Some Refinements in the Theory of Supercritical Multitype Markov Branching Processes

Krishna B. Athreya

$\S 1$. Introduction

Let $\{Z(t) ; t \geqq 0\}$ be a p-type $(2 \leqq p<\infty)$ continuous time Markov branching process. The problem of studying the limit behavior of $\eta \cdot Z(t)$ as $t \rightarrow \infty$ where η is an arbitrary complex vector was attacked by the author in [2]. Kesten and Stigum [3] studied the discrete time case. The objectives of this paper are i) to refine some of these works and ii) to fill a gap mentioned in [2]. These are important in themselves as well as for their methodology which we believe will have applications elsewhere.

§ 2. The Statement of Results

We shall use the set up in [2]. Briefly, we consider a supercritical, positively regular and nonsingular multitype Markov branching process $\{Z(t) ; t \geqq 0\}$ with mean matrix $M(t)=\exp (A t)$ and finite second moments. Let the eigenvalues of A be arranged such that $\lambda_{1}>\operatorname{Re} \lambda_{2} \geqq \operatorname{Re} \lambda_{3} \geqq \cdots \geqq \operatorname{Re} \lambda_{r}$ where $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{r}$ are the distinct eigenvalues and let u and v denote respectively the left and right eigenvectors of A with eigenvalue λ_{1} normalised such that u, v are both strictly positive and $u \cdot v=1$. It is known that in the supercritical case, that is when $\lambda_{1}>0$, $Z(t) e^{-\lambda_{1} t} \rightarrow u W$ almost surely as $t \rightarrow \infty$ where W is a nonnegative random variable such that $P(W>0)>0$ for any P with $P(Z(0) \neq 0)>0$. If η is any complex vector such that $\eta \cdot u \neq 0$ then it follows that $\eta \cdot Z(t) e^{-\lambda_{1} t} \rightarrow(\eta \cdot u) W$. Thus the problem is easily solved in this case. When $\eta \cdot u=0$ we have to use different normalisation. In [2] we had established a trichotomy in the behavior of $\eta \cdot Z(t)$.

Let $\left\{v_{j k}, k=1,2, \ldots, d_{j}, j=1,2, \ldots, r\right\}$ be the generalized eigenvectors of A. Here d_{j} is the algebraic multiplicity of the eigenvalue λ_{j} and $\left\{v_{j k}\right\}$ satisfy

$$
\begin{equation*}
M(t) v_{j l}=e^{\lambda_{j} t} \sum_{k=1}^{l} v_{j k} \frac{t^{l-k}}{(l-k)!}, \quad 1 \leqq l \leqq d_{j} \tag{1}
\end{equation*}
$$

Given any vector η we can find unique constants $c_{j k}$ such that

$$
\begin{equation*}
\eta=\sum_{j=1}^{r} \sum_{k=1}^{d_{j}} c_{j k} v_{j k} \tag{2}
\end{equation*}
$$

Define four objects connected with η as follows:

$$
\begin{align*}
a(\eta) & =\sup \left\{\operatorname{Re} \lambda_{j} ; c_{j k} \neq 0 \text { for some } k\right\} \\
\tilde{\gamma}(\eta) & =\sup \left\{k: \text { there exists } j \text { such that } \operatorname{Re} \lambda_{j}=a(\eta) \text { and } c_{j k} \neq 0\right\} \\
\gamma(\eta) & =\tilde{\gamma}(\eta)-1 \tag{3}\\
I(\eta) & =\left\{j: \operatorname{Re} \lambda_{j}=a(\eta), c_{j \tilde{\gamma}} \neq 0, c_{j k}=0 \text { for } k>\tilde{\gamma}\right\} .
\end{align*}
$$

The trichotomy mentioned earlier is based on whether $2 a(\eta)\rangle,=$, or $\left\langle\lambda_{1}\right.$. In this paper we shall refine the result proved in [2] for the case $2 a(\eta)>\lambda_{1}$ and also fill a gap in the case $2 a(\eta)=\lambda_{1}$. The gap in question is simply to establish the following

Theorem 1. Let $2 a(\eta)=\lambda_{1}$. Then for each $\varepsilon>0$

$$
\begin{equation*}
\lim _{s \rightarrow \infty} E_{r}\left\{|\eta \cdot Z(s)|^{2} e^{-\lambda_{1} s} s^{-(2 \gamma+1)} ;|\eta \cdot Z(s)|>s^{2 \gamma+1} e^{\left(\lambda_{1}+\varepsilon\right) s}\right\}=0 \tag{4}
\end{equation*}
$$

where for any $1 \leqq r \leqq p, E_{r}$ stands for expectation when $Z(0)=e_{r}=\left(\delta_{r 1}, \delta_{r 2}, \ldots, \delta_{r p}\right)$ where $\delta_{r j}$'s are Kronecker deltas.

