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1. Introduct ion 

Let B(t) be Brownian motion.The law of the iterated logarithm asserts that 

IB(t)l 
lira sup 1/2 = 1. 

t~o~ (2tloglog t) 

This theorem and many others follow from Strassen's functional law of the 
iterated logarithm [6]. For 0_< s < 1, set 

- B ( s  t)  

Bt(s) = (2t log log 01/2" 

Strassen's law states that the set {/~t} is relatively compact in the uniform 
topology, and as tToe, the set of limit points is the set K of absolutely 

1 
continuous functions g(x) satisfying g(0)=0 and S(g'(x))2dx<l. If q~ is a 

0 
functional continuous in the uniform topology, this implies that 

lim sup ~(/~t) = sup q~(g). 
t~oo geK 

Chung's law of the iterated logarithm [1] states that 

l iminf (loglog t t  i/2 sup [ B ( s ) l = ~  
t~o~ \ t / 0<_s_<t ]/8" 

In an unpublished paper, Wichura [7] proves a functional form of Chung's 
theorem analogous to Strassen's law. For 0_<s<_ 1, let 

Wt(s) = (l~ ~g t ) 1/2 - -  sup IB(x)l. 
X~$t 
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Let G be the set of nondecreasing nonnegative functions g on EO, 1] satisfy- 
ing 

2 .  

Then, with probability 1, the set of limit points of { Wt} in the weak topology, 
as t/~oo, is G. 

For the remainder of the paper, we will chiefly consider 

Donsker and Varadhan [31, using their powerful asymptotic methods, give 
another functional form of Chung's law. Let L t be the occupation measure 

and let l, be its density, so that 

1 

L,(A) = ~ ZA(Bt(s)) ds 
0 

L,(A) = S lt(y ) dy. 
A 

In the topology of uniform convergence on bounded intervals, {lt} is relatively 
compact, and as tToo the set of limit points is the set C of subprobability 
densities g(y) such that 

1 (g,(y))2 
I ( g ) - g _ ~  ~ - d y <  1. 

Then, for suitable functionals ~, 

lira inf~(/t) = inf ~(g). 
t~co geC 

J'g=l 

The purpose of this paper is to prove a functional form of Chung's theorem 
which contains both Wichura's, and Donsker and Varadhan's results. Further- 
more, we deal with functionals which do not necessarily depend on the local 
time density l,. 

For O_<s< 1, let ~t(s) be the spacetime process 

If A is a subset of [0, 1] x •, let Lt(A ) be the occupation measure 

1 

L~(A) = S )~A(Bt (S)) ds. 
0 
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Although L t can be recovered from L,, the reverse is not true. Since L t does 
not have a density, we must use a different topology than uniform convergence 
on bounded intervals. 

Suppose that 0 __< a < b < 1 and D _~ IR, and let 

Lt'b(D) = L,((a, b) x D) 
b 

= S zD(Bt(s)) ds. 
a 

By the existence of local time for Brownian motion, we can write 

s = ~ lt'b(y) dy 
D 

where It 'b is a nonnegative function. 
Notice that L t determines It 'b. We will say that Lt, converges to L in the 

topology Y if for all 0 < a < b N 1 ,  p,b converges to I a'b uniformly on bounded 
intervals. 

By an abuse of notation, we will call L a subprobability if for all 
0 < t l < t 2 = < l  

~ L(dxdt )<t  2 - t P  
I I < t < t 2 x E ] R  

Next, denote by f(L) the supremum over all partitions 

O = a l < a 2 < . . . < a , + l = l ,  n = l i 2 , . . . ,  
of 

i(lO~,o~+ 1). 
k = l  

Theorem 1.1. In the topology J-, the set {Lt} is relatively compact. As tToo, the 
set of limit points is the set C of subprobabilities L such that 

I'(L) < 1. 

2. The Exponential Estimate 

Let q/ be the set of functions u(x, y) on (0, l ) x  IR having two bounded con- 
tinuous derivatives in y and one in x, and for each of which there are two 
numbers c~ and fl such that for all y, 0 < ~-< u(x, y)< fl < c~. 

Below we give another definition of [, equivalent to the first. Since the 
proof of equivalence is similar to an argument of Donsker and Varadhan ([2] 
p. 27), we will omit it. 

For L a subprobability, let 

1 oo 

/ ( L ) = - i n f ~  ~ ~udL(x,y) .  
u ~  0 --  ce 
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If C is a set of probabilities on (0, 1) x IR, and if L, is the occupation density 
for (s, B(s t)), let 

Qz,~(C)=P={L,~c} 

where Pz denotes the Brownian motion measure with B(0)= z. 
Note that with respect to f(x,y), the infinitesimal generator (see [4]) of 

(s, B(s t)) is 
0 t 02 
~+5 0y2 

For u s ~ ,  let 

By the Feynman-Kac formula, 

00_21~020 . 00 tUyy+2uxo. 
Ot 6y ~ ~ Dx 2u 

Since 0(0, y, t) = u(0, y) is a solution of this equation, we have 

But since u(x, y) > c~ > O, 

Let 7 be the bound of u~. (Recall that ? depends on u.) Therefore, 

1 

->e-~E'{exp[- t !  s (u"t(x'y)dL'(x'Y)]} o~ \2u ! 

Therefore, for any measurable set C, 

Q,,~(c)<U(O'Y)e~exp[tsupi ~ (u"~(x,y)dF(x,y)]. 
= ~ k F~Co_| \2u] 

This formula holds for all ue~', so 

limsup-llogQ,,,(C)_<__ infsup ~ (~--')(x,y)dF(x,y), 
tToo t ueq/ FeC [0, 11 x~/ 

and also, if {Ci}~ 1 is a finite cover of C, then 

1 
l imsup- logQr  t(C) < max infsup 

t~oo t ' l <_i<_nueOllFeCi[o, 1 ] x N  
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Suppose that for any set C closed in the vague topology and for any finite 
cover {Ci}7= 1 of C, we could show 

max infsup ~(u@)(x,y)dF(x,y) 
1 ~ i  <~n u~crg F ~ C i  -- o9 

F ~ C  uEqJ [0, 1] xlR 

Then we would have shown: 

Theorem 2.1. Suppose that C is closed in the vague topology. Then 

lim sup-1 log Qy,t < - inf [(F). 
t t o e  t : F ~ C  

Proof. Let 

M = s u p  inf ~(u'@)(x,y)dF(x,y) 
F e C  u ~ q l  [0, 1] xlR 

and fix e>0.  Note that the set of subprobabilities is compact  in the vague 
topology, so C must be compact. For  each F e  C, we can clearly choose urea# 
such that 

lim - -  (x, y) = 0 
I(x,y)[ " m \ N F /  

and 

Now, if 

s 
[0, 1]xN. \ / 2F /  

a  ubp ob bil ty, 

then C F is open in the vague topology. Since C is compact, we can choose a 
finite set {Fi}7= ~ such that {Cv,}~ = 1 is a cover of C. Set Ni= Cv. 

Thus, 
IU H \ 

G e N i  [0, 1] xN. 

inf sup ~(u'@)(x,y)dG(x,y)<M+~, 
u e  ~ G E N i  [O, 1] xlR 

max inf sup ~ (u'~'](x,y) dG(x,y)<__ M+ e. 
l < - i < - n  u e U  G a N i [ o , t ] x N  \ U /  

Since e was arbitrary, this proves Theorem 2.1. 
Although we could also obtain a lower estimate, it is easier to directly use 

Donsker and Varadhan's  theorem. 
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3. Completion of the Proof of Theorem 1 

Lemma 3.1. The set of  limit points of  {Lt} as t T ~ contains C. 

We will say that a subprobability density g(x, y) is contained in f# if [(g)< 1, 
g has compact support, and if for some partition 0 = a 1 < . . .  < a n + l =  1, g(x, y) is 
a constant function of x when ak<=X<ak+ 1. f# is clearly dense in C. We will 
show that the set of limit points contains f#. 

Considering the definition of J ' ,  it suffices to show for any refinement 0 
= b l < . . . < b m + l = l  of the previous partition, the set of limit points of 
{(/bl,b2 . . . . .  Ibtm,bm+ 1)} contains (g(bl , . ) , . . . ,  g(b,, ")). 

Our strategy will be to choose a sequence {tn} such that tn+x/t ~ suf- 
ficiently large, and then use the Borel-Cantelli lemma. Now if the l~ ̀'b`+l were 
independent, we could use estimates of Donsker and Varadhan to approximate 
the distribution of (l~l'b~,...,l~'b"+ 9. For each i = l , . . . , n  choose a point qi in 
the support of g(b~,.). Let z~ be the first time greater than b~ that B t hits q~. 
Also, set b1=~/2. 

Now since Brownian motion has independent increments, it follows that if 
z~ < b~+ 1, then the 1~ ''b' + 1 i= 1,...,  n are independent. Our aim is to show that ~ 
- b  i becomes so small as tT~  that l~ ̀'b~§ is a good approximation of I~ ̀'b`§ 

Assume that all of the functions g(b~, .) are supported in the interval (~, 
+ A). Clearly, if za is the first hitting time of A by B t, then % is stochastically 
larger than each z~-b~ in the sense that for all ~ > 0, 

P{%>z} > P { z l - b i > e } .  

Note also that za is 1/t times the first hitting time by B(t) of 

t ~1/2 
f . 

Therefore, as tT~,  by standard theory, 

Therefore, for any e > 0, 

P{-c~ > s} = o(t) .  

P{sup(~ i - bi) > ~} = o(t). 
i 

Let O < a < b < l ,  and let E be a set of subprobabilities on IR, open in the 
vague topology, satisfying 

L ( ] R ) < b - a  if LeE. 

Then, by the asymptotics of Donsker and Varadhan, 

1 ran lim i n f - -  log Px(/2; EE) > -- inf I(L). (**) 
t~| loglog t Lee 

The log log t term appears because we are using Bt(s ) instead of B(s). 
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Now fix e>0, and let t ,=  (!)". Let Vii b e d  vague neighborhood of g(bi,'), 

and let Vi ~ be an e-enlargement of V/. That is, replace each equation 

M < ~ h(x) g(bi, x) dx < N 

occurring in the definition of V/by the equation 

M - c G <  S h(x )g(b i , x )dx<N+eG 
- o o  

where G=sup  Ih(x)l. Let A, be the event 
x 

A , =  < r l < e , ~ i - b i < e  for i=2, . . . ,n ,  

and l~'bi+lEgi for i=1,  . . ,n} 
t n  �9 . 

Note that these conditions insure that for points in A,, 

Ib"b~+~Vi ~ for i=  1,...,n. 

Our aim is to show via the Borel-Cantelli lemma that A, occurs infinitely 
often, almost surely. The A, are independent, and for n large enough (**) 

shows that - 52 i(g(b~, .)1 
P(A.) > C(e) n ' = 1  

But since I (g)<l ,  the sum ~ P(A,) diverges, and so by the Borel-Cantelli 
n = l  

lemma, A, occurs infinitely often. Since e was arbitrary, this shows that in the 
vague topology, the set of limit points of {Lt} contains C. 

Lemma 3.2. In the vague topology, {Lt} is compact and its limit points as t~ov 
are contained in C. 

