Moment Bounds for Stationary Mixing Sequences

Ryozo Yokoyama
Department of Mathematics, Osaka Kyoiku University, Ikeda, Osaka, 563, Japan

Summary. For an $r>2$ and a finite $K, E\left|\sum_{j=1}^{n} X_{j}\right|^{r} \leqq K n^{r / 2}$ (all $n \geqq 1$) is obtained for a strictly stationary strong mixing sequence $\left\{X_{j}\right\}$. The convergence of r th $(r>2)$ absolute moments in the central limit theorem for stationary ϕ mixing and strong mixing sequences is also studied.

1. Introduction

For an $r>2$ and a finite K,

$$
\begin{equation*}
E\left|\sum_{j=a+1}^{a+n} X_{j}\right|^{r} \leqq K n^{r / 2} \quad(\text { all } a \geqq 0, n \geqq 1) \tag{1.1}
\end{equation*}
$$

has been studied for various classes of random variables $\left\{X_{j}, j \geqq 1\right\}$. And it has been obtained that if either $\left\{X_{j}\right\}$ is
(i) a sequence of mutually independent random variables;
(ii) a stationary Markov sequence satisfying Doeblin's condition;
(iii) a strictly stationary ϕ-mixing sequence; or
(iv) a martingale difference sequence,
then (1.1) holds. Detailed discussion may be found in Brillinger [4], von Bahr [1], Doob [8] p. 225, Ibragimov [10] and Stout [15] p. 213. This type of bound has proved to be of considerable use in obtaining several types of limit laws, notably central limit theorems and strong laws: see e.g., Lemma 7.4, p. 225 of Doob [8] and Theorem 3.7.7, p. 211 of Stout [15].

The main purpose of this paper is to show that (1.1) holds for a strictly stationary strong mixing sequence. This result is stated in Theorems 1 and 2 of Sect. 3.

Ibragimov's [10] proof for ϕ-mixing is based on Doob's argument (see [8], pp. 225-227) which is difficult to extend straightforwards to the strong mixing case. This difficulty occurs from the difference between the basic inequalities
(2.3) and (2.4) below. We shall show how Doob's argument can be adapted to our special case.

In Sect. 5, using Ibragimov's [10] Lemma 1.9 and our Theorems 1 and 2, we try to find sufficient conditions for the convergence of $r \mathrm{th}(r>2)$ absolute moments in the central limit theorem for strictly stationary ϕ-mixing and strong mixing sequences. For sums of independent random variables Bernstein [2] (an alternative proof was given by Brown [5, 6]), and for martingales Hall [9] presented necessary and sufficient conditions for such convergence of moments.

2. Mixing Conditions

Let $\left\{X_{j}, j \geqq 1\right\}$ be a strictly stationary ϕ-mixing or strong mixing sequence. Thus, the condition (ϕ-mixing)

$$
\begin{equation*}
\sup _{A \in, M_{1}^{k}, B \in \mathscr{M}_{k+n}^{\infty}} \frac{1}{P(A)}|P(A \cap B)-P(A) P(B)| \leqq \phi(n) \downarrow 0 \quad(n \rightarrow \infty) \tag{2.1}
\end{equation*}
$$

or (strong mixing)

$$
\begin{equation*}
\sup _{A \in M_{1}^{k}, B \in M_{M_{+n}}^{\infty}}|P(A \cap B)-P(A) P(B)| \leqq \alpha(n) \downarrow 0 \quad(n \rightarrow \infty) \tag{2.2}
\end{equation*}
$$

holds, where \mathscr{M}_{a}^{b} denotes the σ-field generated by $X_{j}(a \leqq j \leqq b)$. Clearly ϕ-mixing sequence is strong mixing.

The following two basic inequalities (2.3) and (2.4) are used repeatedly; for their proofs we refer to Ibragimov [10] and Davydov [7]. Let ξ and η be measurable with respect to \mathscr{M}_{1}^{k} and $\mathscr{M}_{k+n}^{\infty}$ respectively, then if (2.1) holds,

$$
\begin{equation*}
|E(\xi \eta)-E(\xi) E(\eta)| \leqq 2\|\xi\|_{p}\|\eta\|_{q}[\phi(n)]^{1 / p} \tag{2.3}
\end{equation*}
$$

for all $1 \leqq p, q \leqq \infty$ with $p^{-1}+q^{-1}=1$, and if (2.2) holds,

$$
\begin{equation*}
|E(\xi \eta)-E(\xi) E(\eta)| \leqq 12\|\xi\|_{p}\|\eta\|_{q}[\alpha(n)]^{1 / s} \tag{2.4}
\end{equation*}
$$

for all $1 \leqq p, q, s \leqq \infty$ with $p^{-1}+q^{-1}+s^{-1}=1$.
Assume that $E X_{1}=0$ and $E X_{1}^{2}<\infty$. Set $S_{n}=X_{1}+\ldots+X_{n}, \sigma_{n}^{2}=E S_{n}^{2}$ and σ^{2} $=E X_{1}^{2}+2 \sum_{j=2}^{\infty} E X_{1} X_{j}$, and assume throughout $\sigma \neq 0$. Where no confusion is possible K, K_{α}, etc., denote generic constants.

3. Moment Bounds for Strong Mixing Sequences

Theorem 1. Let $\left\{X_{j}\right\}$ be a strictly stationary strong mixing sequence with $E X_{1}=0$ and $E\left|X_{1}\right|^{r+\delta}<\infty$ for some $r>2$ and $\delta>0$. If

$$
\begin{equation*}
\sum_{i=0}^{\infty}(i+1)^{r / 2-1}[\alpha(i)]^{\delta /(r+\delta)}<\infty \tag{3.1}
\end{equation*}
$$

then there exists a constant K such that

$$
\begin{equation*}
E\left|S_{n}\right|^{r} \leqq K n^{r / 2}, \quad n \geqq 1 \tag{3.2}
\end{equation*}
$$

Theorem 2. Let $\left\{X_{j}\right\}$ be a strictly stationary strong mixing sequence with $E X_{1}=0$ and $\left|X_{1}\right| \leqq C<\infty$ a.s. If

$$
\begin{equation*}
\sum_{i=0}^{\infty}(i+1)^{r / 2-1} \alpha(i)<\infty \tag{3.3}
\end{equation*}
$$

then (3.2) holds.
Remark. If $\left\{X_{j}\right\}$ is a strictly stationary ϕ-mixing sequence, (3.2) holds under less restrictive assumptions $E X_{1}=0, E\left|X_{1}\right|^{r}<\infty$ and $\sigma_{n}^{2}=\sigma^{2} n(1+o(1))$ (see Lemma 1.9 of [10]).

The following corollaries are due to Serfling ([13], Theorem B and [14], Theorem 3.1). (See also [15], Theorems 3.7.5-3.7.7.)

