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1. Introduction. The Model 

Random walks with internal degrees of freedom were introduced by Sinai in 
1981 in his Kyoto talk [9]. Let E be a finite or countably infinite set and 
consider a homogeneous Markov chain ~,, n=0,  1, 2, ... on the state space H 
= Z  ~ x E ( v= l ,  2, ...). Suppose that the transition probabilities of ~,=(r/,, e,,) 
(tl,~ZVe,~E) satisfy the Z~-translation invariance condition: for every x,, 
x,+ 1 ~ZV, J,, J,+ 1 ~E 

P(~,+ 1)--(x,+ 1 ,J,+ 1)13, = (x,, j ,))=p~, + ~ _~,,j,,j,+. (1.1) 

The Markov chain ~n is called a random walk with internal degrees of freedom 
or briefly with internal states, r/, is the actual random walk component, while 
e, is the internal state. 

By inventing this natural generalization of the usual notion of random 
walks, Sinai's aim was to obtain a tool for the study of the Lorentz process. In 
fact, (see Sect. 6 for more details), the probability theory of random walks with 
internal states offers a possibility to use the Markov partition of the Sinai 
billiard in proving properties of the Lorentz process. 

Nevertheless, it is expected that these random walks will find other appli- 
cations, too, e.g. some models of queueing systems can be described by them. 

This part of the paper is organized as follows: in Sect. 2 we give a pre- 
liminary version of our main result to make clear the basic line of the proof 
(see Sect. 3). Section 4 is quite important: it is devoted to the analysis of the 
arithmetic properties of our random walk. Then in Sect. 5 we can formulate 
and prove the main result of the first part of the paper. Section 6 contains 
some remarks. 

2. Local Limit Theorems: Pre-formulation 

We assume d = card E < oo. 
For  convenience we write the usual transition operator A: Ii(H)--,ll(H ) 

attached to our Markov chain 4. in the following form 
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(A f ) ( x )~  f ~ Ay f (x+y) ,  
y~Z v 

where x ~ Z  ~ and, for any y ~ Z  ~, Ay: Cd~C ~ is a linear operator defined by 

Ay de...e.~f (Py, j ,k) j ,k= 1 ..... d, 

and finally f%f{ f ( x ) :  x s Z  v} with f ( x ) ~ C  d. Let el, ..., e d be the unit vectors 

of C d and denote 1%f(1, ..., 1 ) * ~ g .  We will use * for denoting adjoint. 
Moreover, in general, the indices j and k will denote internal states of the 
Markov chain (j, k ~ E). 

From (1.1) it immediately follows that %, el, ... is a homogeneous Markov 

chain with transition matrix Q def ~ Ay. Q will throughout be supposed to ful- 
y~ Z v 

fil ergodicity, i.e. there is a unique #~ C d such that ~ # j =  1, #~__>0 and Q*#=#.  
J 

The spatial translation-invariance (1.1) also suggests the use of Fourier 
transforms in the spatial coordinates. In fact, for any f~l~(H), introduce the 
Fourier transform f :  [-Tz, rc)~C d as 

f ( t ) ~  f ~ em'~)f(x). (2.1) 
xEZ v 

Then 

where a(t) ~f ~ ei(t'r)Ay 
y~Z v 

As usual 

A 
A"f  (t)=o:(t) f (t) 

is a linear operator in C d and t e [ - n ,  ~)~. 

P(~, = (x, " )l 4o = (0, j)) = (3~, jA n) (x), 

where 3o,j~ll(H) vanishes for every x ~ Z  ~, x~O and 30d(0)=ej. The analogue 
of the usual Fourier inversion formula (see [4], Theorem 4 in w 3 of Chap. XV) 
says in our case that 

(3~.,A')(x)=(2rc) -~ i ... i e-i(x't'e*c:(t)dt. (2.2) 

Denote 
M1 de~'f 2 Y l A y  ' (2.3) 

y~Z v 

S l ,m  de~-f Z Y t Y . , A y  �9 (2.4) 
y~Z v 

(Here Y=(YI, ...,Y~)). Whenever we use these symbols we implicitely suppose 
the convergence of the corresponding series. 

