t)= lira ~ F~-t(j/n) l { j / n < t < ( j +  1)n} 
n~oo  j = O  

which is jointly measurable in (s, t). Hence 

Y(o):= Fx(~)( U (co)) 

is a random variable. Moreover, for any bounded Borel function g on [0, 1] 
x [0, 1] we have using Fubini's theorem and the fact that 2 o (F~- 1)- J = ( )  (here 
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2 denotes Lebesgue measure) 
1 1 

gdQ = ~ ~ g(s, t) dQs(t ) d#(s) 
o o 

I 1 

= ~ ~ g(s, Fs- 1(0 ) dt  dg(s) 
o o 

1 1 

= y j" g(s, F s- 1(0 ) d(# x 2) (s, t) 
o o 

=Eg(X, f~ l(v)) =eg(X, r) 

since X and U are independent and thus Y ( ( X ,  U ) ) = # x 2 .  Consequently 
~ ( ( X ,  Y))=Q.  [] 

Note Added in Proof 

Lemma 2.11 also follows from the proof of Theorem 1 of Skorohod, Theory Prob. Appl. 21, 628- 
632 (1976). 

We thank E. Berger for this remark. 

For two laws # and v on a separable metric space (S, p) recall the Prohorov 
distance defined by 

z(#, v) :=inf{e>0:  # ( A ) < v ( A ~ ) + e  for all closed A c S }  
where 

A ~ = { x ~ S :  infp(x, y)<e}. 
y~A 

The following result is a special case of an extension by Dehling (1982, 
Prop. 5.1 and Lemma 5.1) of a theorem of Yurinskii (1977, Theorem i). Where 
Yurinskii assumed third moments and a Euclidean (Hilbert) norm, Dehling by 
truncation used (2+ 6)th moments, 0 <  6 < 1, and Banach norms (via Linden- 
strauss and Tzafriri, 1977, p. 17) as follows: 

Lemma 2.12. Let  {4~,j>_l} be independent, identically distributed random va- 
riables in a d-dimensional Banach space (B, Jl'll), d<oo,  with E 4 1 = 0  and 
EIl~1112+~<oo for  a (5 with 0 < 6 < 1 .  Then for  the Gaussian law # with mean 0 

and the covariance of  41, and Tn:= ~ ~j, we have 
j<=n 

~z(S(n-  1/2 Tn), #) <= Cd4/3 n-~/9(E I141 [I 2+~ + 1)1/4 

where C is an absolute constant. 

Remarks.  If in the proof of Dehling (1982, Prop. 5.1) we use the truncation Y/ 
=r  I{I[4iN = <n3/(26+6)} then we can replace n -'V9 by n e-~/(2~+6) for any e > 0  
or, apparently, for e = 0  (Senator, 1980). Some reduction in the exponent 4/3 is 
also easy. But in our applications in Theorems 6.1 and 6.2 below this would 
lead to no major improvement. 

We will use the following fact, which is essentially [4, Lemma A l l ,  and 
which is also a special case of a generalized Vorob'ev theorem (Shortt, 1982, 
Theorem 2.6; Vorob'ev, 1962). 

Lemma 2.13. Let  X ,  Y and Z be Polish spaces. Suppose # is a law on X x Y and 
v a law on Y x Z such that # and v have the same marginal on Y Then there is a 
law on X x Y x Z with marginals # on X x Y and v on Y x Z. 



lnvariance Principles for B-Valued Elements and Empirical Processes 523 

3. Proof of Theorem 1.1 and Lemma 1.4 

To prove Theorem 1.1 we first show the existence of the desired Gaussian limit 
distribution. Let k, m, r > l  and let Ak, Am, A~ be the corresponding maps as 
given in Theorem 1.1. We consider the sequence of independent identically 
distributed random vectors {(AkXj, AmXj, ArX), j> 1}. Let 0 < e < l / 2 .  Apply- 
ing (1.5) twice we obtain for fixed k, m > 6/e and all n > no(l; ) v no(m) 

(3.1) 

We write 

e r  {n-1/2 I1 ~ (AkXj-A,~X)II >g/2} <a/2. 
j<n 

(3.2) Unkm,.=n-1/2 F~ (&X~, A,~Xj, A~X). 
j<=n 

On the finite-dimensional space LkSXLmSxLrS we have the sum norm 
[l(u, v, w)J[ = Ilull + IfvlP + Irwll. By the central limit theorem in this space there is 
a mean zero Gaussian measure #k,~r such that the Prohorov distance u for the 
sum norm satisfies 

(3.3) ~(LP(U,k,~r) , #kmr)<e/2, n>nl(e , k, m, r). 

We denote the marginals of the Gaussian law #kmr by #kin, #k~, #m,', #k, #m and 
#r correspondingly. (Letting n--+oo in (3.2) shows that the notation is con- 
sistent, e.g. ]26 and #4, 7 are well-defined.) Now the measures #k, #k,, and #km~ 
can be regarded as Borel probability measures on the separable Banach space 
T, T x T or T x T • T respectively (rather than just on finite-dimensional sub- 
spaces) for [1' I[ on T and corresponding norms on T • T, T • T • T. Then (3.1) 
implies 

(3.4) #m~{(v,w)ETxT: ]]v-w]r >~} <e, m,r>6/~. 

On T x T we take the norm ]l(u, v)[I = Hulr + ]rv[]. We rewrite (3.4) in the form 

#km~{(u,v,w): ]](u,v)-(u,w)lr>e}<e , m,r>6/e, k>l ,  

and obtain for the corresponding Prohorov distance ~z on T x T 

(3.5) ~(#km,#k~)<e, m,r>6/e, k>=l. 

Consequently, for each k > l ,  {#kin, m>1} is a Cauchy sequence for the Pro- 
horov metric. Since T x T is complete we conclude by Theorem 1.11 of Pro- 
horov (1956) that for each k>  1 there is a law #k~ on T x T such that 

(3.6) #km---+#k~ as m ~ o o .  

Thus by (3.4) 

(3.7) #g~{(u, v)" I[u-v][ >e} <e, k>6/e 

and so for some law #o~ on T, 

(3.8) & ~ # ~  as /c ~ oo. 
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Since #kin has marginals #k and #m we conclude from (3.6) and (3.8) that #k~ is 
Gaussian with marginals #k and/zoo. 

We now start with the construction of the Gaussian variables Yj. For k > 1 
fixed for the time being, let {Zkj, Zj),j>I } be a sequence of independent 
identically distributed random vectors on some probability space f2' with 
values in T x T and 

(3.9) 

Since #koo 
n > l  

(Zkj , Z j) = #k~, J > 1. 

is centered Gaussian we conclude from (3.7) and (3.9) that for all 

(3.10) Pr{n -~/2 ~ (Zkj--Z~)ll >~}<e, k>6/e. 
j<n 

By L6vy's inequality (Lemma 2.9 above) we obtain for n > 1 

(3.11) Pr {n- 2/2 max [1 ~ (Zk~-- Zj)ll > e) < 25. 
it/~ t/ j~t/l 

We now let k>6/a. By (3.3) {AkXj, j>I  } satisfies the central limit theorem 
with limit #k" Next by [-53, with correction] there exists on some probability 
space O" a sequence {Vki, j > l  } of independent random variables having the 
same distribution as {AkX j, j> 1} and a sequence {VVkj, j >  1} of independent 
identically distributed random variables with common distribution #k such that 

(3.12) n-2/2 max [] ~ (Vk~-- ~)ll  ~0 in prob. 
m<n j< m 

By Lemma 2.13 we may assume that VVkj=Zk2, f2'=f2". This together with 
(3.11) implies that for some n z(e , k)> no(k ) 

(3.13) Pr {n-1/2 max H ~ (Vkj-Z2)l[ >3e} <3e , n>n2(e,k ). 
m~n j~=m 

In view of (3.13) and (1.5) it might appear that we are done because 

(3.14) ~ ( {  Vk3, j > 1})= S({AkX~, j> 1}). 

But there are two more hurdles to overcome. First, the sequence {Zj, j > I }  
depends on k. We use an idea of Major, also applied in [53] in the same 
context to construct a universal sequence {Zj, j > 1}. We choose e:= eo,= 2 -p-  3, 
p =  1, 2 . . . .  and accordingly k=k(p )=2  p+6 >6/ep + 1. In view of (3.13) we obtain 
for each p = l ,  2, ... two sequences {V~(P),j>I} and {Z}P),j>I} with the follow- 
ing properties: 

(3.15) V)') = ~(p)j, j > l ,  

~({Z}P),j>I})=Sf({Zj,j>I}) (i.i.d. #~) 

and for some n3(p) , which we choose to satisfy n3(p)>=n2(2 p-6, k(p)), and all 
n ~ g / 3  

(3.16) Pr {n -1/2 max [I ~ Vj(P)--Z}P)[] >2-P} <2-v" 
m<= tl j ~ m  
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Moreover, we can assume without loss of generality that the V-sequences are 
independent of one another and that the Z-sequences are independent of one 
another. Put r(p)= ~ rl3(q). We define 

q<=p 

(3.17) b = V )  v} and Zj'--Zj<V} if r(p)<j<r(p+l). 

