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Summary. Let p(t) be the density of the first-exit time of a Brownian 
motion over the one-sided moving boundary given by x=f ( t ) .  We derive 
the following formal expansion for p: 

p(t)-qo(t- , /2 f(t)) [t-3/2 ~ ( t ) - -  ~ cnt"/2m,,(t - 1/2 2(0)]. 
n = l  

Here )~(t)=f(t)- t f ' ( t ) ,  (p is the standard normal density, rn n is the Hermite 
function of order ( -n ) ,  and the coefficients c n are functions of the de- 
rivatives of f at t. We give bounds for the error incurred by approximating 
p by the first n terms of the series, and examples in which the series 
provides an asymptotic expansion for p. 

1. Introduction 

Let f ( t)  be an infinitely differentiable function defined on an open interval 
(0, T). Let z be the first-exit time of a standard Brownian motion W(t) over the 
moving boundary given by x = f ( t ) '  

z= in f{ t l t>0 ,  W(t)> f(t)}, 

We exclude the uninteresting case z = 0 a.s. It is known that z has a continuous 
density p(t). In [41 it was shown that the "normalized density" r(t), defined by 

r(t) = p(t)/qo(t- 1/2 f(t)) 

satisfies the integral equation 
t 

(1.1) r(t) = t-  3/2 2(0 - (2n)- 1/2 ~ a -  2 ye ~ r(s) ds. 
0 
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Here 2(0 = f ( t ) - t f ' ( t )  is the intercept on the vertical axis of the tangent to the 
curve at t; t is regarded as fixed, and a, y, and A are functions of s given by 

G=(t-s)~/~, 

y = ( t -  s)- 1/2(f(t) - f ( s ) - ( t - s )  f'(t)) 
and 

(This equation has been found independently in a more general context by 
Durbin (1981).) In [4] we discussed the use of r~(t)=t -a/z 2(0 as an approxima- 
tion for r(t). We now sharpen this approximation by the addition of higher- 
order terms. (Other second- and third-order terms, asymptotically equivalent to 
those given below in certain situations, have been found by Jennen (1981).) 

At first sight it seems strange to try to approximate p(t), which depends on 
the whole curve f(s), s~(O, t), by quantities which reflect only the local behavior 
of f near t. The key to the possibility of such an approximation lies in the 
quantity A. Roughly speaking, A measures the degree to which the point 
(t,f(t)) is isolated from earlier points (s,f(s)) on the curve. If A is large, except 
near t, then the integrand in (1.1) is concentrated near t, and a local approxi- 
mation becomes feasible. These questions are discussed in more detail in [4]. 

To explain how the higher-order terms are obtained let us define the linear 
operator L acting on a function g by 

Lg =(2n)-  1/2 i g(s) e -a r(s) ds. 
0 

(If g is given explicitly as a function of several variables, for instance g(s)=(t 
-s)-1/2, we make the convention that s is always the variable of integration.) 
In this notation, the integral Eq. (1.1) becomes 

(1.2) r(t) = t-  3/2 2(0 - L(cr- 2 y). 

The idea is now to try to evaluate the unknown quantity L(a-2 y) by expand- 
ing a - 2 y  in terms of functions whose L-transforms are known. Such functions 
are easily found. Let m, be the Hermite function of order ( -n ) :  

mo(X ) = (1 - @(x) )/cp(x), 

m~(x) = -xmo(X)  + 1, 

mz(X) =(x 2 + 1) mo(X ) - x  

and so forth. (Here ~b and (p are the standard normal distribution function and 
density. Section 5 contains the definition of the Hermite functions and a 
summary of their relevant properties.) Then an easy argument (Proposition 2.5) 
using the strong Markov property shows that 

( 1 . 3 )  t~/Zm,(t-1/22(t))=L(a"rn(y)) n=0,  1,2,.... 

The idea behind this equation is not new. Special cases have been used by 
Daniels (1969), Durbin (1971), and Park and Schuurmann (1976).) Now ~r-Zy 
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can be expanded, at least in the sense of an asymptotic expansion at a =0, as a 
series in the functions o -n m,(y): 

(1.4) ~-  2 y = ~ ck ak mk(y), 
k = l  

where the ck's are functions of the derivatives of f at t (Proposition (2.7)). The 
first few coefficients are 

c 1 = -f(2)(t) /2,  c z = 0, c 3 =f(3)(t)/t2,  c4 = (f(2)(t))2/12. 

