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The martingale convergence theorem of R. Cairoli [-4] was proved assuming 
that the filtration satisfies a conditional independence assumption usualy called 
(F4). It belongs to the folklore of the subject (see also [-17]) that (F4) can be 
restated as a condition on commutation of conditional expectation operators. 
This formulation will allow us to derive Cairoli's theorem from a simple 
general argument about operators on Orlicz spaces. The advantage is that one 
obtains a unified proof of multi-parameter versions of several other results: the 
theorems of Rota, Dunford-Schwartz, Akcoglu, and Stein. 

H. FNlmer was able to apply Proposition 2.1 below to random fields. 

1. A General Argument 

Let 1 be a countable set, partially ordered by < and filtering to the right. Let 
(Ts, SSI) be a net of positive linear operators from an Orlicz space L~ to a 
larger Orlicz space L(1), of a probability space. We assume that �9 satisfies the 
A 2 condition (is "moderate"). (For a discussion of Orlicz spaces, see e.g., the 
appendix to [19]. The A 2 condition is that at infinity: cf. [14, p. 120].) Consid- 
er the following assumption. 

(i) For each random variable X in L~, lira TsX exists a.s. and is in L(1). 
Denote this limit T~ X. i 

We observe that this implies 
(ii) If (S,, n ~ N =  {1, 2, ...}) is a sequence of random variables in L~ such 

that 
lira $ S , = 0  a.s., 

then 

lim T~ S, = 0 a.s. 

Indeed, (ii) holds for every positive operator T from Le to L(1). To see this, 
observe that such an operators is necessarily continuous. Now S, + 0 and the 
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A 2 condition imply that ]]Snl[~0, hence [[TSnIIL(I~O. Now use the Fatou 
property of [[ Ilmr 

Results related to the following proposition are known: Blackwell-Dubins 
[2], Maker [15], and Hunt  [12, p.47]. The Blackwell-Dubins theorem would 
be sufficient to obtain the two-parameter case of Cairoli's theorem. 

1.1. Proposition. Suppose that a net of operators (T~,s~I) satisfies the condition 
(i). If  (Xn,n~N) is a sequence of random variables in L~ such that sup[Xn[sL~ 
and l i m X ~ = X ~  a.s., then 

N 

lim T~ X~ = To~ X ~ a.s. 

n ~ N  

Proof. For each fixed n~N, letting 

Sn=supIXp--Xo~[, 
p>n 

we have 

lim sup [T~Xp- T~Xo~ [ __<lim sup I T~(Xp - X ~ ) [  +l im sup [ T~ Xoo - TooX~[ 
s,  p s ,  p S 

<__lim sup T~Sn=TooS,r 
s 

We let n ~ oe and apply (ii). [] 

Now for each fixed m e N  define: 

1"=11 x l a x  ... x I " ,  

with Ik=N for k= 1, ...,m. The partial order < on I m is given by: 

s=(sl, ...,s")<=t=(tl, ...,t") 

if Sk<=t k for k = l ,  ...,m. Let L(1)~L(2)~  ... ~L(m) be Orlicz spaces with A 2 and 
let T(k,n), k =  1, . . . ,m; h e n  be positive and linear (hence bounded) operators 
from L(k) to L(1). 

Consider the following property of the system: 
For  every k=  1, ..., m, if XeL+(k), then 

(iii) (a) lim T(k, n) X = T(k, oo) X exists a.s. 
n 

(b) sup T(k ,n)XsL(k-1)  for k___2. 
n 

(c) T(1, oe) maps L(1) to L(1). 

Set for X~L(m), U s X = T(1, Sl) T(2, s2) ... T(m, Sm) X. 

1.2. Theorem. Suppose that the system satisfies (iii). Then for each XeL(m), 
almost surely 

lim U s X = T(1, oo)... T(m, oo) X. 
I m 

Proof. By induction on m. For  m--2, XsL(2)  and therefore sup T(2,n)XeL(1). 
n 

Apply Proposition 1.1 with L~=L(1).  Now we suppose that the assertion holds 
for I", and we prove it for 1 "+1. For teI re+l, XeL(m+I) ,  one has 
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U t X = T(1, q)... T(m, tin) [T(m + 1, tin+ 1) X] 

= U~ [T(m + 1, tin+ 1)X], 

with s = ( t l ,  . . .  , tin). B y  the hypothesis 

sup T(m + 1, n) X~L(m) 
n 

and T(m + 1, n) X converges a.s. 
Now apply Proposition 1.1 with 

L~ = L(m). [] 

Given an Orlicz function �9 with ~'--q0 and the conjugate function 7 j, set 

(u) = u = 

To apply the previous theorem, the following will be useful. 

