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A general theorem concerning the almost sure convergence of some nonho- 
mogeneous Markov chains, whose conditional distributions satisfy a certain 
convergence condition, is given. This result applied to branching processes 
with infinite mean yields almost sure convergence for a large class of 
processes converging in distribution, as well as a characterization of the 
limiting distribution function. 

1. Introduction 

Let (~2,Y,P) be a probability space and {X,(o)): n>0}  a nonhomogeneous 
Markov chain assuming a countable state space E, defined on this space. Write 
A c for the complementary set of A with respect to 12. We shall further attach to a 
sequence of events {An: n > 0} the events lim infA n and lira sup A n, defined in the 
standard way. In the case when A = lim infA = lira sup A n we shall agree to write 
lim A , = A .  [a] will stand for the integral part of a. We shall say that U is a 
n~co  

slowly varying function if U is measurable, positive, defined on [A, oo) with A > 0 
and for each 2 > 0 

u(2x) 
lim U(x) 1. (1) 

Let {Z n: n__> 0} denote a supercritical Galton-Watson process with Z o = 1, 1 < m 
=E( Z1) <  c~. In the case when m< o% {Zn/m"} was proved to converge almost 
surely by Doob, who noticed that this sequence is a martingale (see [4] p. 13). 
However, when E(Z~ log Z1) = o% {Zjm ~} was shown to tend to 0 a.s. by Kesten 
and Stigum [5]. Seneta [7] has shown that there exists some norming constants 
{C n } such that {Z,/Cn} converges in distribution to a nondegenerate limit law. 
Subsequently, Heyde [3] has found a bounded positive martingale derived from 
the sequence {Zn/C,} and obtained the almost sure convergence, by using the 
martingale convergence theorem. 
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There were recently some results asserting the convergence in distribution of 
{log(Z~+ 1)} 

- ~ in the case m = ~ ,  due to Darling [2] and Seneta [8]. In view of 

the results mentioned above in the case m < o% it is natural to raise the question 
whether in such cases the almost sure convergence also obtains. The situation is 
of course different from the finite mean case and a martingale argument does 
not seem likely to be workable. The aim of this paper is to give a general 
theorem regarding the almost sure convergence of nonhomogeneous Markov 
chains which can be applied to the case m=oo.  We shall show that the 
conditions of our Theorem are satisfied by the sequences {U(Z,)/C,} where U 
is a slowly varying function, provided that the convergence in distribution holds. 
The proof of the main Theorem 1 is ultimately based on martingales, but the 
conditions of the theorem involves only the conditional distributions of the 
given sequence of random variables. 

2. Results 

Theorem 1. Let {Xn: n>O} be a nonnegative nonhomogeneous Markov chain 
converging in distribution to a distribution function F and suppose that there exist 
the limits 

lim P { X n d l X m  = i} = a,,,i (2) 

for any state i with P { X, ,= i} > O, where I =  [0, x) or (x, oo ), x a continuity point of 
F with x > 0  and 0 < F ( x ) < l .  Assume, further that the sequence {am, i: m>0} 
converges to 1 uniformly with respect to iEI~, where I~=[0, x - e )  in the case when 
I = [ 0 ,  x) or I~=(x+~, oo) in the case when l=(x ,  oo), for any e>0.  Then X,  con- 
verges almost surely. 

Proof. Let us take x a continuity point of F and denote P* {I} =F(x)  or 1 - F ( x )  
according as I = [0, x) or I = (x, m). We get 

lim lira P{Xmel)c~(X,eI)  } = 
m ~ c o  n ~ o o  

lim lim ~P{(X ,  e l lXm=i}  P{X~ = i} > 
m ~ c ~  n ~ o e  i ~ I  

lira lira ~ %,iP{Xm=i  }--P*{I}.  
~ O  m ~ o o  i e I ~  

The converse inequality is obviously true and therefore we have 

lim lira P {A~(x) c~ A~(x)} = 0 

where we have denoted A~(x)= { X ~ I } .  
Write now ~m= lira P{A~(x)c~Am(x)} and choose a sequence of positive 

numbers {e~} such that ~ ~ <  co. Define further successively the sequence of 
n = l  
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positive integers {nk} in the following way: choose n~ such that ~,, <e~, n z such 
that 

P{A~,,(x)c~A,~(x)}<el and c%~<e 2, etc. 

It is easy to see that we can define in this way a sequence {nk} such that 

P { A ~ ( x ) r ~ A  ..... (x)} <ek, k = 1 , 2 , . . . .  