Corollary 1. Suppose that the assumptions of Theorem 1 or 2 hold. Then there exists a constant K such that

$$
E\left(\max _{1 \leqq k \leqq n}\left|S_{k}\right|^{r}\right) \leqq K n^{r / 2}, \quad n \geqq 1
$$

Corollary 2. Suppose that the assumptions of Theorem 1 or 2 hold. Then, as $n \rightarrow \infty$

$$
S_{n} /\left[n^{1 / 2}(\log n)^{1 / r}(\log \log n)^{2 / r}\right] \rightarrow 0 \quad \text { a.s }
$$

4. Proofs of Theorems 1 and 2

Proof of Theorem 1. This theorem will be proved in three cases;
(i) $r=2 m, m=2,3, \ldots$
(ii) $r=2 m+\varepsilon, m=1,2, \ldots, 0<\varepsilon \leqq 1$.
(iii) $r=2 m+\varepsilon, m=1,2, \ldots, 1<\varepsilon<2$.

Proof of (i). Here we shall prove specifically that for $m \geqq 1$,

$$
\begin{equation*}
E S_{n}^{2 m} \leqq K_{\alpha}\left\|X_{1}\right\|_{2 m+\delta}^{2 m} n^{m}, \quad n \geqq 1 \tag{4.1}
\end{equation*}
$$

where K_{α} depends only on α and m. The proof is based on Lemma 3.1 of Sen [12]. Let us write

$$
A_{r}(\alpha)=\sum_{i=0}^{\infty}(i+1)^{r / 2-1}[\alpha(i)]^{\delta /(r+\delta)}
$$

Then, $A_{r}(\alpha)<\infty$ implies $A_{q}(\alpha)<\infty$ for $q \leqq r$. We denote by $\sum_{n, j}$ the summation over all $1 \leqq i_{1} \leqq \ldots \leqq i_{j} \leqq n$, and let $\sum_{n, j}^{(h)}, 1 \leqq h \leqq j$, be the components of $\sum_{n, j}$ for which $r_{h}=\max \left\{r_{1}, \ldots, r_{j}\right\}$, where $r_{h}=i_{h}-i_{h-1}$ and $i_{0}=1$. Then we have

$$
\begin{aligned}
E S_{n}^{2 m} & \leqq[(2 m)!] n \sum_{n, 2 m-1}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{2 m-1}}\right)\right| \\
& \leqq[(2 m)!] \sum_{h=1}^{2 m-1}\left\{n \sum_{n, 2 m-1}^{(h)}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{2 m-1}}\right)\right|\right\} .
\end{aligned}
$$

Using (2.4), we obtain that if $A_{2}(\alpha)<\infty$ then

$$
\begin{equation*}
n \sum_{n, 1}\left|E\left(X_{1} X_{i_{1}}\right)\right| \leqq 12 n\|X\|_{2+\delta}^{2} A_{2}(\alpha), \tag{4.2}
\end{equation*}
$$

and if $A_{4}(\alpha)<\infty$ then

$$
\begin{align*}
& n \sum_{n, 2}\left|E\left(X_{1} X_{i_{1}} X_{i_{2}}\right)\right| \leqq 24 n\|X\|_{3+\delta}^{3} A_{4}(\alpha), \tag{4.3}\\
& n \sum_{n, 3} \mid E\left(X_{1} X_{i_{1}} X_{i_{2}} X_{i_{3}} \mid\right. \\
& \quad \leqq 36 n^{2}\|X\|_{4+\delta}^{4} A_{4}(\alpha)+288 n^{2}\|X\|_{2+\delta}^{4}\left[A_{2}(\alpha)\right]^{2} \\
& \quad \leqq K_{\alpha, 3}\|X\|_{4+\delta}^{4} n^{2}, \tag{4.4}
\end{align*}
$$

where $X \equiv X_{1}$ (cf. [3], p. 196). In view of (4.2)-(4.4), we assume inductively that under the condition $A_{2 m-2}(\alpha)<\infty$,

$$
\begin{equation*}
n \sum_{n, j}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{j}}\right)\right| \leqq K_{\alpha, j}\|X\|_{j+1+\delta}^{j+1} n^{j^{*}}, \quad n \geqq 1 \tag{4.5}
\end{equation*}
$$

for $1 \leqq j \leqq 2 m-3$, where $j^{*}=k$ for $j=2 k$ or $2 k-1$. Then we shall show that (4.5) also holds for $j=2 m-2$ and $2 m-1$, under the condition $\boldsymbol{A}_{2 m}(\alpha)<\infty$. Applying (2.4) with $p=(2 m+\delta) / h$ and $q=(2 m+\delta) /(2 m-h)$, for each $h, 1 \leqq h \leqq 2 m-1$,

$$
\begin{align*}
& n \sum_{n, 2 m-1}^{(h)}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{2 m-1}}\right)\right| \\
& \quad \leqq n \sum_{n, 2 m-1}^{(h)}\left|E\left(X_{1} \ldots X_{i_{h-1}}\right) E\left(X_{i_{h}} \ldots X_{i_{2 m-1}}\right)\right| \\
& \quad+12 n \sum_{n, 2 m-1}^{(h)}\left\|X_{1} \ldots X_{i_{h-1}}\right\|_{(2 m+\delta) / h}\left\|X_{i_{h}} \ldots X_{i_{2 m-1}}\right\|_{(2 m+\delta) /(2 m-h)} \\
& \quad \cdot\left[\alpha\left(r_{h}\right)\right]^{\delta /(2 m+\delta)}, \tag{4.6}
\end{align*}
$$

and the second term on the right-hand side (rhs) of (4.6) is bounded by

$$
\begin{aligned}
& 12 n\|X\|_{2 m+\delta}^{2 m} \sum_{r_{h}=0}^{n-1}\left(r_{h}+1\right)^{2 m-2}\left[\alpha\left(r_{h}\right)\right]^{\delta /(2 m+\delta)} \\
& \quad \leqq 12 n^{m}\|X\|_{2 m+\delta}^{2 m} A_{2 m}(\alpha)
\end{aligned}
$$

The first term on the rhs of (4.6) vanishes for $h=1$ and $2 m-1$, and for $2 \leqq h \leqq 2 m$ -2 , it follows along the same line as that of Lemma 3.1 in [12] that

$$
\begin{aligned}
& n \sum_{n, 2 m-1}^{(h)}\left|E\left(X_{1} \ldots X_{i_{h-1}}\right) E\left(X_{i_{h}} \ldots X_{i_{2 m-1}}\right)\right| \\
& \quad \leqq K_{\alpha, h}^{\prime}\|X\|_{h+\delta}^{h}\|X\|_{2 m-h+\delta}^{2 m-h} n \sum_{i=1}^{n} i^{(h-1)^{*}-1}(n-i+1)^{(2 m-1-h)^{*-1}} \\
& \quad \leqq K_{\alpha, h}^{\prime \prime}\|X\|_{2 m+\delta}^{2 m} n^{(h-1)^{*}+(2 m-1-h)^{*}}
\end{aligned}
$$

where $(h-1)^{*}+(2 m-1-h)^{*}$ equals m or $m-1$ according as h is even or odd. The case where $j=2 m-2$ follows similarly, and thus we get (4.1).