For simplicity, first we formulate our result for the case v= 1, when we 
briefly write M 1%f M, S1,1 ~f S. 

Pre-theorem 2.L Suppose that 
(i) Q is ergodic and aperiodic; 

(ii) (M1, #)=0;  
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(iii) a2%f (S l ,# ) -2 (M(Q-1) -~  Ml,#)>O; 
(iv) II~(t)ll < 1 unless t=0.  ill It denotes the operator norm.) 

Then, for any j~E, 

P(~,=(x,  =(O,j))-#k ~/==~ -+0 
(x, k) eH 

a S  n -+  o o .  

Condition (ii) just says that, with respect to the stationary distribution of 
internal states, our random walk has no drift. Condition (iii) expresses that the 
variance of the displacement after n steps grows like const, n. Finally, con- 
dition (iv) is responsible for our statement's being called a pre-theorem. Indeed, 
in Sect. 5 it will be substituted by a more probabilistic assumption and the 
general case will also be treated. 

3. Proof of Pre-theorem 2.1 

The existence of M and Z imply 

t 2 
c~(t)=Q + it M - ~  Z + o(t 2) it-+o). 

By the Perron-Frobenius theorem ([6]) and condition (i), 1 is a simple eigen- 
value of Q (Q 1 = 1) and all other eigenvalues of Q lie strictly inside the unit 
circle. Then perturbation theory says that, near 0, the largest eigenvalue 2(0 of 
c~(t) is simple and it has a Taylor expansion 

)~(t)=l+rlt+~t2+o(t  2) (t-+O) 

(cf. [8], Theorem 5.11 of Chap. II). Denote the corresponding eigenvector by 
q0(t) (i.e. c~(t)cp(t)=2(t)cp(t)) and accept the normalization (/1, q0(t))= 1. 

r 1 and r 2 can be calculated by using Schr6dinger's implicit method (see [5]) 
which also applies in the non self-adjoint case. In fact, by introducing the 
projection H: Ca-+C d defined via H ~  =(t/l,/z)l we have 

+ cn) oit) = c( o(O, #) 1, 

where c + 0  is an arbitrary real parameter. Since c+0,  the operator ~(t)-Z(t) 
+ cH is invertible and 

~o (t) = c ((p (t),/~) (c~ (0 - 2 (t) + c/7)-11, 

and having taken the inner product of both sides by # we get 

1 = c((c~(t)- 2(t) + c//) -11, kt) (3.1) 

Observe that for the operator B = ( Q -  1 + cH)-  1 we have B1 = c- ~ 1 and B*/~ 
=c -1# .  A l s o / / * ~ = ( ~ 1 ) # .  
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To calculate r I we only consider Taylor expansions up to linear terms and 
we transform 

((Z(t)--,~(t) q- C//) -1  -=(Q + it m -  1 - - r  1 t § cH § o(t)) -1 

----(1 + i t B M - r  1 tB+o( t ) ) - l  B = B - i t B M B + r l  tB2 +o(t). 

Substituting this expression into (3.1) the comparison of the linear terms on 
both sides and condition (ii) result in r I = 0. 

Next take Taylor expansions up to quadratic terms and transform as before 

t 2 
(c~(t) - 2(t) + cI1)- 1 = B - i t B M B  + f BZB + 2 t2 B2 -- t eBMBMB + 0 (t2)" 

Now by the comparison of the coefficients of the quadratic terms we obtain 

r 2 = - (,Y, 1, #) + 2(MBM1, #). 