Proof For e > 0, let C ~ be the set of subprobabilities L satisfying 

f(L) __< 1 + 

Let N~ be a neighborhood of C ~, chosen such that 

e > 0  

This is possible because 

0 d =C. 
e > 0  

It suffices to show that with probability l, there exists a time T~ such that t > T~ 
implies Lt~N ~. 
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Now fix 3 > 0  and let t ,= ( l+3)" .  We will show that almost surely, L,,q~N~ 
only finitely often. Note that 

inf [(L) > 1 + e. 
L(~N~ 

By Theorem 2.1, for n sufficiently large, 

P{Lt.r < n -(~ +~/2). 

Since the sum of these probabilities converges, the Borel-Cantelli lemma 
assers that L J N ~  only finitely often. 

By the definition of L t, we see that we can find neighborhoods N(e, 3) of N~ 
such that if L, eN~ then for all t,_ ~ < t < t,, L, eN(e, 3), and also that 

0 N(e, 3)= 8. 
~ , 6 >  I 

But by the previous result, we see that s only finitely often. Since e 
and 3 were arbitrary, this proves the theorem. 

4. The Topology ~- 

To finish the proof of Theorem 1, we must show 

Lemma 4.1. {Lt} has the same limit points in both the vague topology and the 
topology J-. 

Proof Since the vague topology is weaker than J-, it suffices to show that if L 
is a limit point in the vague topology, then it is also a limit point in J .  

Suppose that L t ~ L  vaguely. It suffices to show that in Y-, L~. has a 
convergent subsequence. We need a theorem of Donsker and Varadhan ([3], 
Theorem 3.8). 

Theorem 4.2. (Donsker and Varadhan). For each a>0 ,  there exists 3>0 such 
that 

P{timsup sup Ilt(yl)-l,(y2)l>a}=O. 
t T ~  l y l - y z l < a  

Let O = a l < . . . < a , + l = l  be a partition of [0,1]. Then, as a corollary of 
Theorem 4.2, we have that for each a>0 ,  there exists a 3 > 0  such that 

a i , a i + l  __  a i , a i +  e{limsup sup sup II~ (Yl) l~ l(y2)l>a}=0. (*) 
t ~  1 ~<i~<n [yl--y21--<~ 

Since ~- depends on compact subsets of [0, 1] •  we need only consider 
Lt.l~ , that is Ltn restricted to a compact subset K. In this setting condition (*) 
and Ascoli's theorem imply that L~[~ has a convergent snbsequence. Since this 
is true for all K, the proof of Lemma 4.2 is complete. 

For certain applications, we need the following theorem. Suppose that g,h 
are continuous functions on [0,1] such that g(0)<0<h(0) and h(x)-g(x)>O 
for all xe[0, 1]. Also assume that Le  C and that for all 0__<t~ < t  2 __< 1, 

~ L(dx dt) : t 2 - t 1 .  

Ll < t  < t 2  x ~ .  
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Let 
R = {(t, x) E [0, 1] x 1R: g(t) < x < h(t)} 

and 
R"={(t,x)e[O, 1] x lR:  g ( t ) - e < x  <h(t )+@ 

With these definitions, we have 

Theorem 4.3. With L e C  as above, if L is supported in R, then for almost all co 
there is a sequence t, such that 

(i) L~,~ is supported in R ~, 
(ii) Lt ~ L  in the topology s 

Proof. It suffices to consider the following case. Let  0 = a l < . . .  < a , + 1 = 1  be a 
partit ion, and let g<h be discontinuous functions on [0,13 such that 
g (0 )<0<h(0) ,  and g,h are constant  on each interval [ai ,ai+l) .  Also assume 
that  the intervals (g(ai), h(ai) ) and (g(ai+ 1), h(ai+ 1)) are not  disjoint for any i. 

Let  L e C  satisfy 

S L(dxdt)=dt  for all re [0 ,1] ,  

and let L have supported contained in 

e = {(t, x)e  [0, 13 x IR: g(t) < x < h(t)}, 

A 1 
and suppose that - I ( L ) < ~ ,  for some 0>1 .  Let  t ,=2 "~ and fix b>0 .  Now let 

z l= t ,_ l / t , ,  and for i=1 ,  . . . ,n  let z~ be the first t ime s>q~ such that  Bt,(s ) hits 

h(ai+ t ) -  g(ai+ 1) 
, g (a i ) -2e ,  or h(ai)+2e.  

