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Some Refinements in the Theory of Supercritical Multitype 
Markov Branching Processes 

KRISHNA B. ATHREYA 

w 1. Introduction 

Let {Z(t); t>0} be a p-type ( 2 < p <  oo) continuous time Markov branching 
process. The problem of studying the limit behavior of t/. Z(t) as t-~ ~ where 
t/is an arbitrary complex vector was attacked by the author in [2]. Kesten and 
Stigum [33 studied the discrete time case. The objectives of this paper are i) to 
refine some of these works and ii) to fill a gap mentioned in [2]. These are important 
in themselves as well as for their methodology which we believe will have applica- 
tions elsewhere. 

w 2. The Statement of Results 

We shall use the set up in [2]. Briefly, we consider a supercritical, positively 
regular and nonsingular multitype Markov branching process {Z(t);t>=O} with 
mean matrix M(t)=exp(At) and finite second moments. Let the eigenvalues of 
A be arranged such that 21 > Re 22_-> Re 23 =>..- => Re 2r where 21, 22, ..., 2r are 
the distinct eigenvalues and let u and v denote respectively the left and right 
eigenvectors of A with eigenvalue 21 normalised such that u, v are both strictly 
positive and u. v = 1. It is known that in the supercritical case, that is when 21 > 0, 
Z( t ) e -<t -~uW almost surely as t - ~  where W is a nonnegative random 
variable such that P(W > 0)> 0 for any P with P (Z (0)=4 = 0)> 0. If I/is any complex 
vector such that r/. u4=0 then it follows that r/. Z(t)e -~t--, (q. u)w. Thus the 
problem is easily solved in this case. When q. u=O we have to use different 
normalisation. In [2] we had established a trichotomy in the behavior of q. Z(t). 

Let {V2k, k = 1, 2 .... , d~, j-- 1, 2 . . . .  , r} be the generalized eigenvectors of A. 
Here d~ is the algebraic multiplicity of the eigenvalue 2~ and {V~k } satisfy 

l t l - k  

M(t) vjt=eaJt~ (l---k)!' l<-l<-d~. (1) 

Given any vector t /we can find unique constants Cjk such that 
dj 

11= ~ ~ C,k Vjk. (2) 
j = l  k= l  

Define four objects connected with t /as  follows: 

aff/)=sup{Re 2j; cjk=~0 for some k} 

9 if/)= sup {k: there exists j such that Re 2 t = aft/) and qk 4 = 0} 
7(q)--~(q)- 1 (3) 

I(q)= {j: Re 2j=a(q), cj~4:0, Cjk=O for k>9}.  
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The trichotomy mentioned earlier is based on whether 2a(r/)>, = ,  or <2t .  
In this paper we shall refine the result proved in [2] for the case 2a(t/)>2~ and 
also fill a gap in the case 2a(tl)=21. The gap in question is simply to establish 
the following 

Theorem 1. Let 2a(r/)=21. Then for each e>O 

Jim E,{ltl. Z(s)12 e-Z'~s-~2~+1); l11. Z(s) l> s2~+~ e~"+~)~}=O (4) 

where for any 1 < r < p, E r stands for expectation when Z (0) = er = (~1, (~r 2 . . . .  , (~r p) 

where 6~i's are Kronecker deltas. 

We take this up in w 4. In [2] we established the following 

Theorem2. Let 2a(r/)>21. Then, there exist random variables Yj for j~I(tl) 
such that if 

x ( t ) = v !  t - ,  e - " tq ,  z ( t )  - ~, Yje ib~t (5) 
jE l (rt) 

then 
E IX(OI 2 = O (t- 2) (6) 

where bj = lm (2~). 

It is immediate from this theorem and Borel-Cantelli that in the discrete 
time case 

X ( t ) ~ O  a.s. as t o ~ .  (7) 

However, the almost sure convergence is far from obvious in the continuous time 
case. We can, of course, establish the following 

Corollary 1. For each 6 > 0 there exists a set A a elF where ((2, IF, P) is our basic 
probability space such that P(A6)= 1 and 

~oeAa ~ lim X(n6,  o ) = 0 .  
n~oo  

In general, a result of the above type does not imply the a.s. convergence of X(t). 
For a counterexample see Kingman [-4]. For a related difficulty see Athreya [1]. 
Our approach to establish (7) in the continuous time case uses the representation 
(2) of t / in terms of generalized eigenvectors vjz. The assertion (7) is an easy corol- 
lary to the following complete breakdown of the asymptotic behavior of t/�9 Z(t). 

Theorem 3. Let tl = ~ Vjk Qk. We can always write 
j = 2  k = l  

dj e2Jt  t ( k - 1 )  _ 

~/.Z(t)= E E Q k  ( k - l ) '  Yjk(t) 
(2Re s  k = l  

dj 

+ E E Cjk e& t/2 t~-~) yMt) (8) 
(2 Re L j=  21) k = l  

dj 
+ Z Z e 

(2 Re 2 j <  ,~1) k = l  
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where 
[ ( k - -1 ) ! e -aJ ' t - ' k - l 'V j k .  Z( t ) ,  2Re2j>2 

~k(t)={Vak. Z( t )  e -~ ' /2  t -(k-:),  if 2Re2j=21 
/ 
[Vjk" Z(t )  e -a*'/z, if 2Re 2j<21. 

Further, / f2Re 2j>21, then for all k, Yjk(t) converges in mean square and almost 
surely to a random variable Yj. independent of  k ; / f 2  Re2j < 21, then ~k  (t) converges 
in law to a mixture of  normal distributions and sup E ]Y~k(t)l 2 < ~ .  Finally if 2~ > 21 

t 

and 2 Re 2~< 21 then e -~' Yak. Z ( t ) ~  0 almost surely and in mean square. 

The case 2a(t/)>2, is discussed in Section 3. 

w 3. Two Basic Lemmas and Their Corollaries 

Lemma 1. Let 

w j t ( t ) : e _ 2 J t  t _ ( t _ l )  ~ ,  ~ ~i ~, 

k~O ~kT-- ' u~(,_g) (9) 

Wjl(t) = w~,(t)- z(t).  
Then for n >= 1 

E, ]Wjt(n)[ 2 (10) 
P~( sup ]W~,(t)[>M)<=K M2 

n--l<_t<_n 

where K is a constant independent of  n and M. 

Lemma 2. [ O(t -2~ /f 2Re2j>21, 1>2 
1 

E~JW~t(t)12={O(t -~) /f 2Re2,=2,  (11) 
! 

[O(e (z'-2R~z~)t) /f 2Re2j<21. 

We now get a few corollaries as easy consequences of the above two lemmas. 

Corollary2. Let  2Re2j>21 and I>2. Then Wj l ( t )~O almost surely and in 
mean square as t ~ ~ .  

Proof  Use (10), (11) and Borel-Cantelli. q.e.d. 

Corollary 3. Let  2 Re 2j > 21 and 

Y~, (t)= (1-1)! e - a'' t -~'-1) vjz . Z (t). (12) 

Then lim Yj~(t) exists in mean square and almost surely and is independent of  I. 

Proof  For l= 1 the result follows from martingale arguments since vyl being 
an eigenvector with eigenvalue 2~ makes Yal(t) a martingale and 2Re k j>2,  
makes sup El Yjl(t)[ 2 < c~. 

t 

By Corollary 2 
lim wj,(t)=b a.s. for l>2.  

Note that 

,-1 (_1)~ ~ ,  ~(t). (13) 
Wj,(t)= ~ k ! ( l - l - k ) !  ' - 

k=O 

4 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 20 
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The result now follows by an induction on l and an use of the identity 

1-1 (_l)k 1 [ z l  1 ) k l l - k ]  
Z k ! ( t - l - k ) ! - ( l - 1 ) [  ~' (/--1)!(-- k = l  k=O k ! ( l - k - 1 ) t  1 

1 
- ( 1 - 1 ) !  [ ( - 1 + 1 ) t - 1 - 1 ]  

1 
- ( I -1)!"  q.e.d. 

Corollary 4. Let 2 Re 2j < 21. Let a and ~ be constants and 

Yj,(t) =e-(a -ai)' t -{v-t+1) Yjt(t) 
(14) 

Vl/j,(t) = e-(.-*,)t t - ( , - t +  1) Wjl(t). 

Then 17l~jt(t ) and ~l(t) both tend to zero in mean square and almost surely provided 
either 2a>21 or 2a=21 and 7>1. 

Proof From Lemma 2 we get 

E I lYv}~t(t)l 2 _<const e -{2a-zOt t -zCr-t+l) 

and the mean square convergence follows. Also vjt being an eigenvector we know 
from [2] that 

E I Yjl(t)l 2 < const e C** -2Reaj), 

and this clearly implies the mean square convergence of ~l(t). From (13) we get 

~-1 (_l)k 
l~,( t)= ~ k ! ( l - l - k ) !  ~.,_k(t). (15) 

k=O 

The mean square convergence of ~l(t) follows by induction. 

Next we turn to almost sure convergence. Since Yyl(t) is a martingale in t 

P { sup< I ~a(t)l > M} < P  { _su$=< [ Yal(t)] > M e(a-Reag~n-')(n - 1)(~ -I+1)} 

E IYjl(n)l 2 2(a_Re.a.J)nn_2(~_l+l ) < const e- . 
- M e 

Clearly, ~, e -~ na<oo for 0>0,  16[<oo or 0=0,  6> 1. The almost sure conver- 
n = l  

gence of ~ (t) follows by Borel-Cantelli. An exactly similar argument yields 
the almost sure convergence of ~ l (t) for all I. The rest of the argument is the same 
as in Corollary 3 except that one uses (15) in place of (13). q.e.d. 

It is easy to verify (7) from the definition of a(t/), 7(t/), 1(t/) and Corollaries 3 
and 4. 

Modulo a gap in the case 2Re 2j=21 it was established in [2] that Y~k(t) as 
defined in Theorem 3 converges in law to a mixture of normal distributions when 
2 Re 2j < 21. Thus the proof of Theorem 3 is complete. 

We shall finish this section with a proof of the basic lemmas. 
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Proof of Lemma 1. Let T=inf{t :  n-l<_t<_n, [W~t(t)[>M } and n if the set in 

braces is empty. Then T is a stopping time for our Markov process {Z(t); t>__0}. 
Hence if IFT is the a-field associated with T we have 

1--1 

E(Wjl(n)l ]FT)=e -'l~n n-(t-1) ~ ( -n ) - -M (n -  T) vi, t_ k �9 Z(T). 
k=O k !  

But on using (1) we get 

t-1 (_n)g eXj(,_T) Z-k (n_T)l-g-m 
~-~ (--n)k M(n-T)vj , ,_k= F, k! ~ vj, m ( l - k - m ) !  E 
k=O �9 k=O m=l  

l l--m 
~e2J(n_T) ~,lUJ, mk, _~_O (n-(l_k_m),T)l-k-m (--lq)kk' 

/ - 1  (__ T)m 
=eai("-r) ~ vj, l_m m! 

m=O 
Thus, 

Next 
E I Wj/(n)l 2 = E  [Wjz(n)- Wj,(T) + Wj,(T)[ 2 

=E(W~,(n)- Wjt(T)) Wj,(T)+ E(Wj,(n)- Wj,(T)) WjI(T ) 
+ e  [Wj~(n)- Wj,(T)[ 2 + E  [W)t(T)I 2. 

In view of (16) 

E(Wjz(n)- Wj,(T)). W~t(T)= E(Wj,(n ) -  Wjt(Ti) Wj~(T) 

=E ( ( T f - I - 1 )  [Wjt(T)[ 2. 

Hence 

1 
Since n -  1 _< T_< n ,  

r l-1 

For n large enough 

P { sup n-l<t<J 

where K is any constant larger than 2. 
4* 

(l_<p) 

>�89 for n large enough. 

Wjl(t) > M} =<P { WjI(T)[ >M }  

E IWj,(T)I z <_ -- M 2 

_<K E r Wj~(n)? 
- -  M 2 

q.e.d. 

(16) 
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Proof of Lemma 2. We get from [1] that 

G I~ t  (t) l 2 = (M(t) wit (t))* Dr (0) (M(t) wit (t)) 
(17) 

+ ~ . (M( t - -T )w~) *  ~,mr~(r)Bs (M( t -z )w i t ( t ) )dz .  
0 ",s= 1 

The calculation made in Lemma 1 tells us that 

/ - r  1 - 1  

M(t--x)  w~ l ( t )= l f  ) wj,(x) for 0_<x<t .  

Thus the first term on the right vanishes. The second term is of the form 

t 

Sf( ) &. 
0 

Now use Frobenius theory, the definition of wjl(r), and the relation between 
2Re 2j and 21 to estimate the growth rate of 

t 

If(01 q.e.d. 
0 

w 4. The Gap in the Case 2a0 / )= ; t l  

We now tackle the gap mentioned in w 2 namely to establish Theorem 1. From 
the definition of a (r/) and 7 (~/) it must be evident that 

(M(s) rl) e -"s s -(7+~) ~ 0 as s ~ ~ .  

Thus (4) is equivalent to 

limE,{lYr(s, r/)12 ; [ Y~(s, ~/)l >ce~S} =0  (18) 

for c > 0 and 6 > 0, where 

S - ( y  ~) Y~(s, r/)= It/. Z(s)-E~(r  I �9 Z(s))] e -~s +~ 
(19) 

= [7. z(s)-(M(s)%] e 
Using the fundamental property of branching processes, namely additivity, 

we get the identity (dropping the sub index r) 
I s \~+~ 

Y(s + 1, r/)= (s + i) -(~+~) R (s, r/)+ ~ s - -~- )  e-" Y(s, M r  l) (20) 
where 

R (s, rl)= ~ p ~-1 z,(~)~ (ri.Z(U)(1)_(Mrl)i)e ~ , M=M(1) ,  
i = i  j = 1  

and Z(~)(1) (for j =  1, 2 . . . . .  Z~(s)) is the vector denoting the offspring population 
in one unit of time of thej- th particle among the Z~(s) particles of type i at time s. 

Now set 
if(s, c, rl) = E {I Y(s, r/)l 2 ; I Y(s, I/)1 > c e a~} 

F(s, c, rl)=s2~+~ F(s, c, 11). (21) 
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Clearly, 

F(s + 1, c, tl) < E {[ Y(s + 1, t/)[2; [ Y(s, M q)[ > c e~ e ~} 

+ E {[Y(s + 1, q)[2; [Y(s+ I, q)[> ce ~+~), [Y(s, m q)[ <cede  ~} 

- - I + I I ,  say. 

By the or thogonal i ty  of R (s, r/) and the o-field IF~ we have 

I =(s + l )-(2~+ l) E {[R (s, tl)[2; ] Y(s, m q)[ > c ea e 6s} 

+ \ ~ - ]  ~ fgE{[Y(s ,  Mrl)[ 2; [g(s, Mq)[>ceae  ~} 

and 

[Y(s+ 1, q)[ > c e  a(~+l), [Y(s, Mq)l <ce"eO~ 1 
J 

using the trivial inequali ty (a + b) z < 2 (a 2 + bZ). 

This leads to the recurrence relation 

F(s + 1, c, rl) <=p F(s, ce a, M rl) + G(s, rl, c) (22) 
where p = e za, 

G(s, rl, c)= Gl (s, q, c) + G2 (s , rl, c) 

Gl(s, rl, c)=2E{[R(s,q)[2;A(s,  rl, c)}, A = A 1 u A  2, 

Al(S, t/, c) = {[ Y(s, m r/)[ > c e a e as} 

A2(s, q, c)-- {[ Y(s + 1, q)t >ceO(~+l), [Y(s, mtl)l  <cea e ~} 

G2 (s, rl, c)= 2 E {I Y(s, M q)[2 ; A2 (s, rl, c)}. 

I terat ing (22) yields 
F(s + 1, c, q) F(s, c e", M q) G (s, tl, c) 

p~+i ----< pS ~ p~ 

~, G ( s - r ,  M~rl, ce ~r) < 
r=O ~ ps-r 

which is the same as 
$ 

F ( s + l , c , q ) <  ,P2 ~ + 1 ~ P r G ( s - r ,  ce"r,M'rl) �9 (23) 
( s + u  r=O 

Let us first look at 

~ pr G l ( s - r ,  ce ~, M r q). 
By definition ,=o 

pr G1(s - r, c ear, Mr rl) = 2 E { lR (s - r' Mr q)'2 e2ar ; Ar,  s 

where Ar, s = A ( s - r ,  Mrrl, ce"r). We  now make  use of the definition of  a(q), I(~/) 
and 7(q), If 

v yY 

l(r, tl) = e-ar r ~ [ M  ~ 
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then 

l(r, rl)=O ( + ) ,  w h e r e  ~ j = c j l v j l .  (24) 

Next, by the orthogonality of R (s, t/) and the a-field IF, 

R(s - r ,  M'rl) 2 
E ~, eibJ~R(s--r, Cj) =E{~.  Zi(s-r)  e -~''~-~' l(r, rl)* n i l(r, r/)} 

e ar r 7 j~l(rl ) 

where n~ is the covariance matrix of the vector Z(1) with Z(0)--ei (i. e., we start 
with one particle of type i) and * denotes transpose, 

_< const 
- -  r2 by ( 2 4 ) .  

For any set A 

2 1 const E R(s-r 'M'r l )  ;A <2E{[ Z R(s--r,r -t- r ~ 
ear ?"2 ) -  " jeI(rt) 

Thus 

s 

p~ GI(s - r, ce a~, M~q) 
r = l  

( i  , s 
_ -<const r2'E{I 2 R(s-r,~J) eibj~2"A t ~ + c ~  r2~'-1'" 

\r= 1 jsI(rl) s ) !  r= 1 
Clearly, 

(25) 

s 

(S+1)2~,+1 E r 2 ( ~ - l ) - - ~ O  as  s ~ o o .  
r = l  

The first term on the right side of (25) is majorized using Minkowski's inequal- 
ity by 

$ 

z A const ~ ~ r2~ E(lR(s-r,  ~j)l ; ~,,). 
jel(~l) r = l  

We shall now show that for each jeI(rl) 

1 
(S_}_l)2r+ 1 r~=lr2~E(lR(s-r, ~j)12;Ar, s)---~O as  s ~ o o .  (26) 

This is, of course, implied by 

$ 

sr~=lE{]R(s--r,~)lE;Ar, s}-,O as s ~ o o .  (27) 

To establish (27) break up r into two regions; r <  s (1-e)  and r > s(1-e).  Thus 

s 

1 EE{[R(s_r,~s)IZ;A~,A<= [ E + ~ ] 
S r = l  ( 1 - e ) s < r _ _ < s  r__<s(1--e) 

1 
__< const e + - -  

S r _ _ < s ( l _ e )  
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since sup E IR(s, (j)[2< oo (use the fact 2a=21 and sup EZi(s ) e - z ' s <  oo). Next, 
S S 

1 Z 1 E E(IR(k, Cj)l 2 As-k,s). 
S r<s(l_g ) S k>se 

Since we can write 
Zl/~i(s) 1 z~s, (~. Z(i,,(1)_die,) 

R(s, {j)= 
i=1/' gas ~ /-.Uj=l ea 

Now, by Renyi's generalization of the classical central limit theorem [5], we see 
that for each j, R (s, t/) converges in law to a random variable R (which is a mix- 
ture of normal distributions). Further E IR(s, (j)[E-+ER2. Thus the sequence 
[R(k, {j)j2 for k=  1, 2, ... is uniformly integrable. