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j=~ XJ r <= Summary. For an r > 2  and a finite K,E Kn "/2 (all n > l )  is ob- 

tained for a strictly stationary strong mixing sequence {Xj}. The convergence 
of rth(r >2) absolute moments in the central limit theorem for stationary ~b- 
mixing and strong mixing sequences is also studied. 

1. Introduction 

For an r > 2 and a finite K, 

E a~n r 
X) <=Kn ~/2 (all a>0 ,  n > l )  (1.1) 

j = a + i  

has been studied for various classes of random variables {Xj,j>= 1}. And it has 
been obtained that if either {X~} is 

(i) a sequence of mutually independent random variables; 

(ii) a stationary Markov sequence satisfying Doeblin's condition; 

(iii) a strictly stationary @mixing sequence; or 

(iv) a martingale difference sequence, 

then (l.1) holds. Detailed discussion may be found in Brillinger [4], von Bahr 
[1], Doob [8] p. 225, Ibragimov [10] and Stout [15] p. 213. This type of bound 
has proved to be of considerable use in obtaining several types of limit laws, 
notably central limit theorems and strong laws: see e.g., Lemma 7.4, p. 225 of 
Doob [8] and Theorem 3.7.7, p. 211 of Stout [15]. 

The main purpose of this paper is to show that (1.1) holds for a strictly 
stationary strong mixing sequence. This result is stated in Theorems 1 and 2 of 
Sect. 3. 

Ibragimov's [10] proof for ~b-mixing is based on Doob's argument (see [8], 
pp. 225-227) which is difficult to extend straightforwards to the strong mixing 
case. This difficulty occurs from the difference between the basic inequalities 
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(2.3) and (2.4) below. We shall show how Doob's  argument can be adapted to 
our special case. 

In Sect. 5, using Ibragimov's 1-10] Lemrna 1.9 and our Theorems 1 and 2, we 
try to find sufficient conditions for the convergence of r th(r>2)  absolute 
moments in the central limit theorem for strictly stationary @mixing and strong 
mixing sequences. For sums of independent random variables Bernstein [2] (an 
alternative proof was given by Brown I-5, 6]), and for martingales Hall [9] 
presented necessary and sufficient conditions for such convergence of moments. 

2. Mixing Conditions 

Let {Xj , j> i} be a strictly stationary @mixing or strong mixing sequence. Thus, 
the condition (@mixing) 

1 
sup --IP(Ac~B)-P(A)P(B)L<=~)(n)$O (n-*oo) (2.1) 

A ~ ,  B~a G. P(A) 

or (strong mixing) 

sup ]P(A ~ B) - P(A) P(B)I < cffn)$O (n ---, o0) (2.2) 

holds, where ~/2 denotes the o--field generated by Xj(a <j <b). Clearly @mixing 
sequence is strong mixing. 

The following two basic inequalities (2.3) and (2.4) are used repeatedly; for 
their proofs we refer to Ibragimov [10] and Davydov [7]. Let ~ and ~/ be 
measurable with respect to ~ and J ~ + ,  respectively, then if (2.1) holds, 

I E(~ r/) - E (~) E(q)[ =< 2 II ~ [] p [I t/blq [0  (n)] 1/v (2.3) 

for all 1 < p, q < oe with p -  1 + q-  1 = 1, and if (2.2) holds, 

IE(~ t / ) -  E(~)E(0)I < 12 II ~lJt, IJ r/llq [c~(n)] ~/~ (2.4) 

for all 1 __<p, q, s_K oo with p-~ + q - 1  + s - 1  = 1. 
Assume that EXI=O and EX2<oo. Set S , = X i + . . . + X  ~, a~=ES,2 2 and a 2 ' 

= E X ~ + 2  ~ EXIX;,  and assume throughout a:~0. Where no confusion is 
, j=2 

possible K, K~, etc., denote generic constants. 

3. Moment  Bounds for Strong Mixing  Sequences 

Theorem 1. Let  {Xj} be a strictly stationary strong mixing sequence with EX 1 = 0  
and EIXIIr+o< oo for some r > 2  and 6>0.  I f  

• ( i  + 1) r/2-1 [~(i)]~/(r+~)< c~, (3.1) 
i = 0  
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then there exists a constant K such that 

EIS,I~<Kn ~/2, n > l .  