Remember that B depends on the parameter c. Observe, however, that the 
action of both ( Q -  1 +el i )  and B only depends on c in the eigenspace spanned 
by the vector 1. Since the other eigenvectors of Q - 1  +cH lie in the ortho- 
gonal complement to the eigenvector of ( Q -  1 + clI)* corresponding to the real 
eigenvalue c ((Q-1 + cH)l  =c l) and this eigenvector is just #, we get to the 
following conclusion: in the orthogonal complement to # the action of the 
operators (Q-1  + cH) and B as well does not depend on the parameter c. But 
by condition (ii) MIA_# and consequently we can take c~oo and write 
(MBM 1, #)-=-(M(Q- 1)-1 M1, #) where we should remember that ( Q -  1)-1 only 
exists in the orthogonal complemnent of #. Thus we have arrived at 

Lemma 3.1. Under the conditions of we-Theorem 2.1 

0 -2 
)[(t) = 1 - - T  t2 q- O(t2) (t-+0). 

Proof of Pre-theorem2.1. By an elementary argument given, for example, in 
[7] (Theorem 4.2.2) our statement follows from uniform convergence, i.e. from 

lim sup ] ~ e - i ~ e * e " ( t ) d t - # * ( 2 ~ ) ~ a - X e x p  - =0. 
t l ~ O ~  x ~ Z  

Via usual transformations (ef. [7], p. 150) 

]/n~ e i:,, e* o~"(t) d t -  #* (2g) 1/2 0 " - 1  exp 

=< I~,<a j" e*~" (~nn) - # *  exp ( - -a2  ~ s 2 )  ds+ *[#[l[,l>a j" exp ( - a 2  ~ s 2 )  ds 

-}-a<lsS<?l/g e~~ ) ds-}-yVh-<l!l<rq/ff e~o~n(~) ds=Ii+I2+I3+I4. 
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Let ~(t)=T~JtTt -1 be the Jordan form of ~(t). If #*(t)~(t)=~.(t)#*(t) where 
,~(0)=1 and #(0)=#, then #(t) is twice differentiable near 0, too. We can 
suppose that the first diagonal element of Jt is 2(0. Then the first column of T t 
is q~(t) and the first row of T~ -1 is #*(t). Since the other eigenvalues of e(t) 
move in the unit disc bounded away from the boundary for t small and the 
eigenspaces depend continuously on the perturbation at t=0,  elementary cal- 
culations show that 

0.2t2 )n 
c~"(t)=(l#*) 1 ~-+o(t 2) (1+o(1)) (3.2) 

uniformly for t small. 12 and 13 can be made arbitrarily small by choosing 6 
large and 7 small. Since e~ (l #*) = #*, (3.2) gives that 11 is small if n is large. 
Finally, by the continuity of [l~(t)l I and by (iv) we have max ][~(t)U<l and 

~,_-<[tl_-<n 
this makes 14 exponentially small when 7 is already fixed. Hence the statement. 

4. Arithmetics of Random Walks with Internal States 

The aim of this section is to give conditions that imply assumption (iv) of pre- 
Theorem 2.1 and to analyse the general case when this assumption does not 
hold. This study generalizes the classical understanding of the arithmetic pro- 
perties of probability distributions through their characteristic functions. 

The domain of definition of the Fourier transform e(t) can, of course, be 
identified with the v-dimensional torus T ~. If ~ =  {p(y): y ~Z  ~} is a probability 
distribution on Z v, then the same is true for its characteristic function ~0(t) 
= ~ p(y)e i(''t). 

y ~ Z  v 

Lemma 4.1. I f  (p is a characteristic function as above, then IqO(So) ] = 1 implies the 
existence of an yo~Z ~ such that p(yo)>0 and ~o(t)--ei(t'Y~ where (o(t) is an 
so-periodic function (i.e. q5 (t + So) = q? (t)). 

This 1emma is a well-known reformulation of the triangle-inequality. Next 
we reformulate a lemma of Bhattacharya-Rao ([1], Lemma21.6). If ~ is a 
probability distribution on Z ~ with p(yo)>0, then we can associate with ~ the 
minimal subgroup L of Z v generated by {x: P(Yo + x) > 0}. 