Substituting (1.4) into (1.2) and using (1.3) produces the formal expansion 

(1.5) r(t) ~ t -  3/2 2(0 -- ~ Ck t k/2 mk(t- 1/2 ~.(t)). 
k = l  

The derivation sketched above is carried out in detail in Sect. 2. Let r, be 
the approximation to r obtained by taking the first n terms of the series: 

n - - 1  

(1.6) r,(t) = t -  1/2 2( 0 _ ~ ck ?/2 ink(t- 1/2 2(t)). 
/ = 1  

Section 3 is devoted to the problem of estimating the error ( r - r , ) .  The bounds 
obtained are unfortunately rather complicated, but asymptotically, for example 
as the boundary recedes to infinity, the situation is simpler. Section 4 gives 
some examples. 

I am grateful, to H. Dinges, C. Jennen, and R. Lerche for helpful advice and criticism during 
the preparation of this paper. 

2. Derivation of the Expansion 

Since, as just explained 

r(t) = t -  a/2 2( 0 _ L ( a -  2 y) 

it is natural to investigate functions m for which L m  can be evaluated. The 
following lemma provides a source of such m's. We use N to denote a standard 
normal random variable and g to denote expectations with respect to the 
distribution of N. Recall the convention that s denotes the integration variable 
in the definition of L. 

(2.1) Lemma. Let  b be a non-negative measurable function such that b(x)=0 /f 
x < O. Let  # be defined by 

J 

Then, for each f i xed  t, 

#(~2, x) = # b(e N - x)/cp(x /e). 

#(t, f (t)) = L # ( t -  s, f (t) - f (s)). 

More  generally, for any O, 

(2.2) #(t, f ( t ) -  tO) = L p ( t -  s, f (t) - f ( s ) -  ( t -  s) 0). 
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Proo f  The proof is simple, though regrettably somewhat overburdened with 
notations. Define bo(x ) = e  ~ b(x) and 

We claim that 

(2.3) 

flo(e 2, x) = gbo(c~N - x ) .  

t 

rio(t, f (t)) = ~ fio(t - s, f (t) - f (s)) p(s) ds. 
0 

To see this, let E(s.x ) denote expectation for the Brownian motion starting at 
(s, x). Since bo(x ) = 0 if x < 0, we have, by the strong Markov property, 

E(o, o) b o ( W ( t ) -  f (t)) =E(o ' o) E(~,f(,)) bo(W(t  ) -  f (t)) 
t 

= ~ E(s, I(s)) b o ( W ( t ) - f ( t ) )  p(s) ds. 
o 

Since, for the Brownian motion starting at (s, x), W(t )  has the same distribution 
as ( t - s )  lie N + x ,  this can be written as 

t 
~ bo(t 1/2 N - f (t)) = ~ g bo ( ( t -  s) 1/2 g - ( f  (t) - f (s))) p(s) ds. 

0 
This proves (2.3). 

A routine computation shows that 

fiO(O~ 2 , X)  = exp( - x 0 + cd 0 2 / 2 )  flO(O~ 2, X - -  O~ 2 O) 

= q)(X/O 0 ]A(~ 2, X - -  ~2 0). 

Substituting this expression into (2.3) and using the identity 

(2~)- 1/z e -  A = ~O(S- 1/2 f (s)) (p((t-- S)- 1/2 ( f  (t) -- f (s)))/~o(t- 1/2 f(t)) 

yields (2.2). QED 
We apply the lemma with b ( x ) = x  ~ 1{~>o ~ and O=f' ( t ) .  We define 

(2.4) 

Writing, as before, 

m,(x)=e((N-x)+)"/~o(x) n=0,1,.... 

~=(t-s)l/2, 
y = (t - s)-  l l2( f ( t )  - f ( s )  - (t - s) i f ( t ) )  

we get the following basic result. 

(2.5) Proposition. t "12 ran(t- 1/2 2(t))=L(a" re(y))  n=0,  1, 2 . . . . .  

