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Ladder Phenomena in Stochastic Processes 
with Stationary Independent Increments 

MICHAEL RUBINOVITCH 

1. Introduction 

In this paper we introduce a concept of ladder phenomena for continuous 
time processes with stationary independent increments (s.i.i.) as follows. Let 
{X(t); t>_O} be a real valued stochastic process with s.i.i, on a probability space 
(~, ~,  P). We assume that X(t) is measurable, separable and centered, and that 
its sample functions are right continuous, with X(O)=O a.s. The characteristic 
function (c.f.) of X(t) is given by 

E {d ~ = e '~~ (co real), (1) 

where q5 (co) is the exponent function in the Lavy-Khintchin representation for a 
c.f. of an infinity divisible distribution. Throughout  this paper we shall use Feller's 
version ([5], p. 533) of q~(co), which is 

(a(~o)=ioob+ ; (ei~'X- l-i~osin x)x-2 M {dx}. (2) 
- - o o  

Here b is a real constant and M is a measure on ( -  c~, 0o) which is finite on finite 
intervals, and has the property that 

- - X q -  

M+(x)=  y-2M{dy} and M - { x } =  ~ y-gM{dy} 
x -  - c ~  

converge for all x > O. 

For  the process X(t), we shall call it the basic process, we define a family of 
sets ~ =  {L(t); t>O} where 

L(t)= {eoef2: X (t, co)> X(s, co) (0<s__<t)}, (3) 

and term it the (ascending) ladder phenomenon of X(t). It will be found that 5~ 
is regenerative in the sense of Kingman [6], and we shall devote the main body 
of this paper to study its properties in the light of Kingman's theory of regenerative 
phenomena. 

To explain the motivation for this study let us describe briefly the concept of 
a ladder process. Consider a discrete time random walk {S,; n>0},  where S0=0  
and S, (n> 1) is the n-th partial sum of a sequence of independent identically 
distributed random variables. Let N 1 be the first entry time, of this random walk, 
into the set (0, m],  and Z i the value assumed at that time. Similarly, let N 2 be the 
first time the random walk enters the set (Z1, m], and Z 2 its state at that time. In 



Ladder Phenomena in Stochastic Processes 59 

this manner, we define the pairs (N a , Z3), (N 4, Z4) . . . . .  The process {(Nk, Z,); k> 1} 
is called the ladder process of the random walk {S,}. The concept was introduced 
by Blackwell [2], and later extended by Feller ([4], [5]) who applied it to the 
fluctuation theory of random walks. 

Consider now the basic process X(t) as a natural continuous extension of {S,}. 
Suppose that we attempt to define a ladder process for X(t) in an analogous way 
to the discrete construction. Letting T~ =inf{t:  X(t)>0}, be the first entry time 
into (0, ~ ] ,  we run into the immediate difficulty that T~ may be zero with proba- 
bility one. We may overcome this difficulty by introducing instead, the ladder 
phenomenon 5r as a possibly meaningful construction of a continuous time 
ladder process even in cases when T~ = 0  a.s. Accordingly we can define ladder 
epochs (weak ascending), for the basic process X(t) as the time points at which Ar 
occurs (we say that A ~ occurs at t whenever ~oEL(t)). We find that these ladder 
epochs, and the ladder epochs {Nk; k> 1} in the discrete case, share two basic 
properties. Both are points of local maxima with respect to the past of their basic 
processes, and both have the regnerative property in the sense of Kingman. The 
last statement means that {Nk} is a discrete time regenerative phenomenon, or in 
the common t e rmino logy -a  recurrent event; and A ~ as we shall show, is a 
continuous time regenerative phenomenon. The difference between the two cases 
is connected with the set of time points which are ladder epochs. While in the 
discrete case the number of these points in finite intervals is finite, this number 
may be uncountable in the continuous case. We shall find, however, that for a 
large class of processes with s.i.i, this will cause no serious difficulty. 

We note that our treatment here is concerned with ladder epochs only, and 
leaves the problem of constructing a meaningful continuous analogues to the 
process {(N k, Zk)}, for future investigations. Progress in this direction, has been 
made in certain special classes of processes by Worthington [-16], Prabhu [9] 
and Prabhu and Rubinovitch [10]. 

An outline of the paper now follows. In Section 2 we survey the basic elements 
of the theory on regenerative phenomena. In Section 3 we establish that ladder 
phenomena are regenerative, obtain some properties of the function l(t)= Pr {L(t)}, 
and derive its Laplace transform. In Section 4 we characterize the local behavior 
of ladder phenomena in terms of the basic process, and in Section 5 we give their 
limiting properties. In Section 6 we restrict our attention to a certain class of 
basic processes and investigate the connection between the ascending ladder 
phenomenon ~ and a process of descending ladder epochs to be defined later. 

2. Some Results on Regenerative Phenomena 

To help make the paper self contained we outline in this section some relevant 
results on regenerative phenomena. The concept was introduced by Bartlett [1] 
but the systematic theory was developed by Kingman ([6], [7]) as a continuous 
time analog of Feller's recurrent events. All the results in this section are due to 
Kingman. 

