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Summary. Let a density f on R d be estimated by s  X 1, ..., X,) where 
x e R  e, f,, is a Borel measurable function of its arguments, and X1, ..., X,  are 
independent random vectors with common density f Let p >  1 be a con- 
stant. One of the main results of this note is that for every sequence f, ,  and 
for every positive number sequence a n satisfying lim an=0 , there exists an f 
such that 

E(~ If,(x) - f (x)]  p dx) > a, infinitely often. 

Here it suffices to look at all the f that are bounded by 2 and vanish 
outside [0, 1] e. For p = 1, f can always be restricted to the class of infinitely 
many times continuously differentiable densities with all derivatives ab- 
solutely bounded and absolutely integrable. 

1. Introduction 

Assume that one has to estimate a density f on R e from X1, ..., Xn, a sequence 
of independent random vectors with common density f A density estimate is a 
sequence (f,) of Borel measurable mappings: R a ( n + ~ R ;  for fixed n, f (x)  is 
estimated by f,~(x)=f,(x, X 1 . . . .  , X,). In this note, we take a look at the rate of 
convergence of E(~ ]f , (x)- f (x) lPdx) ( p > l )  for all density estimates. We could 
for instance inquire about the uniform rate of convergence over a suitable class 
of densities E, i.e. our criterion is 

sup g(~ ] f , ( x ) - f ( x ) ]  p dx) 
f~S 

o r  

sup E(~ [ fn(x) - f (x) [  ~ dx)/~fP(x)dx. 
j'E_~ 
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Most of the results known to date about the uniform rate of convergence are 
summarized in the work of Bretagnolle and Huber (1979). We will merely 
complement their results with a couple of interesting observations. 

Our main results concern the rate of convergence for individual f. If f ,  is 
given, and if a, ~ 0  is a sequence of positive numbers, can we find an f in S 
such that 

lim sup a21 E(S [f , (x)- f(x) f  dx)/SfP(x) dx > 1? 
n 

Notice that the same f is considered throughout the sequence. Perhaps the first 
result in this direction was proved by Boyd and Steele (1978): for any density 
estimate, there exists an f in E =  {all normal densities on R with zero mean} 
and a constant c(f)> 0 such that 

lim sup nE(y [ f,(x) - f (x)[  2 dx) > c(f). 
n 

We will see below that if ~ is slightly enlarged, then any slow rate of 
convergence to 0 can be achieved for E(y [f,(x)-f(x)[ z dx). The result of Boyd 
and Steele cannot be improved for normal density estimation: for example, 
when d = 1, f is normal (#, 0 -2) and f .  is normal (/2, 8 2) where/2, 8 2 are the usual 
sample-based estimates of # and 0.2, then 

lira P \~ (f,(x)-f(x)) 2 dx < 16]~-no- --F(x) 

where F is the distribution function of 4V+3U and V, U are independent chi- 
square random variables with one degree of freedom (see Maniya (1969) who 
also has a similar result for d >  1). Thus the rate predicted by Boyd and Steele 
can be achieved. 

For a discussion of the best possible rates of pointwise convergence of 
density estimates, we refer to the work of Farrell (1967, 1972), Wahba (1975) 
and Stone (1981). There is an extensive literature about the rates of con- 
vergence, both pointwise and global, for particular density estimates. The only 
estimate that we will refer to in this note is the kernel estimate 

n 

A(x) =(nhd,) -1 ~, K((x -X~)/hn), 
i = l  

where h, is a sequence of positive numbers, and K is a given density on R a. 
The pointwise convergence rate is studied by Wahba (1975) and Rosenblatt 
(1971), and its L 2 global convergence rate is investigated by Rosenblatt (1971), 
Nadaraya (1974), Bretagnolle and Huber (1979) (who also consider Lp con- 
vergence for p >  1) and others too numerous to mention here. For the L 1 rate 
of convergence, we refer to Abou-Jaoude (1977). 

The following classes of densities are important to us: 

G: all densities vanishing outside [0, 1] d and bounded by 2. 
G(g): all densities of the form 

i Pig(x+xl) 
i = 1  
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where g is an arbitrary fixed density with support contained in [0, 1] d, 
(Pl, P2, ...) is a probability vector, and xl ,  x 2 . . . .  are points in Na 
spread out well enough such that for all x g(x+xi)=0,  all i except 
possibly for one such i. [Note: If d = l  and g(x)=constant  

x exp x(15-x) on [0, 1], then every density in G(g) is infinitely many 

times continuously differentiable.] 
Lp: all densities on N d for which ~fP(x )dx  < oo. 