2 

If none  of these points have been hit before t ime ai+ > set zi=ai+ 1. Let  yVbe  
a weak ne ighborhood  of L supported in S, such that  

1 
sup - f(N) < -  
NeW O" 

Let A, be the event that 

(i) For  O < s < % ,  g(O)-e<Bt(s)<h(O)+~. 

(ii) For  ~i < s < ai+ 1, g(ai) - e < Bt(s ) < h(ai) + ~, i = 1,..,, n. 

(iii) Bt(zi)= ~(ai+l)-g(ai+l)- i=2 ,  n. , . . . ,  

(iv) s w:. 
Let E ,  be the event that condi t ion (i) is satisfied. Using the same argument  

as in the proof  of  Theorem 1.1, we see that  

P{sup(~ i - ai) > c5} = o(t). 
i 
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Also, by the definition of z i, 

P{  Bt(z~)=h(ai+l)-g(ai+l)2 , i=  2, ... , n}>  C>0.  

We now need a theorem of Donsker and Varadhan ([3], Lemma 2.12). 

Lemma 4.4. Suppose that fi is a probability measure supported in an interval 
(a,b), and that J ' i s  a weak neighborhood of ft. I f  z is the first exit time s of Bt(s ) 
from ( a -  ~, b + ~) then 

l iminflog inf Px{Lte Ar,,z>t} > - inf I(N). 
t ~; 0o x e ( a ,  b) N e d  

Using these two facts and the strong Markov property, we see that for n 
large enough, there exists C > 0 such that 

0 s u p  - I ( N )  

P{A,IE,} > Cn ,ox 

This diverges, and we wish to show that A n occurs infinitely often. The 
following conditional Borel-Cantelli lemma is used in Donsker and Varadhan 
E3]. 

Lemma 4.5. Suppose that ~n is an increasing sequence of a-fields with A , ~ , ,  
and that for almost all w, 

L P{An+ 11~,} = ~" 
n = l  

Then A n occurs infinitely often, almost surely. 

To apply the lemma, it suffices to show that E~ occurs only finitely often, 
where E~ is the complement of E,. But for some C > 0, 

P{E~} <=P{ sup IB,~(s)[ > C} 
0 < s < tn  - l / I n  

<=P{osuPllB(s)l > C ~t~_ ~. (loglog 

(n - 1 )  ~ - l 

<P{  sup IB(s)l> C2 2 } 

0 < s < l  

( n -  1)  0 

<-_C'exp(-C2 2 ). 

The sum over n converges, so this completes the chain of reasoning involved in 
the proof of Theorem 4.3. 

5. Applications 

(1) Chung's Theorem and Wichura's Law 

These theorems were stated in the introduction. We will prove Wichura's law, 
which implies Chung's theorem. We need a 1emma. 
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Lemma 5.1. Let (p be a probability density supported in the interval [a, b]. Then 

and equality is attained for some density O~,b" 

Donsker and Varadhan [3] show the result for b - a = l .  Lemma5.1 is 
established by considering the density 

g(y) = (b - a) q)((b - a) y) 

which is supported on an interval of length 1. Indeed, 

1 
I(qo) - (b - a) 2 I(g)' 

This proves the lemma, Now we turn to Wichura's theorem, which was 
stated in the introduction. 

Theorem 5.2. (Wichura) Let G and Wt(x ) be as in the introduction. With probabil- 
ity 1, the set of limit points of {Wt} in the weak topology , as t /  oe, is G. 

