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1. Summary and Introduction 

Let  X1, X2 , . . .  be a sequence of symmet r ic  i.i.d, r a n d o m  variables with infinite 
var iance in the domain  of a t t rac t ion  of the no rma l  distribution, i.e. their 
c o m m o n  distr ibution function F is such that  

L ( x ) =  j" y2dF(y) (1.1) 
lyl_-<x 

is slowly varying at infinity with l im L(x) = co. Let  the sequence an, n = 1, 2 . . . .  , 
x ~ o o  

satisfy 

n a 2 2 L ( a , ) ~ l  for n -+ co, (1.2) 

then it is wel l -known that  the dis tr ibut ion of 

a~- ~(X1 + . . .  X.)  (1.3) 

converges weakly to the no rma l  distr ibution.  See for example  Feller (1971), 
p. 579. 

In the case L(x) --+ 1 for x ~ o% i.e. X 1 is in the domain  of normal at t rac t ion 
of the no rma l  distr ibution,  M a j o r  (1979) has shown the existence of a sequence 
of independent  normal ly  dis tr ibuted r a n d o m  variables  Yn, n = 1, 2 , . . . ,  such that  

i=~lXi-z~=lYi=,,9.(ll�89 a , s .  for  n ~ o o ,  (1.4) 

Strassen's  s t rong invar iance principle is an easy consequence of this result. 
In the case L(x) ~ co for x --+ co we shall p rove  a similar assertion. Suppose  

that  for some posit ive non-decreas ing  slowly varying function L2, with 
l im {L(x)}- 1Lz(x ) = co, 

x ~ o o  
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oo 

j x2{L2(x)} -1 dF(x) (1.5) 
1 

converges. Then we can construct a sequence of independent normally distribut- 
ed random variables Y., n--1, 2 . . . .  , and a sequence b~, such that 

i= ~ 1 X i -  ~ Yii =o(b,)  a.s. for n - - ~ ,  (1.6) 
i = l  

with 

nb22L2(b,)--*1 for n ~ .  (1.7) 

Note that the case where the random variables have an infinite variance is 
different from the case where the random variables have a finite variance. It is 

well-known that the condition EX2< ~ is equivalent with Z P(IX,] >el/n)< or, 
for some e>0.  If we define X',=X,. 1[_~r then, w.p. 1, we have 

[XI +... + X,-(X'I  +... + X',)I=~(lfn ) for n ~ .  

In the case EX 2 = ~ we want to state a similar assertion. It follows from Feller 

(1968) Lemmas 3.2 and 3.3 that P(i ~'Xi.=l >an i.o.)=0, or 1 according as  

~_P(lXnl>an) converges or diverges, where a n satisfies (1.2). However, the last 
series diverges as follows from the divergence of the integral 

oo 

~. x2{L(x)} -1 dF(x), (1.8) 
a 

where a = inf{x: x > 0 and L(x) > 0}. 
Divergence of the integral (1.8) easily follows from the fact that lira L(x) = 

x ~ o o  

and in the proof of the assertion we do not use the assumption that L is slowly 

varying at infinity. Thus, with probability one, the relation ~ Xi > a n will occur 
i = l  

infinitely often. This implies that we cannot improve the upperbound in the 
right-hand side of (1.6) with a n in stead of b,. In other words, the bound in (1.6) 
is sharp. 

The symmetry assumption is only used at one place to guarantee that the 
truncated random variables have zero expectation. I can only prove an assertion 
as given in (1.6) for non-symmetric random variables with some additional 
assumptions. In order to avoid those details about the question when the sum of 
the expectations of the truncated random variables is negligible, we shall only 
consider the symmetric case. 

Our method to prove (1.6) can also be used to prove Major's result. He 
applies a strengthened version of the Berry-Esseen inequality. We shall apply the 
Skorohod representation for the truncated random variables. 

In Sect. 2 we state and prove the main result. In Sect. 3 we discuss the result 
and give some examples. 
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2. Main Result 

The main result of this paper is the following theorem. 

Theorem 2.1. Let X 1 , X  2 . . . .  be a sequence of i.i.d, symmetric random variables 
with EX~ =0  and common distribution function F. Let the funct ionL defined by 
(1.1) be slowly varying at infinity with lim L(x)= oo and suppose that for some 

x ~ o o  

positive non-decreasing slowly varying function L2, with lira {L(x)}-1 L2(x ) = oe 
X ~ C ~  

the integral (1.5) converges. Let {b,} satisfy (1.7). Then we can define a sequence of 
positive real numbers %, n= 1,2 . . . .  , and a probability space on which we can 
define {X,} and a sequence of normally distributed independent random variables 
Y,, n = 1, 2,. . . ,  with E Y, = O, for all n, EYe2= ~ and their partial sums satisfy (1.6). 

The proof of Theorem 2.1 follows from some lemmas proved by Feller (1968) 
and the following lemmas. The lemmas of Feller imply that dominating values 
of X~ + ... + X ,  are as rule due to the influence of one big observation X k. This 
is a well-known result for non-normal stable distributions. See, for example, 
Feller (1946) or Mijnheer (1975). Here we notice a different behaviour for partial 
sums in the case where the random variables have a finite variance and the case 
with an infinite variance. 