Lemma 4.2 ([1]). Suppose that L is the minimal subgroup of Z ~ associated with a 
probability distribution ~. Denote by L the set of periods of j qo[ (~o is the 
characteristic function of r Then 

(i) L =  {s: Iq)(s)l = 1} 
(ii) L = {s: (s, y) -= 0(mod 2re) for all y~L} 

(iii) L = {y: (s, y) = 0(mod 2 ~z) for all s ~L}. 

Our analysis of the set S =  {s: II~(s)H-1} is based on Wielandt's lemma 

Lemma 4.3 ([6] w of Chapter XIII). Suppose Q is the transition matrix of an 
aperiodic, ergodie Markov chain (Q =(qj~)l ~j.k<=d, d <  oe), and let C be a complex 
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matrix (C=(Cjk)l <j,k<=d) such that for every j and k 

I cjkl <= qjk. 

Then for the largest eigenvalue 7 of C we have 

t~1~1 
with equality if and only if 

1. for every j and k, [ e~k [ = qjk 

2. C=7DQD -1 

where D is a unitary diagonal matrix. D=(djk)l<j,k<=d is uniquely determined if 
we f ix  d 11 = 1. 

An important content of this lemma is that if once 1 is satisfied then each 
Cjk=exp(iO~k)qik where Ojk is a real "angle". Also 2. is already independent of 
the values of the qjk and it only concerns the angles Ojk. 

Lemma 4.4. For every sES, there is a complex number ~ ([Ts[ =1) and a unitary, 
diagonal matrix D s such that, for every t 6T  ~ and seS, 

c~(s + t )=TsD~(t )D;  ~. (4.1) 

Moreover, 7s and D~ can be defined to satisfy 

7sl+s2=y~,Ts2 and D~+s =Ds Ds2 (4.2) 
(s~, s2 ~S). 

Proof According to its definition, co(t) can be written in the form c~(t) 
=(qjk~Pjk(t))a<j,k<d. Here ~pik(t) is the characteristic function of the conditional 
distribution ~k  of one step of the random walk under the condition that the 
Markov chain of the internal states jumps from j to k (put q~jk(t)--- 1 if qjk=0). 
Fix seS. By Wielandt's lemma ]Cpjk(S)] =1 for every j, k. Then our Lemma 4.1 
implies that for suitable rjk~Z~q~j,k(t)=eW'~J~)(Ojk(t) with 0jk s-periodic. Con- 
sequently, 

q~ jk(S + t) = e i(~'~J~ q~j.,k (t). (4.3) 

By Wielandt's lemma, again, 

c~jk (s) = qjk ei(S'rik) = 7sD~Q D; 1 (4.4) 

where [7,[=1 and D~ is a unitary diagonal matrix. Then, in view of (4.3) and 
(4.4) we obtain (4.1). 

(4.2) follows from Wielandt's lemma, too. Q.E.D. 

The previous lemma implies straightforward 

Lemma 4.5. S is a closed subgroup of TL 

Consequently, S = S  ~ • d where S d is a discrete subgroup and S ~ is an n- 
dimensional torus (O<n<=v). A similar decomposition holds for each set Ljk 
corresponding to the distribution ~jk in the sense of Lemma 4.2. (Without 
restricting the generality we assume each q~k >0, because if this is not the case 
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then, first, sufficiently large powers of Q have strictly positive elements and, 
secondly, by taking large prime powers of Q one can deduce the desired 
arithmetics for Q itself.) Thus Ljk=L~kX L~k. Each /,d k has v--njk generators: 
/~}~), ~(,-,jk) determining a parallelepiped whose interior does not contain . . . ,  IJjk 
any points of /'~k' Then, by Lemma 4.1, q)jk(t)=exp{i(rjk, t)} "~Ojk(t ) and ~Ojk(t 
+t')=O~k(t) whenever t~/2~k or t= f i~( l=l , . . . , v - -n3k  ). Now we are able to 
formulate the main result of this section. 