Now, we are in a position to apply Lemma 4.1 of Barndorff-Nielsen [1] p. 997 
and deduce that lira A,~(x )=A(x)  (say) exists a.s. 

k ~ o O  

Further, we can write 

a,,,~ = lim P{A,~(x) IX m = i} = P { A ( x ) r X , ,  = i}. (3) 

Take now a number  c~, 0.5 < c~ < 1. By (3) and the assumptions of the Theorem 
we get that for any e > 0 

B,(x)- -  {i: P{A(x)IX~=-i}  >6} 2I~  (4) 

for n sufficiently large. 
By the Markov  property we get P { A ( x ) I X , = i }  = P { A ( x ) t ~ }  on the set {X, 

=i} where ~o ~ is the (;-field generated by Xo, Xa, ..., X,.  According to the well- 
known martingales convergence theorem (see e.g. [6] p. 409) we get that 

lim P {A(x) ] ~-?} (co) = 1A(x) 
n ~ 3  

where 1A(~)= 1 or 0 according as co~A(x) or co~AC(x). (Here we used that A(x) 
belongs to ~,~0~.) Therefore lira {X ,~B, (x )}  =A(x) a.s. The above considerations 

n ~ o o  

hold for l = [ 0 ,  x) or (x, oo). We fix now I = [ 0 ,  x) and denote I '=(x ,  oo). Further 
the dash will indicate that the sets correspond to I'. By (4) we have Bn(x ) ~ [0, x 
- e )  and B' , (x )~(x+~,  oo). But A(x) and A'(x) are disjoint a.s. Indeed, we have 
constructed above the sets {A,~(x)} converging a.s. to A(x) and we can identify 
A'(x) as the a.s. limit of some sets {A',,o(x)}, taking {n' k } as a subsequence of {nk} 
by following the same procedure. But 

A'o~(x) n A~ = 4), 

because I and I '  are disjoint and therefore A(x) and A'(x) are disjoint a.s. 
Now, we can show that B,(x) and B',(x) are also disjoint, because if we 

suppose the contrary i.e. that there exists ieB,(x)c~ B',(x), then we get 

P { A ( x ) u  A ' ( x ) [ X , = i }  = P { A ( x ) J X , = i }  + P { A ' ( x ) I X , = i }  > 2 6 >  1 

which is absurd. It follows that B,(x) can be taken either as [0, x) or [0, x]. 
Notice now that 

F(x + e) - F(x  - e) = P { A(x  + 5) - A(x  - ~)} 

= P { lira [B,(x + 5) - Bn(x - e)]}. 
n ~ o o  
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Because x ~ B , ( x + e ) - B , ( x - e )  for any e > 0  we get P{X,=x i .o . }=O and there- 
fore 

lira {X,~[0,x)}=A(x)  a.s. (5) 

We shall choose further two monotone sequences of constants {a,} and {b,} 
consisting of continuity points of F and such that lira a, = 0 and lira b, = + oo. 

By (5) we get . . . . . .  

lira {X,~(a,,, bin) } = C ~ (say) a.s. 

whereas C (m) ~ C (m+ 1) for m = 1, 2, ... and 

P{~)--1C(m)} = l - F ( 0 +  )' (6) 

It is easy to see that P{ l imX, (co )=0}=F(0+) .  Let us take the sequence 
n ~ c ~ 3  

Xo, ... , xk," of continuity points of F such that 

am=Xo<Xl<. . .<xk  =bin and F(x j ) -F(x j_ l )<e  

for a given e > 0, i=  1,... ,  k~. By (5) we have 

lim {x j<X ,<x j+ l }  = CJ m) (say) a.s. 
n ~ o o  

km 

and obviously ~ CJ")c C (~). But 
j = l  

P{f~I CJm)}=j~=I(F(xj)-F(xj-1))=F(b,~)-F(am)" 

krn 
Therefore ~j CJ ") may differ from C (m) only by a set of null probability. Further 

lim sup X,(o~) - lim inf X,(og) < e 

km 

for almost all ooe ~ CJ m) and therefore for almost all coeC (m). But e and m were 
j = l  

arbitrarily chosen and taking into account (6) we conclude the proof. 

Theorem 2. Suppose that {Z.: n>0} is a Galton Watson process with m= oo, U a 
strictly increasing, continuous, slowly varying function with lira U(x)= oo and 

X ~ o O  

{C.} an increasing sequence of constants with lira C . =  oo. Suppose further that 
n ~ o o  

{U(Z.)/C.: n=>0} converges in distribution to a distribution function F which is 
continuous and strictly increasing on (0, oo). Then {U(Z.)/C.: n<0} converges 
almost surely, lira C./C._I = ~ >  1 exists and is finite and F satisfies the conditions 

n ~  oo 

l ~ m  F [u l (Cn(x-~))]  __ 
. . . . .  (~,~x) - -  1 

n ~ c o  
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and 

l lm F[ ~] l(c"(x+~))l--0. *"* --(~"x) 
n + c o  

for any x > 0 and e > O. 