Definition. A regenerative phenomenon on a probability space (f2, Y, P) is a 
family 8={E(t); t>0}  of ~--measurable subsets of f2 with the property that 
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whenever t o = 0, 0 < t 1 < -.. < t, (n >= 1) then 

Pr E (t~.) = p (t j -  t~ _ 1). (4) 
j j = l  

Here  p (t) = Pr  {E (t)} (t > 0) and is called the p-function of g. 

A regenerative phenomenon  is said to be standard whenever p (t) --* 1 a s  t ~ 0 ,  

and the class of all p-functions with this p roper ty  is denoted by ~. If p ( t ) ~  then 
p (0)= 1 is defined by continui ty at the origin. 

We shall now state the results of interest to us as three theorems. The first 
lists some propert ies of s tandard  p-functions. The second describes sample func- 
tions behavior  of s tandard regenerative phenomena,  and the third summarizes 
their ergodic properties.  

Theorem K 1. Let p(t) be any function in ~. Then we have the following: 

(a) p ( t ) > 0  for t>=O. 

(b) p(t) is absolutely continuous in t >_O. 

(c) The limit 
q = lim t -  1 [1 - p (t)] (5) 

exists and O<=q<= oo. ~o  

(d) There exists a unique positive measure # on (0, oo] with p{(0, oo]} = q  and 

such that, for all 0 > 0 

( 1 - e -  X) # {dx} < ov, (6) 
(0, 0o] 

oo 

e-~ ~ ( 1 - e - ~  (7) 
0 (0, or] 

(e) The function p(t) satisfies the Volterra equation 

t 

1 - p ( t ) =  f p ( t - s )  #{(s, oo]} ds. (8) 
o 

The measure # associated with a regenerative phenomenon  ~ is called 
canonical measure. When /~{(0, o o ] } < ~  g is said to be stable and when its 

/~ {(0, oo]}-= oo, ~ is called instantaneous. 

Theorem K2. Let o ~ be a standard regenerative phenomenon and let 

S =  S(r = { t > 0 :  ~oeE(t)}. (9) 

(a) For each t > 0 

Pr {lim ~ (1/2 e)lS c~ ( t -  e, t + ~)1 = 1 [E(t)} --- 1 
(10) 

Pr {!im (1/~)IS (~ (0, a)[ = 1} = 1, 

where [I1 denotes the Lebesgue measure of I, 

(b) The set S is a.s. metrically dense in itself. 

(c) For each t > 0 

Pr {s~S ( t < s < t + T ) [ E ( t ) } = e  -qr ( T > 0 ) .  (11) 
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Consider now the random variables { T,: n > 0}, where T o = 0 and 

T2n_l =sup{t: ssS (Tz._z <S<t)} 
Tz,=inf{ t>  T2n_l: teS}, 

(12) 

Also let X , =  T , -Tn_ 1 (n>l) .  It follows from the last theorem that when # is 
stable (q<oo) the random variables {X,; n > l }  are mutually independent and 

Pr{X2,_a < x } = l - e  -qx, PrX2,<=x}=q-l#{(O,x]}.  (13) 

Conversely, one may define a sequence of independent random variables {X,; n > 1} 
which satisfy (13) with some finite measure/~ and q=p{(0, oo]}. Construct the 

" 0 sequence {T,; n__l} as T , = ~ X j ;  To--0, and the random set S= (T2., T2,+1 ). 
1 n = O  

It may then be shown that # =  {E(t); t>0} with E(t)= {co: t6S(co)} is equivalent 
to a stable regenerative phenomenon, in the sense that there exists a stable 
regenerative phenomenon #1 = {E~ (t); t > 0}, such that 

Pr { [E l (t) c~ E c (t)] w [El (t) n E (t)] } = 0 

for all t > 0. We see that sample functions of stable phenomena behave in a rather 
simple way and are, in fact, the same as alternating renewal processes of a special 
kind. Sample function behavior of instantaneous phenomena is more complex 
since here the random variables T, all vanish a.s., and the random set S has a void 
interior a.s. This is discussed in greater detail in [6] where a general model for 
instantaneous phenomena is also given. 

Let g be a standard regenerative phenomenon. Let p (t) be its p-function and 
p its canonical measure. There are three different possibilities for the ergodic 
behavior of #: 

(I) p{oo}>0, 
(II) p { ~ } = 0 a n d  ~ x#{dx}=oo ,  

(0, ~) 

(III) p{oo}=0and  j" xp{dx}<oo .  
(0, oo) 

In case (I) # is called transient, in (II) null and in (III) positive. 

Theorem K3. We have 

(a) As t ~ o% p(t)--* p(oo) where 

p ( o o ) = [ l +  ~ x#{dx}] -*  (14 t 
(0, oo1 

if the integral converges, and p(oo)--0/f  the integral diverges. 

(b) (i) g is transient if p(oo)=0 and ~ p(t)dt < oo ; (ii) ~ is null if p(oo)=0 and 
oo 0 

p(t) dt = oo ; (iii) g is positive if p(oo)> 0. 
0 
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(c) The set S is a.s. bounded if ~ is transient and unbounded if ~ is positive or 
null. Its Lebesgue measure I has an exponential distribution with mean 

n o  

E(I)  = [# { ~ } ] - i  = ~ p(t) dt (15) 
o 

when o ~ is transient, while I is a.s. unbounded when o ~ is positive or null. 