Theorem 4.6. S is the maximal subset of T ~ with the properties 
(i) s 

j,k 

(ii) for every sES and every j, k 

(rig--r11 --rjl + rkl, S)-- 0 (mod 27r) 

where rjk is any f ixed vector of Z ~ such that p~jk,j,k>O. 

This theorem expresses that the arithmetics of random walks with internal 
states is composed from two factors: (i) the arithmetics of the conditional 
distributions N#k and (ii) the structure of the shifts of the N y s  (each ~jk being 
concentrated to a shifted minimal subgroup of Z~). 

Proof. From the group property (4.2) it follows that 7~ and the diagonal 
elements (d#j)~ of D~ should satisfy the Cauchy equation on S. Elementary 
considerations imply the existence of a ~o~Z ~ and pFZ~(1 <j<d)  such that ~ 
= exp {i(p, s)} and (d#j)~ = exp {i(pj, s)}. 

Then, by (4.4), 
(rjk, S) =-- (q), S) + (p j, S) -- (Pk, S) (mod 2 re) (4.5) 

for every s~S and, conversely, if q), pj, PkeT ~ can be given to satisfy (4.5), then 
(4.4), (4.1) and (4.2) hold for seS. We note that d ~  = 1 involves Pl =0. 

To solve the system of congruences (4.5) put j = k .  We get 
(rj#,s)-(~0, s)(mod2rc) for every j. Next set k = l  to obtain (pj, s)--(rjl,S ) 
-(r l~,s)(mod2rc ). Thus (4.5) can be solved to be fulfilled for every s~S if and 
only if, for every s~S, 

(r;k,S)--(rli,s)+(Ol, s)--(rkl, s ) (mod2~r). 

Hence the theorem. 
For v = i the theorem takes a more transparent form. 

Corollary 4.7. Let v= 1 and So=inf{s:s~S,s>O }. Then 

2~ 
- - = g "  C "d{7"Cj,k, r j k - - r l l  - - r j l  -[-rkl , 1 <j, k<d} 
SO 

where rCjk denotes the span of the distribution ~jk (Trjk = 0  of ~ k  is degenerate, 
and 2~z/s o = ~ ,  if s o =0). 

This corollary is a generalization of the classical result saying that the span 
of an arithmetic distribution is equal to 2~/s o where s o is the minimal period 
of the absolute value of its characteristic function. 
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5. Local Limit Theorem: Final Result 

Our finn result will be more general than pre-Theorem 2.1 in two respects. 
First, it will cover the case of multidimensional random walks with internal 
states and, secondly, we shall drop condition (iv) of the same theorem. We are 
going to discuss these generalizations separately. 

Extension to the multidimensional case. This extension is straightforward. 
Though, for multiparameter perturbations, in general, the Taylor expansion of 
the eigenvalues may not exist, nonetheless simple eigenvalues do have Taylor 
expansions (cf. [8-1, w 8 of Chap. II). Thus, analogously to Lemma 3.1, we have 

Lemma 5.1. I f  for a random walk in Z v with internal states 
(i) Q is ergodic and aperiodic; 

(ii) (# ,M,1)=0 for l<_l<v; 
(iii) The matrix a=(a~m)l<l,m<_~ whose elements are 

azm = (#, Zzm 1) - (# ,  M~(Q - 1)-1 Mm 1) - (# ,  Mm (Q - 1)-1 Mt 1) 

is positive definite; then, near O, the largest eigenvalue 2(t)=2(t l , . . . ,  tv) of c~(t) 
has the form 

,~(t) = 1 - � 89  + o(I t[2). 

Dropping condition (iv) of #re-Theorem 2.1. 

We allow S to consist of several elements. The approach will be the same 
as in the proof of pre-Theorem 2.1 but in the limit n~oo  the neighborhoods of 
each s~S give a contribution. Fortunately, Lemma4.4 greatly simplifies the 
evaluation of these contributions. Indeed, for s~S the largest eigenvalue Ys of 
e(s) lies on the unit circle. Moreover, (4.1) says that c~(s+t), apart from the 
factor 7s, is unitary equivalent to ~(t). This remark immediately gives the 
Taylor expansion of the largest eigenvalue 2s(t ) of c~(s + t) for small t 

2s(t)=~s(1-�89 (t-~O). 