As already mentioned, the m,'s are the Hermite functions of negative 
integral order (see Sect. 5). 

Because f is infinitely differentiable, a_2y  has a formal Taylor series 
expansion in powers of ( t - s )  and thus also in powers of a. Since the m,'s are 
infinitely differentiable, with m,(0)~0, it follows that o--2y can also be formally 
expanded in terms of an m,(y). We define ck, k = 1, 2,. . . ,  to be the coefficients of 
this expansion: 
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(2.6) a 2 y =  ~ Ck(rkmk(y), 
k = l  

where the equali ty means that  the two sides are identical when expanded as 
formal power series in a. Determining the Ck'S is a mat ter  of bookkeeping:  we 
simply expand both  sides and equate coefficients. 

(2.7) Proposition. Let a2,=(-1)n+lf(")(t)/n!, a 2 , + j = 0  , n>O. Then the c,, 
n >= 1, satisfy the recurrence relation 

(2.8) c, = ((n - 1)!!)- 1 [( _ 1)" a,+ 3 

n- 1 [(n-k)~3] q 
Y. 

k = l  l ~ 0  

where ~ '  denotes summation over all ml, . . . ,ml>4 with m 1 + ... + m z = n - k  +l. 

Proof. The Taylor  series for f yields, in our  notation,  

so that 

y= ~ am qm 1 
m=d- 

O ' - 2 y  = ~ an+3 (yn. 
n = l  

Writing b, =m(o")(0)=( - 1)" m,(0) (by (5.1)), we have similarly, using (52), 

mk(y ) = ~ (bk+l/l!) X z. 
l=O 

Substituting into (2.6) and rearranging, we get 

(2.9) a,+3 a " =  eka k (bk+Jl!) a a "-a 
n = l  k = l  1=0  \ m = 4  m 

[ (n-  k)/3l 
= ~ Gn ~ Ck 2 (bk+I/l!)~'aml''" amt" 

n = l  k = l  l = 0  

The final sum ~ '  is 0 unless n - k  + l  is even, so that  n =-k+l (rood 2). In this 
case we find from (5.3), that  

bk +l_(k + l -1 ) !  ! 

b, ( n -  1)! ! 

Equat ing coefficients of a" in (2.9) and using this fact, we obtain (2.8). Q E D  
Applying the proposi t ion we find the following values for c l , . . . ,  Clo. 

f(2)(t) f(3)(t) 
(2.10) c 1 -  2 ' % = 0 ,  c 3 -  12 ' 

(f(2)(t))2 f(4)(t) f(2)(t) f(3)(t) 
c 4 -  12 ' c s -  192 ' c6 72 ' 

Cv "= -- ] ~52 (f(z)(t)) 3 + s7@6 f(5)(t), 
C - -  23 8 -- ~b;-, 3~6- f(2)(t) f(43(t) + 2-~o2o (f(3)(t)) 2 , 
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c9 = ~ (f(z)(t))2 f(3)(t ) 1 276~480 f ( 6 ) ( t ) ,  

~7 1 f(3)(t ) f(4)(D +_ 79 _ t  f(2)tD~4 C10 - -  1 ,209,600 f(2)(t) f(5)(t) 40,320 ! 725,760 ~,J \ H " 

The following property of the c,'s follows immediately from the recursion 
relation (2.8). 

(2.11) Proposition. Each c, is a linear combination of products of the form 
f(k~)(t) ... f(k~)(t), where 2 < ki <(n + 3)/2 for i= 1, ..., l, and 

l 

(2.12) Z (2k , -  1 )=n+2 .  
i=1  

From (2.12) it follows that 1<(n+2)/3, since 

t 

n + 2 =  ~ (2 k~ - 1 )  => 31. 
i = 1  

Since (n + 2)/3 <(n +1) for n=>O, we get the following simple bound for c,, 
which will be needed later. 

(2.13) Corollary. For each n> l there is a constant 7, such that, if A > I  and 

then 
If(k)(t)[<=A for 2_<k_<(n+l) 

ic,[ < THAI(,+ 2)/3]. 