Then {Vj, j > l }  and {Z} , j> I}  are sequences of independent random variables. 
Moreover, it will be shown that for each e > 0  there is an n,(e) such that 

(3.18) Pr{ n-1/2 max I[ ~ (Vj-Z~)II>4e}<4e, n>-n~. 
m~n j<=m 

Indeed, let s be such that 2 - s < e  and let No=No(e ) be so large that for all 
n>N o 

Pr{n -1/2 max I[ ~] b l l > e } < e  
m~r(s) j<m 

and 
Pr{n -1/2 max/I ~ Z)II >e} <e. 

m<r(s) j<=rn 

Let n>max(No, n3(s))=n4(e ) and keep it fixed. We choose M such that 
r(M)<n<=r(M+l). Then n>ng(p) for p<M and by (3.16), (3.17) and sta- 
tionarity 

max II ~ (vj-z)) l l  < max [I 2 ViN + max fJ ~, Z)X I 
m<n j<m m<=r(s) j<m m<r(s) jNm 

M -  1 j=r(p~)+ + ~ max ( b - Z ) )  
p=s r(p)<m<r(p+ l) 1 

max ~ -Z})  + (B 
r(M)<m<n j = r ( M ) + l  

M 

<2en I/2 + ~ 2 -p. n1/2<4enl/2 
p~s  

except on a set of probability <4e. This proves (3.18). Since the sequence 
{Z), j >  1} does not depend on e we have passed the first hurdle. 

The sequences {Xj, j > l }  and {Z), j >  1} are defined on probability spaces, 
not necessarily the same. Lemma 2.13, successfully employed earlier in the 
proof, cannot be applied at this point since the Xj are not necessarily measur- 
able. We apply Lemma 2.11 instead. For j > l  define p:=p(j) by r(p)<j 
< r (p + 1) and let p (j)." = 2 p (j) + 6. By (3.14), (3.15) and (3.17) 

x a, j >  1})=s({ b, j>  1}). 

Hence by Lemma 2.11 with 

O = ~ a ( { b , j >  1}, {z), j >  1}), X={Aoo)Xi, j>=I} 

defined on the appropriate Banach spaces and U a random variable uniformly 
distributed over I-0, 1] we obtain a random variable {Yj , j> 1}, say, defined on 
the original probability space (2 such that Q--s ~, j >  1}, {Yj, j >  1}). 
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Thus by (3.18) 

(3.19) n- 1/2 max ][ ~ (Ap(~)Xj- Yj)II --,0 
m<n j < m  

For the proof of (1.10) it remains to show that 

in Pr. (n ~ c~). 

(3.20) n- 1/2 max [I ~ ( X j -  Ao(~)Xj)]I --*0 in Pr. (n--, oo). 
m<-n j < m  

This follows in the same way as (3.18). Since n3(p)>n2(sv, k(p))>no(2 p+6) for 
all p > 1, we have by (1.5) 

pr,{n-1/211~(Xj_Ak(p)Xj)H>2-p 6}G2-P 6, n>n3(p). 
j<=n 

Hence by Lemmas 2.5 and 2.7 

Pr* {n- 1/2 max hi ~ (Xj-  Ak(p)Xj)II > 2 -p} < 2 -p, n >,z 3 (p). 
k<=n j < k  

In the proof of (3.18) we replace V~ and Z) by Xj and dp(~)Xj, respectively and 
obtain for given 8>0 and for some ns(e ) and all n>ns(e ) 

(3.21) max [I ~ (Xj-Ao(j)Xj)II <= 48nl/2 
k<n j<=k 

except on a set of Pr*-measure <48. This proves (3.20) and thus convergence 
in pr. in (1.10). 

Next we show (1.8) and (1.9). Recall that {AkXj,j~ 1} satisfies the central 
limit theorem with limit measure #k' Thus #k is a mean zero Gaussian mea- 
sure. Moreover, for each seT' 

E {s2(AkX j)} ~- E {s2(Zkl)} ~ E  {s2(Z1)} = E (s2(Y1)} 

by (3.8) and since S(Zkl ) and s(Z~) are Gaussian. But E{s(Y1)t(Y1) } is de- 
termined by E {s a (Yz)}. 

We now prove the statements about LV-convergence in (1.10). As in Pisier 
(1975, Proposition 2.1 and Remarque 2.1), we have 

( 3 . 2 2 )  supElln-1/2Sn)l*;<~ for each p<2.  
n > l  

We follow the next to last paragraph of Sect. 3 on p. 80 of [531 (replacing 2 by 
2/2 on the right in the display) and obtain L;-convergence for each p < 2. 

For p = 2  we observe that by (1.5) with m= 104 and Chebyshev's inequality 
applied to ~ A m Xj 

j < n  

(3.23) Pr*{llS, II>~nl/2}<lO -3 for all n>n o 

for some c~>0. To prove L2-convergence in (1.10) we replace (3.22) above by 
the following lemma. 
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Lemma 3.1. Let {Xj, j > I }  be a sequence of independent identically formed 
random elements X j = h ( x )  with values in a seminormed vector space S and 
E {IX 11['2< 00. Suppose that (3.23) holds for some ~ and n o. Then there is an N 
=N(c~, no, Y(llXall*)) such that for all n > N 

E IIS~lt*a < 500 c~2 n. 

Proof By stationarity and (3.23), for 0 <i<=j < n, 

(3.24) Pr{llSj-Sil[*>2c~nl/2} <pr* {llSj-Sil l>c~nl/2}<lO-3 

i f j - i > n  o. But i f j - i < n  o then by Markov's inequality 

Pr { I[Sj -S~ II* > 2 c~nl/2} < ( J -  i)E IIX 111 */(2c~nl/2) < 10- a 

if n>lO6n~EI]Xll[*2/~ 2. We apply Lemma 2.8 with K = 2 e n  1/2 and obtain for 
all t > 4~2 n 

Pr { [IS, II* > l Ota/2} < 4 Pr { JIS.il* > 2tl/2} Z + n Pr { I]X , ll* > 2t ~/2} 

< 4 . 1 0 -  3 Pr { II S. II* > 2 ?/2} + n Pr { II X1 II* > 2 t z/2} 

using (3.24). Thus with u=4~2n 

10-2 E ]IS,}I * Pr{llS~ll*>lOt~/a}dt 
0 

OO 

< u + 4 . 1 0  -3 ~ Pr {lIS, II* > 2tJ/2} de 
u 

O0 

+n ~ Pr {IIXaJI* > 2?/2} dt 
u 

<4cd n + 4 .10  -3 .  �88 E ]IS.II *z +o(n) 

since E IIX 111"2< o0. Hence for some N and n > N  

(3.25) EIIS, I I*2<n(4eZ+o(1) ) ( lO-Z- lO-3) - l<500~Zn.  [] 

The proof of Theorem 1.1 is complete. 

Proof of Lemma 1.4. Let G,:=(Y 1 + ... + Y.)/n 1/2. Then S(G. )=-S(Y~)  on T and 
(1.10) implies that ]lG,-v.I I ~ 0  in probability. Given e>0,  take 3 = 3 ( e ) > 0  and 
n o from (1.15). Take n >n  o large enough so that 

Pr* {lIG,-v,I [ >e} <e. (3.26) 

For 0~S let 

p~(0) = sup {10 ( f )  - 0(g) f: ~ g E A e~(f, g) < ~}. 

Then Pa is a seminorm on S with pa(0)=<211011 for all 0~S. Relation (1.15) 
gives Pr* {pa(vn)>~} <e, n>=n o. Thus we have by (3.26) 

Pr* {p~(G,)>3e} <2e. 
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But Po is continuous, hence measurable on the separable space T where the 
laws 5r  , so Pr{pa(Y0>3~ } <2e. Let 7(k)'.=b(2-k), and 

l/Vk: = {0 ~ S: Py(k)(0) < 3/2k} �9 

Then Pr{YI~#W~}<21-k. Let W= ~ ~ W k. Then W is a Borel set in T, 
S>=l k > j  

consisting of functions uniformly continuous on J ,  and Pr { Y~ e W} = 1 by the 
Borel-Cantelli Lemma. [] 

4. A Bounded Law of the Iterated Logarithm 

Let a. :=a(n):=(2nL2n)  1/z and S . :=  ~ Xj. 
j < n  

Theorem 4.1. Let {Xj, j > I }  be a sequence of independent identically formed 
random elements Xj=h(xs)  with values in a seminormed vector space (S, Jl'Jl). 
Suppose that for some ~ > 0 and n o we have 

(4.1) Pr*{llSnll>tcnl/2}<lO -3 for all n > n  o 

and that 

(4.2) E{(IIX111 Z/L; IlX1 I{)*} < Go. 

Then 
l imsup lISnlL*/a,<22s~c a.s. 

n ~  oo 

The proof is a minor modification of the proof of Theorem 4.1 of Good- 
man, Kuelbs and Zinn (1981). We first observe that we can assume without 
loss of generality ~c= 1. To symmetrize the random elements X~ we choose a 
sequence {x} , j> l}  of independent identically distributed A-valued random 
variables independent of the sequence {xj, j > l }  with the same law. (Specifi- 
cally, let x) also be coordinates in a product of copies of A.) Let Xj = h(x}). As 
in [233 let 

I (n) :={2"+l ,  ...,2"+1}, ~(t)'.=t/Lat , 

fi(t)'.=tL2t , %:=fl-*(2"), fl.:=c~ 1(2n) 

u / = x j  1 { IIx/1.2 < ~,,}, 
(4.3) V~: = Xj 1{%< IlXjll* 2 <ft,}, 

W/=Xs 1 {& < IIxal1.2} 

and define Uj, Vj, Vfj accordingly replacing X s by X}. We then set 

(4.4) u s = U j - U  j, v s = V j - V  j and w j = W j - W j .  