1.3. Proposition. Let X and Y be positive random variables with XeLe ,  [IXLle 
= 1, and suppose that for every constant 2 >0, 

P(Y > 2) <1_ E(X l{r > z). (1) 
=2 

Then for any constant p > 1, one has 

\ p / j  = p  - 1' (2) 

Proof. The case when YeL~r is proved (but not stated) in Neveu [19, pp. 218- 
219]. To obtain the general case, observe that for each positive constant C, (1) 
implies the same inequality with Y replaced by Y/, C. Now let in (2) C~ oo. [] 

If q~(u)= u(log + u) m, we denote the corresponding Orlicz space by L log"L. In 
that case, ~ (u)= m u(log + u) m- 1. Hence Proposition 1.3 has the following: 

1.4. Corollary. I f  X and Y satisfy (1) and X~Llogm L, then YELlog m-1L. 
There is also a short direct proof of the Corollary by a standard argument 

giving a less precise estimate than (2): 

2 2 P ( Y > 2 2 ) <  ~ XdP 
{Y> 22} 

< ~ XdP+ ~ X d P <  ~ XdP+2P(Y>22) ,  
{Y>2} {X< 2, Y>2~} {X>2} 

from which one obtains: 

Hence applying Fubini: 

1 
P ( g > 2 2 ) _ < -  5 XdP. 

--2{x>~} 
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<=~dr ~ X d P = ~ X  dP=E[X~p(X)] .  
0 { x  > ~ }  0 A 

Now let ~(u)=u(log+ u) m. [] 

Remark. The particular property of Orlicz spaces as Banach lattices used in 
this section, namely that Xi$O implies IIX~ll~0, is called "order-continuous 
norm." 1.1 and 1.2 depend only on this property, which for Orlicz spaces is a 
consequence of A 2. The results apply to general Banach lattices, provided that 
the one-dimensional limit operators T ( k , ~ )  preserve monotone sequential 
convergence to zero, i.% if (ii) holds. 

2. Applications 

We will use the notation of Theorem1.2 letting at first L(1)=L1, ..., L(m) 
=Llogm- lL .  Let for each fixed k, 3g,, n s N  be either increasing or decreasing 
sub-a-fields of 3, let 3 ~  \ / 3 ~ [ / \  3~], k_  = E,--E['13kJ for n~Nu{oo} ,  U S 

n n 

=E 1E 2 E m for s=(sl ,  ...,Sin)S1 m. 
S l  - - s 2  " " "  S m  

The weak maximal inequality (1) in Proposition 1.3 holds for martingales, 
that is if Y=sup  E I-X[3~], hence one obtains: 

n 

2.1. Proposition. I f  

then 

converges to 

X eL  log"-  1L, 

E 1 E 2 E~ X 
s 1  s 2  " " " m 

when the indices s i ~ ~ independently. 

Let (3s, SeI m) be an increasing (decreasing) net of sub-a-fields, of 3. A 
martingale (reversed martingale) indexed by I m is defined by the property: if 
s<-t [s>=t] then E[Xt[3s ] =Xs.  Let 3~ V 3~[(-] 3s]. 

Now for s=(sl ,  ...,Sm)eI m, 3~ is defined as the a-field obtained by lumping 
together the a-fields on all the axes except for the k-th one. That is, 

= V . . . . . . . . . . . . . . . . .  ),  

where V is taken over all s l ~ I a ,  . . . ,  S k _ l ~ I k _ l ,  Sk+ l~ Ik+~ ,  . . . ,  Sm~I m. Let for 
k <_m, s~I m 

k k E~ =E[ "  13s]. 

The commutation assumption is the assumption that the operators E~=E g $ k  

on L 1 commute; then 
E[. [3s] =P,' E2 Em 

- - S l  s 2  " " "  s i n "  
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We now state Cairoli's convergence theorem. A proof via Banach valued 
martingale sequences was given by Chaterji [5]. For arguments reducing two- 
parameter theorems to amarts with respect to totally ordered filtrations, also in 
the continuous parameter case, see Millet-Sucheston [18]. 

2.2. Cairoli's Theorem. Let (X~, SEI m) be a martingale or a reversed martingale 
such that sup E [1X~l (log + IX~[)"- 1] < oe. 