47 

(3.2) 

Theorem 2. Let {Xfl be a strictly stationary strong mixing sequence with E X  1 =0 
and IXII < C < ~ a.s. I f  

~ ( i  + 1) ~/2- ~(i) < ~ ,  (3.3) 1 

i = 0  

then (3.2) holds, 

Remark. If {Xj} is a strictly s ta t ionary @mixing sequence, (3.2) holds under  less 
restrictive assumptions E X  1 --0, EFX~I~<~ and a n -2-o2n(1 +o(1))  (see L e m m a  
1.9 of [10]). 

The  following corollaries are due to Serfling ([13], Theorem B and [14], 
Theorem 3.1). (See also [15], Theorems 3.7.5-3.7.7.) 

Corollary 1. Suppose that the assumptions of  Theorem 1 or 2 hold. Then there 
exists a constant K such that 

E( max tSklr)<:Kn r/2, n>: 1. 
l<_k<_n 

Corollary 2. Suppose that the assumptions of  Theorem 1 or 2 hold. Then, as n ~ 

S,/[nl/Z(log n)a/' (log log n) 2/~] --* 0 a.s. 

4. Proofs of Theorems 1 and 2 

Proof of  Theorem 1. This theorem will be proved in three cases; 

(i) r=2m,  m = 2 , 3 , . . .  

(ii) r = 2 m + e , m = l , 2  . . . .  , 0 < e _ < l .  

(iii) r = 2 m + e , m = l , 2  . . . .  , l < e < 2 .  

Proof of  (i). Here  we shall prove specifically that  for m => 1, 

2m 2m rim ES, <g~[ lX  1 n>_l, (4.1) 2rn+6 '~ ~ __ 

where K~ depends only on ~ and m. The  p roof  is based on L e m m a  3.1 of Sen 
[12]. Let  us write 

Ar(~ ) = ~ (i + 1) r/z- a [~(i)]a/(r+a). 
i = 0  

Then, A~(~)<m implies Aq(~ )<m for q<r.  We denote  by ~ , , j  the summat ion  
= = .  �9 ~(h) over all 1 < i  1 < .. _<~j<n, and let ,.,.d, 1 <:h<=j, be the components  of ~,,~ for 

which r h = m a x  {q . . . .  , rj}, where r h = i h -  ih_ 1 and i 0 = 1. Then we have 

ES2m<-[(Zm)!] n ~ , , z m-  i IE(X1X,~ ... X~ . . . .  )[ 
2 m - - 1  

= <[(2m)! ]  " ~ t " / m ,  2 m - - 1  ~ f ~ V ( h )  [ E ( X I X Q  . . . .  X i  . . . .  )1} 
h = l  
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Using (2.4), we obtain that if A2(~ ) < ~ then 

?/2n, 1 ]E(X1Xil)[ ~ 12n [LX[] 2 +aA2(ct) ' (4.2) 

and if A4(~ ) < oo then 

2n, 2 [E(X1Xil Xl;)[ ~ 24n ]lXk[ 3 +6A4(~) ' (4.3) 

. Y,.,3 I~(xl x ,  lxi~x~3)t 
=<36n 2 IIXIl~+aA4(oO+ 288n 2 ILXII4+o[A2(oO] 2 

<K~. 3 IlX]14+a n2, (4.4) 

where X = Xj (cf. [3], p. 196). In view of (4.2)-(4.4), we assume inductively that 
under the condition Aam_ 2(e)< o9, 

n ~ , , j l E ( X 1 X i  ~ .Xo)I<K~,j  j+l j* .. [IXl[j+a+an , n > l ,  (4.5) 

for 1 _-<j < 2 m - 3 ,  where j * =  k for j = 2 k or 2 k - 1 .  Then we shall show that (4.5) 
also holds for j = 2 m -  2 and 2 m -  1, under the condition A2m (c 0 < oo. Applying 
(2.4) with p=(2m+6) /h  and q=(2m+6) / (2m-h) ,  for each h, l<_h<_2m-1, 

n v(h) IE(XIXi~ Xi2,, 1)1 / m , 2 m - -  1 " ' "  - 

<n~"(h) Ig(X 1 Xz~ ,)E(Xi~... x,~.,_~)l 
~ "  A.an, 2 m-- i "'" 

+ 12n ~:m_ i LI X~... X~._~ IL(~ +a~/h ILX~.... x~_ ~ 11 ~:~+a)/c~-h) 

�9 [~(rh)] 6/(2m+6), (4.6) 

and the second term on the right-hand side (rhs) of (4.6) is bounded by 

n - - 1  
2m 12nllX[12~+a ~ (rh+l)Z"-z[~(rh)] o/~2m+a) 

r h =  0 

<12nmL]XII 2m = 2m+aA2m(~ �9 

The first term on the rhs of (4.6) vanishes for h=  1 and 2 m - 1 ,  and for 2_<h_<2m 
- 2 ,  it follows along the same line as that of Lemma 3.1 in [12] that 

I'1 / . . . a n , 2 m - -  1 . . . . . .  - 

~K'~,hI[XH~+aH Xl[2m-h2m-h+a l~ i i(h- 1)*- l ( n _ i +  1)(2m- 1-h)*-1 
i = 1  

<~ , t  X 2 m  H ( h - 1 ) * + ( 2 m - - l - h ) *  =K~,hll H2m+6 

where ( h - 1 ) * + ( 2 m - l - h ) *  equals m or m - 1  according as h is even or odd. 
The case where j = 2 m - 2  follows similarly, and thus we get (4.1)�9 

Proof of  (ii). For simplicity we introduce the following notation: 

2 n + k  

~ , =  ~ Xj, c,=EIS,[" and 
j = n + k +  l 

A,(~, k) = i (i+ 1) ~/2-1 [c~(i)]6/(,+a). 
i = k + l  



Moment Bounds for Stationary Mixing Sequences 49 

We shall show that for e 1 >0  there exist K and k such that 

EISn+S"~lr<(2+~Ocn+Kn r/2, n>l .  

Then the proof of (ii) follows from that of Lemma 7.4 in I-8]. Because of the 
stationarity, 

EIS, ~ ,. ~ 2m ~ ~ e +s.I <=E(Sn+Sn) (IS.[ +lSnl) 

=2c.+E  E [ :  )s .js.I s. + s.s  ts~ , 
k j=o j=l J 

SO it is sufficient to prove that for O < j < 2 m - 1 ,  

j ~ ~2rn - - j  ~__ IE(S,]S,] S, ) f<elC,+Kn ~/2, n > l ,  (4.7) 

and for l < j < 2 m ,  

j ~2m j IS,] )]<~lc,,+Kn ~/2, n=>l. (4.8) 

We only prove (4.8); expanding ~2m-s, (4.7) follows similarly. We note that by 
the assumption (3.1), 0 -2 exists and 2-0-2n(1 +o(1)) (cf. [11], Theorem 18.5.3). 0 - n - -  

Thus, there is n o such that 

0-2 0.2 ~ .  1 0.2 

n -  ~- 

for all n => no, and so for such n, 

1 2 2 2/ r  ~a n<0-, <c ,  . (4.9) 

We also note that the following inequalities hold; from the proof of (i), for 
2< j < 2m,  

2 , , s I E ( X ~  ... X,)I < n  Z,, ,s_ ~ JE(XI XI1 ... Xij_1)[ 

< K~,s_ 1 I[Xll~+~ n:/2, n => 10 (4.10) 

2 n , j - - 1 1 E ( X i ~  " "  X i  3 t X n ) l  = E n , j - 1  I E ( X 1 X i t  . "  X i j  t)l 

<K=,j_~IIXI[~+~n ~/2-~, n>l .  (4.11) 