Proof of (ii). For simplicity we introduce the following notation:

$$
\begin{aligned}
& \hat{S}_{n}=\sum_{j=n+k+1}^{2 n+k} X_{j}, \quad c_{n}=E\left|S_{n}\right|^{r} \quad \text { and } \\
& A_{r}(\alpha, k)=\sum_{i=k+1}^{\infty}(i+1)^{r / 2-1}[\alpha(i)]^{\delta /(r+\delta)}
\end{aligned}
$$

We shall show that for $\varepsilon_{1}>0$ there exist K and k such that

$$
E\left|S_{n}+\hat{S}_{n}\right|^{r} \leqq\left(2+\varepsilon_{1}\right) c_{n}+K n^{r / 2}, \quad n \geqq 1
$$

Then the proof of (ii) follows from that of Lemma 7.4 in [8]. Because of the stationarity,

$$
\begin{aligned}
& E\left|S_{n}+\hat{S}_{n}\right|^{r} \leqq E\left(S_{n}+\widehat{S}_{n}\right)^{2 m}\left(\left|S_{n}\right|^{\varepsilon}+\left|\hat{S}_{n}\right|^{\varepsilon}\right) \\
& \quad=2 c_{n}+E\left\{\left.\sum_{j=0}^{2 m-1}\binom{2 m}{j} S_{n}^{j}\left|S_{n}\right|^{\varepsilon}\right|_{n} ^{2 m-j}+\sum_{j=1}^{2 m}\binom{2 m}{j} S_{n}^{j} \hat{S}_{n}^{2 m-j}\left|\widehat{S}_{n}\right|^{\varepsilon}\right\}
\end{aligned}
$$

so it is sufficient to prove that for $0 \leqq j \leqq 2 m-1$,

$$
\begin{equation*}
\left|E\left(S_{n}^{j}\left|S_{n}\right|^{\varepsilon} \hat{S}_{n}^{2 m-j}\right)\right| \leqq \varepsilon_{1} c_{n}+K n^{r / 2}, \quad n \geqq 1 \tag{4.7}
\end{equation*}
$$

and for $1 \leqq j \leqq 2 m$,

$$
\begin{equation*}
\left|E\left(S_{n}^{j} \widehat{S}_{n}^{2 m-j}\left|\widehat{S}_{n}\right|^{s}\right)\right| \leqq \varepsilon_{1} c_{n}+K n^{r / 2}, \quad n \geqq 1 \tag{4.8}
\end{equation*}
$$

We only prove (4.8); expanding $\hat{S}_{n}^{2 m-j}$, (4.7) follows similarly. We note that by the assumption (3.1), σ^{2} exists and $\sigma_{n}^{2}=\sigma^{2} n(1+o(1))$ (cf. [11], Theorem 18.5.3). Thus, there is n_{0} such that

$$
\left|\frac{\sigma_{n}^{2}}{n}-\sigma^{2}\right|<\frac{1}{2} \sigma^{2}
$$

for all $n \geqq n_{0}$, and so for such n,

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} n \leqq \sigma_{n}^{2} \leqq c_{n}^{2 / r} \tag{4.9}
\end{equation*}
$$

We also note that the following inequalities hold; from the proof of (i), for $2 \leqq j \leqq 2 m$,

$$
\begin{align*}
& \sum_{n, j}\left|E\left(X_{i_{1}} \ldots X_{i_{j}}\right)\right| \leqq n \sum_{n, j-1}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{j-1}}\right)\right| \\
& \quad \leqq K_{\alpha, j-1}\|X\|_{j+\delta}^{j} n^{j / 2}, \quad n \geqq 1, \tag{4.10}\\
& \sum_{n, j-1}\left|E\left(X_{i_{1}} \ldots X_{i_{j-1}} X_{n}\right)\right|=\sum_{n, j-1}\left|E\left(X_{1} X_{i_{1}} \ldots X_{i_{j-1}}\right)\right| \\
& \quad \leqq K_{\alpha, j-1}\|X\|_{j+\delta}^{j} n^{j / 2-1}, \quad n \geqq 1 . \tag{4.11}
\end{align*}
$$

To obtain (4.8), we show that for each $j, 1 \leqq j \leqq 2 m$, there exist $K_{(j)}$ and k_{j} such that

$$
\begin{equation*}
\left|E\left(S_{n}^{j} \hat{S}_{n}^{2 m-j}\left|\hat{S}_{n}\right|^{\varepsilon}\right)\right| \leqq \varepsilon_{1} c_{n}+K_{(j)} n^{r / 2} \tag{4.12}
\end{equation*}
$$

for all $n \geqq\left(n_{0}, k_{j}\right)$. Write $Y_{n}^{j}=\hat{S}_{n}^{2 m-j}\left|\hat{S}_{n}\right|^{\varepsilon}$. Then, by (4.1),

$$
\begin{equation*}
E\left|Y_{n}^{j}\right| \leqq\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} \leqq K_{\alpha}\|X\|_{r+\delta}^{r-j} n^{(r-j) / 2}, \quad n \geqq 1 \tag{4.13}
\end{equation*}
$$

(We do not use (4.13) when $j=1$, so it is also applicable to the case (iii).) We have for $1 \leqq j \leqq 2 m$,

$$
\begin{align*}
\left|E\left(S_{n}^{j} \cdot Y_{n}^{j}\right)\right| & \leqq j!\sum_{n, j}\left|E\left(X_{i_{1}} \ldots X_{i_{j}} Y_{n}^{j}\right)\right| \\
& \leqq j!\sum_{h=1}^{j} \sum_{n, j}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{j}} Y_{n}^{j}\right)\right| \tag{4.14}
\end{align*}
$$

where $\sum_{n, j}^{(h)}, 1 \leqq h \leqq j$, are the components of $\sum_{n, j}$ for which $r_{h}=\max \left\{r_{1}, \ldots, r_{j}\right\}$, where $r_{h}=i_{h+1}-i_{h}$ and $i_{j+1}=n+k+1$. Using (2.4),

$$
\begin{align*}
& \sum_{n, j}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{j}} Y_{n}^{j}\right)\right| \leqq \sum_{n, j}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{h}}\right) E\left(X_{i_{h+1}} \ldots X_{i_{j}} Y_{n}^{j}\right)\right| \\
& \quad+12 \sum_{n, j}^{(h)}\left\|X_{i_{1}} \ldots X_{i_{h}}\right\|_{p}\left\|X_{i_{h+1}} \ldots X_{i_{j}} Y_{n}^{j}\right\|_{q}\left[\alpha\left(r_{h}\right)\right]^{1 / s} \tag{4.15}
\end{align*}
$$