Then us, v~, wj are symmetric and u s + v s + wj = X s - Xj. 

and for jeI(n)  let 
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Lemma 4.1. We have 

Pr(l{ ~, w~[l*>2a(2")}<~. 
n >= 1 j~I(n)  

Proof The series in question does not exceed ~ Pr*{ws4=0}<oo in view of 
(4.2). s=> 1 

(4.6) 

(4.7) 

and 

(4.8) 

Lemma 4.2. We have 

Pr{ll ~, vsll*>a(29}< oo. 
n ~  1 j~I(n)  

Proof. As in [23] we set Zj=2"v/a(2 ") forjsI(n). We are to show 

(4.5) ~ Pr{Id ~ Zs]l*>2"}<oo. 
n >_ 1 j e I (n )  

This can be done exactly as in the proof of Lemma 4.:2 of [23] by verifying 

j- l l lZsil ,oO a.s. 

~, AZ(n)<oo, A(n):= 2 4-"EIIZJl1.2 
n > 1 je I (n)  

lira E H k-1 E Zjll* =0. 
k ~ o o  j ~ k  

Now (4.6) is easy [23, (4.11)] and (4.7) can be proved in the same way as [23, 
(4.12)], with the following changes. We replace II" ]1 by [l" fl* everywhere. Con- 
vergence of any random variables U ,~0 ,  in probability or a.s, is replaced by 
[jU, I j*~0 in the same sense (cf. Lemma 2.5 above). After [23, (4.14)] replace 
the next "A(n)=" by "A(n)/4<_". Then in (4.15), (4.16) and (4.19), divide A(n) 2 
by 16. 

Correct [-23, (4.16)] by replacing T:=(Lm-LM)+/Iog2 by T+I .  The ad- 
ditional term multiplied by + 1 has finite expectation by (4.2) so all is well. 
Above [-23, (4.18)], choose c>1.  Correct [23, (4.20)] by changing the second 

= to " < "  and in its last line replace " > "  by " > "  Note that 7 (t)=Lst/L2t, 
L 3 t >  1, stated before (4.20), is actually used just after (4.21). 

For the proof of [-23, (4.21)] we use the proof of Proposition 2.1 and 
Remarque 2.1 of Pisier (1975), applying our Lemmas 2.5, 2.9 and 2.2. In the 
next display after (4.21), replace 2(n) (a typo) by A(n)/4, obtaining our (4.7) as 
desired. 

To prove our (4.8) we have to estimate E ])~ vs]l*. ,(For the details see [23, 
j__<k 

p. 729].) Instead of using Lemma 2,3 of [233 we use once more the proof of 
Pisier (1975), Proposition 2.1 and Remarque 2.1 to obtain for N > n o 

Pr{[ISN-S~IJ*>12NI/2n}<I/n 2 for all n > l .  
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By (4.4) and stationarity we obtain for all m>0  and N>n o 

E m~N Uj-}-Vj-}-Wj * < 9 N  t/2 
j = m + l  

and thus by symmetry 

E m ~  Uj * ~ 9 N  1/2, m+um_+ * -  (4.9) J=,.+~ E j=~lVj ~ 9 N  1/2. 

We are now ready to apply the proof of Theorem 1 of Kuelbs and Zinn (1979). 
Fix 5, 0 < 5 < 1. For n > 1 we set 

3. = ~ Z~l{I]ZjH*<A(n)1/42 "+1} 
jel(n) 

(4.10) r/,= ~ Zjl{{IZjll*_>2"-l~} 
jcI(n) 

~,= ~ Zjl{A(n)I/4"Z'+I <IIZjII* <Z"-a 6}. 
]el(n) 

We bypass the question whether or not ~,, 7, and (, are symmetric by sym- 
metrizing them. Let ( ,=~ , -~ ' , ,  fl,=rl,-t(, and ( , = ( , - ( ' ,  where we define 
~'., tt', and ('. as in (4.10) replacing Z i by an independent copy Z). Then by (4.8) 
and (4.10) 

EII~,+g/,,+~,~lJ*<Z(E]) Z ZjlI*+Ell Z gJll*)=~ �9 
j<=2 n+l j ~ 2  n 

Thus by symmetry 
E II~.ll* =o(2"). 

As in the proof of Theorem 1 of [42] we obtain 

Pr {11 ~, + ~ . +  ~,11" >2"- ~} <A,  

for some A, with ~ A , <  oe. By a standard desymmetrization argument and 
(4.10) we obtain Lemma 4.2. 

Lemma 4.3. We have 

Pr{H ~ ujll*>224 a(2~)}< oe. 
n>= 1 j~l(n) 

Proof It is enough to show 

(4,11) ~ PrfLI ~ ujlL*>22Za(2k)}<oe. 
k ~ I  j < 2  k 

For the proof of (4.11) we apply Proposition 4.3 of Pisier (1975) and its proof 
to the sequence {uj, j >  1}. By (4.9) and (4.3) the hypotheses are satisfied with c~ 
=9. We also note that H=212 in [55, Lemma 4.1]. 
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We now can finish the proof of Theorem 4.1. By Lemmas 4.1, 4.2, 4.3 and 
(4.3) we obtain 

~, Pr{ll ~ Xj-X}ll*>225a(2")}< ~ 
n > 1 j e I ( n )  

and by stationarity and Lemma 2.9 

Pr {max [ISk-S~[I* >225 a(2")} < or 
n >  l k <-_2 n 

By (4.1) and Lemma 2.7 and a standard desymmetrization argument we finally 
obtain 

Pr {max ][Sk]l* >226 a(2")} < oo. 
n > l  k_-<2 ~ 

Theorem 4.1 follows now from the Borel-Cantelli lemma and the triangle 
inequality. 

5. Proof of Theorem 1.2 

We use the notation of Sect. 3. We apply Theorem 4.1 to the sequence {Zkj-Z~, 
j > l }  of independent identically distributed T-valued random variables. 
In view of (3.10), for each k >  104, setting to: = 6/k we obtain 

(5.1) lim sup a,-1 )1 ~ Z ~ i - Z f l  < 23 t/k a.s. 
n ~ c ~  j < n  

By (3.3) the sequence {AkXj, j>I  } satisfies the central limit theorem with 
limit measure #k" Next we infer that there is a sequence {Vkj, j > l  } of inde- 
pendent identically distributed random variables having the same distribution 
as {AkX~,j>I } and a sequence {I/Vka.,j> 1} of independent identically distrib- 
uted random variables with common distribution #k such that as n--+ oo 

(5.2) [J ~ Vkj- Wkjf] =o(a,)  a.s. 
j<=n 

Existence of such ~j ,  Wkj follows from Corollary 1 of [52]. We take the 
opportunity to make a few corrections and remarks on [52]. In checking the 
proof of Corollary 1 [-52], the reader can omit the beginning of Sect. 3 through 
the end of Subsection 3.1 since we can set I-[ =identity, ~ = x  v. 

s 
In [52, (3.22)] set Hk=(tk, tk+l]. On p. 179, line 4, p. 172 refers to Hartman 

and Wintner (1941). Both ~n~ in (3.2.16) and ~*,~ in (3.2.17) should be ~t . . . .  and 
in the next display #,a k should be #~k+ c In (3.2.20) 1/2 should be 1/8 and in the 
next display "(2" should be "2(". In the proof of Lemma 3.7 [52], last line of 
display, the exponent on ~ should be -1 /4 .  On p. 285, l ine9 replace 
"Kolmogorov's  existence theorem" by "Lemma A1 of" [4]. On the right side 
of (3.3.6) replace c~ by 5c~. At the beginning of the proof of Lemma 3.8 1-52] 
insert: "We may assume without loss of generality E [Ix 1 I]2< 1/4. Redefine e(v) 
and 2(v) in terms of rlx~rl rather than 1~1." Below (3.4.2) add a factor 2 in the 
definition of c. 
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As a matter of fact Lemma 3.8 [52] is redundant as we shall demonstrate 
below when we prove (5.5). This completes our remarks on [52]. 

By the argument following relation (3.12) using Lemma 2.13 we can assume 
Wkj-Zkj (on some probability space). Then (5.1) and (5.2) imply 

(5.3) l imsup aL -1 II ~ g~j-Z~[I <231/k a.s. 
n~o~ j < n  

Again the sequence {Zj, j > I }  may depend on k. We again use Major's 
idea to construct a universal sequence {Yj, j > I } .  We choose k=k(p)=2 ;+6 
and obtain for each p =  1, 2 . . . .  two sequences of independent identically dis- 
tributed random variables, say {V~ (v), j > l } ,  {Z} v), j > l }  with the following 
properties: 

Vj(V)--Vk(p)j,j>=l, ~f((Z}P),j>=I}=~f((Zj, j~ I} )  
and 

(5.4) l imsup II ~ gj(o)-. Zi (p) ,a,/=<2-p+z5 a.s. 
n ~  j<=n 

Moreover, we can assume without loss of generality that the V-sequences, 
considered as T~~ random variables, are independent and that the same 
is true for the Z-sequences. Using (5.4) we apply monotone convergence in 
order to obtain a sequence {s(p), p > 1} of integers with s(p)'[ oo such that 

Pr{ sup LI ~ (~ ~) / > -~+26~_ - Z j  .a.=2 ,<2  -p 
n>=s(v) j<n 

and thus by the Borel-Cantelli lemma 

(5.5) sup [I ~ V)P)-Z}P)II/an<2-P a.s. 
n>=s(P) j ~ n  

Next we apply Theorem4.1 to the sequences {Xj--Ak(p)Xj, j > I  } and ob- 
tain for p >  10 

(5.6) limsuplk ~ X~--Ak(p)XjlL*/a, <2-p+25 a.s. 
n~oo j<~rl 

and thus by the above argument, for a possibly larger sequence s(p)Too 

(5.7) sup N ~ xj--ak(p)Xjll*/a,~2 -p a.s. 
n>s(p) j < n  

We take s(p) large enough to satisfy both (5.5) and (5.7). We note that for each 
p > l  the sequences {Ak(p)Xj,j>l } and {V)P),j>I} have the same laws. Thus 
by Lemma2.11 we can assume without loss of generality that V)P)=Ak(v)X~, 
for each p, and that {Z}P),j>I} having the desired joint distribution with 
{Vj(P),j> 1} are all defined on the original probability space. 