To obtain (4.8), we show that for each j, 1 <j<2m,  there exist K(j) and ks such 
that 

j ^ 2 m - - j  ~ e (4.12) IE(S,S,,  IS,l )l <=ea c, + K(j)n ~/2 

=S,  [S,I. Then, by (4.1), for all n>(no, k). Write Y,J ^zm-j ^ 

EIyJ[<=(ESZ~)(~-;I/2m<r( Ilgll"-J- (~-s)/2 n>_l. (4.13) = a x c ~  IlXX i I r + 6  ~ , __ 

(We do not use (4.13) when j =  1, so it is also applicable to the case (iii).) We 
have for 1 <=j<2m, 
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IE(S~. Y~)l <=J! ~,,jIE(Xr ... Xr 
J 

<j' ~" S "(h). E(X. X~jY])[, (4.14) 
�9 ~ . . d l ~ y  ~ - - I  1 " " " ' 

h = l  

where ~.,n,j,XT(h)' l_<h<=j, are the components  of ~n,j  for which rh=max  {rl, ..., rj}, 
where r h = ih+ 1 -- ih and ij+ 1 = n + k + 1. Using (2.4), 

Z{~)~ [EfX~ ... X,j Y.;)I < Z~.~,~ ]E(X,, ... X,~) EfX,,+ ... X,; Y.J)[ 

+ 12 Z(~)j IIXil... X,hll p HX,h+ 1 ... X,j YJHq [Offrh)] l/s, (4.15) 

where p=(r +6)/h, q=r(r +6) / [r ( r -h)+(r - j )6]  and s=r(r +6)/j6. For  l <h<_j, 
by H61der's inequality, the second term on the rhs of (4.15) is bounded  by 

n+k 
12 ,~v Jr+6t, n,,(r--j)/r ~ (i+l)j-l[o~(i)]ja/~(~+,~) 

i = k + l  

~12 HXH~+ar k)]j/r [ n~k (i + 1)- l +jr/2(r--J)] (r-j)/r. (4.16) 
i = k + l  

By (4.9), the rhs of (4.16) is bounded  by 

Kj IIXII~ +~c, EA~(~, k)y/', (4.17) 

if n > (no, k), where Kj does not  depend on k. For  h = 1, the first term on the rhs 
of (4.15) vanishes, and for h=j  (>2) ,  by (4.10) and (4.13), is bounded  by 

EIYdlZ,,jlE(Xf~ ...X6)I<K~)IIXI[~+an~/2, n> l. (4.18) 

Since A~(c~, k ) ~ 0  as k ~ o o ,  choosing k~ and k 2 so that  

Kl[]Xllr+,~[Ar(~,kl)]l/r <~l, 4K21lXHZ+a[Ar(o:,kz)]Z/r <el, 

(4.12) holds for j - - 1  and 2 with K i n = 0  and K(2)=2K~Z)]IXI[~,+~. In order  to 
prove (4.12) for general 3 <j<2m, m>2, we shall show that  for 1 < l < j - 2  and 
all n>k, 

[E(XI~ ... Xizyj)l ~(Kl, j ~.V ~-j+l.(r-j+0/2~+~ ,o , (4.19) 

where Kz, j does not  depend on k. For  3 <j<2m, 

(i + 1) j /z-  2 [~(i)]~ < o% (4.20) 
i = 0  

where t = ( j -  e)/2m- (]-  2)/(r + 6). Indeed, since 

t(r + 6)/6 = (j - e)/2 m + [r (j - e) - 2 m (j - 2)]/2 m 6 > (j - e)/2 m, 

by HiSlder's inequality, 

(i + 1) ~/2- 2 ]-c~(i)]t < ~ (i + 1) ~/z- 2 [~( i ) ]o-  ~)~/2~(~ + ~) 
i = 0  i = 0  

F n +  1 "1 (r-j)/2m 
~-'( [A'(~ I Z i-sl 

L I =  1 J 
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where s = 1 - ~/2 + ( r -  e)/(r - j )  > 1 (which is also true for 1 < e < 2), thus the series 
in (4.20) converges. Let f i=(j -e) /2m-I / (r+(~)  for l < l < j - 2 .  Then t=tj._ 2. 
Using (2.4) with p = r + 3  and q=2m/(r - j ) ,  if j > 3 ,  by (4.10), (4.13) and (4.20), 