Proof. Suppose g(x) is a nonnegative nondecreasing function on [0, 1]. Apply- 
ing lemma 5.1 to the density 

where (t,x)~[0, 1] xlR, we see that 

2 1  n 1 

8 o g(t) " 

Now suppose that g~G, and that g is continuous; such functions are dense 
in G under the weak topology. We will show that g is a limit point of {Wt}. 
Fix e> 0, and let L be the measure with density q}(t, x)= O_g(t).g(0(x), which has 
support on R={(t ,x)e[O, 1 ] x N :  ]xl<g(t)}. By Theorem 4.3, since #~C, we 
may choose a sequence Lt. tending to L in the topology J-, such that Lt, is 
supported on 

R ~ = {(t, x )~  [0,  1] x IR: Ixl _-< g(t) + e}. 

Thus, sup IB~.(s)l < g(x) + ~. 
O~S<--x 

To show that g is a weak limit point, it suffices to show that for all N > 0, 
and all k = 1,..., N, that if n is large enough, 

k sup k'B~.(s)[>g(~) - ~  
- -  ~- - - -<s  - < - -  
N - - N  

so that Lt, is supported on R~={(t,x)~[O, 1]x lR:Lx l<g( t )+@ Thus, 
sup ]B~.(s)l < g(x) + e. 

O <=s <=x 
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To show that g is a weak limit point, it suffices to show that for all N > 0, 
and all k = 1,..., N, that if n is large enough, 

sup_<s - [Bt"(s ) l>g(~-~-) -& 
k -  1 < k  

N - - N  

k - 1  k k - 1  k 

But this follows because LtN 'N tends to L -~- '~  in the topology of uniform 
k - - l k  

convergence on compact intervals, and because the support of L N 'N contains 

the  nt rva  

Now we will show that if gCG, then g is not a weak limit point. This is 
obvious if g fails to be nonnegative or nondecreasing, so we may assume that 

a t > ; : .  

Suppose that Wt, tends weakly to g. By Theorem 1.1, we may choose a 
subsequence t', such that Lt, tends to a limit L in the topology J ,  and such 
that /(L)__< 1. Since W~, tends to g, L must have mass 1. Now by Lemma 5.1 
and the definition of ~ this implies that L is not supported on 

R ~ = {(t, x) e [0, 13 x IR: Ixl _-< g(t) + e} 

for some e>O. Thus, for n large enough, /,t, is not supported on R ~, but this 
contradicts the fact that W~~ converges weakly to g. 

(2) Functionals 

Let V(x, y) be continuous on [0, 1] x IR and assume V(x, y) Too as [(x, y)] ~ Oo. If L 
is a subprobability, let 

~(c)= j V(x,y) aL(x,y). 
[0 ,  11 x3R 

We wish to show that if 5(' is the set of probabilities in C, then 

Theorem 5.5. 
lira infq~(Lt) = inf q~(L). 

t T oo LEs ~ 

Proof Let ~c  be the set of probabilities in ~ with compact support. Then, by 
Theorem 4.3, 

lira inf ~(s < inf 4~(L) 
t ~ oo Les ~ 

and since ~c  is dense in 2,r 

lira inf4~(Lt) < inf 4~(L). 
t i " ~  L ~  
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To prove the reverse inequality, let [,,, be a sequence such that ~b(/,,,) tends 
to its infimum. Choose a convergent subsequence J, converging to L. If L E ~ ,  
then the reverse inequality is immediate, so assume that L has mass 1 - 6 .  
However, for all N > 0, 

lim ~(J~) >= fi inf V(x, y) 
t t co l(x,y)l  > N 

1"oo as N'l'oo. 

This proves Theorem 5.5. 
Donsker and Varadhan [3] showed that 

log log t : 
lim i n f ~  j t B ( s ) [  2 ds = �89 a.s. 

ttoo t 0 

Theorem 5.5 implies that 

t t log log 2 l i m i n f ~  ~ slB(s)l ds =2. 
t "f oo t 0 

Thus, we can handle functionals which do not depend only on local time. 
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