An important consequence of this expansion, and of condition (iii) of 
Lemma5.1 is that points of S are isolated, hence S is a discrete group. 
Moreover, in analogy with (3.2), we obtain that in the neighborhood of ssS 

a'(s+t)=(D'~l(D~#)*)7~(1-�89 (t~O). (5.1) 

Now ]/nP(~,  =(x, ")l~o=(0,j))aee~2 can be calculated by using (2.2). In fact, 

~2= V'` ~... [. e-i(x't)e*cd(t)dt 
(2~) ~ _= _~ 

and, as in the proof of pre-Theorem 2.1, 

~2 - ~  ~ ... ~ e-i(x'~+~ 
(2~) ~ ~s I,l<a/~ 

] /n (Ds~I,(D~#) *) 5 e-i(x't)(1-�89176 -(2n)~ Y~e-i(~'~)72e* 
s ~ S  Jtl < ,~/1/ff 
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where --~ is to mean that the both sides are equal under lim lira. The factor 
6 ~ 0  n ~  

(2zc)v ~... ~ e - ' ( x ' t ) ( 1 - � 8 9  
It[ < ~ / ~ n  

where g~(x) denotes the density of the Gaussian distribution with mean 0 and 
covariance matrix or. Finally, by the notations of Sect. 4, the k-th component of 
the vector 

0 " =  i (x , s )~n  * n n , ~e  '/sej(D~l(D~,u) ) 
s~S 

is 

Ok=# k ~ exp { i ( - x  + n o + n p j -  npk, s)}. 
s~S 

(5.2) 

But, since exp{i(z,s)} (zeZ ~) is a character of the group S, the sum in (5.2) 
equals either 0 or card S. More exactly, the group S determines a dual 
subgroup L of Z ~ in the same way as L determines L in statement (iii) of 
Lemma4.2. Then the sum in (5.2) equals card S if and only if -x+n(cp+pj 
--pk)eL, otherwise its value is 0. 

Finally, we show that in bounding the terms corresponding to 14 of the 
proof of we-Theorem 2.1 it is sufficient to know that, in compact subsets of the 
torus, disjoint of S, the spectral radius R(~(t)) of c~(t) is uniformly less than 
some C < I .  In fact, by R(c~(t))= lim [[~"(t)]] 1/" and the continuity of the norm, 

for every t such that R(c~(t))< C there exists an open neighbourhood U of t 
and a natural number n o such that H~"~176 C whenever s~U. Moreover, if 
n=kno +I(O<=l<no) , then 

j" II~n(s)[I ds~ eke~ S II~(s)llZds. 
U U 

This inequality complemented by compactness arguments yields the exponen- 
tial convergence to 0 of 14. 

Denote cardS=re.  We can now formulate our final result 

Theorem 5.2. Under the conditions of Lemma 5.1 

1 x 

a s  n - - *  oo .  

---,0 

Here ZL(X) is the indicator of the set L. 

6. Remarks 

1. The first local limit theorem for random walks with internal states was 
proved by Sinai in [9]. He proved a similar result as ours for simple, self- 
adjoint random walks, i.e. he assumed that py,j,k=0 unless ]y ]= l  and Py3,k 
=P-y, kd (self-adjointness !). 
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2. Some conditions of Theorem 5.2 (and of Lemma 5.1) can be weakened 
without any difficulty. If Q is not aperiodic, then it has several eigenvalues on 
the unit circle and a Taylor expansion, near 0, should be calculated for each of 
them. In the non-ergodic case, the limit distribution will be a mixture. 

If (#, M~ 1) is not equal to 0, then our result remains true by using a suitable 
centering. 

Without condition (iii) the limit distribution may be degenerate. We remark 
that if s o has the stationary distribution # of Q, then #0, #1 . . . .  is a stationary 
sequence and ajk coincides with the asymptotic coefficient for covariance 
usually used at stationary sequences (cf. [7]). 