This concludes our outline of regenerative phenomena. 

3. Preliminary Properties of Ladder Phenomena 

Let {X(t); t>_0} be the basic process defined in Section 1, and s162 = {L(t); t>0}  
the corresponding ladder phenomenon according to (3). If ~gq occurs at time t we 
shall say that t is a ladder epoch of X(t).  As we assumed that the basic process is 
separable, it follows that {L(t); t>0}  are measurable sets, and we can define the 
function 

l ( t )=Pr{L( t ) }  ( t>0) ,  (16) 

called the ladder function of X(t).  In this section we establish some properties of 
this ladder function, prove that Y is a regenerative phenomenon and obtain the 
Laplace transform of l(t). 

We begin with a Lemma in which a fundamental property of discrete random 
walks (see for example Feller [5], p. 378) is extended to continuous time. 

Lemma. For every t > 0 we have 

l(t) = Pr {X (s) > 0 (0 < s < t)}. (17) 

Proof. Fix t and let {X* (s); 0 < s < t} be defined by 

X*(s)=X(t)-x(t-s). 

Let 0 = s o < s i < ... < s, + 1 = t and consider 

Pr { inf X* (s~) >0~ 
. l < = j < n  ~ . 

= P r { X ( s , + l ) - X ( s , +  1 -s)>=O (1 <=j<=n)} 

= Pr {i~=lo[X (s,+ , - si) - X (s,+ i - si + l)] > O ( l <= j <= n) } 

= P r  X ( s i + i - s i ) > O  (l<j<_-n) 
i 

= Pr { j in f  X(s~)>0}. 

It follows by separability that 

Pr {oinftX*(s)>=O}= Pr {0inftX(s)_>_ 0}. 

This implies (17) since X(0 )=0  by assumption, and it is known (Doob [3], p. 408) 
that sample functions of the basic process have left hand limits and for each t 

X ( t - ) = X ( t ) = X ( t + )  a.s. 
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Proposition 1. l (t) is monotone nonincreasing in t > O. 

Proof This result is a direct consequence of the Lemma. 

Proposition 2. Either l(t)=-0 or l(t)> 0 for all t > O. In the latter case 

Pr{L(t)L(t+s)}=l( t ) l (s)  ( t>0 ;  s>0) .  (18) 

Proof Let t, s and x be any positive real numbers and suppose tha t / ( t )>0 .  
Using well known properties of processes with s. i. i. we may write 

Pr {Z(t + s) lL(t); X(t)-= x} 

= P r {  inf [X(t+s)-X(z)]>>_O inf [X(t)-X(z)]>_O; X( t )=x}  
. O < z < t + s  - -  , O < ~ < t  - -  

= Pr {X (t + s ) -  X (r)>O (t < v< t + s)[X(t)= x} 

= Pr {X(s) -  X(z) > 0 (0 < z < s) lX(O) = O} = l(s). 

Hence we find that 
oo 

Pr {L( t )L( t+s)}=  ~ Pr {L(t + s)lL(t); X (t)= x} d x Pr {L(t); X( t )<x}  
0 

= l(t) l(s). 

In particular, this gives l(2 t) => [l(t)]2 > 0 and by an induction argument 1 (k t) > 0 
for every integer k => 1. This together with the monotone property of l(t) (Proposi- 
tion 1) proves that l ( t )>0 for all t >0, and the proposition follows. 

Theorem 1. ~ is a regenerative phenomenon. Its p-function l(t) is uniformly 
continuous in t >= O. 

Proof According to the definition of a regenerative phenomenon we have to 
show that whenever to=0,  0 < q  < ... <t,  (n>= 1) then 

Pr L(tj) = l ( t j - t j_ l ) .  (19) 
j j=l 

This is trivially true when l(t) =- 0, so suppose that l(t) > 0 for all t > 0 (Proposition 2). 
The argument leading to (18) could now be extended to show that for all sequences 
of real numbers t o = 0, 0 < t I < - . .  < t n we have 

n - - 1  

Pr{j~iL( tJ ' }=l( tn- tn-1)  P r { j ~ L ( t j )  }" 

From this (19) follows by induction. Also, since l(t) is nonincreasing (Proposition 1), 
it is necessarily a multiple of a standard p-function (Kingman [8]) and hence 
uniformly continuous by Theorem K 1 (b). 

We now proceed to derive the Laplace transform of l(t). The argument will 
involve a limiting technique and the use of known results on ladder processes for 
discrete random walks. 

Proposition 3. For t >= 0 let 

l . ( t)=Pr{X(k/2")>O (O<=k<_<_E2"t])} (n=> 1), (20) 
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where [a] denotes the integral part of a. Then, as n-,oo, l,(t)-~ l(t) uniformly in 
any finite interval. 

Proof. Fix t > 0 and let 

A,(t) = {x: x = k/2" (0 < k < [2" t])}. 

Suppose that xeA,( t);  then there exists an integer k with k < [ 2 " t ]  such that 
x=k/2". If we set k '=2k  then x=k' /2  "+1 with k '< [2"+ l t ] ,  since 2 k < 2 E 2 " t ] <  
[2"+1@ This shows that xsA ,+l ( t  ) and A,( t )~A,+l ( t  ). It follows that 

l,(t) = Pr {X(s) >0,  seA,(t)} 

is a monotone nonincreasing sequence. Since 1,(t) is also bounded, the limit 

l im I, (t)= l~ (t) (say) 

exists, and 0 < too (t) < 1. Let 

A = {x: x = k/2" with some integers k > 0, n > 1 } ; 

also let B={co: X(s, co)>O, seAc~(O,t)} and C={co: X(s,o))>O,s~(O, t)}. By 
separability of the basic process there exists a set A e~-  with Pr {A} = 0, such that 
B c EA u C]. Since C c B it follows that Pr {B} = Pr { C}. This gives 

l~ (t)-- Pr {B} = Pr {C} 

= Pr {X(s) > 0 (0 < s < t)} = l(t). 

Here again we used the assumption that X(0 )=0  and the fact that for each t, 
X ( t -  ) = X(t) = X( t  +) a.s., we have thus shown pointwise convergence. Uniform 
convergence in finite intervals follows since {l,(t)} is a sequence of monotone 
functions which converge to a continuous limit (Rudin [13], p. 156). 

Theorem2.  For 0>0,  let 
co 

r(0)= ~ e -~ l(t)dt. (21) 
0 

Then 
oo  

Or O =ex,[-- ot l. ] 
if the integral in the exponent converges, and r(O)=0 if the integral diverges. 

Proof. It follows from Proposition 3 that 

oo 

r(0)= lim ~ e -~ 1,(t) dt. 
. ~  oO 0 

Also, if k > 1 is an integer then by (20), 1,(t)= 1,(k/2") whenever k/2"< t < (k + 1)/2". 
Therefore (k+ 1)..'2 n 

r (0) = lim ~ 1, (k/2") ~ e-~ d r 
. 4 o o  k = 0  k / 2  n (23) 

= lim 0-1(1 - e  -~ ~ 1,(k/2") e -~ 
n - ~ o o  k = l  
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For each fixed n > 1 let {X~"); k > 1 } be a sequence of independent random variables 
each with the same distribution function (d.f.) as X(1/2"). Let S~0")=0; S~")= 
X~")+ .-. +X~ ") (k> 1), and set U~o ") = 1 and 

u~")=Pr{S~")>O(l<j<k)} (k> 1). 

It is known (Feller [5], Chapter XII) that u~ ") equals the probability that k is a 
ladder epoch for the random walk {S~")}, and that 

k=~O U~")zk--exp-- - a k-1 zk Pr {S~")>0} (Iz[< 1) 

But by (20) u~")=l,(k/2"), and also S~ ") has the same distribution as X(k/2"). It 
follows that 

1,(k/2") e-~ k -1 e -~ Pr{X(k/2")>O} - 1. 
k = l  k = l  

Substituting this into (23) we obtain 

Or(O)= l im(1-e-~ [ ~  k -~ -~176 
n~o0 t - k = l  e _ 

= lira exp - k-  1 e- Ok/2. Pr {X(k/2") > 0} . 
n~oo k = l  

For each finite n the first sum in the exponent dominates the second sum, and in 
fact, converges. Thus, both sums converge and we have 

0r(0)=exp [ - ! i r a  k~l(k/2")-i e -~ Pr {X(k/2")<O} 2-" . 

When l(t) does not vanish, the left-hand side is positive for every 0 > 0, and therefore 
the right-hand side must converge. The required result now follows and the proof 
is complete. 

We now define the descending ladder phenomenon c ~ , =  {L* (t);t > 0} by 

L* (t)= {~oe(2: X(t, co)<X(s, a~) (0<s_< t)}, (24) 

and the descending ladder function l* (t) = Pr {L* (t)} (t>0). Results similar to 
those obtained above for Y, obviously hold also for ~ * .  

4. Characterizing a Ladder Phenomena-  Local Time Behavior 

In order to apply the general theory on regenerative phenomena to study the 
behavior of a ladder phenomenon ~ ,  it is necessary, first to determine whether 
L~e is standard, and if so whether it is stable or instantaneous. These are the problems 
to be discussed in this section. The main results are Theorem 3 and Theorem 4 
which givel respectively, necessary and sufficient conditions for 5r to be standard 
and stable. 

Let X(t) be the basic process as defined in Section 1. Let ~ be its ascending 
ladder phenomenon, l(t) the corresponding ladder function and r(0) its Laplace 
transform. Whenever l(t) vanishes identically (Proposition 2) we shall say that Z,~ 
is degenerate. 
5 Z. Wahrscheinlichkeit stheorie verw. Geb., Bd. 20 
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Theorem 3. 5(' is standard if, and only if, 

1 

t -1 Pr {X(t)<0} dr< oo. 
o 

I f  &f is not standard then it is degenerate. 