We take this up in §4. In [2] we established the following
Theorem 2. Let $2 a(\eta)>\lambda_{1}$. Then, there exist random variables Y_{j} for $j \in I(\eta)$ such that if

$$
\begin{equation*}
X(t)=\gamma!t^{-\gamma} e^{-a t} \eta \cdot Z(t)-\sum_{j \in I(\eta)} Y_{j} e^{i b_{j} t} \tag{5}
\end{equation*}
$$

then

$$
\begin{equation*}
E|X(t)|^{2}=O\left(t^{-2}\right) \tag{6}
\end{equation*}
$$

where $b_{j}=\operatorname{Im}\left(\lambda_{j}\right)$.
It is immediate from this theorem and Borel-Cantelli that in the discrete time case

$$
\begin{equation*}
X(t) \rightarrow 0 \quad \text { a.s. as } t \rightarrow \infty . \tag{7}
\end{equation*}
$$

However, the almost sure convergence is far from obvious in the continuous time case. We can, of course, establish the following

Corollary 1. For each $\delta>0$ there exists a set $A_{\delta} \in \mathbb{F}$ where (Ω, \mathbb{F}, P) is our basic probability space such that $P\left(A_{\delta}\right)=1$ and

$$
\omega \in A_{\delta} \Rightarrow \lim _{n \rightarrow \infty} X(n \delta, \omega)=0
$$

In general, a result of the above type does not imply the a.s. convergence of $X(t)$. For a counterexample see Kingman [4]. For a related difficulty see Athreya [1]. Our approach to establish (7) in the continuous time case uses the representation (2) of η in terms of generalized eigenvectors $v_{j l}$. The assertion (7) is an easy corollary to the following complete breakdown of the asymptotic behavior of $\eta \cdot Z(t)$.

Theorem 3. Let $\eta=\sum_{j=2}^{r} \sum_{k=1}^{d_{j}} v_{j k} c_{j k}$. We can always write

$$
\begin{align*}
\eta \cdot Z(t)= & \sum_{\left(2 \operatorname{Re} \lambda_{j}>\lambda_{1}\right)} \sum_{k=1}^{d_{j}} c_{j k} \frac{e^{\lambda_{j} t} t^{(k-1)}}{(k-1)!} \bar{Y}_{j k}(t) \\
& +\sum_{\left(2 \operatorname{Re} \lambda_{j}=\lambda_{1}\right)} \sum_{k=1}^{d_{j}} c_{j k} e^{\lambda_{1} t / 2} t^{\left(k-\frac{1}{2}\right)} \bar{Y}_{j k}(t) \tag{8}\\
& +\sum_{\left(2 \operatorname{Re} \lambda_{j}<\lambda_{1}\right)} \sum_{k=1}^{d_{j}} c_{j k} e^{\lambda_{1} t / 2} \bar{Y}_{j k}(t)
\end{align*}
$$

where

$$
\bar{Y}_{j k}(t)= \begin{cases}(k-1)!e^{-\lambda_{j} t} t^{-(k-1)} v_{j k} \cdot Z(t), & 2 \operatorname{Re} \lambda_{j}>\lambda \\ v_{j k} \cdot Z(t) e^{-\lambda_{1} t / 2} t^{-\left(k-\frac{1}{2}\right)}, & \text { if } 2 \operatorname{Re} \lambda_{j}=\lambda_{1} \\ v_{j k} \cdot Z(t) e^{-\lambda_{1} t / 2}, & \text { if } 2 \operatorname{Re} \lambda_{j}<\lambda_{1}\end{cases}
$$

Further, if $2 \operatorname{Re} \lambda_{j}>\lambda_{1}$, then for all $k, \bar{Y}_{j k}(t)$ converges in mean square and almost surely to a random variable Y_{j} independent of $k ;$ if $2 \operatorname{Re} \lambda_{j} \leqq \lambda_{1}$, then $Y_{j k}(t)$ converges in law to a mixture of normal distributions and $\sup E\left|\bar{Y}_{j k}(t)\right|^{2}<\infty$. Finally if $2 \alpha>\lambda_{1}$ and $2 \operatorname{Re} \lambda_{j} \leqq \lambda_{1}$ then $e^{-\alpha t} v_{j k} \cdot Z(t) \rightarrow 0$ almost surely and in mean square.

The case $2 a(\eta)>\lambda_{1}$ is discussed in Section 3.

§ 3. Two Basic Lemmas and Their Corollaries

Lemma 1. Let

$$
\begin{aligned}
& w_{j l}(t)=e^{-\lambda_{j} t} t^{-(l-1)} \sum_{k=0}^{l-1} \frac{(-t)^{k}}{k!} v_{j(l-k)} \\
& W_{j l}(t)=w_{j l}(t) \cdot Z(t) .
\end{aligned}
$$

Then for $n \geqq 1$

$$
\begin{equation*}
P_{r}\left(\sup _{n-1 \leqq I \leqq n}\left|W_{j l}(t)\right|>M\right) \leqq K \frac{E_{r}\left|W_{j l}(n)\right|^{2}}{M^{2}} \tag{10}
\end{equation*}
$$

where K is a constant independent of n and M.
Lemma 2.

$$
E_{r}\left|W_{j l}(t)\right|^{2}= \begin{cases}O\left(t^{-2(l-1)}\right) & \text { if } 2 \operatorname{Re} \lambda_{j} \geqq \lambda_{1}, l \geqq 2 \tag{11}\\ O\left(t^{-1}\right) & \text { if } 2 \operatorname{Re} \lambda_{j}=\lambda_{1} \\ O\left(e^{\left(\lambda_{1}-2 \operatorname{Re} \lambda_{j}\right) t}\right) & \text { if } 2 \operatorname{Re} \lambda_{j}<\lambda_{1} .\end{cases}
$$

We now get a few corollaries as easy consequences of the above two lemmas.
Corollary 2. Let $2 \operatorname{Re} \lambda_{j}>\lambda_{1}$ and $l \geqq 2$. Then $W_{j l}(t) \rightarrow 0$ almost surely and in mean square as $t \rightarrow \infty$.