Proof First, we shall show that  for any x > 0 and a > O, we get 

l i m P  U_l(Cnx) <a =F(x). (7) 
n ~ o  

Indeed,  we can write 

p~<_ In ~cl~=n~U(gn)<U(aU-l(Cnx))'~ 
; c~ = c,, 3 

Making  appeal  to (1), we obtain  

l im U(aU-I(C"x)) lim U(aU-I(C"x)) C,x  
c . . . .  u(u-l(C.x))  c.  

Now,  because F is cont inuous  we get (7). 
Wri te  further X ,  = U(Z,)/C, for n = l, 2 . . . . .  Then we get 

+ . . .  + z l .  . . . .  ' ] 
P{X,e[O,x) IZm=i} = [ 8=i7~d] 7~ ~[0, 1)j, (8) 

where Zr "-m), Z~2 . - . , ) . . .  are independent ,  identically distr ibuted r a n d o m  variables 
with the same distr ibution function as Z ..... . Next,  we shall show that  we can 
have nei ther  l i m i n f C , / C , _ l = l  nor  l imsupC,/C,_l=c~.  Indeed, denote  ft, 

n ~ o o  n ~ o o  

= C,/C,_ 1. Then C,/C,_m=fi,_,,+l ...ft,. Because U-I(C,x)  
= U-I(C,_I  x(C,/C,,_O) we get by (7) and (8) that  for any sequence {nk} such 
that  lira fi,~ = 1 

k ~ o o  

l imP{X.~e[O,x)lZa=i}=U(x) i =  1,2, ... (9) 
k o a o  

Set now P{Z a=i}=p~, i = 0 , 1 , . . . .  By (9) we get 

F ( x ) =  ~, Fi(x)p,. (10) 
i = 0  

But if we denote  by f(s) the generat ing function of Z~, then we get that  F(x) 
must  be a solut ion of the equat ion f(s)=s and in the supercrit ical  case there is 
only one solution in the interval  (0, 1) (see e.g. [4]) which contradicts  the 
nondegeneracy  of F. 

Therefore  lira inffi,  = 1 is impossible.  We can easily see that  nei ther  lira sup ft, 

= c~ is possible, because in such a case we would get for lira fi,~ = oo 
k ~ o o  

lira P { X ,  e l0 ,  x) lZ1 = i} = 1 
k ~ o O .  

for any i >  0 which also is in contradic t ion with the nondegeneracy  of F. 



78 H.  C o h n  

Let us take now a subsequence {nk} of the set of positive integers (depend- 
ing on m), such that lim C. jC .~_m= % .  AS we have seen above 1 <~m < 0O. By 

k ~ c o  

(7), (8) and the continuity of F we get 

l i m P { X . ~ [ O , x ) l Z m = i } =  l i m U ~  1 Z(I"~-~) } 
k~oo k~o ( U -  [C.~_m(c%x)] <1  

(11) 

We can easily see that 

Fw - ~ (G~ (x- o)1 i 

F[U-l(C~(x+e))] i (~ ~) > F(~ ~) 

i = F ( e ~ x ) .  

for i < U-  1 (C~(x - e)) 

for i> U-  I(Cm(X-~8)). (12) 

Because P{Xn~[O,x) IXm=O}=I  for any m and n, due to the fact that {Z. 
=0} ~ {Z.+ 1 =0}, the conditions of the Theorem 1 will be verified if 

lim ~[v-l(Cm(x-~))l_ 1 and llm v[g-~(Cm(x+e))]--fl 
r n ~ o o  m ~ o o  

for any e>0 ,  x > 0  and if the limit in (11) will be proved to be the same for all 
subsequences {nk}. 

Suppose we can choose a sequence {mr} such that 

lim Fie- '(cm, xo)] = 6 > 0 

for a certain x 0. We shall show that 

1:~ ~[v- ~(c,~x')l 1 
x111 ~(ccm I x) 

I ~ o 0  

for any x '<Xo,  whereas if 

llm ~[v- ~ (c.,, xo)] _ n 
l ~ o 9  

then 

l ~ O 0  " l 

for any x ' > x  o. Because we can write the exponent [ U - I ( C ~ x ' ) 3  as 

u-l(Cmixo) U-l(Cm,X'). 1 
u -  l( CmtXo) J 

it will be enough to prove that 

lira U - I ( C " a ) - o  for a<b.  (13) 
.~oo U-  ~( C.b) 

Suppose the contrary. Write U -  ~( C.a) = 7. U-  ~( C.b) or equivalently C.a 
= U(y. U-  ~(C~b)). Then 