where $p=(r+\delta) / h, q=r(r+\delta) /[r(r-h)+(r-j) \delta]$ and $s=r(r+\delta) / j \delta$. For $1 \leqq h \leqq j$, by Hölder's inequality, the second term on the rhs of (4.15) is bounded by

$$
\begin{align*}
& 12\|X\|_{r+\delta}^{j} c_{n}^{(r-j) / r} \sum_{i=k+1}^{n+k}(i+1)^{j-1}[\alpha(i)]^{j \delta / r(r+\delta)} \\
& \quad \leqq 12\|X\|_{r+\delta}^{j} c_{n}^{(r-j) / r}\left[A_{r}(\alpha, k)\right]^{j / r}\left[\sum_{i=k+1}^{n+k}(i+1)^{-1+j r / 2(r-j)}\right]^{(r-j) / r} \tag{4.16}
\end{align*}
$$

By (4.9), the rhs of (4.16) is bounded by

$$
\begin{equation*}
K_{j}\|X\|_{r+\delta}^{j} c_{n}\left[A_{r}(\alpha, k)\right]^{j / r} \tag{4.17}
\end{equation*}
$$

if $n \geqq\left(n_{0}, k\right)$, where K_{j} does not depend on k. For $h=1$, the first term on the rhs of (4.15) vanishes, and for $h=j(\geqq 2)$, by (4.10) and (4.13), is bounded by

$$
\begin{equation*}
E\left|Y_{n}^{j}\right| \sum_{n, j}\left|E\left(X_{i_{1}} \ldots X_{i_{j}}\right)\right| \leqq K_{j}^{(j)}\|X\|_{r+\delta}^{r} n^{r / 2}, \quad n \geqq 1 \tag{4.18}
\end{equation*}
$$

Since $A_{r}(\alpha, k) \rightarrow 0$ as $k \rightarrow \infty$, choosing k_{1} and k_{2} so that

$$
K_{1}\|X\|_{r+\delta}\left[A_{r}\left(\alpha, k_{1}\right)\right]^{1 / r}<\varepsilon_{1}, \quad 4 K_{2}\|X\|_{r+\delta}^{2}\left[A_{r}\left(\alpha, k_{2}\right)\right]^{2 / r}<\varepsilon_{1}
$$

(4.12) holds for $j=1$ and 2 with $K_{(1)}=0$ and $K_{(2)}=2 K_{2}^{(2)}\|X\|_{r+\delta}^{r}$. In order to prove (4.12) for general $3 \leqq j \leqq 2 m, m \geqq 2$, we shall show that for $1 \leqq l \leqq j-2$ and all $n \geqq k$,

$$
\begin{equation*}
\left|E\left(X_{i_{1}} \ldots X_{i_{l}} Y_{n}^{j}\right)\right| \leqq K_{l, j}\|X\|_{r+\delta}^{r-j+l} n^{(r-j+l) / 2} \tag{4.19}
\end{equation*}
$$

where $K_{l, j}$ does not depend on k. For $3 \leqq j \leqq 2 m$,

$$
\begin{equation*}
\sum_{i=0}^{\infty}(i+1)^{j / 2-2}[\alpha(i)]^{t}<\infty \tag{4.20}
\end{equation*}
$$

where $t=(j-\varepsilon) / 2 m-(j-2) /(r+\delta)$. Indeed, since

$$
t(r+\delta) / \delta=(j-\varepsilon) / 2 m+[r(j-\varepsilon)-2 m(j-2)] / 2 m \delta>(j-\varepsilon) / 2 m
$$

by Hölder's inequality,

$$
\begin{aligned}
\sum_{i=0}^{n}(i+1)^{j / 2-2}[\alpha(i)]^{t} & \leqq \sum_{i=0}^{n}(i+1)^{j / 2-2}[\alpha(i)]^{(j-\varepsilon) \delta / 2 m(r+\delta)} \\
& \leqq\left[A_{r}(\alpha)\right]^{(j-\varepsilon) / 2 m}\left[\sum_{i=1}^{n+1} i^{-s}\right]^{(r-j) / 2 m}
\end{aligned}
$$

where $s=1-\varepsilon / 2+(r-\varepsilon) /(r-j)>1$ (which is also true for $1<\varepsilon<2$), thus the series in (4.20) converges. Let $t_{l}=(j-\varepsilon) / 2 m-l /(r+\delta)$ for $1 \leqq l \leqq j-2$. Then $t=t_{j-2}$. Using (2.4) with $p=r+\delta$ and $q=2 m /(r-j)$, if $j \geqq 3$, by (4.10), (4.13) and (4.20),

$$
\begin{align*}
& \sum_{n, 1}\left|E\left(X_{i_{1}} Y_{n}^{j}\right)\right| \\
& \quad \leqq 12\|X\|_{r+\delta}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} \sum_{i=k+1}^{n+k}[\alpha(i)]^{t_{1}} \\
& \quad \leqq 12\|X\|_{r+\delta}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} n^{1 / 2} \sum_{i=0}^{n-1}(i+1)^{j / 2-2}[\alpha(i)]^{t} \\
& \quad \leqq K_{1, j}\|X\|_{r+\delta}^{r-j+1} n^{(r-j+1) / 2}, \quad n \geqq 1 . \tag{4.21}
\end{align*}
$$

If $j \geqq 4$, using (2.4) with $p=r+\delta, q=2 m(r+\delta) /[(r+\delta)(r-j)+2 m]$,

$$
\begin{aligned}
& \sum_{n, 2}^{(1)}\left|E\left(X_{i_{1}} X_{i_{2}} Y_{n}^{j}\right)\right| \\
& \quad \leqq 12\|X\|_{r+\delta}^{2}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} \sum_{i=k+1}^{n+k}(i+1)[\alpha(i)]^{t_{2}} \\
& \quad \leqq 12\|X\|_{r+\delta}^{2}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m}(n+k+1) \sum_{i=k+1}^{n+k}(i+1)^{j / 2-2}[\alpha(i)]^{t},
\end{aligned}
$$

and with $p=(r+\delta) / 2, q=2 m /(r-j)$,

$$
\begin{aligned}
& \sum_{n, 2}^{(2)}\left|E\left(X_{i_{1}} X_{i_{2}} Y_{n}^{j}\right)\right| \leqq E\left|Y_{n}^{j}\right| \sum_{n, 2}\left|E\left(X_{i_{1}} X_{i_{2}}\right)\right| \\
& \quad+12\|X\|_{r+\delta}^{2}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} \sum_{i=k+1}^{n+k}(i+1)[\alpha(i)]^{t_{2}},
\end{aligned}
$$

so that we have

$$
\begin{align*}
& \sum_{n, 2}\left|E\left(X_{i_{1}} X_{i_{2}} Y_{n}^{j}\right)\right| \leqq\left(\sum_{n, 2}^{(1)}+\sum_{n, 2}^{(2)}\right)\left|E\left(X_{i_{1}} X_{i_{2}} Y_{n}^{j}\right)\right| \\
& \quad \leqq K_{2, j}\|X\|_{r+\delta}^{r-j+2} n^{(r-j+2) / 2}, \quad n \geqq k . \tag{4.22}
\end{align*}
$$