Suppose that (~,) satisfies the commutation assumption. Then lim X~ exists 
a . s .  Im  

Proof. Since (X~) is bounded in L l o g ~ - l L  for m>2,  it is uniformly integrable 
and admits a representations X ~ = E [ X [ ~ ]  for an XeLlogm-~L.  Then the 
previous proposition is applicable. (The limit of X, is necessarily E[X~oo].  ) []  

A related result is Rota's theorem. Recall that it says that if T~ are positive 
operators on L 1 such that T~I=I and T~*I=I (bistochastic operators), and U, 
= T  1 ... T, T* ... T*, then U,X converges a.s. for each X e L l o g L .  

The proof of this result (see [20, 6], or Doob [7]) shows that U, can be 
represented as E~E ~, where g~; and ~ is a fixed ~-field. Since E ~ is a 
contraction on each Le, the previous discussion shows that if X e L  logmL then 
sup U, X e L  logm-lL. Hence Theorem 1.2 is applicable with L(m)=L log'~L, and 

n 

we obtain 

2.3. Multiparameter Rota's Theorem. Let for i= 1, 2, ..., m and for neN,  T) be 
a bistochastic operator and set 

I f  XeLlogmL,  then 

= 21 ' . .  r . ' (Y . ' ) * . .  

lim U~I ... U~mX 

exists a.s. as the indices s ~  oo independently. 

We will now discuss ergodic averages. Let T1, . . . ,T  m be bi-substochastic 
operators: positive linear contractions on L 1 such that T~I N 1 for i=  1, ...,m. 
The following theorem, due to Fava [10], is a multiparameter version of the 
Dunford-Schwartz theorem, or, equivalently, the operator version of Dunford 
[8] and Zygmund [23]. 

2.4. Theorem. I f  XeL logm- I  L, then 

1 s l - - 1  sin--1 

l i m - -  ~, ... ~ TI k~... Tk~x  (3) 
$1 "" Sm k1=O k i n = 0  

exists a.s. as the indices s i ~ oe independently. 

Proof. The result again follows from Theorem 1.2. The weak inequality (1) in 
Proposition 1.3 holds in the one-parameter case with XeL+~, 

ln-1 
Y = s u p -  ~ TiX 

n n k = 0  
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if T is bi-substochastic: this is due to Hopf-Dunford-Schwartz (see, e.g., Garsia 
n--1 

[11], p. 24). Let T(k,n)=(1/n) ~ Tk i. 
j=o  

Note that 2.4 remains true if T i are not necessarily positive contractions of 
L 1 and Loo. The passage from non-positive operators to positive "modulus" 
operators is by standard arguments which we will not give here. 

It should be noted that there is another mutliparameter version of the 
Dunford-Schwartz theorem in which convergence is "restricted"; it is over 
"squares" rather than "rectangles", but X is allowed to be only integrable (cf. 
Dunford-Schwartz [9]; also Brunel [-3]). This deep result most likely cannot be 
simply reduced to the one-parameter case. 

Finally, multiparameter versions of Akcoglu's theorem [1], and of several 
theorems of Stein [22, pp. 86-87] are also available by the method of this note. 
The proofs are, if anything, easier, because all the Orlicz spaces L(i) in Theo- 
rem1.2 are the same: for Akcoglu's theorem, they are Lp for a fixed p, 
1 < p <  oo; for Stein's theorems they are L 2. We omit the details, but state here: 

2.5. Multiparameter Akcoglu's Theorem. Let p be fixed with 1 < p <  oo and let 
T1, ..., T,, be Akcoglu's operators: positive linear contraction on Lp. Then for 
each XeLp ,  the averages (3) converge a.s. as s i ~ oo independently. 

This result is known. A proof was obtained by S.M. McGrath [-16, 
Theorem 3]. 

3. Infinite Measure Spaces 

We finally comment on extensions of present results to infinite measure spaces. 
This is completely routine when the operators are contractions on only one 
space, as in the theorem of Akcoglu, since an equivalent change of measure 
transforms an operator acting on Lp of a o--finite measure space to an isomor- 
phic one acting on Lp of a probability space. The case of bi-stochastic or bi- 
substochastic operators is more difficult, and the right setting are not the 
spaces L log"L, but spaces R,, introduced by Fava [10], not Orlicz spaces, but 
intersections of Orlicz spaces. The methods of the present note extend, and in 
an article in preparation we obtain not only the theorem of Fava, i.e., the 
multiparameter infinite measure version of the Dunford-Schwartz theorem, but 
also analogous versions of other ergodic and martingale theorems. 
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