3. Consider a Sinai billiard on the v-dimensional torus T v and continue it 
periodically to the whole space R v (this can be done by the decomposition R v 
= U {elementary lattice cubes} and by identifying T v with any of the elemen- 

Z v 

tary lattice cubes). This periodical continuation gives rise to the Lorentz 
process: a particle starts according to some initial distribution and moves 
along trajectories determined by specular reflection at the scatterers and uni- 
form motion between them. The Markov partition of the Sinai billiard con- 
structed for v =2  by Buninovich and Sinai [2] is a countable partition of the 
phase space of the Sinai billiard and, to treat properties of the Lorentz process, 
it can also be continued periodically. E.g. the Wiener approximation of the 
Lorentz process given by Bunimovich and Sinai [-3] (who used the Markov 
partition and Bernstein's classical method) is hoped to be obtained by basing 
on the periodic continuation of the Markov approximation and on the proba- 
bility theory of random walks with internal degrees of freedom. In this ap- 
proach the index of the elementary lattice cube, where the Lorentz particle gets 
actually reflected (~Z v) is the random walk component, while the index of the 
element of the Markov partition in which the particle is contained in the 
moment of reflection is the internal state. Even in the framework of this 
sketchy description we should remark that this process itself is not a Markov 
chain but by properties of the Markov partition it can be sufficiently well 
approximated by Markov chains. 

To realize this program one should first Work out a probability theory for 
random walks with internal degrees of freedom and this is the aim of the 
present paper. Its present part has been devoted to local limit theorems. They 
are planned to apply to obtain a local version of the Bunimovich-Sinai central 
limit theorem for the Lorentz process [3], that would imply, in particular, 
Pdlya type recurrence behaviour, i.e. recurrence of the Lorentz process for v = 2 
and non-recurrence for v>3 provided the Markov partition will also be 
constructed for this latter case, too. In the second part of the paper we 
calculate certain ruin probabilities and expectations (case v = l )  from which 
Fourier's law of heat conduction, also in a Lorentz process setting, is hoped to 
be deduced. 

4. When applying our results to the Lorentz process one has a sequence of 
Markov processes with an increasing number of states. The analogue of 
Lemma 5.1 will be true with a uniform remainder term and, what is more, 
the uniform Doeblin condition verified in [9] for the Markov approximation of 
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the Lorentz process also ensures that the gap in the spectrum of Q is uniform. 
Consequently, (5.1) will hold uniformly in the Markov approximation. The 
main difficulty is to achieve uniformity in the consequences of the Wielandt- 
lemma in this approximation. This problem of arithmetics also arises when one 
wants to extend our results to the case d=oo. The first progress in this 
direction is achieved in the author's forthcoming paper "How to prove the 
CLT for the Lorentz process by using perturbation theory?" (to appear in 
Proceedings of the 3rd PSMS, Reidel Publ.). 

5. It is worth stressing that an important novelty of Theorem 5.2 lies in the 
constructive description given by Theorems 4.6 and 4.7 of the group ~ As a 
comparison see the conditions of classical local limit theorems for Markov 
chains by Kolmogorov [10] and Statulevicius 1-11]. Of course, our conditions 
are based on the additional structure of the Markov chain we treat. 

Added in Proof. As a matter of fact Gyires (cf. Gyires, B.: On a generalization of the local version 
of the CLT. (In Hungarian). MTA III. Oszt. K6zl. 10, 469-479 (1960) and Gyires, B.: Eine 
Verallgemeinerung des zentralen Grenzwertsatzes. Acta Math. Acad. Sci. Hungar. 13, 69-80 (1962)) 
in his studies on Toeplitz type hypermatrices, proved a local central limit theorem closely related 
to the Theorem of [91. His papers refer to a remark of R6nyi, who also found a probabilistic 
interpretation of Gyires's result, namely just in terms of random walks with internal states. 
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