Define, for n = l , 2 , . . . ,  the random variables X'n=Xn'l[_b~,bn]. From the 
Lemmas 3.1 and 3.2 of Feller (1968) it follows that convergence of the integral 
(1.5) implies 

] X ~ + . . . + X , - ( X ' l + . . . + X ' , ) l = o ( b , )  a.s. for n ~ c ~ .  (2.1) 

The next lemma is essentially the same as Theorem 2.1 of Kostka (1972). We 
omit the proof. 

Lelnma2.1. Let {T,} be a sequence of Skorohod stopping times with ET ,= r , ,  
n = l , 2 ,  ..., and let {W(t): 0 < t <  ~ }  be a Wiener process. Suppose 

limsup c 21 T / -  ri < k a.s. (2.2) 
i 

for some k>0 ,  where {c,} is a sequence of positive numbers. Then 

limsup(c, log W T i - W  zi <oo a.s. (2.3) 
i =  \ i =  1 / 

Note that in Theorem 2.1 of Kostka (1972) we have v, = 1, n = 1, 2 . . . . .  
Define a sequence of positive real numbers d, satisfying 

d2L(d,)~n( logn)-S( logzn)  -1-~ for n ~ o o ,  (2.4) 

where c~ is some positive constant. We define z, by 

~,= ~ x2 dF(x)=L(d,). (2.5) 
I~f-<a. 



4 J. Mijnheer 

Lemma 2.2. Let {7~,} be a sequence of Skorohod stopping times such that, for all n, 
W(T,) has the same distribution as X , .  l[_d~,d.l , where d, satisfies (2.4). Let {%} be 
defined by (2.5). Then, for n ~ 0% 

W (i~= l Ti) - W (i~= l zi) =~(b,) a.s., (2.6) 

where b, satisfies (1.7). 

Proof. The Skorohod representation (see, for example, Breiman (1968), p. 276) 
yields the existence of a sequence of stopping times {T,} such that, for all n, 

~ X~'l[_d,d~lhasthesamedistributionas W(~=lT~)andET,=c~2(X,'l[_d,,d,l) 
i = i  i 

~n" 

Take c.--n(log n)-i. We shall prove. 

~=~ 1 Ti-  ~ z~ =~(c,) a.s. for n--*oo. (2.7) 
i=1 

>1 The stopping times T, satisfy the inequalities, for p 5, 

apEI W(T,)I 2p < ETf  < ApEI W(T.)[ 2p. 

(See Sawyer (1974).) The inequality on the right-hand side implies 

dn 

ET <=A 
--d n 

Then ~ c~- 2 var (T.) < A ~ c; 2 d2 L(d.) < A ~ n-1 (log n) - 1(log 2 n) -~ -~ < ~ .  Lem- 
ma 3.27 of Breiman (1968) implies (2.7). Assertion (2.6) follows from (2.7) and 
Lemma 2.1. 

H Define X.  = X .  l[_~b.,_d.Md.,~b.l. 

Lemma 2.3. Assume the convergence of the integral (1,5). Let the sequences b. and 
d, satisfy (1.7) and (2.4) and let X" be defined as above then, with probability one, 

IX'~ + . . .  + X~I = ~(b,) for n --* oe. 

Proof. Let p>0.  From the Lemmas 4.1 and 5.1 of Feller (1968) it follows that, 
w.p. 1, 

g~= l Xk " l[-ebk'-bkv-P(bk)]utbkv-P(bk),ebk] = ~ ( b n )  

for n-~oo. Kesten (1972) has discussed some of the arguments. In our case the 
proofs are simpler because both L and L 2 are non-decreasing and slowly varying 
at infinity. Thus we may restrict our attention to the random variables 2 ,  that 
are symmetric truncated at d, and f ,  = b, v- P(bn) , with arbitrary p > 0. 

Take a subsequence nk, k = 1, 2, ..., satisfying nk~ n k_ 1(1 q-~b-l(k)) for k--+ oo, 
where limqS(k)=oo and properly chosen as we shall see below. Define the 
sequence of events 
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Ak: Q) {J(i 4 ~ 0 and 3?j =# 0}. 
nk - 1 <i,j<=nk 

i * j  

Then 

P(Ak) = ~ P(X i 4= 0 and )?i 4= 0) 
nk-  1 <i , j<nk 

i~-) 

<{(nk--nk_ 0 max (cd;2L2(d, ) I (d , , f , ] )}  z, 
nk- 1 <n~nk 

where I( ] is the measure attributed by the integral (1.8) to the given interval. 
By our choice of n k we have 

P ( A k )  ~ Cl (tl k - nk_ 1) 2 d2~ 4 L22(d,~) I 2 ( d , , , f J .  

Now we can choose the function ~b such that 

Then 

P(Ak) <= c 2 I( f .  . . . .  f j .  

This implies ~P(Ak )<  oo and therefore, by the Borel-Cantelli lemma P(A k i.o.) 
=0. Thus, w.p.1, ultimately each block n k _ , < n < n  k contains at most one 
component J?, + 0. 