Proof. Using (22) we may write 

I(0) = limt~ o l(t) = ~im~ 0 r (0) 

oo 

=~ifn exp [ - ~ o r l e - ~  

It follows that 

since 

l(0)=exp [ - -} im j t-* e -~ Pr{X(t)<0} dt] ,  

(25) 

(26) 

oo 

lim ~ t -1 e -~ Pr{X(t)<0} dt=O. 
0 ~ o o  1 

There are two possibilities, either the integral in (25) diverges, or it is convergent. 
Suppose it diverges, then 

1 1 

t -1 e -~ Pr {X(t)<0} d t > e - ~  t -1 Pr {X(t)<0} dr= oe 
0 0 

and by (26),/(0)=0 which implies that l(t)--0 for all t > 0  (Proposition 1). If on the 
other hand, the integral in (25) converges, then by the dominated convergence 
theorem 1 

lim ~ t -1 e -~ Pr{X(t)<0} dt=O. 
0 ~ o o  0 

Using again (26), we conclude that l(0)= 1. The required results now follow. 
Let us now consider the ladder phenomena of two special processes, namely 

the compound Poisson and the Brownian motion. It is well known that every 
process with s.i.i, may be represented as a convolution, or as a limit of a sequence 
of convolutions, of two such processes. In this sense the compound Poisson and 
the Brownian motion processes are extremes which stand at opposite ends of the 
spectrum of all processes with s.i.i., and further insight may be gathered by 
looking at their ladder phenomena. 

Consider first the ladder phenomena 5(, of a compound Poisson process X(t). 
Let 

g(t)= Pr {X(s)=0 (0<s_-<t)} (t >0),  (27) 

then g (t)= e-  at with some 2 > 0. Using (17) we see that 

l(t)>g(t) (28) 

and g(t)--+ 1 as t--+ 0. Therefore s is standard. Moreover because of (28) l'(0) 
is finite and ~a is also stable. On the other hand, when X(t) is a Brownian motion 
process, then Pr {X(t) < 0} = �89 (all t), the integral in (25) diverges and by Theorem 3, 
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is degenerate. Another way to prove this may rest on the fact that for Brownian 
motion processes 

lira inf X(t)  = - oo a.s. (29) 
t ~ c o  t 

(Doob [3], p. 394). Therefore, with probability one X(t) assumes negative values 
in any neighborhood of the origin. This implies that l(t) = Pr {X(s) > 0 (0 < s__< t)} = 0 
for all t, so that ~ is degenerate. It is easy to see that the trouble with Brownian 
motion processes lies in the unpleasant way their sample functions oscillate. In 
fact, since (29) is true for any process with s.i.i, which is of unbounded variation 
(Rogozin [-12]), the same argument applies and shows that ~ is degenerate 
wherever X(t) is such a process. The converse of this, however, is not true as the 
next proposit ion states. 

Proposition 4. I f  X(t) is a process of unbounded variation then ~ is de),enerate. 
I f  X(t) is of bounded variation, then ~ is standard whenever b > 0  (b is the drift 
of the process) and degenerate when b < 0. No conclusion can be reached when b = O. 

Proof The first part of the statement has already been proved, so consider the 
case when X(t) is a process of bounded variation with drift b ( -  oo < b < oo). Here 
we have 

lira X(t) = b (a. s.) (30) 
t ~ 0  t 

(Shtatland [14]). Suppose that b > 0  and let to=to(co)--sup{t:X(s, co)>O 
(0 < s ~ t)}. Because of (30) there exists, for almost all co, a positive number t(co) 
such that X(s, co)/s>b/2>O for all O<s~t(co). This implies that t o > 0  a.s. and 
we may write 

lim Pr {t o > t} = 1. 
t ~  0 

On the other hand, using (17) we see that l(t)> P r { t o > t  } and it follows that ~qo 
is standard. When b < 0 we find in a similar way, that t I = tl (co) = sup { t: X(s, co) < 0 
(0 < s < t)} is positive a.s. Therefore 

l(t)<=Pr{X(t)>=O}<=l-Pr{tl>t}~O as t ~ 0  

which shows that ~ is degenerate. To prove the last statement we note that the 
compound Poisson process discussed before is an example of a process of bounded 
variation for which ~q~ is standard and b = 0. At the end of this section we shall 
construct a class of processes of bounded variation and b = 0  for which the as- 
cending ladder phenomena are degenerate. The completion of the proof  is deferred 
until then. 

Recall now the measure M and the functions M § (x) and M - ( x )  arising in 
connection with the c.f. (2) of X(t). It is known that when M {0} =0,  X(t) does not 
have a diffusion component,  and that, except for a possible drift, changes of state 
occur only through jumps. The number of jumps in (0, t) which are of magnitude 
=<a<0 follow a Poisson distribution with mean t M -  (a). This is also true for a = 0  
whenever M -  (0) < oo (Doob [3], p. 423). We can now state 

Theorem 4. A standard ladder phenomenon 5~ with a canonical measure # is 
stable if, and only if, M-(0)<oo.  When this is the case then #{(0, o o ] } = m - ( 0 ) .  
5* 
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Proof Assume that ~ is standard. In order for ~ to be also stable it is necessary 
and sufficient that for every t > 0 

Pr {seS (0<s < t)} = e  -~t (31) 
where 

S = S(~o)= {t: o)~ L(t)} 

and q = #  {(0, ~ ]}  [see Theorem K2 (c)]. On the other hand, since &o is standard, 
we must have M{0} =0  and b > 0  (Proposition 4). We conclude, that except for a 
possible positive drift, X(t) changes states only through jumps. Therefore the left- 
hand side of (31) equals the probability that X(t) has no negative jumps in (0, t), 
which equals zero if M - ( 0 ) =  oo and equals e -tM- co) if M - ( 0 ) <  oo. This proves 
the required result. 