Theorem 1. Let f ,  be any density estimate, and let p > 1 be fixed. Let f eLp .  

(i) inf sup E(~ ]fn(x)-f(x)] p dx)/~fP(x) dx > 1/2 p- 1; 
n f ~ G ( g )  

inf sup E(~ I L (x ) - f (x ) l  p dx)/~ fP(x)  dx >= 1/2 p- 1. 
n f e O  

(ii) Let an--,0 be a sequence of positive numbers. 
Then 

sup lira sup a~- 1 E(~ I fn(x) - f (x ) l  p dx)/~fP(x) dx = oo 
f e G  n 

and 
sup lim sup a~ -1 E(~ IL(x) - f (x) l  dx)= ~ .  

f ~G(g) n 

Remark 1. (The optimality of  (ii)). For p=2,  result (ii) partially strengthens the 
theorem of Boyd and Steele (1979) mentioned earlier. It is also not vacuous 
because there are density estimates for which 

lim E(~ I fn(x) - f (x ) l  dx) = 0 (1) 
n 

for all f: for the histogram estimate, see Abou-Jaoude (1976); for the kernel 
estimate and recursive versions of it, see Devroye (1979); (1) is known to hold 
for the kernel estimate for all bounded K with integrable radial majorant and 
all f when 

lim hn + (nh~)- 1 = 0 
?1 

(Devroye and Wagner, 1979). Note that even for the small class G no mean- 
ingful rate of convergence result is possible. When p = 1, there exist densities 
in G(g) for any g, that yield an arbitrarily slow rate of convergence. In other 
words, tail conditions alone, or smoothness conditions alone do not suffice to 
study the L 1 rate of convergence for any density estimate. For the practitioner 
who uses nonparametric density estimates because he does not have enough 
information about f in the first place, result (ii) is disastrous. 

Remark 2. Result (ii) implies that G is too rich to study the Lp rate of 
convergence for any p >  1 and any density estimate, and that G(g) is too rich to 
do the same for the L1 rate of convergence. These results do not contradict the 
work of Bretagnolle and Huber (1979) who showed the following" for a 
suitable modification of the kernel estimate (i.e., h, is a carefully chosen 
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function of the data X 1 . . . .  , X. and the kernel K satisfies ~ K = I ,  ~xJK=O for 
all l< j<s ,  and ~ [xl~K< ov for some s > l )  and for p > l ,  d = l ,  

sup lim sup n sp/(2*+ 1)E(~ IL(x) - f (x) l  p dx)/D,p(f) < C~p (2) 
f(s)e f :  fELp n 

f compact support when 1 <p < 2 

where C~v > 0 is a constant depending upon s and p only, and 

D sp( f )  = (S If(~)(x)[ p d x) p/(zs + 1)(~ fp/2 (X ) dx)S~/(2s + 1). 

For 1 ~ p < 2 ,  they also require that K have compact support. 
Thus, the kernel estimate can achieve a certain rate of convergence for 

certain classes of densities: for example, for p=  1, the densities considered by 
Bretagnolle and Huber have compact support and have f(S)~Lp (any density in 
G(g) certainly satisfies the latter condition when g does). By our Theorem 1, 
the omission of one of their conditions will invalidate the result. For p=2,  
s >= 1, any density in G(g) will satisfy (2) when g(~)~Lp, g6Lp. Note however that 
Theorem l(ii) gives no information about G(g) when p > 1. 

Remark 3. (Uniform Rate of Convergence). Theorem l(i) implies that for all 
p>= 1, G and G(g) are too rich to study the uniform rate of convergence of any 
density estimate. This complements the following result of Bretagnolle and 
Huber (1979): let d =  1, and let D(p, s, c) be the class of all f on R for which 
f(~)6Lp, f6Lp(s > 1 is an integer) and for which D~p(f)=<c. Then for any density 
estimate 

> Cspc , p > l ,  
liminf nSp/~2s+ f~v(p,sups, c) E(~ I f~(x)- f  (x)lV dx) ;= C~pc-(Ze) -4 , p = l .  

Here Csp > 0 depends only upon s and p. 

Remark 4. Rosenblatt (1971) has shown that the kernel estimate satisfies, for 
d = l ,  

E(~ I f , (x) - / (x) ]  z d x ) ~ + ~  h 4 

as n~oo, h,~O, nh.~oo, K is bounded and symmetric and f belongs to the 
class F =  {all densities on I(  1 that are twice continuously differentiable and for 
which f is bounded, f2, f,,Z~Lp}" The constants are 

c~=~K2(x)dx, fl=(~xZK(x)dx)2~f"2(x)dx. 