Define the random variables Z k, k = 1, 2, ..., by 

if J r , + 0  for some n~(nk_l,nk] 

otherwise. 

f n  

~ < (nk -- nk- 1) max ~ x 2 dF(x) 
dn 

< c(nk -nk_  1) Lz(f,~) I(d,k, f,k]. 

Thus 

b L2 a2(Zk) < ~ (n k _ nk_l) L2 (f.~) n;  1 Lzl(b,~) I(d,k, f j  

< ~ (rig-- nk-- 1) n[ 1 I ( d , ~ , f j ,  L z is non-decreasing 

< Z I(L~_,,L~] 

by the choice of q~ in the definition of the sequence n k. 
Now a well-known a.s. convergence criterion implies the assertion of the 

lemma. 

3. Examples and Discussion of Our Results 

Feller (1968) has proved that the law of the iterated logarithm only holds if the 
integral 

• {L(x)log2x }- 1 x 2 d F ( x )  (3.1) 
0 

converges. (He did not assume that L is slowly varying at infinity.) In our 
examples we take L(x) equal to clog 2 x, exp(log x/logs x) and c log z x. 
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Example 1. Let f be the density of X 1 given by 

f(x)={~lx[-3(loglxl)-i for lxl>e 
otherwise. 

Then, for x---,o% L(x)~2clog2x and L2(x),,~(logax) 1+~ with e>0.  Therefore 

a,,,~{2cnlog2n}~, bn~{cl n(log2n)l+~} ~, 

and 

%=~2(Y.)~2clog2n. 

From the theory of slowly varying functions (c.f. Feller (1971)) we have 

0"2(I(1 + ... + Y~)~2C n log2n. 

The law of the iterated logarithm for normally distributed random variables and 
our main result imply, for n ---, o% 

limsupn-~(log2 n)- I(X 1 + ... +X , )  =k  a.s., 

where k is a (known) constant. 

Example 2. Let the function L defined by (1.1) for sufficiently large x be given by 
L(x) = exp(log x/log 4 x). We can take L2(x ) = log x log 2 x log 3 x(log 4 x) ~ L(x) for 
some e >0. Simple calculations show that, for n--* 0% 

a~- 1 b, --* o% {L(a,)}- 1L(b,) ~ co, {L(d,)} - 1L(a,) --* oo. 

Obviously the integral (3.1) diverges. Our main result shows the existence of the 
random variables, YI, Y2 ... such that (1.6) holds. The L.I.L. for normally 
distributed random variables yields, for n --* o% 

limsup(2nL(dn) log2n)-~(Y 1 +... + Y,)=k a.s., 

where k is a (known) constant. 
Note  that r for n ~ o o .  On the other hand con- 

vergence of the integral (1.5) implies 

limsupb21(Xl+...+X~)=O a.s. for n ~ o o  

and divergence of the integral (1.8) implies 

l imsupayl(Xl+.. .+X,)=oo a.s. for n ~ o o .  

Divergence of (3.1) implies 

limsup(2aa, log2a,)-~(Xa+...+X,)=o~ a.s. for n ~ o o .  

For  this particular choise of L the proof of Lemma 2.3 is simpler than the 
one we gave in Sect. 2. It also follows from our main result and Lemma 2.3 that 
we can find normally distributed random variables Y~, i = 1 , 2  . . . . .  with EY/=0 
and 0-2(]11 q-...-}-Y,)~a 2 such that (1.6) holds. In view of the remarks made at 
the end of Section 1, it is clear that the estimate is sharp. 

J. Mijnheer 



Strong Approximation of Partial Sums 7 

Example 3. Let the density f of X 1 be given by 

f(x)={~lxl-3(loglxl)-l(log21xl)-i for otherwise,lXl>ee 

+ a o  

with c choosen such that ~ f(x)dx = 1. Then, for large x, L (x )=2c log  3 x and 
- o o  

L2(x)~(logax) 1+~ with e>0.  For n__+m,a~2cnlog3n ' bn2~n(log3n)l+~ and 
L(d.) ~/4a~ 

Thus, as in example 1, we have, for n ~ c~, 

limsup (n log 2 ~- nlog3n )-  (Xt+...+X,)=k a.s., 

for some constant k. Here we also have convergence of integral (3.1). 

As explained in Sect. 1 we need convergence of integral (1.5) to obtain a 
strong approximation. The original Condition (1.1) is appropriate for a weak 
approximation, i.e. 

a 2 ~ sup X i -  ~ 0 in probability, 
l~<k--<n  i - -  i = l  

where Yk is normally distributed with EYk=0 and a2(Yk)=L(ak) and a k satisfies 
(1.2). From the theory of slowly varying functions we have 

a2(Yl+...+Yk)~kL(ak)~a~ for k - ~ .  

In the case where the random variables have a finite variance a similar assertion 
easily follows from Donsker's theorem. See for example Billingsley (1968). For 
random variables with an infinite variance the proof of assertion (3.2)follows the 
same lines. 

I would like to thank P6ter Major for his comments on the first draft of this paper. 
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