Let us now assume that for $1 \leqq l \leqq j-4,(4.19)$ holds. Then we shall show that (4.19) also holds for $l=j-3$ and $j-2$. We only prove the case of $l=j-2$ (the other case follows similarly). We have

$$
\begin{equation*}
\sum_{n, j-2}\left|E\left(X_{i_{1}} \ldots X_{i_{j-2}} Y_{n}^{j}\right)\right| \leqq \sum_{h=1}^{j-2} \sum_{n, j-2}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{j-2}} Y_{n}^{j}\right)\right| . \tag{4.23}
\end{equation*}
$$

Applying (2.4) with $p=(r+\delta) / h$ and $q=2 m(r+\delta) /[(r+\delta)(r-j)+2 m(j-2-h)]$,

$$
\begin{align*}
& \sum_{n, j-2}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{j-2}} Y_{n}^{j}\right)\right| \\
& \quad \leqq \sum_{n, j-2}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{h}}\right) E\left(X_{i_{h+1}} \ldots X_{i_{j-2}} Y_{n}^{j}\right)\right| \\
& \quad+12\|X\|_{r+\delta}^{j-2}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m} \sum_{i=k+1}^{n+k}(i+1)^{j-3}[\alpha(i)]^{t}, \tag{4.24}
\end{align*}
$$

and the second term on the rhs of (4.24) is bounded by

$$
\begin{align*}
& 12\|X\|_{r+\delta}^{j-2}\left(E S_{n}^{2 m}\right)^{(r-j) / 2 m}(n+k+1)^{j / 2-1} \sum_{i=k+1}^{n+k}(i+1)^{j / 2-2}[\alpha(i)]^{t} \\
& \quad \leqq K_{j-2, j}^{\prime}\|X\|_{r+\delta}^{r-2} n^{(r-2) / 2}, \quad n \geqq k . \tag{4.25}
\end{align*}
$$

For $h=1$, the first term on the rhs of (4.24) vanishes, and for $h=j-2$, is bounded by

$$
\begin{equation*}
E\left|Y_{n}^{j}\right| \sum_{n, j-2}\left|E\left(X_{i_{1}} \ldots X_{i_{j-2}}\right)\right| \leqq K_{j-2, j}^{\prime \prime}\|X\|_{r+\delta}^{r-2} n^{(r-2) / 2}, \quad n \geqq 1 . \tag{4.26}
\end{equation*}
$$

For $2 \leqq h \leqq j-3,1 \leqq j-2-h \leqq j-4$, and by (4.11) and the assumption made,

$$
\begin{align*}
& \sum_{n, j-2}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{h}}\right) E\left(X_{i_{h+1}} \ldots X_{i_{j-2}} Y_{n}^{j}\right)\right| \\
& \quad \leqq \sum_{i_{h}=1}^{n}\left\{\sum_{i_{h}, h-1}\left|E\left(X_{i_{1}} \ldots X_{i_{h}}\right)\right|\right\}\left\{\sum_{n, j-2-h}\left|E\left(X_{i_{1}} \ldots X_{i_{j-2-h}} Y_{n}^{j}\right)\right|\right\} \\
& \quad \leqq K\|X\|_{r+\delta}^{r-2} n^{(r-2-h) / 2} \sum_{i=1}^{n} i^{h / 2-1} \quad\left(K=K_{\alpha, h-1} \cdot K_{j-2-h, j}\right) \\
& \quad \leqq K_{j-2, j}^{(h)}\|X\|_{r+\delta}^{r-2} n^{(r-2) / 2}, \quad n \geqq k . \tag{4.27}
\end{align*}
$$

From (4.23) through (4.27), we have thus proved that (4.19) holds for $l=j-2$. Using then (4.21) and (4.22), the proof of (4.19) follows by the method of induction.

We return to the proof of (4.12). For $2 \leqq h \leqq j-1,1 \leqq j-h \leqq j-2$, and by (4.11) and (4.19),

$$
\begin{align*}
& \sum_{n, j}^{(h)}\left|E\left(X_{i_{1}} \ldots X_{i_{h}}\right) E\left(X_{i_{h+1}} \ldots X_{i_{j}} Y_{n}^{j}\right)\right| \\
& \quad \leqq \sum_{i_{h=1}}^{n}\left\{\sum_{i_{h}, h-1} \mid E\left(X_{i_{1}} \ldots X_{i_{h}}\right)\right\}\left\{\sum_{n, j-h}\left|E\left(X_{i_{1}} \ldots X_{i_{j-h}} Y_{n}^{j}\right)\right|\right\} \\
& \quad \leqq K\|X\|_{r+\delta}^{r} n^{(r-h) / 2} \sum_{i=1}^{n} i^{h / 2-1} \quad\left(K=K_{\alpha, h-1} \cdot K_{j-h, j}\right) \\
& \quad \leqq K_{j}^{(h)}\|X\|_{r+\delta}^{r} n^{n / 2}, \quad n \geqq k . \tag{4.28}
\end{align*}
$$

Combining (4.14)-(4.18) and (4.28), we obtain for $1 \leqq j \leqq 2 m$,

$$
\begin{equation*}
\left|E\left(S_{n}^{j} \cdot Y_{n}^{j}\right)\right| \leqq j!\left\{j K_{j}\|X\|_{r+\delta}^{j} c_{n}\left[A_{r}(\alpha, k)\right]^{j / r}+\sum_{h=2}^{j} K_{j}^{(h)}\|X\|_{r+\dot{\delta}}^{r} n^{r / 2}\right\}, \tag{4.29}
\end{equation*}
$$

if $n \geqq\left(n_{0}, k\right)$. Thus, (4.12) holds by properly choosing $K_{(j)}$ and k_{j} as this has been already made for $j=1$ and 2 . Let $K \geqq \max \left\{K_{(2)}, \ldots, K_{(2 m)}\right\}$ and k $=\max \left\{k_{1}, \ldots, k_{2 m}\right\}$. Then (4.8) holds for $n \geqq\left(n_{0}, k\right)$. But we can choose K so that (4.8) holds also for $n<\left(n_{0}, k\right)$, thus (4.8) is proved.