Z,,1 IE(X,~ Y.J)I 
n+k 

<12[IXHr+a(ES2") (r-j)/2m ~ [~(i)]t~ 
i = k + l  

< 12 IpXHr+a(ES~m)(~-J)/Zmn 1/2 ~ (i+ 1)J/2-z[c~(i)]t 
i = 0  

r-j+ ~KI,jHX[]r+ a 1 n(r-d+ 1)/2, n > l .  (4.21) 

If j > 4 ,  using (2.4) with p=r+b ,  q=2m(r+f ) / [ ( r+ f ) ( r - j )+2m] ,  

n + k  

=< 12 IIXII}+ ~',~,,t ~,.~2,,q(,-- j ) /2m~ ~ (i+ 1) [-~ (i)3 t~ 
i = k + l  

n + k  

< 1211X]lZ+a(ES2m)(r-J)/2m(n+k+ 1) ~ (i+ 1)J/2-2[c~(i)] t, 
i = k + l  

and with p=(r + b)/2, q= 2m/(r-j) ,  

X(2) IE(X. X, 2 Y.J)I <-El V.Jl Z,,  2 IE(X,, XJ  n,2 

n+k 
-]-12 Y 2 [l~'~2m~(r--j)/2m ~. ~ + ~ ,  , ~ (i+l)[c~(i)] t~, 

i=k+l 

so that we have 

Z,,2 ]E(Xi~X,~ Y.J)]--<(Z~)2 ~(2) + L,,  2)IE(X~ X,~ Y,J)l 

<=K2,j]IXN~+g+2n (r-j+2)/2 , n>k._ (4.22) 

Let us now assume that for l < _ l < j - 4 ,  (4.19) holds. Then we shall show that 
(4.19) also holds for l = j - 3  and j - 2 .  We only prove the case of l = j - 2  (the 
other case follows similarly). We have 

j - - 2  

Z , , j -  2 [E(XI~ ." Xij- ~ Y~)l < Z Z(h)J - 2 IE(Xi~ ... Xij-~ Y,J)I. (4.23) 
h = l  

Applying (2.4) with p = (r + 6)/h and q = 2 m(r + 6)/[(r + 3)(r - j )  + 2 re ( j -  2 - h)], 

(h) IE(X,... YDI 
< V  (~ ~IE(X,, X,~)E(X~+~ X,~LJ)I 

n+k 
j--2 2m (r - - j ) /2m +1211XL+~(ES. ) ~ (i+l)J-3[~(i)] t, (4.24) 

i = k + l  

and the second term on the rhs of (4.24) is bounded by 

n + k  
j - -  2 2m ( r - j ) / E m  1)J/2 - 1 1211XH~+a(ES. ) (n+k+ ~ (i+l)J/2-2[o~(i)] t 

i = k + l  

~ ~,t il Y I i r -  2,a(r--  2)/2 
a ~ ' j - - 2 , j l l z J - I I r + 6  " , n > k .  (4.25) 
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For h = 1, the first term on the rhs of (4.24) vanishes, and for h = j -  2, is bounded 
by 

... r(,, tvllr- 2,(~-2)/2 n>  1. (4.26) EIY~I~.,j_21E(Xi, X6_2)I<-~j_2, j ~ r+a . . . .  

For 2 < h < j - 3 ,  1 < j - 2 - h < j - 4 ,  and by (4.11) and the assumption made, 

n , j - 2 [ E ( X i l " ' "  E ( X i h + l .  . . . .  

< ~ {2,,,h-a IE(X,~ ... X,)II{Z,,j_z_hlE(X, ... X,j ~_~Y,J)I} 
ih~ 1 

<=KIIXH~+~n (~-2-h)/2 ~ i h/2-a (K=Koqh_l.Kj_2_h,j) 
i = 1  

~ l((h) I[ y l l r -  2~a(r- 2)/2 = ~ j _  2 , j ,~  LI,.+~ '~ , n>k. (4.27) 

From (4.23) through (4.27), we have thus proved that (4.19) holds for l=j-2.  
Using then (4.21) and (4.22), the proof of (4.19) follows by the method of 
induction. 