We can also express the results of Theorem 4 in a different way. It is known that 
the exponent function ~b (o9) of a basic process which is of bounded variation is 
given by 

oO ~0 

q~(co)=io) b+  ~ ( e ' ~  - ~ (e '~  (32) 
o o 

where M 1 and M 2 are measures on (0, Go) such that (1 +x)  -a is integrable with 
respect to M 1 and M 2 (Skorokhod [15], p.94) 1. It is not hard to verify that the 
condition M - (0) < oo is equivalent to 

oo 

2=  ~ x - 1 M  2 {dxl < oo. (33) 
o 

This means that the second integral may be written as 

oO 

2 ~ (e i'~ - 1) K {dx} (34) 
o 

where K{dx}  =(2x) - lM2  {dx}. We recognize (34) as the exponent function of a 
compound Poisson process whose state space is [0, oo), and the first integral in 
(32) as the exponent function of a basic process which has positive jumps only 
(Feller [5], p. 539). We conclude that in order for 5e to be standard and stable it 
is necessary and sufficient that b > 0  and that the c.f. of X(t) be representable as 
the product of a c.f. of a compound Poisson process on ( -  0% 0], and a process 
with s.i.i, on [0, oo). This includes the situation in which the compound Poisson 
component vanishes. Here sample functions of X(t) are a.s. nondecreasing, l(t)= 1 
identically, and s is trivially standard and stable. 

We have thus given a complete characterization of the local time behavior of 
an ascending ladder phenomena ~ .  The same techniques, when applied to the 
process -X( t ) ,  would yield an analogous characterization for a descending ladder 
phenomena 5r However, the natural problem to pose now is about the mutual 
behavior of 5r and ~W*. Could they both be standard and both stable? The next 
proposition gives the answer which is quite surprising. 

1 The  formula  for qS(e)) in [15] differs f rom (32) due to the different measure  used. See the r e m a r k  
on p. 536 of Fe l le r  [5].  
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Proposition 5. The following statements are equivalent. 

(i) Both ~q~ and ~ *  are standard. 

(ii) Both ~e and ~L~* are standard and stable. 

(iii) X(t) is a compound Poisson process. 

Proof. In the discussion proceeding Theorem 3 we have in fact shown that 
(iii) implies (ii). Since (ii) implies (i) it is sufficient to prove that (i) implies (iii). 
Assume that (i) holds and let g(t) be the function defined in (27). Suppose that 
g(t)=0;  this implies that for all t > 0  

Pr{X(s)#0 for some 0 < s < t }  =1. (35) 

If we let T + = in f{s>0 :  X(s)>0} and T - = i n f { s > 0 :  X(s)<0}, then (35) implies 
that either T + < t or T -  < t with probability one. On the other hand 

Pr{T + __t} = 1 - P r  {X(s)__<0 (0__< s__< t)} = 1 - l* ( t )  

and similarly 
P r { T -  < t } =  l - l ( t ) .  

Hence for all t > 0 we have 

I=Pr{[T +<t]w[T-<t]}  
< l - l ( t ) + l - l * ( t ) ~ O  as t ~ 0  

by assumption. This contradiction shows that g(t) cannot vanish identically. Let 
t > 0  be such that g(t)>0;  by a straightforward argument one may show that 
g(t) has the property that for every s>Og(t+s)=g(t)g(s) .  We conclude that 
g(t)=e -~t with some ~>0  and a process with s.i.i, for which this holds must be 
a compound Poisson process. This completes the proof. 

We can combine the results of Propositions 4 and 5 in the following statement. 
There are three classes of processes with s. i. i.: (i) processes in which both Y and ~ *  
are standard, (ii) processes in which exactly one of ~ and 5r is standard and the 
other is degenerate, and (iii) processes in which both are degenerate. Processes of 
unbounded variation belong to the third class, while processes of bounded varia- 
tion and nonzero drift belong to the second. The only members of the first class 
are compound Poisson processes which have no drift. 

We are now in a position to complete the proof of Proposition 4, by construct- 
ing a basic process of bounded variation and b = 0  whose ascending ladder 
phenomena are degenerate. Let 

o0 

~bl (~ = S ( e i ~  1) x -x M 1 {dx} 
o 

GO 

where M 1 is the same as in (32) with the additional property that S x -1M 1 {dx} = oo. 
0 

Let {Xi(t): t> 0} (i= 1, 2) be two independent processes each with the c.f. e t4a~o) 
and set X ( t ) = X l ( t ) - X 2 ( t  ) (t>0). The c.f. of X(t) is a special case of (32) so that 
X(t) is of bounded variation; and it also has no drift. Consider now the ladder 
phenomena 5r and s162 of this process. By reasons of symmetry they are both 
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either standard or degenerate. The first possibility is ruled out since it implies 
(Proposition 5) that X(t)  is compound Poisson, and the additional requirement 
on M 1 assures us that this is not the case. We are therefore left with the second 
possibility and conclude that s is degenerate. 