Thus, taking h,=(o~/(fln)) 1Is gives the optimal L 2 rate 

E(~ I f , (x ) - f (x ) l  2 dx)-�88 4Is fll/5/n4/5. 

(See also Nadaraya (1974).) Yet, at the same time, for some f in F, 

1 
E( S I f~(x) -f(x) l dx) > ioglogloglog n 
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infinitely often (by Theorem 1). In other words, Rosenblatt's result (and most 
other L 2 results) gives us little information about how close f ,  is to f (and 
should certainly not be used to determine a good value for h,). The discrepancy 
between good L 2 rates and bad L1 rates is due to the fact that in L2, tails are 
less important. For the study of the Lx rate of kernel estimates, F is too rich. 
With additional tail conditions, it is easily seen that the optimal L 1 rate is 
13. 2/5 (Rosenblatt, 1979; see also remark 2). 

2. Proofs 

We will use two families of densities throughout the proofs section. 

Family 1. Let g be a density with support on [0, 1] d, and let gy(x)=g(x-y). Let 
be[0, 1] have binary expansion bo.blbzb 3 ..., and define the density f on R d 
parametrized by b as follows: 

f(b, x)= ~ Pig(2i, o ..... o)+(b~, 0 ..... 0)(x) 
i=1 

where (Pl, Pz, ...) is a fixed probability vector. Note that f is a density for each 
b, and that 

Family 2. Partition [0, 1] a into sets Ai, A'i, i=1,2 ,  ... where S dx= ~ dx=pi/2, 
A~ A~ 

and (pl, P2, --.) is a fixed probability vector. Let b be as for family 1, and define 
the density parametrized by b as follows: 

f(b, x)=2  ~ IbiAi+( I _bOAi(X) 
i=1 

where I is the indicator function. Clearly, feG. Also, ~ f ;  (b, x) dx = 2 p- 1, all p > 0. 

Proof of Theorem 1. For fixed be[0, 1], the density parametrized by b as in 
families 1 or 2 will be denoted by fb or fb(X), B is a uniform [0, 1] random 
variable; given B, let X,,  ..., X,  be independent random vectors with common 
density f , .  All the integrals that follow are with respect to dx. Let us define for 
family 1, 

Ci=((2i, O, ..., 0)+ [0, lJa)u((2i+ 1, 0, ..., 0)+ [0, 1] a) 

where " + "  is the translation operator on sets, and for family 2, Cf=AfwA'~. 

Let Ni = ~ Ic,(Xj) where I is the indicator function. Note that by construction 
j=l 

N = (N1, N2, ...) is independent of B. Let B', B" be random variables equal to B 
except in their i-th digits, where we force B'i = 0, B'[= 1. We have for all p > 1: 

sup E(~Is ~]f,--fBlv). (3) 
0-<b-<l i= Ci 
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On Nz=0, Bi and X1, ..., X, are conditionally independent. Thus, 

E(IN~_o ~ ]f,--fBIPIX1, . . . ,X,)  
Ci 

=E(IN,=OIB,=O S If"--NB'lP+INi=OIB~ =1 ~ If"--f~"lP]Xl ' . . . ,X,)  
Ci Ci 

-z-• E(I  If,-f~,l~ + ~ If .-f~-71 x l ,  ..., x~) 
Ci Ci 

>IN,=o 2-PE(~ Ifn,--fB,,IP). 
Ci 

For family 1, we have 

and for family 2, 

(4) 

[fB,--fB,,]P=2 p ~ dx=2Ppi. (6) 
Ci Ci 

If we repeat (4-6) for all i, take expectations in (4) and substitute into (3), we 
have for family 1 

sup E(~ If,-fBI p [B = b)/~f p 
O_<b_<l 

> P(N~ = 0) p pf 
i = 1  i 

= 1 pf(1 -Pi)" Pf. 
i = 1  i 

For family 2, the left-hand-side of (7) is at least equal to 

pi(1-pF. (8) 
i = 1  

Note that (7) and (8) are valid for all n and all f, .  Consider for example Pi 
=K -1, l < i < K ,  and pi=0, i>K. Then (7) equals ( I - I lK)" /2  p-1 and the 
supremum of this over all K is 1/2 p-1. Also, (8) equals (1-1/K)"/2 p-I. This 
proves Theorem 1(i). 

