Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1980

A Note on the Random Mean Ergodic Theorem

Alan Saleski

7

Department of Mathematical Sciences, Loyola University of Chicago, 6525 North Sheridan Road, Chicago, Illinois 60626, USA

Summary. Let $\{S_n\}$ be any non-trivial random walk on the integers. Then, almost surely, for all $p \ge 1$, for any probability space X, for any mixing automorphism T on X, for all $f \in L_p(X)$,

$$\frac{1}{n}\sum_{i=1}^{n} f \circ T^{S_i} \to E(f) \quad \text{in } L_p(X).$$

Let T be an automorphism (that is, a bimeasurable measure-preserving bijection) of a probability space (X, \mathcal{Z}, m) . Let $\{S_n\}_0^\infty$ denote a random walk on the integers (that is, $S_0 = 0$, $S_n = \sum_{i=1}^n X_i$ where $\{X_i\}$ are independent identically distributed integer-valued random variables) and P be the probability measure associated with the random walk. Assume $P(S_1 = 0) \neq 1$ and $1 \leq p < \infty$.

As a consequence of the random mean ergodic theorem [4,7], if T is totally ergodic:

(A)
$$\forall f \in L_p(X) \quad P\left(\frac{1}{n}\sum_{i=1}^n f \circ T^{S_i} \xrightarrow{L_p} E(f)\right) = 1.$$

If X (and hence $L_p(X)$) is separable, then it follows easily from (A) that:

(B)
$$P\left(\forall p \ge 1 \ \forall f \in L_p(X) \ \frac{1}{n} \sum_{i=1}^n f \circ T^{S_i} \xrightarrow{L_p} E(f)\right) = 1.$$

As a result of the recent work of Reich (Theorem 6.3 of [5]), if the X_i are positive and possess finite mean, then:

(C)
$$P\left(\forall p \ge 1 \forall \text{ weakly mixing } T \text{ on any probability space } X \\ \forall f \in L_p(X) \quad \frac{1}{n} \sum_{i=1}^n f \circ T^{S_i} \xrightarrow{L_p} E(f) \right) = 1.$$

In contradistinction to (A) or (B), (C) asserts that the set of probability one for which convergence takes place does not depend upon p, X, T or f.

The objective of this note is to demonstrate that (C) is valid for arbitrary one-dimensional random walk provided T is mixing. The proof given is similar in spirit to that of Blum and Hanson [1]. For the sake of completeness, a direct proof of (C) for random walk having finite first absolute moment is also provided.

Lemma 1. Let T be an ergodic automorphism of a non-atomic probability space $(X, \mathcal{Z}, m), \varepsilon > 0, M \ge 1$. Then there exists $A \in \mathcal{Z}$ such that $0 < m(A) < \varepsilon$ and $m(T^i(A) \cap A) \ge (1 - \varepsilon) m(A)$ for $-M \le i \le M$.

Proof. Choose n so large that $(n-2M)/n > 1-\varepsilon$. Then, according to Rohlin's theorem, there exists a set $F \in \mathscr{Z}$ such that $\{T^{-i}F|1 \leq i \leq n\}$ are pairwise disjoint

and $nm(F) > 1 - \varepsilon$. Choose $G \subset F$ such that $0 < m(G) < \varepsilon/n$. Let $A = \bigcup_{i=1}^{n} T^{-i}G$. \Box

Lemma 2. Let $\{S_n\}$ be a random walk on the integers and let $M \ge 1$. Define the random variable $L_n = \frac{1}{n^2} \operatorname{card} \{(i,j) | |S_i - S_j| \le M, 1 \le i, j \le n\}$. Then $L_n \to 0$ a.s.

Proof. Let $0 < \varepsilon < \frac{1}{2}$. Since $L_n \ge 0$, it suffices to show that $P(\limsup L_n \le \varepsilon) = 1$. Let T be any totally ergodic automorphism of a non-atomic probability space (X, \mathcal{X}, m) . As a consequence of Lemma 1, there exists $A \in \mathcal{X}$ such that $0 < m(A) < \varepsilon$ and $m(T^iA|A) \ge 1 - \varepsilon$ for $-M \le i \le M$. Let f denote the characteristic function of A. Invoking the random mean ergodic theorem and noting that the family $\{T^{X_1}\}$ of transformations is ergodic yields $\left\| \frac{1}{n} \sum_{i=1}^n f \circ T^{S_i} - E(f) \right\|_2 \to 0$ a.s. Hence $\left\| \frac{1}{n} \sum_{i=1}^n f \circ T^{S_i} \right\|_2^2 \to \|E(f)\|_2^2 = (m(A))^2$ a.s.

Now, a simple calculation shows:

$$\left\|\frac{1}{n}\sum_{i=1}^{n}f\circ T^{S_{i}}\right\|_{2}^{2} = \frac{1}{n^{2}}\sum_{i,j=1}^{n}\langle f,f\circ T^{S_{i}-S_{j}}\rangle$$
$$\geq \frac{1}{n^{2}}\sum\left\{\langle f,f\circ T^{S_{i}-S_{j}}\rangle|1\leq i,j\leq n,|S_{i}-S_{j}|\leq M\right\}$$

Thus

$$(m(A))^{2} \ge \limsup \frac{1}{n^{2}} \sum \{ \langle f, f \circ T^{S_{i} - S_{j}} \rangle | 1 \le i, j \le n, |S_{i} - S_{j}| \le M \}$$
$$\ge (1 - \varepsilon) m(A) \limsup L_{n} \quad \text{a.s.}$$