We return to the proof of (4.12). For 2<h<j-1 ,  l < j - h < j - 2 ,  and by 
(4.11) and (4.19), 

,,j IE(X~... 

<= ~ {Z,~,~_ ~ IE(x,, ... x~)I}(Z,,j_~IE(x,, ... x,~ ~U)l} 
ih= 1 

<KIIX[I~+an (~-h)/2 ~, i h/2-1 (K=K~,h_I.Kj_h,j) 
i = 1  

<K~ )llxll;+J/2, n>k. (4.28) 

Combining (4.14)-(4.18) and (4.28), we obtain for 1< j <2m, 

d 
IE(SJ," Y,~)I <J! {jKjllX[][+~c,[A,(c~, k)] j/" + ~ KJ h) ]lX[l~+6n~/2}, (4.29) 

h = 2  

if n>(no, k). Thus, (4.12) holds by properly choosing Ku) and kj as this has been 
already made for j = l  and 2. Let K > m a x  {K(2), ...,K(2m) } and k 
=max  {kx, ..., k2~ }. Then (4.8) holds for n>(no, k). But we can choose K so that 
(4.8) holds also for n<(no, k), thus (4.8) is proved. 

Proof of (iii). Since 1 < a < 2, 

+s.)  (IS.I +lsol') 
(2m-l(2m) ~^2m-j ~ ( 2 m ) j ~ 2 , . _ j ^  } =2~c.+2~-~E l~__2 ~ S~ + ~  J S~ IS~ 

It follows similarly to the proof of (ii) that for ~ >0, there exist K and k such 
that 

Sn[ _<_(2 +ea)c,+Kn r/2, n>=l. EIS.+ ~ r 
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For m>  1, 2e<2 (2m+~/2 (see (7.12) in [8], p. 227), so that the proof also follows 
along the same line as in Lemma 7.4 in [8]. Thus the proof of Theorem 1 is 
complete. 

Proof of Theorem 2. Theorem 2 can be proved using the arguments used in the 
proof of Theorem 1 with a few changes. Using (2.4) with p = q = o% the proof for 
r = 2m, m = 1, 2, ..., is similar to that of (4.1). Note that, under the assumptions of 
Theorem2, a 2 exists and a2=a2n(l+o(1)), and thus (4.9) holds (cf. [11], 
Theorem 18.5.4). Choosing p =  o% q=r/(r - j )  and s=r/j, the second term on the 
rhs of (4.15) is bounded by 

n+k 
Kc~ -2/~ ~ (i+l)J-l[c~(i)] ~/" 

i=k+l  
q (r -- j)/r I n+k +jr/2(r--j)] , 

and so (4.17) holds. Let t=(j-e)/2m, 3<j<2m. Then the series in (4.20) 
converges, so that (4.19) is also obtained by using (2.4) with p = ~ and q =2m/(r 
- j) .  The remaining changes should be obvious. 

5. Convergence of Moments in the Central Limit Theorem 

Theorem 3. Let {Xj} be a strictly stationary @mixing sequence with EX~ = 0 and 
E I X i ( <  o0 for some r>2 .  I f  

[q~(i)] 1/2 < o(3, (5.1) 
i=1 

then as n ~ oo 

ElS,/anl/2l~ ~ fi,, (5.2) 

where ~r .is the rth absolute moment of ~V(0, 1). 

Proof Under the assumptions of Theorem 3 the central limit theorem 

S n / a n  1/2 ~ J~/'(0, 1) (5.3) 

holds (cf. [11], Theorem 18.5.2), and thus it is sufficient to prove that {IX./nl/2lr, 
n >  1} is uniformly integrable. Let f~(x)=x if Ix[<N; =0  if [x[>N, and g~(x) 
=x-f~(x) ,  and put f~(x)= f,(x)--E(fN(XO) , ~,N(X)=gN(X)--E(gN(X1)). Then, 
both {fN(Xj)} and {gN(X)} are @mixing with mixing coefficients <r Let 

j = l  j = I  

then S,=UNn+VN~. Denote by Ea(X ) the integral of X over the set {X>a}. 
Since ISnt"<2r-I([U,~t~+IVNZ) and E~(U+ V)<2{E~/2(U)+E(V)}, we have 