Another consequence of Proposition (2.11) is the invariance of the asymp- 
totic expansion under Brownian rescaling. (Actually this invariance can be 
seen directly, and the relation (2.12) follows, but the argument is hard to 
formalize.) Let us introduce new coordinates ~ = ~ x  and t=a2t ,  where ~>0.  
The original Brownian motion is transformed into a new Brownian motion, 
the original boundary f is replaced by a new boundary given by f ( t ) =  ~f(t), 
and so on. Since "~=a2z, it is clear that/3(t)=~-2p(O. Now let r,(t) be the n-th 
approximation to r(t), as in (1.6), and let 

p,(t) = r,(t) q~(t- 1/2 f(t)). 

By invariance under Brownian rescaling we mean that pn(t) satisfies the same 
transformation rule as p. 

(2.14) Proposition. p,(t) = cr 2 pn(t). 

Proof. First consider the factor q~(t-1/2f(t)). Since t -1/2f( t )=t-1/z f ( t ) ,  we 
need only show that Fn(t)=a-2r~(t). Since f ' ( t ) = ~ - l f ' ( t ) ,  we see that ,~(t) 
=~2(t), whence ~-1/2 ~(~)=t-1/2 ~(t) and ~-3/2 X(~)=~-2(t-3/2 2(0) . Thus we 
must prove that g~t~/2=~-2(cnt"/2 ) for all n, that is ~,=~-("+/)c~. But c, is a 
linear combination of terms of the form f(kl)(t)...f(k~)(t), and since f(k)(~) 
=O~-(2k-1)f(k)(t), it follows from (2.12) that f(k~)(~) ...f(k,)(D 
=~-("+2)f(kl)(t)...f(k')(t). Thus g, = ~- ("+ 2) c,. QED 
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3. Error Bounds 

(3.1) 

where 

We wish to estimate the error  (r(t)-r,(O) of the n-th order  approximat ion  r.. 
We have 

t 
r(t) - r.(t) = - (2~)- 1/2 S p.(s) e -  ~ r(s) ds 

0 

n - 1  
; . ( s ) = a - 2 y  - Y, cka~rnk(Y). 

k=l  

In spite of s trenuous efforts at simplification, the error  bounds obta ined below 
remain complicated. As the lesser of two evils we have chosen to introduce a 
considerable amount  of abbreviating notat ion,  in order  to make the final 
formulas easier to read. 

To begin with, we divide the interval of integrat ion (0, t) into two parts. We 
assume that  the point  of division u satisfies 0 < u < t, u > ( t -  1) and u > t/2. For  
the applications which we have in mind, the integrand in (3.1) is much smaller 
on (0, u) than on (u, t). We define 

e=  sup (S - 3 / 2  e -A sup 2(v)), 
s~(O,u) ve(O,s) 

~/.= sup p.(s). 
s~(O,u) 

Usually, quite crude bounds for e and r/. are enough to dispose of the 
cont r ibut ion  of the interval (0, u). 

The situation on (u, t) is more  delicate. The relevant descriptive parameters  
are: 

A =  sup I;~(s)l, 
s~(O,t) 

A o =  inf 2(s), 
sE(u,t) 

Yo= inf y(s), 
sa(u,t) 

Fn+ 1 = max sup [f(k)(s)l, 
2-<k~<n+ 1 sE(u,t) 

Gn = max {F,,+ 1, fck] (F,+ 1 v 1) t(n- k+ 2)/31 k =  1, ..., (n - 1)}. 

(3.2) Theorem. There exist universal constants Kn, n> l, such that, if A o>0, 
the following inequalities hold. 

(3.3) [r(t) - -  r 1 (t)[ ~ K 1 F 2 t 3/2 A A 0 3 + t 8 i l l ,  

(3.4) Ir(t) - -  rz(t)[ ~ K 2 ( F  3 t 7/2 A A  o s + F2 a t9/2 A A  ~ 6 m2(Yo) ) + t gt/2, 

(3.5) ] r ( t ) - r . ( t ) [< K.G . t "+ l /ZAAo" -2m. ( yo )+ te t l .  for n>4 .  

(The case n = 3 is omit ted because r 3 = r  2.) 