So, $\limsup L_n \leq m(A)/(1-\varepsilon) < 2\varepsilon$ a.s. \Box

Theorem 1. Let $\{S_n\}$ be a one-dimensional random walk. Then, with probability one, for any mixing automorphism T of a probability space X, for all $p \ge 1$, for all $f \in L_p(X)$,

A Note on the Random Mean Ergodic Theorem

$$\frac{1}{n}\sum_{i=1}^{n} f \circ T^{S_i} \xrightarrow{L_p} E(f).$$

Proof. Let E_M denote the event: $\frac{1}{n^2} \operatorname{card} \{(i,j) | 1 \leq i, j \leq n \text{ and } |S_i - S_j| \leq M \} \to 0$; let

 $E = \bigcap_{M=1}^{\infty} E_M$. Lemma 2 asserts that each E_M occurs a.s.; hence E occurs a.s. Let $f \in L_2(X), E(f) = 0$. Then, if E occurs,

$$\left\|\frac{1}{n}\sum_{i=1}^{n} f \circ T^{S_{i}} - E(f)\right\|_{2} = \left(\frac{1}{n^{2}}\sum_{i, j=1}^{n} \langle f, f \circ T^{S_{i} - S_{j}} \rangle\right)^{\frac{1}{2}} \to 0$$

since T is mixing. For arbitrary $g \in L_2(X)$, replace g by g - E(g). To show convergence in $L_p(X)$, $p \neq 2$, a standard approximation argument will succeed. \Box

Lemma 3. Assume the random walk $\{S_n\}$ possesses finite first absolute moment. Then there exists a set C of probability one such that, for each $\omega \in C$, for every sequence β of positive integers having zero density,

$$\frac{1}{n^2}\operatorname{card}\left\{(i,j)||S_i(\omega) - S_j(\omega)| \in \beta, \ 1 \leq i, j \leq n\right\} \to 0.$$

Proof. Let $0 < \varepsilon < 1$. Applying the strong law of large numbers and Lemma 2, there exists a set C of probability one such that for any $\omega \in C$ there exist integers

K and L satisfying $|S_n(\omega)| < Kn$ for all $n \ge 1$ and $\frac{1}{n^2} \operatorname{card} \{(i,j)||S_i(\omega) - S_j(\omega)| \ge 1, 1 \le i, j \le n\} > 1 - \varepsilon$ for all $n \ge L$. Hence, for any $\omega \in C$ and for each $n \ge L$, there exists a subset G_n of $\{1, 2, ..., n\}$ such that $\operatorname{card} G_n \ge (1 - \varepsilon)n$ and $S_i(\omega) \pm S_j(\omega)$ whenever *i* and *j* are distinct elements of G_n . Let $A_{ij}(\omega) = |S_i(\omega) - S_j(\omega)|$; note that $A_{ij}(\omega) \le 2Kn$ if $i, j \le n$. A simple counting argument shows that, for any integer *p*, $\operatorname{card} \{(i,j)|i, j \in G_n, A_{ij}(\omega) = p\} \le 2n$. Thus, for each $\omega \in C$ and any sequence $\beta = \{\beta_i\}$ of zero density,

$$\frac{1}{n^2} \operatorname{card} \{(i,j) | A_{ij}(\omega) \in \beta, 1 \leq i,j \leq n \}$$

$$\leq \frac{1}{n^2} ((2\varepsilon - \varepsilon^2)n^2 + 2n \operatorname{card} \{i | \beta_i \leq 2Kn\})$$

$$= 2\varepsilon - \varepsilon^2 + 4K \left(\frac{1}{2Kn} \operatorname{card} \{i | \beta_i \leq 2Kn\}\right) \to 2\varepsilon - \varepsilon^2. \quad \Box$$

Theorem 2. Let $\{S_n\}$ be a one-dimensional random walk on the integers having finite first absolute moment. Then, with probability one, for any weakly mixing automorphism T of a probability space X, for all $p \ge 1$, for all $f \in L_p(X)$, $\frac{1}{n} \sum_{i=1}^{n} f \circ T^{S_i} \xrightarrow{L_p} E(f)$.

Proof. Choose C to be the set of probability one defined in Lemma 3. Let (T, X) be a weakly mixing dynamical system and let f be any simple function on X. Then there exists a sequence β of positive integers having zero density such that, if $|a_n| \notin \beta$ and $|a_n| \to \infty$, then $\lim_{n \to \infty} \langle f, f \circ T^{a_n} \rangle = 0$. If $\omega \in C$ then, arguing as in the

proof of Theorem 1, $\frac{1}{n}\sum_{i=1}^{n} f \circ T^{S_i(\omega)} \to E(f)$ in L_2 . A routine approximation argument completes the proof of this theorem. \Box

References

- 1. Blum, J.R., Hanson, D.L.: On the mean ergodic theorem for subsequences. Bull. Amer. Math. Soc. 66, 308-311 (1960)
- Friedman, N.A.: Introduction to Ergodic Theory. New York-Cincinnati-Toronto-London-Melbourne: Van Nostrand Reinhold 1970
- 3. Halmos, P.R.: Lectures on Ergodic Theory. New York: Chelsea 1956
- Kakutani, S.: Random ergodic theorems and Markoff processes with a stable distribution. In: Proc. 2nd Berkeley Sympos. Math. Statist. and Probab. pp. 247–261. Berkeley-Los Angeles: Univ. Calif. Press 1951
- 5. Reich, J.I.: On the individual ergodic theorem for subsequences. Ann. Probability 5, 1039-1046 (1977)
- Spitzer, F.: Principles of Random Walk (2nd Edition). New York-Heidelberg-Berlin: Springer 1976
- 7. Ulam, S.M., von Neumann, J.: Random ergodic theorem (abstract). Bull. Amer. Math. Soc. 51, 660 (1945)

Received December 28, 1978