_a__ U[7. U -  a(C.b)] (14) 
b C.b 
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Because 0 < ~. < 1, there must exist a sequence of positive integers say {nk} such 
that 7 ~ 7  as k~oo ,  with 7>0.  A slight manipulation of condition (1) yields 

lim U[7"" U-I(C"~b)]-I 
k~oo C~ b 

and (14) would be invalidated unless 7=0.  Therefore there must be a certain x 0 
such that 

F[V_~(c.,~x,)l_fl if x'<x o (15) 
lim ( ~ )  - [ 0  if x'>x o" l~oO 

If we apply now the total probability formula and make use of the convergence 
in distribution we get 

F (x )= l im  lim ~ P{X.~e[O,x)lXm=i}P{Xm=i } 
l~oo  k ~ o z  ia[O, oo) 

= l i m  lira [ ~ P{X~[O,x)IXm=i}P{X, .=i  } 
l ~  k~oo i~[O,xo-e)  

+ ~ P{X.k~[O,x)IXm~ =i} P{Xm~=i} 
i~[xo - e, xo + e) 

+ ~ P{X.k~[O,x)lXmz=i}P{Xm,=i}]. 
iE[xo +e,  ~ )  

We can easily see by (12) and (15) that the last two sums of above are going to 0 
as k~o% l o o o  and e~0 ,  and therefore we get 

F(x) = lim F(x o - ~) = F(xo). 
e~O 

Hence Xo = x. 
Now the limit obtained in (15) with x = x  o does not depend on the particular 

choice of {m~} and therefore 

l i m T 2 [ u i ( C m x , ) ]  ~1 if x '<x (16) 
,.~oo-(~x) = [0 if x'>x" 

In the end, if {~} were the limits corresponding to other sequences {nk} say {n~,} 
then by (16) lim ( e~ , -%)=0 .  

m ~ o o  

Suppose that there exist two distinct numbers fll and f12 such that 

lim fl.k--=ill, lim/~n~ = f 1 2  

for some subsequences {nk} and {n~,}. By the well known diagonal procedure we 
can obtain subsequences of {nk} and {n~} (which by brevity will be also denoted 
by {nk} and {n~}) such that 

lim Cnk/C~k .,=~m, lim C,,/jC.~_,.=~'., 
k ~ e o  k~oo  
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exist for each m =  1, 2 . . . . .  Further,  we have 

lira C,k_l /C,~_l_m=em+x/ f l l  and 
k ~ c ~  

But as we have seen above, we must have 

lim (era - %0  = 0, 
m ~ 3  

as well as 

lira (c~m/flz - c(///2) = 0 
m ~ o o  

f which is impossible in the case when /~14:/12, because {%} and ~C~r~ } are 
bounded  away from 0. Therefore lim ft, = c~ exists and the p roof  is complete. 

Remark 1. The almost  sure convergence known for the simple branching 
processes with finite mean, could also be obtained by applying Theorem 1. 
Evidently, the mart ingale a rgument  ment ioned in the introduct ion for such a 
case is simpler, but  it seems of interest to have an almost  sure convergence 
criterion which covers bo th  the finite and the infinite mean case. 

Suppose that  1 < m  <oo. Then by Seneta's result [7], {Z./C.} converges in 
distribution to a nondegenerate  limit W. But, because lira C./C._ t = m, we get 

m ~ o o  

lim P {Z./C.s [-0, x)lZk/C k = j} 
n ~ o o  

=p{Wl + . . .  + ~ 

[0, x)} 

e [0, x)}. 

lira C.~ _ i / C . t  _ t - ~  = e;,+l/fl2. 
k ~ e O  

Using now a result of Seneta [9] asserting that  
as n ~ o o ,  we get 

limp{Wl+"+Wrck(~-~)l~[O,x)}=l 
k ~  m k 

which can be easily shown to entail the condit ion of  Theorem 1. 

Remark 2. We notice that  the p roof  sketched above for the finite mean case 
yields also that  P{ WE(a, b)} > 0 for any a < b, due to the condit ion of Theorem 1 
regarding {am, i}. In the branching processes literature, this result follows from 
complicated arguments  proving the positivity of the density function of W. 

Remark 3. Without  imposing the condit ion that  {Xn} be a Markov  chain in 
Theorem 1, we can get, by using a similar reasoning, the convergence in 
probability. 

Acknowledgment. The author thanks Dr. E. Seneta for some useful discussions on branching 
processes and Dr. H. Schuh for some valuable remarks on a draft of this paper. 

vr + . . .  + W~ 
ac .~  , 1 in probabil i ty 

/T/n 
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