Given a specific curve, it is easy enough to evaluate, or at least to estimate, 
all the quantities appearing on the r ight-hand side of these inequalities, except 
for G.. The difficulty with G. is that we have no explicit formula for the 
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(3.9) 

(3.1o) 

and, for n > 4, 

(3.1l) 

coefficients c k. We can avoid this difficulty, at the cost of some loss of 
accuracy, by using the a priori bounds for Cg given in Corollary (2.13). We find 
that 

G ,<(  max 7k)(F,+l v 1) I("+4)/3j 
l < _ k < _ n - 1  

where the 7k'S are absolute constants. This yields the following simplified form 
of (3.5). 

(3.6) Corollary. There exist absolute constants M,, n>4, such that, if Ao>0 , 
the following inequality holds for n > 4. 

(3 .7)  Ir(t)-r,(t)l<Mn(F,+l vl)r(n+4)/alt"+l/2AAo"-2mn(Yo)+t~tl,. 

The remainder of this section is devoted to the proof of Theorem (3.2). The 
reader may prefer to skip to the next section, which contains examples. 

As already explained, the first step in the proof is to divide the interval of 
integration in (3.1) into two parts. Using the elementary inequality 

r(s)<s -3/2 sup 2(s) 
vE(O,s) 

(see [4]), we have, trivially from the definitions of e and t/n , 
u I 

p,(s) e -A r(s) ds <tetln. 

We must now bound the integral over (u, t). In [4] it was shown that if 
lh(s)[ <H0- n for st(u, t), then 

t 

(3.8) S h(s) e- ~ r(s) ds =O(H t n+ 1/2A Ao n- 2). 
u 

(Here, and in the rest of this section, we make the convention that the 
constants implied in the O-notation depend only on n.) To prove the theorem it 
therefore suffices to show that, for st(u, t) 

p l (s) =O(F2 0-), 

P 2(0-) = O(F3 a3 + V] m2(Yo) 0-4), 

p,(a) =O(G,m,(yo)a"). 

We treat the simpler cases (3.9) and (3.10) first. Expanding y in a Taylor 
series around 0- = 0 (i.e. s = t) as in (2.7) we have, for any l>  2 

( t -  1) 
(3.12) y= ~ (--1)k+~f(k)(t)crZk-1/k!+(--1)~f(')(S*)0-2t-1/l! 

k = l  

for some s* ~(s, t) Taking l=  2 we get (3.9). Taking l=  3 we find 

(3.13) y = - - f ( 2 ) ( t )  0-3/2 + O ( F  3 0-5). 
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On the other hand 

ml(y)=ml(O) + ym't(y*)= 1 - ym2(y* ) 

= 1 +O(F2 m2(yo) 0-3) 
so that 

P2(0 - )  = O ' -  2 y  __ C1 ff r n l ( y  ) 

= [ - f (2)(t) 0-/2 + O(F 3 0-3)] _ (_f(z)(t)/2) 0-(1 + O(F z m2(Yo) 0-3)) 

= O(F3 0.3 +X2 2 m2(Yo) 0-4) 

which proves (3.10). 
In proving (3.11) we must of course make use of the fact that the coef- 

ficients c k have been so defined that the coefficients of 0-k in the Taylor 
expansion of p, vanish for k < n. To exploit this fact we introduce the following 
notation. Given a function g(a) with n derivatives, we write 

R. g(o)=0--" g(0-)- y~ gk(0) 0-k/k! . 
k = 0  

Clearly the operator R, is linear, and R.(0-kg)=R._k g for k<n. Thus the 
quantity 0--"p,, which we wish to estimate, can be written as 

n 1 

a-"P,,=R,,(0--ZY) - ~ CkRn-k(mk(Y))" 
k = l  

Our task is to show that each of the summands on the right is O(G,,m,(yo)0-"). 
By (3.8) this will complete the proof. 

First we consider the term R,(0--2y). By the Taylor series (3.12) with l=  [(n 
+ 4)/2] we get, remembering that 0 < 0- <_ 1, 

R.(0-- 2y) = O(F.+ 1)= O(G.). 

Further, Y0 <0, so, by (5.5), m,(yo)> ml(yo)> ml(0 ) = 1; thus we have 

R,(a-  2y) =O(G, m,(yo) ). 