Proof of (iii). Since $1<\varepsilon<2$,

$$
\begin{aligned}
& E\left|S_{n}+\hat{S}_{n}\right|^{r} \leqq 2^{\varepsilon-1} E\left(S_{n}+\hat{S}_{n}\right)^{2 m}\left(\left|S_{n}\right|^{\varepsilon}+\left|\hat{S}_{n}\right|^{\varepsilon}\right) \\
& \quad=2^{\varepsilon} c_{n}+2^{\varepsilon-1} E\left\{\sum_{j=0}^{2 m-1}\binom{2 m}{j} S_{n}^{j}\left|S_{n}\right|^{\varepsilon} \hat{S}_{n}^{2 m-j}+\sum_{j=1}^{2 m}\binom{2 m}{j} S_{n}^{j} \hat{S}_{n}^{2 m-j}\left|\widehat{S}_{n}\right|^{\varepsilon}\right\} .
\end{aligned}
$$

It follows similarly to the proof of (ii) that for $\varepsilon_{1}>0$, there exist K and k such that

$$
E\left|S_{n}+\widehat{S}_{n}\right|^{r} \leqq\left(2^{\varepsilon}+\varepsilon_{1}\right) c_{n}+K n^{r / 2}, \quad n \geqq 1
$$

For $m \geqq 1,2^{\varepsilon}<2^{(2 m+\varepsilon) / 2}$ (see (7.12) in [8], p. 227), so that the proof also follows along the same line as in Lemma 7.4 in [8]. Thus the proof of Theorem 1 is complete.

Proof of Theorem 2. Theorem 2 can be proved using the arguments used in the proof of Theorem 1 with a few changes. Using (2.4) with $p=q=\infty$, the proof for $r=2 m, m=1,2, \ldots$, is similar to that of (4.1). Note that, under the assumptions of Theorem 2, σ^{2} exists and $\sigma_{n}^{2}=\sigma^{2} n(1+o(1))$, and thus (4.9) holds (cf. [11], Theorem 18.5.4). Choosing $p=\infty, q=r /(r-j)$ and $s=r / j$, the second term on the rhs of (4.15) is bounded by

$$
\begin{aligned}
& K c_{n}^{(r-j) / r} \sum_{i=k+1}^{n+k}(i+1)^{j-1}[\alpha(i)]^{j / r} \\
& \quad \leqq K c_{n}^{(r-j) / r}\left[\sum_{i=k+1}^{\infty}(i+1)^{r / 2-1} \alpha(i)\right]^{j / r}\left[\sum_{i=k+1}^{n+k}(i+1)^{-1+j r / 2(r-j)}\right]^{(r-j) / r},
\end{aligned}
$$

and so (4.17) holds. Let $t=(j-\varepsilon) / 2 m, 3 \leqq j \leqq 2 m$. Then the series in (4.20) converges, so that (4.19) is also obtained by using (2.4) with $p=\infty$ and $q=2 m /(r$ $-j$). The remaining changes should be obvious.

5. Convergence of Moments in the Central Limit Theorem

Theorem 3. Let $\left\{X_{j}\right\}$ be a strictly stationary ϕ-mixing sequence with $E X_{1}=0$ and $E\left|X_{1}\right|^{r}<\infty$ for some $r>2$. If

$$
\begin{equation*}
\sum_{i=1}^{\infty}[\phi(i)]^{1 / 2}<\infty, \tag{5.1}
\end{equation*}
$$

then as $n \rightarrow \infty$

$$
\begin{equation*}
E\left|S_{n} / \sigma n^{1 / 2}\right|^{r} \rightarrow \beta_{r}, \tag{5.2}
\end{equation*}
$$

where β_{r} is the rth absolute moment of $\mathscr{N}(0,1)$.
Proof. Under the assumptions of Theorem 3 the central limit theorem

$$
\begin{equation*}
S_{n} / \sigma n^{1 / 2} \xrightarrow{\mathscr{S}} \mathscr{N}(0,1) \tag{5.3}
\end{equation*}
$$

holds (cf. [11], Theorem 18.5.2), and thus it is sufficient to prove that $\left\{\left|S_{n} / n^{1 / 2}\right|^{r}\right.$, $n \geqq 1\}$ is uniformly integrable. Let $f_{N}(x)=x$ if $|x| \leqq N ;=0$ if $|x|>N$, and $g_{N}(x)$ $=x-f_{N}(x)$, and put $\bar{f}_{N}(x)=f_{N}(x)-E\left(f_{N}\left(X_{1}\right)\right), \bar{g}_{N}(x)=g_{N}(x)-E\left(g_{N}\left(X_{1}\right)\right)$. Then, both $\left\{\bar{f}_{N}\left(X_{j}\right)\right\}$ and $\left\{\bar{g}_{N}\left(X_{j}\right)\right\}$ are ϕ-mixing with mixing coefficients $\leqq \phi(n)$. Let

$$
U_{N n}=\sum_{j=1}^{n} \bar{f}_{N}\left(X_{j}\right), \quad V_{N n}=\sum_{j=1}^{n} \bar{g}_{N}\left(X_{j}\right)
$$

then $S_{n}=U_{N n}+V_{N n}$. Denote by $E_{a}(X)$ the integral of X over the set $\{X \geqq a\}$. Since $\left|S_{n}\right|^{r} \leqq 2^{r-1}\left(\left|U_{N n}\right|^{r}+\left|V_{N n}\right|^{r}\right)$ and $E_{a}\left(U+V \leqq 2\left\{E_{a / 2}(U)+E(V)\right\}\right.$, we have

$$
\begin{equation*}
E_{a}\left|S_{n} / n^{1 / 2}\right|^{r} \leqq 2^{r}\left\{E_{a / 2 r}\left|U_{N n} / n^{1 / 2}\right|^{r}+E\left|V_{N n} / n^{1 / 2}\right|\right\} \tag{5.4}
\end{equation*}
$$

Let

$$
\sigma^{2}(N)=E\left(\bar{f}_{N}\left(X_{1}\right)\right)^{2}+2 \sum_{j=2}^{\infty} E\left(\bar{f}_{N}\left(X_{1}\right) \bar{f}_{N}\left(X_{j}\right)\right)
$$

Then $\sigma^{2}(N) \rightarrow \sigma^{2}$ as $N \rightarrow \infty$, and thus for N sufficiently large ($N \geqq N_{1}$, say),

$$
\sigma^{2}(N) \geqq \frac{1}{2} \sigma^{2}>0
$$

For such N, since $\bar{f}_{N}\left(X_{j}\right)$ is bounded, by the remark following Theorem 2 ,

$$
\begin{align*}
E_{a / 2 r}\left|U_{N n} / n^{1 / 2}\right|^{r} & \leqq 2^{r} E\left|U_{N n} / n^{1 / 2}\right|^{2 r} / a \\
& \leqq K_{N} / a, \quad n \geqq 1 \tag{5.5}
\end{align*}
$$