5. Characterizing a Ladder Phenomenon-Ergodic Properties 

In this section we give an expression for the limiting value of a standard ladder 
function, and find necessary and sufficient conditions for a standard ladder 
phenomenon to be positive, null, or transient. We can restrict attention to basic 
processes of bounded variation, since only for such processes could a ladder 
phenomenon be standard. Let X(t )  be such a process and let us say that the 
ascending ladder phenomenon s of X(t )  is standard. Let 

c(? oo 

A =  f t - l  P r { X ( t ) < O } d t  and B =  ~ t - 1 P r { X ( t ) > O } d t .  
1 1 

Proposition 6. We have 

[;o ] l (oo ) -=) iml ( t )=exp  - t - 1 P r { X ( t ) < O }  dt  > 0  (36) 

i f  A <  oo, and l (oo)=0 i f  A = o o .  

Proof. The limit exists by Theorem K 3 since ~ is standard. Hence we may 
write [ f  ] /(oo)= l i m 0 r ( 0 ) =  l imexp  - t - l e - ~  . 

0 ~ 0 +  0 ~ 0 +  

However, by Theorem 3 
i 

S t-1 Pr {X(t)<0} d t <  oo 
0 

and the value of the limit will be determined by the value of A. The proposition 
now follows. 

It is interesting to note t ha t / (oo )=  1 if, and only i f , / ( t )= 1 identically. To see 
this we note that in order to have / (oo )=  1 it is necessary and sufficient that 

oo 

t - t  e -~ Pr {X(t)<0} d t=O,  
0 

or, equivalently, that P r { X ( t ) < 0 } = 0  for all t. This brings us to the trivial case 
cited in Section 4 when almost all sample functions of X(t) are nondecreasing and 
l(t) = 1 for all t. 

Theorem 5. We have 

(i) 5~ is transient if  A = oo and B < oo ; 

(it) A ~ is null i f  A = oo and B = oo ; 

(iii) Lf is positive if A < oo. 

Proo f  Proposition 6 together with Theorem K3 prove (iii). When A = oo, it 
will suffice to show that s is transient if, and only if, B < oo. Substituting into (22) 
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for 0, according to the identity 

O = e x p [ - j ( e - ~  (0>0)  

we obtain [ co 
r (0 )=exp  - ~ t  - l e  - t d t + ~ ( e  - ~  - l d t  

t 0 

1 co 

- ~ t - 1 e - 0r Pr { X  (t) < 0} d t + ~ t -  1 e - ~  Pr {X(t )  = 0} dt 
0 1 

+ ~ t - l e  -~  dt  . 
1 

As 0 ~ 0, the second and fourth integrals in the last expression always converge, 
while the third integral also converges since ~ is standard. It follows that 
lim r(0)< oo if, and only if, the last integral converges to B < oo. Recalling now 
0 ~ 0  

Theorem K 3 we see that s is transient if, and only if 

oo 

l(t) dt = lim r(0)< oo. 
0 0 ~ 0  

This completes the proof. 

It is clear that the classification of the last theorem should be related to the 
limiting properties of sample functions of the basic process. To see the connection 
we let 

~ =  sup {X(t)} and o-*= inf {X(t)}. 
0 ~ t < ~  O < t < c o  

It is known (Rogozin [11]) that a < o o  (~ r*>-oo )  a.s. if B < o o  (A<oo),  and 
~ =  oo ( a * = -  oo) a.s. otherwise. Accordingly, using Theorem 5, we see that 
is transient if, and only if a < oo and a* = - oo ; ~ is null if, and only if ~r = oo and 
a* = - oo; and ~ is positive if, and only if cr = oo and a* > - oo (in making the 
last statement we used the fact that A < oo implies B = ~) .  This proves the following 
proposition. 

Propos i t ion  7. 6# is positive or transient according to whether sample functions 
of  the basic process drift a. s. to + oo or - oo. L,# is null if almost all sample functions 
oscillate between + oo and - oo. 

6. Ladder Epochs  

Consider the class of basic processes X(O for which at least one of the ladder 
phenomena ~o and ~9~* is standard. If X(t)  is compound Poisson then both ~q~ 
and Y *  are standard, otherwise exactly one is standard and the other is degenerate 
(Proposition 5). Let us say that ~ is standard and ~o, is degenerate. In view of 
the results of Sections 3 and 4, and the classification of Section 5, we can now 
apply the general theory of regenerative phenomena to describe the stochastic 
behavior of ~ ,  and in particular the properties of the set S of all weak ascending 
ladder epochs of X(t).  This can be done in a straightforward manner and we shall 
not pursue it here. On the other hand, the only thing we know about the descending 
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phenomenon Y* is that it is degenerate, and this of course is not very informative. 
It would therefore be only natural to investigate now the behavior of &o,, and 
its relation to the standard phenomenon ~ .  To avoid trite complications we find 
it convenient to modify slightly the definition of ~qo, by changing the weak 
inequality in (24) to a strict one. Thus, in the sequel, ~*={L*( t ) ;  t>0}  where 

L* (t)= {co: X(t, co)<X(s, co) (0<s< t )} .  (37) 

It is not hard to verify that with the exception of the compound Poisson processes 
the new 5a* is the same as the old one. We can now state. 