Proof. Use (10), (11) and Borel-Cantelli. q.e.d.
Corollary 3. Let $2 \operatorname{Re} \lambda_{j}>\lambda_{1}$ and

$$
\begin{equation*}
Y_{j l}(t)=(l-1)!e^{-\lambda_{j} t} t^{-(l-1)} v_{j l} \cdot Z(t) \tag{12}
\end{equation*}
$$

Then $\lim _{t \rightarrow \infty} Y_{j l}(t)$ exists in mean square and almost surely and is independent of l.
Proof. For $l=1$ the result follows from martingale arguments since $v_{j 1}$ being an eigenvector with eigenvalue λ_{j} makes $Y_{j 1}(t)$ a martingale and $2 \operatorname{Re} \lambda_{j}>\lambda_{1}$ makes $\sup E\left|Y_{j 1}(t)\right|^{2}<\infty$.

By Corollary 2

$$
\lim _{t \rightarrow \infty} W_{j l}(t)=0 \quad \text { a.s. for } l \geqq 2
$$

Note that

$$
\begin{equation*}
W_{j l}(t)=\sum_{k=0}^{l-1} \frac{(-1)^{k}}{k!(l-1-k)!} Y_{j, l-k}(t) \tag{13}
\end{equation*}
$$

The result now follows by an induction on l and an use of the identity

$$
\begin{aligned}
\sum_{k=1}^{l-1} \frac{(-1)^{k}}{k!(l-1-k)!} & =\frac{1}{(l-1)!}\left[\sum_{k=0}^{l-1} \frac{(l-1)!(-1)^{k} 1^{l-k}}{k!(l-k-1)!}-1\right] \\
& =\frac{1}{(l-1)!}\left[(-1+1)^{l-1}-1\right] \\
& =-\frac{1}{(l-1)!} . \quad \text { q.e.d. }
\end{aligned}
$$

Corollary 4. Let $2 \operatorname{Re} \lambda_{j} \leqq \lambda_{1}$. Let a and γ be constants and

$$
\begin{align*}
\tilde{Y}_{j l}(t) & =e^{-\left(a-\lambda_{j}\right) t} t^{-(\gamma-l+1)} Y_{j l}(t) \\
\tilde{W}_{j l}(t) & =e^{-\left(a-\lambda_{j}\right) t} t^{-(y-l+1)} W_{j l}(t) \tag{14}
\end{align*}
$$

Then $\tilde{W}_{j l}(t)$ and $\tilde{Y}_{j l}(t)$ both tend to zero in mean square and almost surely provided either $2 a>\lambda_{1}$ or $2 a=\lambda_{1}$ and $\gamma \geqq l$.

Proof. From Lemma 2 we get

$$
E\left|\tilde{W}_{j l}(t)\right|^{2} \leqq \text { const } e^{-\left(2 a-\lambda_{1}\right) t} t^{-2(\gamma-l+1)}
$$

and the mean square convergence follows. Also $v_{j 1}$ being an eigenvector we know from [2] that

$$
E\left|Y_{j 1}(t)\right|^{2} \leqq \operatorname{const} e^{\left(\lambda_{1}-2 \operatorname{Re} \lambda_{j}\right) t}
$$

and this clearly implies the mean square convergence of $\tilde{Y}_{j 1}(t)$. From (13) we get

$$
\begin{equation*}
\tilde{W}_{j l}(t)=\sum_{k=0}^{l-1} \frac{(-1)^{k}}{k!(l-1-k)!} \tilde{Y}_{j, l-k}(t) \tag{15}
\end{equation*}
$$

The mean square convergence of $\tilde{Y}_{j l}(t)$ follows by induction.
Next we turn to almost sure convergence. Since $Y_{j 1}(t)$ is a martingale in t

$$
\begin{aligned}
P\left\{\sup _{n-1 \leqq t \leqq n}\left|\tilde{Y}_{j 1}(t)\right|>M\right\} & \leqq P\left\{\sup _{n-1 \leqq t \leqq n}\left|Y_{j 1}(t)\right|>M e^{\left(a-\operatorname{Re} \lambda_{j}\right)(n-1)}(n-1)^{(\gamma-l+1)}\right\} \\
& \leqq \mathrm{const} \frac{E\left|Y_{j 1}(n)\right|^{2}}{M^{2}} e^{-2\left(a-\operatorname{Re} \lambda_{j}\right) n} n^{-2(\gamma-l+1)}
\end{aligned}
$$

Clearly, $\sum_{n=1}^{\infty} e^{-\theta_{n}} n^{\delta}<\infty$ for $\theta>0,|\delta|<\infty$ or $\theta=0, \delta>1$. The almost sure convergence of $\tilde{Y}_{j 1}(t)$ follows by Borel-Cantelli. An exactly similar argument yields the almost sure convergence of $\tilde{W}_{j l}(t)$ for all l. The rest of the argument is the same as in Corollary 3 except that one uses (15) in place of (13). q.e.d.

It is easy to verify (7) from the definition of $a(\eta), \gamma(\eta), I(\eta)$ and Corollaries 3 and 4.

Modulo a gap in the case $2 \operatorname{Re} \lambda_{j}=\lambda_{1}$ it was established in [2] that $\bar{Y}_{j k}(t)$ as defined in Theorem 3 converges in law to a mixture of normal distributions when $2 \operatorname{Re} \lambda_{j} \leqq \lambda_{1}$. Thus the proof of Theorem 3 is complete.

We shall finish this section with a proof of the basic lemmas.

Proof of Lemma 1. Let $T=\inf _{n}\left\{t: n-1 \leqq t \leqq n,\left|W_{j l}(t)\right|>M\right\}$ and n if the set in braces is empty. Then T is a stopping time for our Markov process $\{Z(t) ; t \geqq 0\}$. Hence if F_{T} is the σ-field associated with T we have

$$
E\left(W_{j l}(n) \mid \mathbb{F}_{T}\right)=e^{-\lambda_{j} n} n^{-(l-1)} \sum_{k=0}^{l-1} \frac{(-n)^{k}}{k!} M(n-T) v_{j, l-k} \cdot Z(T)
$$

But on using (1) we get

$$
\begin{aligned}
\sum_{k=0}^{l-1} \frac{(-n)^{k}}{k!} M(n-T) v_{j, l-k} & =\sum_{k=0}^{l-1} \frac{(-n)^{k}}{k!} e^{\lambda_{j}(n-T)} \sum_{m=1}^{l-k} v_{j, m} \frac{(n-T)^{l-k-m}}{(l-k-m)!} \\
& =e^{\lambda_{j}(n-T)} \sum_{m=1}^{l} v_{j, m} \sum_{k=0}^{l-m} \frac{(n-T)^{l-k-m}}{(l-k-m)!} \frac{(-n)^{k}}{k!} \\
& =e^{\lambda_{j}(n-T)} \sum_{m=0}^{l-1} v_{j, l-m} \frac{(-T)^{m}}{m!} .
\end{aligned}
$$

Thus,

$$
\begin{equation*}
E\left(W_{j l}(n) \mid \mathbb{F}_{T}\right)=\left(\frac{T}{n}\right)^{l-1} W_{j l}(T) \tag{16}
\end{equation*}
$$

Next

$$
\begin{aligned}
E\left|W_{j l}(n)\right|^{2}= & E\left|W_{j l}(n)-W_{j l}(T)+W_{j l}(T)\right|^{2} \\
= & E\left(W_{j l}(n)-W_{j l}(T)\right) \overline{W_{j l}}(T)+E\left(\overline{\left(W_{j l}(n)-W_{j l}(T)\right)} W_{j l}(T)\right. \\
& +E\left|W_{j l}(n)-W_{j l}(T)\right|^{2}+E\left|W_{j l}(T)\right|^{2} .
\end{aligned}
$$

In view of (16)

$$
\begin{aligned}
E\left(W_{j l}(n)-W_{j l}(T)\right) . \bar{W}_{j l}(T) & \left.=E\left(\overline{W_{j l}(n)-W_{j l}(T)}\right)\right) W_{j l}(T) \\
& =E\left(\left(\frac{T}{n}\right)^{l-1}-1\right)\left|W_{j l}(T)\right|^{2} .
\end{aligned}
$$

Hence

Since $n-1 \leqq T \leqq n$,

$$
E\left|W_{j l}(n)\right|^{2} \geqq E\left|W_{j l}(T)\right|^{2}\left[2\left\{\left(\frac{T}{n}\right)^{l-1}-1\right\}+1\right]
$$

$$
\begin{aligned}
2\left\{\left(\frac{T}{n}\right)^{l-1}-1\right\}+ & \geqq 2\left(\frac{n-1}{n}\right)^{l-1}-1 \\
& \geqq 2\left(1-\frac{1}{n}\right)^{p-1}-1 \quad(l \leqq p)
\end{aligned}
$$

For n large enough
$\geqq \frac{1}{2} \quad$ for n large enough.

$$
\begin{aligned}
P\left\{\sup _{n-1 \leqq t \leqq n} \mid W_{j l}(t)>M\right\} & \leqq P\left\{W_{j l}(T) \mid>M\right\} \\
& \leqq \frac{E\left|W_{j l}(T)\right|^{2}}{M^{2}} \\
& \leqq K \frac{E\left|W_{j l}(n)\right|^{2}}{M^{2}}
\end{aligned}
$$

where K is any constant larger than 2 . q.e.d.

Proof of Lemma 2. We get from [1] that

$$
\begin{align*}
E_{r}\left|W_{j l}(t)\right|^{2}= & \left(M(t) \overline{w_{j l}(t)}\right)^{*} D_{r}(0)\left(M(t) w_{j l}(t)\right) \\
& +\int_{0}^{\tau}\left(M(t-\tau) \overline{w_{j l}(t)}\right)^{*}\left(\sum_{s=1}^{p} m_{r s}(\tau) B_{s}\right)\left(M(t-\tau) w_{j l}(t)\right) d \tau . \tag{17}
\end{align*}
$$

The calculation made in Lemma 1 tells us that

$$
M(t-x) w_{j l}(t)=\left(\frac{x}{t}\right)^{l-1} w_{j l}(x) \quad \text { for } 0 \leqq x \leqq t
$$

Thus the first term on the right vanishes. The second term is of the form

$$
t^{-2(l-1)} \int_{0}^{1} f(\tau) d \tau
$$

Now use Frobenius theory, the definition of $w_{j l}(\tau)$, and the relation between $2 \operatorname{Re} \lambda_{j}$ and λ_{1} to estimate the growth rate of

$$
\int_{0}^{t}|f(\tau)| d \tau . \quad \text { q.e.d. }
$$

§ 4. The Gap in the Case $2 a(\eta)=\lambda_{1}$

We now tackle the gap mentioned in § 2 namely to establish Theorem 1. From the definition of $a(\eta)$ and $\gamma(\eta)$ it must be evident that

$$
(M(s) \eta) e^{-a s} s^{-\left(\gamma+\frac{1}{2}\right)} \rightarrow 0 \quad \text { as } s \rightarrow \infty .
$$

Thus (4) is equivalent to

$$
\begin{equation*}
\lim _{s \rightarrow \infty} E_{r}\left\{\left|Y_{r}(s, \eta)\right|^{2} ;\left|Y_{r}(s, \eta)\right|>c e^{\delta s}\right\}=0 \tag{18}
\end{equation*}
$$

for $c>0$ and $\delta>0$, where

$$
\begin{align*}
Y_{r}(s, \eta) & =\left[\eta \cdot Z(s)-E_{r}(\eta \cdot Z(s))\right] e^{-a s} s^{-\left(\gamma+\frac{1}{2}\right)} \\
& =\left[\eta \cdot Z(s)-(M(s) \eta)_{r}\right] e^{-a s} s^{-\left(\gamma+\frac{1}{2}\right)} . \tag{19}
\end{align*}
$$

Using the fundamental property of branching processes, namely additivity, we get the identity (dropping the sub index r)

$$
\begin{equation*}
Y(s+1, \eta)=(s+1)^{-\left(y+\frac{1}{2}\right)} R(s, \eta)+\left(\frac{s}{s+1}\right)^{\gamma+\frac{3}{2}} e^{-a} Y(s, M \eta) \tag{20}
\end{equation*}
$$

where

$$
R(s, \eta)=\sum_{i=1}^{p} \frac{1}{e^{a s}} \sum_{j=1}^{Z_{i}(s)} \frac{\left(\eta \cdot Z^{(i j)}(1)-(M \eta)_{i}\right)}{e^{a}}, \quad M=M(1)
$$

and $Z^{(i j)}(1)$ (for $\left.j=1,2, \ldots, Z_{i}(s)\right)$ is the vector denoting the offspring population in one unit of time of the j-th particle among the $Z_{i}(s)$ particles of type i at time s.

Now set

$$
\begin{align*}
& \bar{F}(s, c, \eta)=E\left\{|Y(s, \eta)|^{2} ;|Y(s, \eta)|>c e^{\delta s}\right\} \\
& F(s, c, \eta)=s^{2 \gamma+1} F(s, c, \eta) . \tag{21}
\end{align*}
$$

Clearly,

$$
\begin{aligned}
\bar{F}(s+1, c, \eta) \leqq & E\left\{|Y(s+1, \eta)|^{2} ;|Y(s, M \eta)|>c e^{a} e^{\delta s}\right\} \\
& +E\left\{|Y(s+1, \eta)|^{2} ;|Y(s+1, \eta)|>c e^{\delta(s+1)},|Y(s, M \eta)|<c e^{a} e^{\delta s}\right\} \\
= & \mathrm{I}+\mathrm{II}, \text { say. }
\end{aligned}
$$

By the orthogonality of $R(s, \eta)$ and the σ-field \mathbb{F}_{s} we have

$$
\begin{aligned}
\mathrm{I}= & (s+1)^{-(2 \gamma+1)} E\left\{|R(s, \eta)|^{2} ;|Y(s, M \eta)|>c e^{a} e^{\delta s}\right\} \\
& +\left(\frac{s}{s+1}\right)^{2 \gamma+1} \frac{1}{e^{2 a}} E\left\{|Y(s, M \eta)|^{2} ;|Y(s, M \eta)|>c e^{a} e^{\delta s}\right\}
\end{aligned}
$$

and

$$
\begin{aligned}
\mathrm{II} \leqq 2 E\left\{(s+1)^{-(2 \gamma+1)}|R(s, \eta)|^{2}+\left(\frac{s}{s+1}\right)^{2 \gamma+1} \frac{1}{e^{2 a}}|Y(s, \eta)|^{2} ;\right. \\
\left.|Y(s+1, \eta)|>c e^{\delta(s+1)},|Y(s, M \eta)|<c e^{a} e^{\delta s}\right\}
\end{aligned}
$$

using the trivial inequality $(a+b)^{2} \leqq 2\left(a^{2}+b^{2}\right)$.
This leads to the recurrence relation

$$
\begin{equation*}
F(s+1, c, \eta) \leqq \rho F\left(s, c e^{a}, M \eta\right)+G(s, \eta, c) \tag{22}
\end{equation*}
$$

where $\rho=e^{2 a}$,

$$
\begin{aligned}
G(s, \eta, c) & =G_{1}(s, \eta, c)+G_{2}(s, \eta, c) \\
G_{1}(s, \eta, c) & =2 E\left\{|R(s, \eta)|^{2} ; A(s, \eta, c)\right\}, \quad A=A_{1} \cup A_{2}, \\
A_{1}(s, \eta, c) & =\left\{|Y(s, M \eta)|>c e^{a} e^{\delta s}\right\} \\
A_{2}(s, \eta, c) & =\left\{|Y(s+1, \eta)|>c e^{\delta(s+1)},|Y(s, M \eta)| \leqq c e^{a} e^{\delta s}\right\} \\
G_{2}(s, \eta, c) & =2 E\left\{|Y(s, M \eta)|^{2} ; A_{2}(s, \eta, c)\right\} .
\end{aligned}
$$

Iterating (22) yields

$$
\begin{aligned}
\frac{F(s+1, c, \eta)}{\rho^{s+1}} & \leqq \frac{F\left(s, c e^{a}, M \eta\right)}{\rho^{s}}+\frac{G(s, \eta, c)}{\rho^{s}} \\
& \leqq \sum_{r=0}^{s} \frac{G\left(s-r, M^{r} \eta, c e^{a r}\right)}{\rho^{s-r}}
\end{aligned}
$$

which is the same as

$$
\begin{equation*}
\bar{F}(s+1, c, \eta) \leqq \frac{\rho}{(s+1)^{2 \gamma+1}} \sum_{r=0}^{s} \rho^{r} G\left(s-r, c e^{a r}, M^{r} \eta\right) . \tag{23}
\end{equation*}
$$

Let us first look at

By definition

$$
\begin{gathered}
\sum_{r=0}^{s} \rho^{r} G_{1}\left(s-r, c e^{a r}, M^{r} \eta\right) \\
\rho^{r} G_{1}\left(s-r, c e^{a r}, M^{r} \eta\right)=2 E\left\{\frac{\left|R\left(s-r, M^{r} \eta\right)\right|^{2}}{e^{2 a r}} ; A_{r, s}\right\}
\end{gathered}
$$

where $A_{r, s}=A\left(s-r, M^{r} \eta, c e^{a r}\right)$. We now make use of the definition of $a(\eta), I(\eta)$ and $\gamma(\eta)$. If

$$
l(r, \eta)=e^{-a r} r^{\gamma}\left[M^{r} \eta-\frac{r^{\gamma}}{\gamma!} \sum_{j \in I(\eta)} \xi_{j} e^{\lambda_{j} r}\right]
$$

then

$$
\begin{equation*}
l(r, \eta)=O\left(\frac{1}{r}\right), \quad \text { where } \xi_{j}=c_{j 1} v_{j 1} . \tag{24}
\end{equation*}
$$

Next, by the orthogonality of $R(s, \eta)$ and the σ-field \mathbb{F}_{s}
$E\left|\frac{R\left(s-r, M^{r} \eta\right)}{e^{a r} r^{\gamma}}-\sum_{j \in I(\eta)} e^{i b_{j} r} R\left(s-r, \xi_{j}\right)\right|^{2}=E\left\{\sum_{i} Z_{i}(s-r) e^{-\lambda_{1}(s-r)} \overline{l(r, \eta)^{*}} \pi_{i} l(r, \eta)\right\}$
where π_{i} is the covariance matrix of the vector $Z(1)$ with $Z(0)=e_{i}$ (i.e., we start with one particle of type i) and ${ }^{*}$ denotes transpose,

$$
\leqq \frac{\text { const }}{r^{2}} \quad \text { by (24). }
$$

For any set A

$$
E\left\{\left|\frac{R\left(s-r, M^{r} \eta\right)}{e^{a r} r^{\gamma}}\right|^{2} ; A\right\} \leqq 2 E\left\{\left|\sum_{j \in I(\eta)} R\left(s-r, \xi_{j}\right) e^{i b_{j} r}\right|^{2} ; A\right\}+\frac{\text { const }}{r^{2}} .
$$

Thus

$$
\begin{align*}
& \sum_{r=1}^{s} \rho^{r} G_{1}\left(s-r, c e^{a r}, M^{r} \eta\right) \\
& \quad \leqq \text { const }\left(\sum_{r=1}^{s} r^{2 \gamma} E\left\{\left|\sum_{j \in I(\eta)} R\left(s-r, \xi_{j}\right) e^{i b_{j} r}\right|^{2} ; A_{r, s}\right\}\right)+\mathrm{const} \sum_{r=1}^{s} r^{2(\gamma-1)} \tag{25}
\end{align*}
$$

Clearly,

$$
\frac{1}{(s+1)^{2 \gamma+1}} \sum_{r=1}^{s} r^{2(\gamma-1)} \rightarrow 0 \quad \text { as } s \rightarrow \infty .
$$

The first term on the right side of (25) is majorized using Minkowski's inequality by

$$
\text { const } \sum_{j \in I(\eta)} \sum_{r=1}^{s} r^{2 \gamma} E\left(\left|R\left(s-r, \xi_{j}\right)\right|^{2} ; A_{r, s}\right) .
$$

We shall now show that for each $j \in I(\eta)$

$$
\begin{equation*}
\frac{1}{(s+1)^{2 \gamma+1}} \sum_{r=1}^{s} r^{2 \gamma} E\left(\left|R\left(s-r, \xi_{j}\right)\right|^{2} ; A_{r, s}\right) \rightarrow 0 \quad \text { as } s \rightarrow \infty . \tag{26}
\end{equation*}
$$

This is, of course, implied by

$$
\begin{equation*}
\frac{1}{s} \sum_{r=1}^{s} E\left\{\left|R\left(s-r, \xi_{j}\right)\right|^{2} ; A_{r, s}\right\} \rightarrow 0 \quad \text { as } s \rightarrow \infty \tag{27}
\end{equation*}
$$

To establish (27) break up r into two regions; $r \leqq s(1-\varepsilon)$ and $r>s(1-\varepsilon)$. Thus

$$
\begin{aligned}
\frac{1}{s} \sum_{r=1}^{s} E\left\{\left|R\left(s-r, \xi_{j}\right)\right|^{2} ; A_{r, s}\right\} & \leqq \frac{1}{s}\left[\sum_{(1-\varepsilon) s<r \leqq s}+\sum_{r \leqq s(1-\varepsilon)}\right] \\
& \leqq \text { const } \varepsilon+\frac{1}{s} \sum_{r \leqq s(1-s)}
\end{aligned}
$$

since $\sup _{s} E\left|R\left(s, \xi_{j}\right)\right|^{2}<\infty$ (use the fact $2 a=\lambda_{i}$ and $\sup _{s} E Z_{i}(s) e^{-\lambda_{1} s}<\infty$). Next,

$$
\frac{1}{s} \sum_{r \leqq s(1-\varepsilon)}=\frac{1}{s} \sum_{k \geqq s \varepsilon} E\left(\left|R\left(k, \xi_{j}\right)\right|^{2} ; A_{s-k, s}\right) .
$$

Since we can write

$$
R\left(s, \xi_{j}\right)=\sum_{i=1}^{p} \frac{\sqrt{Z_{i}(s)}}{e^{a s}}-\frac{1}{\sqrt{Z_{i}(s)}} \sum_{j=1}^{Z_{i}(s)} \frac{\left(\xi \cdot Z^{(i j)}(1)-\xi_{i} e^{\lambda}\right)}{e^{a}} .
$$

Now, by Renyi's generalization of the classical central limit theorem [5], we see that for each $j, R(s, \eta)$ converges in law to a random variable R (which is a mixture of normal distributions). Further $E\left|R\left(s, \xi_{j}\right)\right|^{2} \rightarrow E R^{2}$. Thus the sequence $\left|R\left(k, \xi_{j}\right)\right|^{2}$ for $k=1,2, \ldots$ is uniformly integrable. Thus, if we show

$$
\begin{equation*}
\sup _{k \geqq s \varepsilon} P\left(A_{s-k, s}\right) \rightarrow 0 \quad \text { as } s \rightarrow \infty . \tag{28}
\end{equation*}
$$

(27) will follow since ε is arbitrary. Since $A_{s-k, s}=A\left(k, M^{s-k} \eta, c e^{a s-k}\right)$ and $A(s, \eta, c)=A_{1} \cup A_{2}$,

$$
\begin{align*}
P\left(A_{s-k, s}\right) & \leqq P\left\{\left|Y\left(k, M^{s-k+1} \eta\right)\right|>c e^{a(s-k)} e^{\delta k}\right\}+P\left\{A_{2}\left(k, M^{s-k} \eta, c e^{a(s-k)}\right\}\right. \tag{29}\\
& =\mathrm{I}^{\prime}+\mathrm{I}^{\prime} .
\end{align*}
$$

By Chebychev's inequality

$$
\begin{aligned}
\mathrm{I}^{\prime} & \leqq \frac{\text { const }}{e^{2 \delta k}} E\left\{\left\lvert\, Y\left(k,\left.\frac{M^{s-k+1} \eta}{e^{a(s-k)}}\right|^{2}\right\}\right.\right. \\
& \leqq \frac{\text { const }}{e^{2 \delta s \varepsilon}} \frac{1}{s}\left(\frac{1}{\varepsilon}\right)^{2 \gamma+1}+\frac{(2 s-k)^{2 \gamma+1}-(s-k)^{2 \gamma+1}}{s^{2 \gamma+1}}
\end{aligned}
$$

(the last step can be established using (17) in much the same way as Lemma 2)

$$
\rightarrow 0 \quad \text { as } s \rightarrow \infty
$$

Turning to $I I^{\prime}$ we notice first that

$$
A_{\mathbf{2}}\left(k, M^{s-k} \eta, c e^{a(s-k)}\right) \subset\left\{\left|R\left(k, M^{s-k} \eta\right)\right|>c e^{a(s-k)} e^{\delta k}\left[e^{\delta}(k+1)^{y+\frac{1}{2}}-k^{y+\frac{1}{2}}\right]\right\}
$$

Thus
again using the fact

$$
\begin{aligned}
\mathrm{II} & \leqq \text { const } \cdot E\left\{\left|R\left(k, M^{s-k} \eta\right)\right|^{2}\right\}\left\{e^{2 a(s-k)} e^{2 \delta k}\left[e^{\delta}(k+1)^{\gamma+\frac{1}{2}}-k^{\gamma+\frac{1}{2}}\right]\right\}^{-2} \\
& \leqq \text { const } \cdot \frac{(s-k)^{2 \gamma}}{e^{2 \delta k} k^{2 \gamma+1}\left[e^{\delta}\left(1+\frac{1}{k}\right)^{\gamma+\frac{1}{2}}-1\right]^{\frac{1}{2}}}
\end{aligned}
$$

$$
\begin{aligned}
& \sup _{s(1-\varepsilon) \leqq k \leqq s}\left(E \frac{\mid R\left(k,\left.M^{s-k} \eta\right|^{2}\right.}{e^{2 a(s-k)}(s-k)^{2 \gamma}}\right)<\infty \\
& \quad \leqq \operatorname{const}\left(\frac{1}{1-\varepsilon}-1\right)^{2 \gamma} \frac{1}{e^{2 \delta s(1-\varepsilon)}} \frac{1}{(s(1-\varepsilon))^{2}} \quad(\text { for } s(1-\varepsilon) \leqq k \leqq s) \\
& \\
& \quad \rightarrow 0 \quad \text { as } s \rightarrow \infty .
\end{aligned}
$$

This $\Rightarrow(29) \Rightarrow(28) \Rightarrow(26)$. From (26) and (25) we conclude that

$$
\begin{equation*}
\frac{1}{(s+1)^{2 \gamma+1}} \sum_{r=0}^{s} \rho^{r} G_{1}\left(s-r, c e^{a r}, M^{r} \eta\right) \rightarrow 0 \quad \text { as } s \rightarrow \infty . \tag{30}
\end{equation*}
$$

To finish the proof we need to show

$$
\begin{equation*}
\frac{1}{(s+1)^{2 \gamma+1}} \sum_{r=0}^{s} \rho^{r} G_{2}\left(s-r, c e^{a r}, M^{r} \eta\right) \rightarrow 0 \quad \text { as } s \rightarrow \infty . \tag{31}
\end{equation*}
$$

Recall that

$$
\begin{aligned}
G_{2}(s, \eta, c) & =2 E\left\{|Y(s, M \eta)|^{2} ;|Y(s+1, \eta)|>c e^{\delta(s+1)},|Y(s, M \eta)| \leqq c e^{a} e^{\delta s}\right\} \\
& =2 E\left\{|Y(s, M \eta)|^{2} \chi_{A_{2}(s, \eta, c)}\right\}
\end{aligned}
$$

where χ_{A} stands for the indicator function of the set A

$$
\leqq 2 E\left\{\left.\tilde{Y}(s, M \eta)\right|^{2} \chi_{A_{2}(s, \eta, c)}\right\}
$$

where $\bar{A}_{2}(s, \eta, c)=\left\{|R(s, \eta)|>c e^{\delta s}\left[e^{\delta}(s+1)^{\gamma+\frac{1}{2}}-s^{\gamma+\frac{1}{2}}\right]\right\}, \quad \tilde{Y}=Y$ on $\{|Y(s, M \eta)| \leqq$ $\left.c e^{a} e^{\delta s}\right\}$ and 0 otherwise

$$
\leqq 2 E\left\{|\tilde{Y}(s, M \eta)|^{2} E\left(\chi_{A_{2}(s, \eta, c)} \mid \mathbb{F}_{s}\right)\right.
$$

(by conditioning on the σ-field \mathbb{F}_{s})

$$
\leqq \mathrm{const} E\left\{|\tilde{Y}(s, M \eta)|^{2} E\left(|R(s, \eta)|^{2} \mid \mathbb{F}_{s}\right)(f(s, c))^{-2}\right\}
$$

where $f(s, c)=c e^{\delta s}\left[e^{\delta}(s+1)^{\gamma+\frac{1}{2}}-s^{\gamma+\frac{1}{2}}\right]$,

$$
\leqq \operatorname{const}(f(s))^{-2} E\left\{|\tilde{Y}(s, M \eta)|^{2} \sum_{i=1}^{p} Z_{i}(s) e^{-\lambda_{1} s} \bar{\eta}^{*} \Pi_{i} \eta\right\}
$$

Thus,

$$
\begin{aligned}
& \rho^{r} G_{2}\left(s-r, c e^{a r}, M^{r} \eta\right) \\
& \leqq \text { const } E\left\{\left|\tilde{Y}\left(s-r, M^{r+1} \eta\right)\right|^{2} \sum_{i=1}^{p} Z_{i}(s-r) e^{-\lambda_{1}(s-r)}\left(\frac{M^{r} \bar{\eta}}{e^{a r} r^{\gamma}}\right)^{*} \Pi_{i} \frac{M^{r} \eta}{e^{a r} r^{\gamma}}\right\} \\
& r^{2 \gamma}\left(f\left(s-r, c e^{a r}\right)\right)^{-2} \\
& \leqq \text { const } E\left\{\left|\frac{\tilde{Y}\left(s-r, M^{r+1} \eta\right)}{c e^{a r} e^{\delta(s-r)}}\right|^{2} \sum_{i=1}^{p} Z_{i}(s-r) e^{-\lambda_{1}(s-r)}\right\} \times\left(c e^{a r} e^{\delta(s-r)}\right)^{2} r^{2 \gamma} \\
& \times\left(c e^{a r} e^{\delta(s-r)}\right)^{2} \times\left[e^{\delta}(s-r+1)^{\gamma+\frac{1}{2}}-(s-r)^{\gamma+\frac{1}{2}}\right]^{2} \\
& \leqq \text { const }\left(\frac{r}{s-r}\right)^{2 \gamma} \quad \text { if }(s-r) \geqq 1 \\
& =r^{2 \gamma} \quad \text { if } r=s \text {. }
\end{aligned}
$$

Again break up r into three regions $r=s, s(1-\varepsilon) \leqq r \leqq s-1$, and $r \leqq s(1-\varepsilon)$.

$$
\begin{aligned}
& \frac{1}{(s+1)^{2 \gamma+1}} \sum_{r=0}^{s} \rho^{r} G_{2}\left(s-r, c e^{a r}, M^{r} \eta\right) \\
& \leqq \frac{1}{(s+1)^{2 \gamma+1}}\left[\sum_{r<s(1-\varepsilon)}+\sum_{s(1-\varepsilon) \leqq r \leqq s-1}+\sum_{r=s}\right] \\
& \leqq \text { const }\left[\left(\frac{1}{\varepsilon}-1\right)^{2 \gamma} \frac{s(1-\varepsilon)}{s^{2 \gamma+1}}+\frac{1}{s} \sum_{s(1-\varepsilon) \leqq r \leqq s-1} \frac{1}{s^{2 \gamma}}\left(\frac{r}{s-r}\right)^{2 \gamma}+\frac{1}{s}\right] \\
& \rightarrow 0 \quad \text { as } s \rightarrow \infty \text {. q.e.d. }
\end{aligned}
$$

References

1. Athreya, K.: Some results on multitype continuous time Markov branching processes. Ann. math. Statistics 39, 347-357 (1967).
2. - Limit theorems for multitype continuous time Markov branching processes - 1, The case of an eigenvector linear functional, - II the case of an arbitrary linear functional. Z. Wahrscheinlichkeitstheorie verw. Geb. 12, 320-332 and 13, 204-214 (1969).
3. Kesten, H., Stigum, B. P.: Additional limit theorems for indecomposable multidimensional GaltonWatson processes. Ann. math. Statistics 37, 1463-1481 (1966).
4. Kingman, J. F.C.: Continuous time Markov processes. Proc. London math. Soc., III. Ser. 13, 593-604 (1963).
5. Renyi, A.: On the central limit theorems for the sum of a random number of independent random variables. Acta math. Acad. Sci. Hungar. 11, 97-102 (1960).

K.B. Athreya
The University of Wisconsin
Department of Mathematics
Madison, Wisconsin 53706
USA