To complete the proof we show the following
Lemma. For $t>0$, there is N_{0} for which

$$
\begin{equation*}
E\left|V_{N n}\right|^{r} \leqq t n^{r / 2} \tag{5.6}
\end{equation*}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$.
Proof of Lemma. By (2.3),

$$
E V_{N n}^{2} \leqq n\left\{1+4 \sum_{i=1}^{\infty}[\phi(i)]^{1 / 2}\right\} E\left(g_{N}\left(X_{1}\right)\right)^{2}
$$

Since $E\left(g_{N}\left(X_{1}\right)\right)^{2} \rightarrow 0$ as $N \rightarrow \infty$, the lemma is true for $r=2$. So it is sufficient to assume that the lemma is true if r is an integer $m \geqq 2$ and prove that it is then true if $r=m+\varepsilon$, where $0<\varepsilon \leqq 1$. Let us write

$$
\hat{V}_{N n}=\sum_{j=n+k+1}^{2 n+k} \bar{g}_{N}\left(X_{j}\right), \quad c_{N n}=E\left|V_{N n}\right|^{r} .
$$

Using (2.3), and arguing as in [8], pp. 225-226, we obtain that for $\varepsilon_{1}>0$, there exist K and k such that

$$
\begin{equation*}
E\left|V_{N n}+\hat{V}_{N n}\right|^{r} \leqq\left(2+\varepsilon_{1}\right) c_{N n}+K t n^{r / 2} \tag{5.7}
\end{equation*}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$, where K depends on r alone. Also we obtain that for $\varepsilon_{2}>0$,

$$
\begin{equation*}
c_{N, 2 n} \leqq\left(2+\varepsilon_{2}\right) c_{N n}+2 K t n^{r / 2} \tag{5.8}
\end{equation*}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$. Indeed, we have

$$
\begin{aligned}
c_{N, 2 n} & \leqq\left\{\left[\left(2+\varepsilon_{1}\right) c_{N n}+K t n^{r / 2}\right]^{1 / r}+2 k c_{N 1}^{1 / r}\right\}^{r} \\
& =\left(1+\varepsilon_{3}\right)^{r}\left[\left(2+\varepsilon_{1}\right) c_{N n}+K t n^{r / 2}\right]
\end{aligned}
$$

(see [8], p. 226), where since $c_{N 1} \leqq 2^{r} E\left|X_{1}\right|^{r}$,

$$
\begin{aligned}
\varepsilon_{3} & =2 k c_{N 1}^{1 / r} /\left[\left(2+\varepsilon_{1}\right) c_{N n}+K t n^{r / 2}\right]^{1 / r} \\
& \leqq 4 k\|X\|_{r} /\left(K t n^{r / 2}\right)^{1 / r} \rightarrow 0 \quad \text { as } n \rightarrow \infty
\end{aligned}
$$

Thus, choosing ε_{1} sufficiently small and n_{0} not depending on N sufficiently large, for $n \geqq n_{0}$,

$$
\left(1+\varepsilon_{3}\right)^{r}\left(2+\varepsilon_{1}\right) \leqq 2+\varepsilon_{2}, \quad K\left(1+\varepsilon_{3}\right)^{r}<2 K,
$$

then (5.8) holds for $n \geqq n_{0}$. For each $n, c_{N n} \rightarrow 0$ as $N \rightarrow \infty$, and so for some redefined (if necessary) N_{0}, we have

$$
c_{N, 2 n} \leqq 2 \mathrm{Ktn}^{r / 2}
$$

for all $n<n_{0}$ and $N \geqq N_{0}$, thus establishing (5.8). Applying (5.8) and the fact that $c_{N 1} \rightarrow 0$ as $N \rightarrow \infty$ it follows as in the proof of Lemma 7.4 in [8] that there is K_{1} not depending on N and t such that

$$
E\left|V_{N n}\right|^{r} \leqq K_{1} t n^{r / 2}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$ (increase N_{0}, if necessary), which is (5.6) except for the constant K_{1}.

We return to the proof of Theorem 3. For any $\varepsilon_{4}>0$, if we choose t in (5.6) so that $t<\varepsilon_{4} / 2^{r+1}$, then for N large enough, $2^{r} E\left|V_{N n} / n^{1 / 2}\right|^{r}<\varepsilon_{4} / 2$. For such $N\left(\geqq N_{1}\right)$, choose a so that $K_{N} / a<\varepsilon_{4} / 2^{r+1}$, then from (5.4) and (5.5), for all $n \geqq 1$,

$$
E_{a}\left|S_{n} / n^{1 / 2}\right|^{r}<\varepsilon_{4}
$$

which asserts that $\left\{\left|S_{n} / n^{1 / 2}\right|^{r}\right\}$ is uniformly integrable. This completes the proof of Theorem 3.

Theorem 4. Let $\left\{X_{j}\right\}$ be a strong mixing sequence. If (i) the assumptions of Theorem 1 are satisfied; or (ii) $E X_{1}=0,\left|X_{1}\right| \leqq C<\infty$ a.s. and

$$
\sum_{i=0}^{\infty}(i+1)^{r^{\prime} / 2-1} \alpha(i)<\infty \quad\left(r^{\prime}>r>2\right)
$$

then (5.2) holds.
Proof. We use the same notation as defined in the previous proofs. Note that the central limit theorem (5.3) holds under the assumptions of Theorem 4 (cf. [11], Theorems 18.5.3-4). We first assume (i). Let $s=2+(r-2)(r+\delta) / \delta(>r)$. If (3.1) holds, then

$$
\sum_{i=0}^{\infty}(i+1)^{s / 2-1} \alpha(i)=\sum_{i=0}^{\infty}\left\{(i+1)^{r / 2-1}[\alpha(i)]^{\delta /(r+\delta)}\right\}^{(r+\delta) / \delta}<\infty,
$$

so from Theorem 2, for all N sufficiently large,

$$
\begin{aligned}
E_{a / 2 r}\left|U_{N n} / n^{1 / 2}\right|^{r} & \leqq E\left|U_{N n} / n^{1 / 2}\right|^{s} /\left(a / 2^{r}\right)^{(s-r) / r} \\
& \leqq K_{N} / a^{(s-r) / r}, \quad n \geqq 1 .
\end{aligned}
$$

In view of the proof of Theorem 3, it is sufficient to prove that (5.6) holds under the assumption (i). When $r=2 m$, by (4.1),

$$
E V_{N n}^{2 m} \leqq K_{\alpha}\left(E\left|\bar{g}_{N}\left(X_{1}\right)\right|^{2 m+\delta}\right)^{2 m /(2 m+\delta)} n^{m}, \quad n \geqq 1
$$

Thus since $E\left|\bar{g}_{N}\left(X_{1}\right)\right|^{2 m+\delta} \rightarrow 0$ as $N \rightarrow \infty$ (5.6) holds.