Theorem 6. Assume that 5~ is standard, and let 5f* be defined by (37). We have 

(a) ~ *  is a renewal process. The d. f  . F* (x) of its lifetimes is absolutely continuous 
and its density f* (x )  has the property that f*(0+)=M-(0)_<_oo.  The Laplace 
transforms of F* (x) is given by 1 - 0 r(O) (0 > 0). 

(b) The renewal process ~ *  is transient (terminating) when ~f is positive and 
is persistent otherwise. The expected value of the lifetimes is 1/p{oe}<oe if ~ is 
transient and infinite if L~ is null. 

(c) The renewal function U* (x) of 5Y* has a density u* (x) and u* (x) =/~ {(t, oo] } 2 

Proof. Let S* =S*(co)= {t: coeL*(t)} and set 

T~* =inf{t:  teS*}. (38) 

It follows from (37) that T~* can be written as 

TI* = inf{t: X(t) < 0} (39) 

and therefore the d.f. of T~* is given by 

F*(x)= Pr { T~* < x}= l - Pr {X (s)>O (0<s< t )}  
(40) 

= 1 - l(t) 

according to (17), where l(t) is the ascending ladder function. As ~qo was assumed 
to be standard we find that F* (0 + ) = 0  and T* > 0  a.s. We can therefore define 
the sequence { T* ; n > 1}, where T~* is given by (39) and 

T,* =inf{t:  X(t)<X(T*_I)  } (n>2),  

and it is clear that S*={T,;  n_>_ 1}. Let t2, z, and x be positive numbers and 
consider 

Pr{T*-TI*>t2 ITI=z ;  X(z)= x} 

= Pr { X  (s)> x ( z<-s~ z + t2)l Y 1 = z ;  X ( z ) =  x}.  

Because of the Markov property of the basic process, this equals 

Pr { X (s) > x (z < s < z + t2)lX (z)= x} 

= P r  {X(s)>=0 (O<=s<=t2)lX(O)=O } 

= Pr {TI* > t2}. 

2 1 owe this  resul t  to N. U. P rabhu .  
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Therefore, for t 1 > 0 and t 2 > 0 we have 

Pr ( T * -  TI* > t2; T~*<q} 
tl  

= ~ ; Pr{Tff-T1*>t2[Tl*=z;X(z)=x}d~dx 
~ = 0  x = O +  

Pr {Tt* < , ;  X(z)<x} 

= Pr {TI* >t2} Pr{TI* < tl}. 

This shows that Tt* and T * -  TI* are independent and have the same d. fl F* (x). 
It follows by induction that TI*, T2* - TI* . . . . .  are independent identically distrib- 
uted random variables and therefore s is a renewal process. Using (40) we now 
find the Laplace transform of the d.f. F* (x) as 

oo oo 

e-~ ~ e-~ - l(x)] dx= l  -Or(O) (0>0).  
0 o 

(We note that this transform may also be derived from a general theorem of 
Rogozin [11].) Moreover according to Theorem K1 (b), l(t) is absolutely con- 
tinuous and so must be F* (x). If we let f *  (x) be its density, then 

f * ( 0 + ) = F * ' ( 0 + ) =  - / ' ( 0 + ) = q ,  

and by Theorem 4, q = # {(0, oo] } = M -  (0) if M -  (0) < ov and q = ov if M -  (0) = ~ .  
This proves (a). To prove (b) we take the limit as t ~ ~ in (40) and obtain 

Pr { TI* < ~ }  = lim F* (x)= 1 - l ( ~ ) ,  
8 4  cO 

and according to Theorem 4 and Proposition 6 this is < 1 if and only if 5r is 
positive. Also from (40), 

E(TI* ) = ~ [1 - F *  (x)] dx = ~ l(x)ax = [/~ ( ~  } ] - !  < 
o o 

if ~ is transient, and E ( T 0 =  ~ if 5 ~ is null (see Theorem K3). To prove (c) let 

U* (x)= ~ F*("~(x) (41) 
n = l  

be the renewal function of Y*. Then U*(x) is the unique bounded solution of the 
renewal equation 

x 

U* (x) = F *  (x) + ~ U* ( x -  s) dr* (s), (42) 
o 

and also, by (a) U*(x) is absolutely continuous. Substituting F* (x)= 1 -  l(x) and 
rearranging terms we can write the last equation as 

x 

1 - l (x)= ~ l(x-s) u*(s) ds, 
0 
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where u* (x) is the density of U* (x). On the other hand, since l(x)s~ it also satisfies 
the Volterra equation 

X 

1 - l (x)- -  j l(x-s)~{(x, oo]} ds, 
0 

according to (8). We note that because of (6) # {(s, oo]} is integrable over (0, a), 
for each a >0, and therefore the assersion follows by uniqueness. The theorem 
is completely proven. 

In view of the last theorem, the established theory of renewal processes could 
be employed to completely describe the properties of 5~*. 
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