Without loss of generality we can take s(q)>n3(q) as in (3.16). Let 
r(p):= ~ s(q), so that r(p)>s(p). Thus (5.5) and (5.7) remain valid if s(p) is re- 

q<p 

placed by r(p). Then define p(j) and Yj as in the proof of (3.19). By the remarks 



R.M. Dudley and W. Philipp 533 

in the preceding paragraph 

(5.8) Ao(j) Xj  = VSP), Yj = Z} p) if r(p) <j < r(p + 1). 

By (3.19) and (3.20) there exists a subsequence {p(t), t >  0} such that 

(5.9) ql 2 X j -  Yfll*=o(r(p(~)) 1/2) a.s. 
j<r(p(t)) 

We finally show that the sequence {Yj, j >  1} has the desired properties. Let 
n be given and find t such that r(p(O)<n<r(p(t+l)). Next find h such that 
r(p(t)+h)<n<r(p(t)+h+l). Then by (5.8) 

IIZ xj-~LI*<=H F~ x~-~ll* 
j~-n j<r(p(r)) 

p(t)<=p<p(t)+h r(p)<j<=r(p+ l) 

+ 2 II Z A~(.) x j -  ~ll 
p(t)<=p<p(t)+h r(p)<j<=r(p+ l) 

+ sup It ~ Xs--Aav(O+h)Xfll* 
n>=m>r(p(t)+M j<_m 

+ sup I} ~ Aap(r)+h)Xj--Z}P(~)+h)]l 
n>m>r(p(t)+h) j<m 

+ [I ~ Xj--Ak(p(O+h)XjI l* 
j <=r(p(t) + h) 

+ll F~ A v 7(~(,)+h) k(p(t)+h) ~ j - - ~ j  
j <r(p(t) + h) 

< II ~ x j -  Yjll* 
j<=r(pq)) 

+2 y II Z x~-&(~)x/l* 
p(t)<p<=p(t)+h j<=r(p) 

+ 2  Z [{ 2 Z}P)-Ak(p)X)II  
p(t)<=p<=p(t)+h j_-<r(p) 

+ sup II ~ Xj--Aapm+h)X/l* 
n>m>r(p(t)+h) j<m 

+ sup  II 2 Z)P(t)+h)--Ak(p(t)+h)XjH" 
n>m>r(p(t)+h) j<m 

We divide the inequality by a, and take the limes superior as n--+ ~ .  By (5.9) 
the first term on the right side of the last inequality tends to 0. The lim sup of 
the last two terms is ~ l i m s u p 2  -p(~ by (5.7) and (5.5). Similarly the limsup 
of the second and third term is 

Thus 

lim sup ~ 2 -  v ~ lim sup 2-P(~ = 0. 
p(t)<p<p(Q+h 

Ib ~ Xa- Yfll*=o(a,) a.s. 
j<=n 
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6. Improvement of the Error Term 

In this section we improve the error term in Theorem 1.2 under two additional 
sets of hypotheses, thereby giving a partial extension of Theorem 1.1 of [47]. 
This theorem can be completely extended to conform with the underlying 
theme of the present paper. But we refrain from carrying out this program 
since we do not have reasonable applications for this more general theorem. 

Theorem6.1. Let {Xj, j > I }  be a sequence of independent identically formed 
random elements with values in (S, l[" ll). Suppose that E IIXlll*2+~ o0 for some 
0 < g~ << 1. Let {Am, m > 1} be a sequence of mappings as described in Theorem 1.1 
having the following additional properties. 

(6.1) The Am are linear maps with sup 1[Atoll < GO. 
m > l  

I f  in condition (1.5) 

(6.2) n o(m) < C 1 roD, m > 1 

and if 

(6.3) dimAmS<Caexp(CzmB),  m > l  

for some constants Ci> 1 (i = 1, 2, 3), D > 2 and fi > 0 then the error term in (1.11) 
can be improved to (9(nl/2(log n) -~ for any 0 <  1/(2 fi). 

If, instead of (6.3) 

(6.4) dim A,n S < C 4 m ~ 

for some C4, 7>1  then the error term in (1.11) can be improved to (9(n ~/2~) 
where ~t = ~:2/(600 7), ~ = rain(6, 4/(D - 2)). 

The proof of Theorem 6.1 follows a by now well-established method [33, 
[44, Theorem 2], [54-1, [47, Theorem 1.1-1, [2-1, [10, Theorem 2], etc. In all of 
these papers explicit bounds on the probabilities of errors easily could have 
been established, by collecting the relevant probability bounds before the 
Borel-Cantelli lemma is applied. In the case of our Theorem6.1 the corre- 
sponding result is as follows. 

Theorem 6.2. Assume that the hypotheses of Theorem 6.1 hold. I f  (6.3) holds then 
one can choose the sequence {Yj, j > I }  such that for any 0<l / (2f l )  and any 
constant B < o9 

Pr {max II ~ X j - Y~ II * > n 1/2 (log n)- 0} ~ (log n)- B. 
m<=n j ~ r n  

I f  however, condition (6.4) holds then with Z=x//(6007) the sequence {Yi, j >  1} 
can be chosen so that for some constant H < oo 

Pr {max [I ~ X j -  Yj[I* ~ Hnl /2-z}  ~ n-~/2s. 
m<= n j ~ m  
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Theorem 6.1 is an immediate  consequence of  Theorem 6.2. If (6.3) holds we 
let n = 2  k+ t and applying the Borel-Cantell i  l emma we obtain 

max II ~ X j - Y j l I ~ 2  k/zk-~ a.s. 
2k<m<= 2k+I j<m 

since we can choose B = 2 .  Similarly, if (6.4) holds we let n = k  ~ with p=[56/~c],  
instead. 

Hence it remains to prove Theorem 6.2. Since ~c<3, EF2+~< oc. So we may 
replace 6 by ~ and assume in the proofs that ~c=c~, i.e. that D < 2 + 4 / 6  in (6.2). 
Then, let c~:=6~/7. The hypotheses made so far all hold with ~ in place of c~: 
EF 2 + ~ < o9 and D =< 2 + 4/c~. In the conclusion under  (6.4), 2: = 62/(6007) < c~z/( 4007). 
In Theorem 6.2 we can and will take B > 1. 

We can assume without  loss of generality 

(6.5) 106 C~(1 + sup IIA,,II)]IF[12+o<~. 
m > l  

Let 

and 

V2,,: = V~(m) :=Xj -AmXj ,  m,j>= 1 

(6.6) Vj~ ." = Vj,, 1 {[I X~ [[* <=jl/(2 + ~)}: = V/fin) 

Vj,~ :=  Vim -- Vj~= Vim 1 {[[XjII* >jl/(2 +~)}. 

L e m m a  6.1. Let m > 1 0  '~. Then for all n> C a m 2 + 4/~ and s > O 

Pr ~ > 2 n l / a / m  < 1 0  -3. 
k l l j = s +  1 

Pro@ We have by Lemma  2.5, (6.5) and (6.6) for all n>rn 2+4/~ and s > 0  

Pr  >- ni/2/m 
j= 1 

} < Pr '/~ IP* > nl/2/m 
k j = s + l  

s + n  

<n-~/2rn ~ E {IIVj~Ir* I {JIXfl*>jl/(2+~)}} 
j = s + l  

s-~n 

<n re(l+ IIA II)2+ .E I/X1H 
j = s + l  

< 10-  s mn-~/(4+2~) <= 10- 5 

The lemma follows now from (6.6), (1.5) and the stat ionari ty of Vj,,. 

Lemm a  6.2. Let m>104.  Then for all n>=m 14+16/~ and s>O 

VL* = E < 500 n/m z. 
j = s + l  
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Pro@ Write S'.= ~ Vj+~, m. Then by Lemma 6.1 we have for all O<i<j<n 
j = l  

(6.7) Pr { Ils)- s',ll* > 2  nl/Z/m} < 10 -3 

if j -  i>  C 1 m2 + 4/a. But if j -  i < C 1 m2 + 4/~ we have by (6.5), (6.6) and Markov's 
inequality for n > m 6 + s/~ 

Pr {llX~- X',ll* ~ nl/2/m} <=m n- 1/2 C1 m2 +4 /a (1  q._ HAmI/)" E IIX 1 [1" ~ 10- 3. 

Thus (6.7) holds for all n>=m6+S/L We now follow the proof of Lemma 3.1 with 
S, replaced by S', and c~= 1/m. Then by the proof of (3.25) we have for all 
n > m t 4 + 16/a ( = m 2 " m 2  (6 + 8/c~) > m 2 . 1 0  6 m 2 (6 + 8/a) E II X l  II * 2 by (6.5) and since b < 1) 

(6.8) E[IS',ll*z<__n 4~me+ Pr{llXll[*>2?/2}dt ( 1 0 - z - 1 0 - 3 )  -1. 

The result follows now at once since the integral in (6.8) does not exceed 
E IIXlll*2+~ -2. 

From now on we assume that (6.3) holds. (The case (6.4) will be treated at 
the end of this section.) We put p = 1/(1 + fi)< 1 and take any ~ with 0 < ~< p. 
Then fi ~ < 1 - p. Let 

(6.9) 

(6.10) 

too.-=1 , mk :=m(k)..=k (, k> l, 

to :=0  , tk..=t(k):=[exp(kl-Q], k > l 

and 

(6.11) nk :=n(k):=tk+ 1-tk  ~cOnst. tkk-C 

Let Hk. '=H(k) :={j :  tk<j<tk+l} ={tk+ 1 . . . .  ,tk+l}. 

Proposition 6.1. For any B < oo there is a C= C6.1(B) such that as k--, oe 

Pr {11 ~ V;(m~)ll* > C(nkL2 tk)l/2/mk} ~ k-B. 
j~H(k) 

Proof. Let rk:= r(k):= m~ 4+ 16/~ and define new random elements 

r (k) 

G: = G(k) :=  F, 
j = l  

h = 1, 2, . . . , /k:=/(k):  = [nffrk], 
t(k4-1) 

Ul(k)+l := E b ' ( m k  )" 
j = r (k) + l(k) r (k) + 1 

Then we get using (6.6) and (6.9) 

(6.12) II Uh[I ~'~ fl/(2+~)- = Mk, l_<h_</k+l. ~,k~k+l 
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For  k large, m~_>_ 10 4 and by L e m m a  6.2, 

E [] Uh]1.2 <500  r kmk -2, 

and 

l <_h<_Ik, 

erl Y cT~ll*<=5oonU/m~. 
h<l(k) 

We apply now L emma  2.6 and the Remarks  after it to the sequence {Uh, h<=l~}, 
with M:=M> n:=Ik, "c:=T,. '=500rklkm~ -2 and K:=Kk:=~(nkL2tk)l/2/mk for a 
constant  { > (6000 B/(1 _p)),/2. 

Then for k large, E IIS, II* < K k < 3  "Cn/Mk, SO 

Pr(l[  
h<t(k) 

Uh 1[ * > Kk} < exp ( -- (K - E {[ S, 1[ *)2/(12 %)) 

< exp ( - ~2 L2 tk/6000) ~ exp ( -- B log k) = k -  B. 

Since Mk=O(Kk) as k ~ ,  the latter bound  still holds for 

of (6.12). 
Next, 

(6.13) Pr {Vj(mk)+ Vj(mk) for some j~H(k)} 

< ~ Pr{IIXI!I*>j 1/~2+~)} 
j>t(k) 

__<E IIx~ IJ *~+~ 1 { IIX~ II* > tU > ~ }  
_~E IIX1 II *2+6  t (~-0)/(2 + ~ ) k  < t ( a - a ) /3=  k = t k  J/21 ~ ;k -B"  

This completes the proof. 
Next  we set 

Uh, because 
h_-<t(k)+ 1 

(6.14) X}:=Xj 1 {IrXjll* =<jl/(2+~)}, 

Xj ' :=  Xj - Xj = Xj  1 {[I X i r] * >jl/(2 + ~)}. 

Lem ma  6.3. There is a constant C 5 such that for all s > 0 and n > 1 

E s~.__ Xj * <-_ C5 n 1/2. 
j=s4-1 

Proof. F r o m  (6.6) and L e m m a  6.2 with # = 10 4 we obtain 

j = s + l  1 j = s + l  
s q- ;'/ 

+ ~ E{IIA, Xj] I I{HXjl[*>j t/(z+~)} 
j = s + l  

s@n 
~ n l / 2 +  ~ IrA.HEIfXilI*2+~'j-(I+~/(2+~) ~n 1/2. 

j = s + l  

Note  that we also have used the fact that {A~,Xi,j>I } is a sequence of 
independent  identically distributed r andom vectors with mean  zero and finite 
second m omen t  (1.7). 
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Proposition6.2. For any B<oo  there is a C=C6.2(B)  large enough so that as 
k---~ oo 

Pr{max II ~, Xjll*>C(nkL2tk)t/2}~ k-B. 
n~H(k) t(k)<j<=n 

Proof. Using (6.13) it suffices to prove this for X} in place of Xj. Let 
S'n'.= ~, X). By (6.11) and Markov's inequality we have for all k 

j<n 

r r , max Pr { IlS.k+ 1)-&ll > 2 c 5 n~/2} < 1/2. 
naB(k) 

Hence by Lemma 2.7 we have for all k, and { > 2 m a x ( C  s, 12B/(1 __/)))1/2 

(6.16) Pr {max [IS' n -  S',(k)[[* >2 ~(n k L 2 tk) 1/2} 
nell(k)  

< 2 Pr {11S~ S't(k) }. = (k+ly-- II*>={(nkL2 tk) 1/2 

To estimate this last probability we apply Lemma2.6 to the sequence 
{Xj, jeHk}  with K = { ( n k L  2 t ~1/2 kJ , n = % = n  k and M=tl/(a+~)~k+, and for k large 
obtain the bound 

exp( -~2L2 tk /48)~k -B. Q.E.D. 

Let 0<8<1/4 .  For m>=6/e let {(Zmj, Z j ) , j > I  } be any sequence of inde- 
pendent random variables with 2'(Zmj , Zj)=pm~o,j> 1 (as defined in (3.6)). 

Proposition6.3. For any B <  c~ there is a C= C6.3(B ) large enough so that as 
k--* oQ 

Pr { IL ~ Zm(k)j-- Zj[[ > C(n k L 2 tk)J/2/mk} ~ k -B. 
jaN(k )  

Proof. By (3.10) we have for each m>6/~ 

Pr{ n-1/a H ~ Zmn--Zjl] >e} < e <  1/4. 
j<_n 

Hence by the Fernique-Landau-Shepp inequality [19, p. 1699] 

Pr { ~ [[ Zmj - Zj L[ > t/e n 1/2} <= exp( - t/2/24) 
j < n  

for any r l>l .  Putting n=nk, ~=6/m k and t l = ( 2 4 B ( 1 - p ) - l L 2 t k )  1/a we obtain 
the result. 

Next, let F k := 5('(n[ i/2 ~ Am(k ) X j) and 
j e l l ( k )  

Gk:= ~ ( n f  1/2 ~ Z,~(k)j)= Y(Zm(k)l)=Pm(k) �9 
j~If(k)  
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Then by Lemma 2.12, (6.3), (6.9), (6.10) and (6.11) we obtain for the Prohorov 
distance 

(6.17) rC(Fk, Gk) ~ n~ ~/9 exp(~ C 2 m~) ~ n~ -~/1~ 

i.e. for some constant C6, 

~(Fk, Gk)< C6 n-~/l~ , k>_O._ 

Let ~.-=Lm(k)S. Then by a classic theorem of Strassen (1965) there is a law 
Jk on ~ x ~ with marginals F k and G k on ~ such that 

J k { ( x , Y ) :  ][x-YII>C6n[C~/I~ k , k>_O._ 

Thus by Lemma 2.13 applied to X = ~  n(k), Y = Z = ~ ,  there are independent ~ -  
valued random variables Xk~ , j = l  . . . .  ,nk, all with law ,~(Xkj)--~CP(Am(k)X1), 
and a random variable F k with law G k such that 

n(k) l] ") 
Pr F k -  n;-t/2 j--~l Xkj > C6 nk~/ l~  < C6 n~ / l~  

Now we apply Lemma 2.13 to X--Y'-"(k)-- k , Y = ~ ,  and Z = ( ~  x T) "(k) to obtain, 
for each k>0,  independent random variables (Fkj , Wkj)E ~ X T, j =  1, ..., nk, each 
with law #m(k)~ (as in (3.6)), so that each Fki has the Gaussian law Gk=#m(k)) 
and such that 

(" [1 n(k) 
(6.18) Pr ~n;-1/2[I ~ Fkj - -Xk j  > C6 g /ka / l~  S C6///kCt/l~ 

I ~[j= 1 

(The above two applications of Lemma 2.13 could be replaced by one appli- 
cation of the generalized Vorob'ev theorem: Shortt, 1982, Theorem 2.6.) 

Now we take the countable product of the laws 

cf { ( Xki, Pkj, Wkj) : j = 1, ..., nk}k~ o 

on the Polish space 1-[ ( ~  x ~ x T) "(k) to obtain a joint law for all these 
k=>O 

random variables; they are independent for different values of k. 
The law of {Xkj}k>o,j= ~ ...... (k) equals that of 

{Am(k) Xj+t(k)}k>- O,j= i .. . . . .  (k)" 

So by Lemma 2.11 we may in fact take 

(6.19) Xkj =-- Am(k) X j+t(k) 

and define (Fkj, Wkj ) on the original probability space ~. Then we define 

(6.20) Yj:=Wk,j_t(k) for tk<j<tk+~,  k>O. 



(6.23) 

We have 
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Thus Yj are independent and identically distributed with law #oo on T as 
desired. Then as M ~  oo we let/~:= [M 1/2] and estimate 

max I[ ~ x j -  ~ll* 
t(M)<n<=t(M+l) j~n 

__<max[[ ~, x j l [*+max / I  ~ Yj[[ 
n~H(m) t(M)<j<__n nell(m) t(M)<j<=n 

+ Y', I] ~ V~r--Wkrll+ F, II Y, Xi-A~<k)X/IL* 
,a<__k<M r<n(k) #<-_k<M jell(k) 

+ Y~ II Y, X k r - ~ l l +  Z IIX?I*+IIY~II 
t~<k<M r<=n(k) j<=t(~t) 

:=A 1 -}-A 2 + A  3 q-A 4 + A  s + A  6, 

say, using (6.19) and (6.20), with 1 < r = j - t  k. We will prove that for 1 < B <  o% 
0<1/(2fi), and i=1,2,  ...,6, as M-~oo 

(6.21) Pr {A i > t~t 2 (LtM)- o} ~ M -  B. 