Now we assume that $r=2 m+\varepsilon, 0<\varepsilon<2$. To prove (5.6) for such r, we show that there exist K, not depending on N, and N_{0} such that

$$
\begin{equation*}
c_{N n} \leqq K n^{r / 2} \tag{5.9}
\end{equation*}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$. Let $\sigma_{n}^{2}(N)=E U_{N n}^{2}$. Then since $E\left|\bar{f}_{N}(X)\right|^{p} \leqq 2^{p} E|X|^{p}$ ($p \geqq 1$),

$$
\begin{aligned}
& \left|\frac{\sigma_{n}^{2}(N)}{n}-\sigma^{2}(N)\right| \\
& \quad=2\left|\frac{1}{n} \sum_{j=2}^{n}(j-1) E\left(\bar{f}_{N}\left(X_{1}\right) \bar{f}_{N}\left(X_{j}\right)\right)+\sum_{j=n+1}^{\infty} E\left(\bar{f}_{N}\left(X_{1}\right) \bar{f}_{N}\left(X_{j}\right)\right)\right| \\
& \quad \leqq 96\|X\|_{2+\delta}^{2}\left\{\frac{1}{n} \sum_{j=1}^{n-1} j[\alpha(j)]^{\delta /(2+\delta)}+\sum_{j=n}^{\infty}[\alpha(j)]^{\delta /(2+\delta)}\right\} \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$ (cf. [11], p. 348). So there is n_{0} not depending on N such that

$$
\begin{equation*}
\left|\frac{\sigma_{n}^{2}(N)}{n}-\sigma^{2}(N)\right|<\frac{1}{4} \sigma^{2} \tag{5.10}
\end{equation*}
$$

for all $n \geqq n_{0}$ and $N \geqq 0$. On the other hand, there is N_{0} such that

$$
\begin{equation*}
\left|\sigma^{2}(N)-\sigma^{2}\right|<\frac{1}{4} \sigma^{2} \tag{5.11}
\end{equation*}
$$

for all $N \geqq N_{0}$. Combining (5.10) and (5.11), we have

$$
\left|\frac{\sigma_{n}^{2}(N)}{n}-\sigma^{2}\right|<\frac{1}{2} \sigma^{2}
$$

for all $n \geqq n_{0}$ and $N \geqq N_{0}$, and so for such n and N,

$$
\begin{equation*}
\frac{1}{2} \sigma^{2} n \leqq \sigma_{n}^{2}(N) \leqq d_{N n}^{2 / r} \tag{5.12}
\end{equation*}
$$

where $d_{N n}=E\left|U_{N n}\right|^{r}$. Applying (5.12) it is easy to obtain as in the proof of Theorem 1 that for $\varepsilon_{1}>0$, there exist K and k, both not depending on N, such that

$$
E\left|U_{N n}+\hat{U}_{N n}\right|^{r} \leqq\left(2^{*}+\varepsilon_{1}\right) d_{N n}+K n^{r / 2}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$, where $2^{*}=2$ if $0<\varepsilon \leqq 1 ;=2^{\varepsilon}$ if $1<\varepsilon<2$. Hence, it follows similarly to the proof of the lemma that there exist K, not depending on N, and N_{0} such that

$$
\begin{equation*}
d_{N n} \leqq K n^{r / 2} \tag{5.13}
\end{equation*}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$. From Theorem 1, (5.13) and the inequality $c_{N n} \leqq 2^{r-1}\left(c_{n}\right.$ $+d_{N n}$), we get (5.9). Combining (5.9) and the fact that $E\left|\bar{g}_{N}\left(X_{1}\right)\right|^{r+\delta} \rightarrow 0$ as $N \rightarrow \infty$ with (4.16) and (4.29) (setting $k=0$), we obtain that for $t>0$, there is N_{0} such that

$$
c_{N, 2 n} \leqq 2 * c_{N n}+t n^{r / 2}
$$

for all $n \geqq 1$ and $N \geqq N_{0}$. So the proof of (5.6) also follows from Lemma 7.4 in [8]. When the assumption (ii) holds, using Theorem 2, the uniform integrability of $\left\{\left|S_{n} / n^{1 / 2}\right|^{r}\right\}$ follows immediately from

$$
\begin{aligned}
E_{a}\left|S_{n} / n^{1 / 2}\right|^{r} & \leqq E\left|S_{n} / n^{1 / 2}\right|^{r^{\prime}} / a^{\left(r^{\prime}-r\right) / r} \\
& \leqq K / a^{\left(r^{\prime}-r\right) / r}, \quad n \geqq 1 .
\end{aligned}
$$

Thus the proof of Theorem 4 is complete.

Acknowledgments. The author is grateful to the referees for their useful comments on the manuscript.

References

1. von Bahr, Bengt: On the convergence of moments in the central limit theorem. Ann. Math. Statist. 36, 808-818 (1965)
2. Bernstein, S.: Quelques remarques sur le théorème limite Liapounoff. Dokl. Akad. Nauk SSSR 24, 3-8 (1939)
3. Billingsley, P.: Convergence of Probability Measures. New York: Wiley 1968
4. Brillinger, D.: A note on the rate of convergence of mean. Biometrika 49, 574-576 (1962)
5. Brown, B.M.: Moments of a stopping rule related to the central limit theorem. Ann. Math. Statist. 40, 1236-1249 (1969)
6. Brown, B.M.: Characteristic functions, moments and the central limit theorem. Ann. Math. Statist. 41, 658-664 (1970)
7. Davydov, Yu.A.: Convergence of distributions generated by stationary stochastic processes. Theor. Probability Appl. 13, 691-696 (1968)
8. Doob, J.L.: Stochastic Processes. New York: Wiley 1953
9. Hall, P.: The convergence of moments in the martingale central limit theorem. Z. Wahrscheinlichkeitstheorie verw. Gebiete 44, 253-260 (1978)
10. Ibragimov, I.A.: Some limit theorems for stationary processes. Theor. Probability Appl. 7, 349382 (1962)
11. Ibragimov, I.A., Linnik, Yu.V.: Independent and Stationary Sequences of Random Variables. Groningen: Wolters-Noordhoff 1971
12. Sen, P.K.: Weak convergence of multidimensional empirical processes for stationary ϕ-mixing processes. Ann. Probability 2, 147-154 (1974)
13. Serfling, R.J.: Moment inequalities for the maximum cumulative sum. Ann. Math. Statist. 41, 1227-1234 (1970)
14. Serfling, R.J.: Convergence properties of S_{n} under moment restrictions. Ann. Math. Statist. 41, 1235-1248 (1970)
15. Stout, W.F.: Almost Sure Convergence. New York: Academic Press 1974

Received May 3, 1979; in final form November 6, 1979