Now we must treat the terms ckRn_k(mk(y)). This is more complicated, 
because we must first expand m k in powers of y and then expand in powers of 
0-. We have 

1 1 

mk(Y ) = ~ m~i)(O) yl/i! + m~kt)(y *) yl/l !. 
i = 0  

Since the expansion of y in powers of 0- begins with 0-3 we take l as small as 
possible such that ( n -  k) < 3 l, i.e. l = [ ( n -  k + 2)/3]. Since k < ( n -  1) it follows 
that k + l < n, so that 

Im~Z)(Y*)l = ink+ z(Y* ) <-- ink+ l(Y o) < m,(y o). 

Further, by (3.13), y=O(F,+ 1), so we get 

i - 1  
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To est imate  R,_ ~(y~) note that, regarding y now as funct ion of  o, 

(3.15) R, _ k(y i) = (f)("- k)(a*)/(n -- k) ! 

for some 0_<cr*_<o-. To  evaluate the derivatives of  f with respect to o-, let us 
write y- -g(~) /a ,  where 

g(a) = f ( t )  - f ( s ) -  ( t -  s) f'(t) = f ( t )  - f ( t -  a2) _ az f,(t). 

Using the chain rule it is easy to show that  

sup g(m)(o-)=O(F,+l) for l _ < m N ( n + l ) .  
sE(u,t) 

For  any function g with (m + 1) derivatives and g(0)=  0 one has the e lementary  
inequali ty 

I(g(o)/o)(")l < sup Ir m+ 1)(~)l. 
~e(O, a) 

Therefore  
sup y(")(a)=O(F,+l) O<_m<_n. 

se(u,t) 

By Leibniz '  rule for the derivative of  a p roduc t  

/1 
(Y l ) (m):2  (jl .-.Jl)y(Ji)... y(Jd 

the sum being extended over  all j~>O.. . j i>O with j l+ . . .+ j~=m.  It  follows 
that  

sup (yi)(m)=O(Fi,+ 0 for O<_m<n. 
se(u,t) 

Using this with (3.15) in (3.14) we see that  

R,_~(mk(y)) = O ((F,+ 1 v 1) l m,(Yo) ) for k = 1, . . . ,  (/1 - t), 

where l = [(/1 - k + 2)/3]. Therefore,  by definit ion of G~ 

c k R,  k(mk(y)) =O(G n m~(yo)). 

This completes  the proof.  Q E D  

4. Applications and Examples 

We now give some examples  in which the formal  expansion (1.5) yields an 
asympto t ic  expansion for r(t). Typical  si tuations are a fixed curve with t ~ 0  or 
t ~  0% or a fixed t with a family of  curves receding to infinity. We are forced to 
use the te rm "asympto t i c  expans ion"  in a somewha t  looser  sense than is usual. 
To  explain the difficulty, let us denote  the general te rm of the expansion by T, : 

T O = t -  3/2 2(t), 

T,=c,t ' /2m,(t-1/z 2(t)) n>=l, 
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so that 
r , = T o +  Tl + . . . +  T,_l .  

For an asymptotic expansion in the classical sense, one would need 

T.=o(rn_o n>=l (4.1) 

and 

(4.2) r =rn+o(Tn) n > l .  

Unfortunately, it is sometimes the case that (4.1) is false for some values of n, 
and Theorem (3.2) yields, instead of (4.2), in general only an error 

(4.3) r=rm+O(Bm) m > l  

with B n of larger order of magnitude than T n. These problems are difficult to 
handle in a general context; the principal obstacle is the lack of information 
on the precise order of magnitude of the coefficients, the estimates of Sect. 2 
yielding only upper bounds. Nevertheless, if we are dealing with a fixed curve 
and a fixed n, so that the coefficients are known explicitly, these drawbacks are 
less serious than might be supposed. In fact, one can often derive (4.2) from the 
apparently weaker (4.3). This happens for those n for which we can find an m 
= n + k  such that (4.3) holds, and such that B,+k, T,+ 1, ..., T,+k_ 1 are all O(T,). 
For then we have 

(4.4) r = r n + k + O(Bn + k) 

=rn+ T, + T,+ 1 + ... + Tn+k_ 1 + O(Bn+k) 

=rn+O(r.). 
As our first example, however, we take a simple situation in which none of 

the above difficulties occur, and for which we can give a direct proof of the 
asymptotic expansion independent of all the repellent machinery of the pre- 
vious section. We consider a fixed curve x=g(s)  translated upwards a fixed 
distance v: thus f ( s )= f~( s )=  g(s)+ v. In the interests of uncluttered notation we 
refrain from encumbering every f, 2, and r with a subscript v. We also rescind 
the convention of the previous section that the constants in the O-notation 
depend only on n. We denote the relative error of the approximation by c5" 

6, = (r(t) - rn(t))/r(O. 

(4.5) Proposition. Let  t > 0  be f ixed.  Let  f ( s ) = f v ( s ) = g ( s ) + v ,  where g is a C ~ 
function on [-0, t]. Then as v ~ o e ,  so that 2(t)~oe,  the relative error 6, o f  the 
approximation r n satisfies 

(~n=O(2  -n  2(t)) n > l .  

(Since cz=O, so that r2=r3, we have 62=0(2-5 (0 ) . )  

Proof  Since y and the coefficients c k do not depend on v, the same is true of 
the constants 

an= sup Ipn(s)l/(anmn(y)), 
sE(O,t) 
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which are finite by definition of  the ck's. Therefore, using (2.5) and (5.4), we 
have, as v ~ o o ,  

[r(t) - r,(t)[ = [gp,] 

< a .  [La"m.(y)[ 

= a. t "/2 m . ( t -  1/2 2(0) 

<= a,n[ t "+ 1/2 2 - " -  1(0 

= O ( 2 - " -  1(0 ). Q E D  

For  a concrete numerical  example illustrating Proposi t ion  (4.5) we consider 
the family of curves 

(4.6) f ( s ) = f ~ ( s ) =  7 5 2 (v-~)-~s +~s 3 

and focus our  at tention on r(t) for t = 2 .  The parameter  v is then equal to 2(2). 
Table (4.7) shows the relative error 6, at t = 2  as a function of  v for n =  1, 2, 4, 5. 

(4.7) Table. The relative error (r,(2)-r(2))/r(2) for the curves 
(4.6) for various values of v=2(2). 

n /J 

2.5 3.0 4.0 6.0 8.0 

1 1.27 0.19 0.043 0.0102 0.0041 
2 1.10 0.13 0.019 0.0021 0.0005 
4 1.02 0.11 0.011 0.0008 0.0001 
5 0.98 0.10 0.009 0.0004 - 

(I am indebted to Dr. Jennen for computing the values of r(2) 
used in constructing this table.) 

In  order  to have f ( 0 ) >  0, we must  take v > 3 7-. When  v is only slightly greater 
than this, say v=2.5,  all the approximat ions  are poor,  but the quality improves 
rapidly with increasing v, and the differing orders of  approximat ion  become 
apparent.  

In  Proposi t ion (4.5) we have an asymptot ic  expansion in the classical sense; 
for, since m , ( x ) ~ n !  x - " - a  as x ~ o o  (see (5.6)), we have 

T. = c. t "/2 m . ( t -  1/2 "~(0)~ c .n!  t"+ 1/2 , ~ - . -  1(0 , 

so that, with the trivial exception of when c,_~ =0 ,  we have T , = o ( T , _ a )  for all 
n>_l. 

By contrast,  consider what  happens when the boundary  recedes "multipli-  
catively", instead of  "addi t ively":  f ( s ) = f v ( s ) = v g ( s  ). Assuming that  g(t) 
- t g ' ( t ) > 0 ,  we see that  2(0 is propor t ional  to v. The same is true of  all the 
non-zero derivatives o f f  Consult ing the list of  c,-values (2.10) we see that each 
c, is either 0 or propor t ional  to a power v "("), as in the following table 

n 1 2 3 4 5 6 7 8 9 10 

a(n) 1 - 1 2 1 2 1 o r 3  2 1 o r 3  2 o r 4  
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For example, c 7 is proportional to v 3 if g(2)(t)+0, and to v if g(2)(t)=0 but 
g(5)(t)#O. Thus T, is proportional to v b("), with b(n)=a(n) - (n+l ) .  Taking the 
larger values of a(n) in the above table (the "general case"), we get the 
following values for b(n). 

n 1 2 3 4 5 6 7 8 9 10 

b(n) - 1  - - 3  - 3  - 5  - 5  - 5  - 7  - 7  - 7  

Clearly it is only sensible to use such r~'s for which the last (non-zero) term 
included is of greater order of magnitude than the first (non-zero) term omit- 
ted. In the case under discussion this means that of the r,, with n<10, only the 
approximations r:, r2, rs, and r s are usable. The next proposition gives a 
specific instance of this situation. 