We will first show that when a , <  1/8 for all n, there exists a sequence 
(Pl, P:,-.-) such that 

~ p i ( 1 - p i ) " > a , ,  all n. (9) 
i = 1  

This can be shown by construction. We will in fact show (9) for a ' ,=max % 

+ 1/(4(n+ 1)). Note that a', tends to 0 strictly monotonically and that a' 1 < 1/4. 
We find integers 1 =k~ <k  2 < ... and positive numbers p~ such that Pl = 1 - 2 a '  1, 
and for n>2,  k,_ 1 <iNk,:  

k~ 

pi < 1/(2 n), ~ Pl = 2(a;_1 - a'). 
i--kn 1 + 1  

(7) 

If~,,- fB,,l~= 2pf S g", (5) 
Ci 
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Note  that 

~, P~=Pl + ~, 2(a'._,-a'.)=l-2a'~ +2a '~  = 1. 
i = l  n=2 

Also, for n > 2, 

~pi(1-p~)">(1-1/(2n))" ~ p~>(1/2) ~ p~ 
i= i pi < l/(2n) pi <-- i/(2n) 

>(1/2) ~ Pi=(1/2) ~ 2(a'i- 1 - aq~,= a',_ 1 >a'~>a,. 
i=kn  1+1 i=n  

For  n = 1, we have Pl (1 - p,)  = 2a~ (1 - 2a~) > a; > a s . This concludes the proof  
of  (9). 

Let us define J,(b)=E(~ [f .-fy I B =b)  and J , ( b ) = s u p  Ym(b)/am. If aV,(b) : r  

for some b, then for that  b, we have 

lira sup Jn(b)/a, > 0 (10) 
n 

and we are done. Thus, let us assume that J,(b)~O for all be[0 ,  1]. We will 
now prove that this leads to a contradict ion.  Let  D,={b: ] , ( b ) > l } .  Since D, 
decreases monotonica l ly  to the empty set, we have ~ dx=o(1) by the 

D~n[O, 11 

Lebesque dominated convergence theorem. Let D', be the complement of D,. 
Clearly, by Fatou's lemma, 

= sup l imsup  J~(b) ID' (b) 0 
O<b_<l n a n 

>-E (limsup J'(B) ID,(B)t 
- -  a n  ~ ] 

_ ,sup (J,(B) _>lira E \ ~ -  Iv.(B)/. (11) 

Consider  family 2. In (4) we make a few changes" introduce X=(X, ,  X2, ...). 
Then, 

E(IN~- o a; ~ IDa(B) ~ if. -fB] ~ IX) 
Ci 

>IN,=o(2a,) -1E(Ijn(w)~=~ ~ If,-fwlP+ Ia.(w,)<=, ~ If,-fw,I p I x )  
Ci Ci 

> IN,  = o(1/2  p a . )  E (Zmax(Jn (B , ) ,  jn(B,,))< 1 I I fB ' - - fB"  I p ] X )  
Ci 

>IN~= o(Pi/G) E(Imaxa.(w), J.(w'))__<, IX) 

and the expected value of the last expression is 

Pi a,7 * P(N~ = 0, max (& (B'), •(B")) =< 1) 

>p,a;*(P(N,=O)-P(N~=O, a~(B') > 1 ) - P ( N , = 0 ,  J.(B") > l)) 

> p, a 2 *(P(N, = O) - 2P(N, = O, ].(B) > 1) - 2P(N~ = 0, ].(B) > 1)) 

=p ,  a~- * (P(N~ = 0 ) -  4P  (N, =0,  D,)). ( ,2)  
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Let A,  = [k,_ 1, oo) where k, is as defined earlier, and set 

Zn = 2 Pi IN,= o. 
ieAn 

We have shown that 

Z~ l /  2 

(by Schwarz's  inequality). Since P(BeD,)=o(1), we obtain  our  desired con- 
t radict ion if E (Z,/a,) ~ 0 and E (Z 2) = 0 (E 2 (Z,)). But 

Z.  ] _ 1 

by our construction. Also, 

E(Z~)=  ~ pZ(1-pi)"§ ~, pipj(1-pi-pj)" 
i~An i ~ j ,  i, j~An  

< 2  ~ p~(1 _p~)2~+ ~ p~(1-p~)~pj(1-pj)  ~ 
leAn i:# j ,  i, j ~An  

<= 2Ez(Zn) 

where we used the fact that  on  A,, (1-p~)">�89 and that in any case 1 - p l  
-pj<=(1-pi)(1-pj ). Since ~fP(b,x)dx=2 p-1 for all b, and since we can always 

replace a, by ] /~, ,  we have proved Theorem 1 (ii) for family 2. For  family 1, we 
note that  (7) = (8) for p = 1 and that  ~,fP(b, x) dx 
= ( ~  p~)gP(x)dx < ~ gP(x)dx < oo. Thus, the a rgument  for family 2 can be mim- 
icked, and this concludes the p roof  of  Theorem 1. 
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