For i=  1, Proposition 6.2 gives for C <  C6.2(B ) 

Pr {A 1 > C(n M L 2 tM) 1/2} ~ m - " .  

Now for 0 < ,co < p/2(1 - p) = 1/(2 fl), 

(6.22) (nML 2 tM) 1/2 ~( t  M M -~ LM) 1/2 ~ t~12(LtM) -~~ 

This implies (6.21) for i=  1. 
Since Yj are Gaussian, the Landau-Shepp-Fernique inequality ([19J, [20], 

or [48]) implies E IIY1H3< oo. Thus, replacing Xj by Yj in Prop. 6.2 and its 
proof, we obtain (6.21) for i=  2. 

For i=3,  Proposition 6.3 gives, for C >  C6.3(2B+ 1), 

Pr { II ~ rkr-- Wkr II > C(n~ L2 tO~/i/mA < k- 2,- ~. 
r < n(k) 

(n k L 2 tk)l/2/mk ~ ~, exp(k 1-0/2) k -~-0/2 Lk 
k<M M/2<k<=M 

exp(M 1-~ M -~ + o/2 LM 

,~ t ~ a ( L t M ) ( - ~  + o/2)/(1 -o)  L2  tM" 

For O<q)<l/(2f i )=p/2(1-p) ,  
( - (  + p / 2 ) / ( 1 - p ) < - ~ o < - O .  Then 

(6.24) 

and ( close enough to p, we have 

Z (n k 1/2 1/2 -~o L2tk) /mk4tM (LtM) , 
k<M 

and 

(6.25) ~" k - : n - 1  < ( # -  1 ) - 2 ~ r  -B. 
k__># 
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Thus (6.21) holds for i=  3. 
For i=4,  Proposition 6.1 gives, for C >  C6.~(2B+ 1), 

Pr{][ ~ Xj--Am(k) Xjll* ~ C(nkL 2 tk)l/2/mk} ~ k  -2/3-1.  
jell(k) 

Then by (6.24) and (6.25), we have (6.21) also for i=4. 
For A s we use (6.18) and note that 

2 n~ 5 - e)/lO .~ M n(M 5 -a)/lO ,~ n(~o --a)/20 
k<M 

t~2(log tM) -e, q~ < 1/(2 fi), 

while 

541 

and 

Pr{max II ~ XiI I*>C(GLtk) I /2}~  k-l~ 
nell(k) t(k)<j<=n 

Proof. Wherever L 2 t k appeared in the (6.3) case we put Lt  k in the (6.4) case. 
Our choice of p in (6.26) implies 

14 + 16/c~ + (p + 1)/(2 + c 0 < p / 2 -  1, 

so following the proof of Proposition6.1 we have Mk=o(Kk). If we take 
~ >~I(B) large enough, B =  10 7/e, we still get a bound k B from Lemma 2.6. In 

2 nf ~/1~ 2 k -2B- I~#-2B~M-B"  
k>=~u k>=u 

So (6.21) holds for i=  5. For i=  6, 

Pr{ ~ IIX~lr*+ FI Y[l_->n~ 3} =< Y~ g(llX~ll*+ I/g;l/)/n~ 3 
j<t(p.) j<t(#) 

t(#) nM 1/3 ~ M -B, 

while n~ 3 ~ t~Z(Ltivt)-% 0 < (p < 1/(2 fl), so (6.21) holds for i=  6. 
As M ~ o ~ ,  tM<n<tM+ 1 implies n,~t M and l o g n ~ M  I-p, so M -B 

~(log n) -B. Again letting 0T1/(2 fi) gives Theorem 6.2 in the (6.3) case. 
If instead of (6.3), condition (6.4) holds, then instead of (6.9), (6.10) and 

(6.11) we define, for p:=1897/cd, 

(6.26) rG:=k,  n k : =  [k p] and tk:= 2 nj. 
j<k 

Then tk~kP+~/(p+ 1) as k ~  oo. Other definitions in terms of these remain the 
same. In place of Props. 6.1 and 6.2 we now will have 

Proposition 6.4. There is a C = C6. 4 large enough so that as k ~  oo 

Pr {ll ~ ~(mk) ll* > C(nk Ltk) 1/2} ~ k -  lo~/~ 
jell(k) 
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the last terms of (6.13) we now get t~o/21~k -1~ The proof of Proposi- 
tion 6.2 adapts likewise. Q.E.D. 

Next, in Proposition 6.3 we (as always) replace L 2 t k by Lt k. In its proof we 
need only replace t /by  5(BLtk) 1/2. 

Then Lemma 2.12, (6.4) and (6.26) give, in place of (6.17), 

(6.27) 1Z( Fk, Gk) ,~ rl~ ~ k '.7/3 ~ k - g 

where R:=(c~p-27)/9>1, so rt(F k,Gk)<CTk -R for some constant C 7. The 
latter bound replaces C 6 nF ~'/1~ everywhere; specifically, in place of (6.18) we 
have 

The proof then runs unchanged until (6.21) except that we redefine/l:= [M4/9]. 
In place of (6.21) it will be shown that for some constants Di, 

(6.29) 

We first note that 

(6.30) 

Pr {A i > D i tM ;~+ 1/2} ~ M -  8 ~/~. 

p/2 < 0 § 1) (�89 ,~t. 

Then letting D 1 = Cs. 4 and applying Proposition 6.4 (latter half) gives (6.29) for 
i=  1. As in the (6.3) case, the proof of Propositions 6.2 and 6.4 adapts to Y1 in 
place of Xj to give D 2 for which (6.29) holds, i = 2. For i = 3, 

(6.31) ~ (nkLtk)l/2/rnk ~ ~ k-I+'/2Lk~MO/2LM4~tM ~+1/2 
k<M k<M 

by (6.30) again. Since 2 <  1/6, using Proposition 6.3 as adapted (L in place of 
L2) gives a D 3 large enough such that, noting 

(6.32) ~ k - s /~- l~ /z -3B,~M -B, 
k># 

we obtain (6.29) for i=3.  The case i = 4  follows likewise, using Prop. 6.4 (first 
half). 

For i=  5 we use (6.28). Then 

2 hi/2 k-" ~ y~ k -R+~/2 ~ M 1-R+~/2 ~ t,~+ ~/2 
k<M k<M 

since 1 + p 2 < R. Also, 

k>=# 

giving (6.29) for i=5.  For i=6,  Markov's inequality gives for D 6 : = l  
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Pr{ ItX)rl*+ [Igjll ~tM ~+~/2} 
j ~ t (,a) 

< ~ E(tlX)I]*+HY/I)t~M -~/2 
j<=t(~) 

tu t~t- 1/2 ~ M ( p +  1)(2-1/18) ~ M -  lo~/~ 

and (6.29) follows for i = 6. Now tu  < n < t i +  ~ implies 

M - s ~/~ ~ tM s ~/(~(p + 1)) <~ n - 5/2 8. 

Setting H : = ~  D i we obtain Theorem 6.2 in the (6.4) case. Q.E.D. 
i<6 

Remarks. In the above proof, the large size of p in the (6.4) case was primarily 
used in the proof of Proposition 6.4 (first display). Once p is large, then to 
satisfy (6.30),)[ must be small. Since we suspect that the result is far from best 
possible we did not seek the largest possible ~o using our methods. 

7. Application to Empirical Processes 

In this section Theorems 6.1 and 6.2 will be applied to empirical processes, 
giving speeds of convergence in Theorem 1.3 uniformly over suitable families 
~r of functions. Our rates of convergence, proved in some generality, are 
relatively slow, but are sufficient to imply, for example, some "upper and lower 
class" results (cf. Corollary 4 of [44]). On the other hand for special classes of 
functions on, or sets in, Euclidean spaces, defined by differentiability con- 
ditions, and under some more or less severe restrictions on the underlying 
probability laws, much faster rates have been obtained (R6v6sz, 1976; Ibero, 
1979a, b). 

For a collection c~ of sets we take J = { 1 B : B ~  }. Let (A , s r  be a 
probability space. First, under hypotheses on logNt, the metric entropy with 
inclusion, stronger than (1.23), here are rates of convergence in Theorem 1.5. 

Theorem 7.1. Let  cg be a collection of  measurable sets with log Ni(x, cg, p ) < c x - ~ ,  
x>O,  for  some constants c>O and O < z < l .  Then for  any H < c o  and 
0<(1-v)/(4z),  we can choose Yj in Theorem 1.3 to improve (1.28) to 

(7.1) Pr* {n- 1/2 max sup [ ~ 1B(X) -- P (B) - Yj(1B) I > (log n)-0} ~ (log n)-n, 
k<-- n B~C~ j<k  

and for some measurable U,, almost surely 

(7.2) sup l ~  1B(X))--P(B)- Yj(1B) I < U, = o(nl/Z(log n)- ~ 
B~Cg j<=n 

Proof  Given re> l ,  let e=l / (3m) .  In the proof of Theorem 5.1 of [12], to 
satisfy (5.2) and (5.3) there we can set c~=~'=c 1 e 2/(1-~ for a small enough c 1 
=c~(% c)>0. We have (5.4) as corrected, i.e. 

~, (2 -~ log NI(2-~)) ~/2 < ~/96, 
i>u 
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if 2-" <c z e 2/(1-~) for some c 2 == C2('[" , C). There is a constant K = K ( z )  such that 

exp(--Ke-2*/(1-~))<E/200, 0 < e < l .  

Then there is a c3(z)<min(el(z), c2('c)) small enough so that for all j > 0 ,  

2 j > c 3 (z) K (z) 90000 + 1) s. 

Then both (5.4) and (5.5) of [12] hold if 2-U<c3(z)e 2/(1-~). Thus we can take 
60:=2-" for the least such u. Then 

n 0 ( E  ) > ,S- (2  + 2 z)/(1 - z) C3 ('C) - 2/256 >= n o (e)/4. 

We then obtain (1.15) above with its e replaced by 1/m and 62 
=6o>c3(~)(3m)-2/(1-~)/2, according to [12, p. 917, l ine2] with its e corrected 
to 3e=  1/m. Then in the proof of Theorem 1.3 above we can let 

dim A m S = N I (60) < exp (c 6 o ~) < exp (c 4 (z) m 2 ~/<1 - r)) 

for some c4(z)>0, and no(m)<cs(z ) m (2+2~)/(1-~) for some cs(z)>0. 
So condition (6.3) holds with f l = 2 z / ( 1 - z )  and (6.2) holds with D = 2  

( l+z ) / ( 1 - z ) .  Thus Theorem 6.2 applies with 0 as stated. Q.E.D. 

Corollary 7.2. Let P on IR 2 have a bounded density with respect to the Lebesgue 
measure and let cg=cg(U) be the collection of all convex subsets of a bounded 
open set U ~ ] R  2. Then for any 0<1/4  and H<oo we can choose Yj in Theorem 
1.5 such that (7.1) and (7.2) hold. 

Proof. We can apply Theorem 7.1 with z = l / 2  according to Brongtein 
(1976). [] 

In IR 3, Theorem 1.5 does not hold for the convex sets [13]. 
Let a(k, ~, M) be the collection of compact subsets of Nk with boundaries 

defined by functions with all partial derivatives of orders <c~ bounded by M, 
as defined in [11, with Correction] or [12, p. 917]. 

Corollary 7.3. For P with bounded support and bounded density with respect to 
Lebesgue measure on IR k, k > l ,  if ~ > k - 1  then for any r > ( k - 1 ) / e ,  
0. '=(1- r ) / (4r )  and H <  0% (7.1) and (7.2) hold for cg=J(k, c~, M), M <  co. 

Proof. We may assume r < l .  Then Theorem 7.1 applies to any z such that 
( k -1 ) / c ~ <~ <r<l  [11] and the rest follows. [] 

Remark. R6v6sz (1976) obtained in Corollary 7.3, if k=c~=2, for regions with 
1-1 boundary curves, if P is the uniform measure on the unit square or has a 
sufficiently regular density, (7.2) with (9(n1/2(logn)-~ replaced by ~(r112/25), a 
much better result in that case. We suppose that for such P, R6v6sz' method 
would also yield (9(n 12/25) in (7.2) for the convex sets as in Corollary 7.2. But 
we do not see how to extend R6v6sz' construction to the generality of Theo- 
rem 7.1. 

Next, for Vapnik-Cervonenkis classes of sets (mentioned late in Sect. 1 
above) we do need [16] some measurability condition, such as the following 
[15]. 
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Given a probability space (A, ~ ,  P) and ~ c sr we say cg is image Pe-Suslin 
iff there is a measurable space (W, 5 0 and a map G of W onto ~r such that: 

1) {(x, w>: xeG(w)} is d x 5~-measurable; 
2) for the pseudo-metric de(B , C)=P(BAC) and any de-open set UcCg, 

G-I(U)eS~ 
3) (W, 50 is Suslin, i.e. for some Polish space V there is a map H of V onto 

Wwith H-I(B) Borel measurable for all B ~  Also, (A, d )  is Suslin. 

Theorem 7.4. Suppose (A, d,  P) is a probability space, oK=d, V(Cg)< ~ and cg is 
image P~-Suslin. Then for any 2< 1/(2700 V(C~)) 

(7.3) Pr* {n- i/2 max sup I ~ 1B(xj)--P(B)--~(1B)l>n-X}~n-I/5~ 
k < n  B e ~  j<=k 

and for some measurable Un, almost surely 

(7.4) sup l ~ 18(x j) -P(B)  - Y~(I~)I < U, = (9(n~/2-~). 
B ~  j<--n 

Proof. Examination of the proof of [12, Theorem 7.1, Correction] (clarified in 
[15]) shows that given e>0  we can take the ~ there to satisfy, for a small 
enough constant c > 0, 

(7.5) c~=ce2/lln~l 

(specifically see [12, Correction, p. 909, last display]). By the last two lines of 
the proof of [12, Theorem 7.1], we have for n>=no(C5 ) large enough 

Pr {sup {Iv,(B\ C)l: B, CECg, P ( B \  C) < c5} > 6e} < e. 

Then in the proof of Theorem 1.3 above, replacing ~2 in (1.15) by 6 and taking 
m=6/e, we apply [12, Lemma 7.13] to obtain a linear mapping A,, onto a 
subspace of dimension ~c5 -~ for any w> V(Cg). Thus by (7.5) we have dimAmS 
~e-2w for each w>V(~).  So in (6.4) we can take any 7>2V(Cg). In the 
hypothesis of Theorem 6.1 we have c5 = 1. 

In the proof of [12, Theorem 7.1] we must take n>max(no(6), nl(e)) where 
for e small it suffices to take no(6)>6 -~ for any r > 8  and n~(e)>e-" for r>2,  
so (6.2) holds for any D>8.  Thus the conclusions of Theorems 6.1 and 6.2 in 
the (6.4) case hold for any ~c<2/3, so for 2<l/(2700V(g)) and 
tc/28 < 1/42. Q.E.D. 

Remarks. Let (A, sO, P) be the unit interval with Lebesgue measure and let c~ k 
be the collection of all unions of at most k intervals. Then V(~fk)=2k+ 1. Yet 
from Koml6s, Major and Tusnfidy (1975, Theorem 4) one can get (7.4) with 
(9(n "s-x) replaced by (9(logn) 2, for any P. So this rate holds for nontrivial 
classes with arbitrarily large V(~). It is not known, in fact, whether it or even 
the rate (9(19gn) may hold for arbitrary Vapnik-Cervonenkis classes. R6vdsz 
(1976, Lemma 12) considers the class P(x, 1) of polygons with at most ~c sides 
where P is uniform on the unit square in IR 2 or has a regular enough density, 
and obtains (7.4) with (n '5-z) replaced by (9(n 3/8 log 2 n), which although much 
better than our rate, depends on the specific assumptions made on P and is 
much slower than the Komlds-Major-Tusnfidy rate. 
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To obtain empirical distribution functions one just takes the collection (g of 
all sets B x c IRk where 

Bx= {y: y j<xj ,  j = l ,  ..., k}, x~lR k. 

Here V(Cg)=k+l [63, Proposition 2.3], so that Theorem 7.4 improves some- 
what on Theorem 1 of Philipp and Pinzur (1980), again for arbitrary P (for P 
e.g. uniform on the unit cube, R6v6sz [58] obtains a much smaller error term 
even over a much larger collection cg of sets). 

Given a set J ~ Y 2 ( A ,  d ,  P) of functions, and e>0,  let Ni(e , J ,  P) be the 
smallest m such that for some f l ,  "",fm~ff2( A, ~r for all f ~  there are 
i , j<m with f ~ < f < f j  and ~ f j - f l d P < e .  Then logNi(e, J ,  P) has been called a 
metric entropy with bracketing [-14]. 

Suppose that for some Fe2/~z, If[ < F  for all f ~ .  In [-14] it is shown that if 
FESfP for some p > 2  and logNi(e , J ,P)=(9(e  -r) for some r < l - 2 / p  as 850, 
then (1.14) and (1.15) hold. For this, or any such future result under weaker 
conditions on p and r, one can again obtain invariance principles (1.18) or 
(1.19) without needing further measurability conditions on the class J .  For 
such classes, the proof in [14] gives dimensions too large for our Theorems 6.1 
and 6.2 to apply. 

Pollard [56b] shows that if ( g c ~  is a countable Vapnik-Cervonenkis 
class, F E ~ 2 ( A , d , P ) ,  and J={F1B:B~C6},  then (1.14) and (1.15) hold for J .  
Thus Theorem 1.3 applies to give either (1.18) or (1.19). 

We end this section with an application to weighted empirical distribution 
functions, which improves somewhat on one direction of results of O'Reilly 
(1974, Theorem 2), James (1975), and Goodman, Kuelbs and Zinn (1981, Theo- 
rem 6.1). 

Theorem 7.5. Let {W~,j>I} be a sequence of independent random variables with 
uniform distribution on [0, 1]. Define 

X j=co(s ) ( l {Wj<s}-s ) ,  0 < s < l  

= 0 else, 

where co is a real function with the following properties: 

(i) co is continuous and positive on (0, 1) 
(ii) for some 7>0,  we have co is nonincreasing (nondecreasing) on (0, 7] 

( [1 -7 ,  1) respectively) 
(iii) For all ~ > 0 and i = 1, 2 

1 

s -1 exp(-e/ki(s))  ds< oo 
0 

where kl(s)=sco2(s) and k2(s)=sco2(1-s). 
(iv) We have 

0) 2 (s) /L~ d s  < o0. 
o 
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Then there exists a sequence {Yj, j > I }  of independent identically distributed 
C[0, 1]-valued Gaussian random variables, indexed by s~[0, 1], and with sample 

functions almost surely continuous (in s) such that 
(i)' EY,(s)=O, 0<s__<l, 

(ii)' E{YI(s ) Yl(t)}=co(s)co(t)s(1-t), 0 < s _ < t < l ,  

(iii)' n -1/a E{max sup [ ~  Xj(s ) -  Yj(s)]}---,0 
k<=n O_<s_<l j<=k 

or, instead of (iii)', for some measurable V n 

(iv)' sup [ ~  Xj(s ) -  Yj(S)]=~ V~=o((nLLn) 1/2) a.s. 
0_<s_<l j<_n 

Proof Under conditions (i), (ii) and (iii), O'Reilly (1974, Theorem 2) proves that 
the law of Z , : = (  ~ Xj)/n 1/2 c o n v e r g e s  to that of Y1 in the Polish space 

l<=j<=n 
D[0, 1] with Skorohod topology. By Skorohod's theorem [613 there exist U, 
with Y(Un)=S(Z , ) ,  n > l ,  S ( U o ) - - ~ ( Y  0 and Un-~U o a.s. for the Skorohod 
metric. Since the limit process has continuous sample functions, also Un~ U o 
for the sup norm. Now (f ,  g) -~sup]f  -g] is jointly measurable on D[0, 1] 
• since we can restrict the supremum to rational arguments. So 
s u p J U , - U o l ~ 0  a.s. and in probability. Since S(Uo) is tight on a Polish 
space C[0,1], for any m__>l there is a map A m of D[0,1] into C[0,13 with 
finite-dimensional range (consisting of piecewise linear functions with given 
vertices) such that 

Pr {sup I U o -Am Uol > 1/(3m)} < 1/(3m). 

For some n o we have for n>  n o 

Pr {sup [ U , -  Uo[ > 1/(3m)} < 1/(3m). 

Since the A m can be defined by interpolation and are linear we have 
suplAmfl<sup]  f] for all f e D [ 0 ,  1], so 

Pr {sup ]Am U,-Am U0l > 1/(3m)} < 1/(3m). 

Combining we have 

Pr {sup ]Am U, - U,[ > 1/m} < 1/m, 

and likewise for Z,,  i.e. we have the tightness condition (1.5). The other 
hypotheses in Theorem 1.1 are easily checked, so we obtain (iii)'. Now 
E [IX1 [12/L2 [IX11[ < oo is equivalent to (iv), assuming (i), (ii) and (iii): Goodman, 
Kuelbs and Zinn (1981, Lemma 6.2) give a proof, on which we have the 
following comments. 

In their statement of Theorem 2 of O'Reilly (1974), specifically in (6.3), kz(t ) 
should be tco2(1-t)  (or else in the k 2 case, t -a should be replaced by ( 1 - 0 - 1 ) .  
By (i), sup co(s)< oo. Next, sup sco(s)< oo by (iii) (ef. [23, Lemma 6.1]), and 

y=<s<l--7= O < s < 7  

likewise sup (1 - s) co(s) < ~ .  Thus integrability conditions for ][X~ ]] depend 
1 --y_<s< 1 
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only on what happens for W~<y or W , > l - 7 ;  by symmetry, we need only 
consider W~<?. Then sup{Xl(s): W~<s<7} is attained at s=W~ and equals 
co(W~) ( 1 -  W~). Since the suprema over other intervals are uniformly bounded 
as above and we can assume W1<7<1/3 here, E 11Xl[]2/L2 [IXll [ < ~ is equiva- 
lent to 

(7.6) E(co2 (Wl)/L2 co(q)) < ~ .  

Since co(t)~l/t  as t$0, (7.6) implies (iv). Conversely if (iv) holds, let x,=x(n)  
=sup {x<7:  co(x)>n}. If co(.) is bounded for x<7 ,  then (7.6) holds, so we can 
assume that the x, are all defined. Then x,$0. Now we have 

x(n) 
(7.7) 2 n 2 ~ dx/L2(1/x)< ctD 

n x ( n +  1) 

and (7.6) is equivalent to 

( 7 . 8 )  2 n2 (Xn -- Xn + 1)/L2 n < ~ .  
n 

To prove (7.8), first note that the sum of those terms such that x ,<2n  -4 
clearly converges. For the terms with x,+ 1 >x, /2 > n -4, note that for x,+ 1 <x,  
1/Lz(1/x)>l/L2(n4)~l /L2n as n--+~, so the sum of such terms in (7.8) also 
converges. Terms in (7.8) with Xn+l<Xn/2>n -4 are at most doubled if we 
replace x,+ 1 by x,/2, and then their sum converges as in the last case. So (7.8) 
and hence (7.6) are proved. Thus we can apply Theorem 1.2, completing the 
proof of Theorem 7.5. 

8. Necessity of Measurability in Separable Normed Spaces 

It is well known that, for example, the law of an empirical distribution 
function in D[0, 1] need not be defined on the Borel ~-algebra for the (non- 
separable) supremum norm. Thus results such as our Theorem 1.1 really need 
to allow non-measurability of the variables Xj. On the other hand we assumed 
in (1.6) that suitable finite-dimensional variables are measurable. We now 
clarify the roles of such assumptions by showing that in any separable Banach 
space, a weak central limit theorem (or afortiori, invariance principles such as 
ours) can only hold for measurable variables. The passage from one-dimen- 
sional to separable Banach spaces will be easy. First we have a one-dimen- 
sional result. 

We have the usual inner measure Pr . (B) :=sup(Pr (C) :  C~B}  and set 
f . :  = - ( ( - f ) * )  = ess. sup {g: g ~ f, g measurable}. 

Theorem 8.1. Let X,=h(x , ) ,  n= 1, 2, ..., where x~ are i.i.d, random variables with 
values in some measurable space A and h is any real-valued function (not 
assumed measurable) on A. Let S,.'= X 1 +.. .  + X, .  Suppose ~(Sn/n 1/2) ---+ N(0,  1) 
in the sense that for all t, 

lira Pr* (S,/n 1/2 < t) = lira Pr .  (S,/n 1/2 < t) = N(0, 1)(] - ~ ,  t]). 
n ~ o o  n~cx3 
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Then h is measurable for the completion of 2'(xl), so that X~ are measurable, 
EX i = 0 and EX 2 = 1. 

Proof It is classical that if h is measurable then EX i =0  and EX~ = 1 (Gne- 
denko and Kolmogorov, 1968, w Theorem4, p. 181). Suppose h is non- 
measurable for 5r 0, so that X,  are non-measurable, and consider 
X , ,  <X ,  =X~. 

Let B be the measurable set on which X ~ = + c ~ .  If P(B)>0 then P 
restricted to subsets of B must be non-atomic. We always have X ~ > - o o  
everywhere. For some numbers M "~+oo we have P ( X * < - M , ) < n  -3. Then 
P ( m i n X * < - M n ) = < n  -2. Then by the Borel-Cantelli lemma, almost surely for 

j<n 
n large enough Xj • > - M ,  for all j < n, so ~ {X*: X* <0} => - nM,. 

l<j<n 
On B define a measurable, finite valued Y, > 0 such that for n large enough 

P(Yl>=nM,+2n)>=n -1/2. Let Y , = X ~ - I  outside B. Define Y, from X~ for all n 
just as Y1 from X,.  Then 

P(max Yj>=nM, + 2n) > l - ( 1 -  n-1/2)'--+ l 
j<n 

rapidly as n--+oo, so almost surely for n large enough, there is a j=<n with 
Y~>=nM,+2n and thus ~ Yj>n. Since Yj<X* for all j,P*(Xj>Yj, j 

l<_j<=n 
= 1, ..., n)= 1 by independence and Lemma 2.3. Then P*(Sjnl/2>nl/2)--+l as 
n-+ c~, a contradition. Thus P(B)=0 and X* is finite valued a.s. 

Let Bj:=B(j):={Xj>Xj~-2-J}. Then P*(Bfl= 1, j = l ,  2, .... Let C,= ~ Bj. 
j - 1  

We apply Lemma2.3 to Pj:=Y'(x~) and fj:=lmj),  giving P*(C,)=I. On C,, 
S,<_X*_ + ... +X,* =S,< + 1. Thus 2~((X~ @.. .  ~- X*n)/n 1/2) ----> N(O, 1). Hence EX~ 
=0. Likewise EX1 ,=0 .  Thus X I , = X I = X ~  a.s., i.e. X 1 is completion 
measurable. Q.E.D. 

Corollary 8.2. Let S be any real vector space and X,=h(x , )  where x, are 
independent, identically distributed random variables with values in some measur- 
able space (A, sJ) and h is any function from A into S (not assumed measurable). 
Let F be a collection of linear functionals: S--*IR. Suppose that for each feF ,  the 
central limit theorem as in Theorem 8.1 holds for the f(h(xj)), with some limit law 
N(0, @), @>0.  Then each f o h, f eF ,  is measurable for the completion of 5~(Xl) 
on ~r 

Corollary 8.3. I f  S is a separable normed space, the hypotheses of Theorem 1.1 
imply that the Xj  are completion measurable for the Borel a-algebra on S. 

Proof Let F=S', the dual Banach space. The conclusion of Theorem 1.1 
implies the hypotheses of Corollary 8.2. Let J be the a-algebra of all subsets B 
of S such that h-l(B) is measurable for the completion of s on A. Then 
all elements of S' are J measurable. Since S is separable, J must contain all 
Borel sets. [] 

Corollary 8.4. I f  the hypotheses of Theorem 1.1 hold and H is a bounded linear 
operator from S into a separable Banach space, then the H(X~) must be measur- 
able for the completion of L~'(x,). 
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Added in Proof 

For a better proof of Theorem 8.1 and other improvements see R.M. DudIey, Ecole d'6t6 de 
probabilit6s de St.-Flour, 1982, Theorem 3.3.1, etc., Lecture Notes in Math. (to appear). 