(4.8) Proposition. Let t > 0  be fixed. Let f(s)=s where 0<fl<�89 Then 
as v-~o% so that 2(t)~oe, we have 

(4.9) c~: = 0(2- 2(t)), 

(4.10) 8 2 = 0(~.- 4(t)), 

(4.11) c5 5 = 0(2- 6(t)), 

(4.12) 8 8 = 0(2- 8(0 ) 

and 

(4.13) c5, = 0(2- e(")(t)) for n > 9  

where e(n) = n + 2 - [(n + 4)/3]. 

Proof. We apply Theorem (3.2) and Corollary (3.6). Let u be arbitrary satisfying 
the conditions of the theorem. An easy exercise shows that the term te~], 
bounding the contribution of the interval (0,u) to the error is O(2-M(t)) for 
every M > 0 .  Since the boundary curve is concave, y is non-negative, so m,(yo) 
=m,(0). The quantities F,, A, and A o are all of order 2(0. Thus (4.9) follows 
directly from (3.3), (4.10) from (3.4), and (4.13) from (3.7). Finally, (4.11) and 
(4.12) follow from (4.13) by the argument (4.4). QED 

By Proposition (2.14), the relative error of r, is invariant under Brownian 
rescaling. A standard rescaling argument the yields the following reformulation 
of Proposition (4.8), in which we now keep the curve fixed and let t-*0. 

(4.14) Corollary. Let f(s)=s~, where 0</~<�89 Let y=(1-2/?)/2.  Then as t~O 
we have 

81 =O(t 2~) 8 2 =O(t 4') 8 5 =O(t 6~) 8 8 =O(t 8v) 
and 

8 n = O( t  'e(n)) f o r  n >= 9. 

We close with an example in which the asymptotic expansion holds as 
t~oo.  The proof is a straight-forward application of Theorem (3.2). 
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(4.15) Proposition. Let  f ( s ) = a o  + a l s + . . .  Warns m, 
am <O. Then as t ~ o o  the relative error satisfies 

and 

~1 = 0 ( t -  2m- 1/2), 

~2 = 0 ( t -  3m+ 1/2) 

c~,=0(t -h(")) for  n > 4  

B. Ferebee 

where m > 2 ,  a o>0,  and 

where h(n) = n 2 + n -  ( n -  2) [(n + 4)/3] 1 2' 
As was the Case in Proposition (4.8), these bounds can be considerably 

sharpened for particular polynomials. 

5. Appendix: Properties of the Functions m,,(x) 

Here we assemble the properties of the Hermite functions m n which are made 
use of in the paper (see Lebedev (1965), Chap. 10). First of all, from the 
Definition (2.4) 

mn(X ) = g ( ( N  - x) + )"/(p(x) 

one can show that 

(5.1) t 
m n =  - - r a n +  1 , 

Thus an alternative definition of m, is 

(5.2) m.(x) = ( -  1)"((1 -,P(x))/~0(x))("~. 

The rn,'s are positive and decreasing. They satisfy a three-term recurrence 
relation 

m,+ l(x)= - x m , ( x ) + n m , _ a ( x )  n > l .  

It follows that rn  has the form 

m.(x) = e.(x) too(X) + Q~ 

where P, and Q, are polynomials of degree n and (n-1) ,  respectively. Another 
consequence is that 

m,+a(O)=nmn_l(O) 

(n /2) l /2(n-1) ! !  n even 
(5.3) m"(0)=(n-  l)![ n odd. 

Finally, we have the elementary inequalities 

(5.4) m,(x )<n!  x "+I x>0 ,  

(5.5) m,+l(x)>mn(X ) n > l  x < O  

and the asymptotic relation 

(5.6) mn(X)~n[ x -n -1  x---~oo. 

so that 
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