EolX,/n~/2l~ < U {E~/N.I gN,,/nl/2f+ E[rNjnl/2r}. (5.4) 
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Let 

aZ(N) = E(fN(x1)) 2 + 2 ~ E( fN(X 0 fN(Xj)). 
j=2 

Then ~r2(N)--. o -2 as N ~ o o ,  and thus for N sufficiently large ( N > N I ,  say), 

a2 (N) >__ �89 ~2 > 0. 

For such N, since fN(Xj) is bounded, by the remark following Theorem 2, 

E,,/2~ [ Us,/nl/2] r <= 2r E [ UNn/ni/212r/a 

< KN/a, n >__ 1. (5.5) 

To complete the proof we show the following 

Lemma. For t > O, there is N o for which 

E IVN,l'<tn r/2 (5.6) 

for all n > 1 and N > N o. 

Proof of Lemma. By (2.3), 

EVN,<n 1 [(b(i)] t/2 E(gN(X1)) 2. 

SinCe E(gu(X1))z~0 as N ~ o o ,  the lemma is true for r=2 .  So it is sufficient to 
assume that the lemma is true if r is an integer m > 2 and prove that it is then 
true if r = m + e, where 0 < ~ < 1. Let us write 

2n+k 

CN. = F, ~,N(xj), CN.=EIVNZ. 
j=n+k+ l 

Using (2.3), and arguing as in [8], pp. 225-226, we obtain that for ~t >0,  there 
exist K and k such that 

EIVN, + 17N,Ir <=(2 +~OCN, + K tn ~/2, (5.7) 

for all n >  1 and N >  No, where K depends on r alone. Also we obtain that for 
~2 >0,  

CN, 2 n ~ (2 + e 2) CN n -}- 2 K t n r[2 (5.8) 

for all n >  1 and N > N  o. Indeed, we have 

cN, 2, < { [(2 + e 1) cN, + K t n ~/2-1 a/r + 2 k c~/~ }" 

=( l  + e3)r[(2 + ei)cN. + Ktn~/2], 

(see [8], p. 226), where since cNi <2"EJX~I ~, 

e 3 = 2 kc~/~/[(2 + ei) CN, + K tn~/Z-11/r 

<4kllXll~/(Ktnr/2)l /~O as n ~ o o .  

R. Yokoyama 



Moment Bounds for Stationary Mixing Sequences 55 

Thus, choosing e 1 sufficiently small and n o not depending on N sufficiently large, 
for n>no, 

(1 + @ r ( 2 + e 0 < 2 + e 2 ,  K(1 +~3)r<2K, 

then (5.8) holds for n>n o. For each n, cN ,~0  as N---,oo, and so for some 
redefined (if necessary) No, we have 

cN, 2n < 2 K tn r/2 

for all n<n o and N>No,  thus establishing (5.8). Applying (5.8) and the fact that 
c~1--,0 as N ~ o o  it follows as in the proof of Lemma 7.4 in [8] that there is K 1 
not depending on N and t such that 

E [ VN, [r <= K1 t n r/2 

for all n > l  and N > N  o (increase No, if necessary), which is (5.6) except for the 
constant K~. 

We return to the proof of Theorem 3. For any e 4 > 0, if we choose t in (5.6) so 
that t<ef f2 "+1, then for N large enough, UE[VN,/nl/2]r<z4/2. For such 
N(>N1),  choose a so that Ku/a <e4/2 ~+ 1, then from (5.4) and (5.5), for all n >  1, 

EalSn/nl/2lr <e4, 

which asserts that {]Sn/nUZ[ r} is uniformly integrable. This completes the proof 
of Theorem 3. 

Theorem 4. Let {X~} be a strong mixing sequence, I f  (i) the assumptions of 
Theorem 1 are satisfied; or (ii) E X  1 =0, IX1[ < C <  oo a.s. and 

~. (i+1)~'/2-1~(i)<oo ( r '> r>2) ,  
i=o 

then (5.2) holds. 

Proof We use the same notation as defined in the previous proofs. Note that the 
central limit theorem (5.3) holds under the assumptions of Theorem 4 (cf. [ l l J ,  
Theorems 18.5.3-4). We first assume (i). Let s=2+(r -2 ) ( r+6) /6  (>r). If (3.1) 
holds, then 

~. (i + i) ~/2 -i c~ (i) = ~, {(i + i) ~/2 -I [-c~ (i)] o/(r + ~)} (r + ~)/,~ < co, 
i=0 i=0 

SO from Theorem 2, for all N sufficiently large, 

E a/2 r ] UNn/nl/2 [r .< E[ UNn/n 1/2 [S/(a/U) (s- r)/r 

<= KN/a(~- ~)/~, n > 1. 

In view of the proof of Theorem 3, it is sufficient to prove that (5.6) holds under 
the assumption (i). When r=2m, by (4.1), 

Ev~,m<K=(E[~N(XOI2m+a)2m/(2m+a)n m, n> 1. 

Thus since EI~N(X1)I2"+o---,O as N-~oo (5.6) holds. 
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Now we assume that r = 2 m + e ,  0 < e < 2 .  To prove (5.6) for such r, we show 
that there exist K, not depending on N, and N o such that 

CNn ~ K rt r/2 

for all n > l  and N > N  o. Let 
(p> 1), 

a - ~ -  0 .2 (N) 

= K u L .  

(5.9) 

Then since E]fN(x)I~'<2vEIXIP 

= 2  ~ j=2 ~ (J-1)E(fN(X1)fN(XJ))+j=n+, ~ E(fN(X1)fN(XJ)) 

<961[xii2+~ ~ j[-~(j)],~/(2+6)q_ [5((j)] o/(2+a) --+0 
j=l j=n 

as n ~ o o  (cf. [11], p. 348). So there is n o not depending on N such that 

0.2(x) < �88 0.2 (5.10) 

for all n > n o and N > 0. On the other hand, there is N o such that 

]0.2 (N) -  0.2 ] <10.2 (5.11) 

for all N > N  o. Combining (5.10) and (5.11), we have 

_O'n2H(~N) __ 0.2 <�89 

for all n > n o and N > No, and so for such n and N, 

1 2 2 2/r ~0. n<=a,(N)<_dN, (5.12) 

where dN,=E[Uu,[ r. Applying (5.12) it is easy to obtain as in the proof of 
Theorem 1 that for el >0, there exist K and k, both not depending on N, such 
that 

E I UN, + ON,Ir <(2* + ~I) dN. + Kn  ~/2 

for all n > l  and N > N o ,  where 2 * = 2  i f 0 < e < l ;  =2  ~ if l < e < 2 .  Hence, it 
follows similarly to the proof of the lemma that there exist K, not depending on 
N, and N O such that 

dN~ < K gl r/2 (5.13) 

for all n>  1 and N > N  o. From Theorem 1, (5.13) and the inequality cN~GU-~(G 
+dN,), we get (5.9). Combining (5.9) and the fact that E I ~ ( X 1 ) r + 6 ~ 0  as N--,oo 
with (4.16) and (4.29) (setting k=0),  we obtain that for t>0 ,  there is No such that 

CN, 2n ~ 2* cN, + fFI r/2 
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for all  n > 1 a n d  N > N 0. So the  p r o o f  o f  (5.6) a lso  fo l lows  f r o m  L e m m a  7.4 in 

[-8]. W h e n  the  a s s u m p t i o n  (ii) holds ,  us ing  T h e o r e m  2, the  u n i f o r m  in t eg rab i l i t y  

o f  {ISjsl/2lr} fo l lows  i m m e d i a t e l y  f r o m  

Ea I S. /n' /2lr  < E [S./n 1/2 ir' /a(r" - ~)/,. 

< K / a  ( ' ' -  ~/~, n > 1. 

T h u s  the  p r o o f  o f  T h e o r e m  4 is c o m p l e t e .  
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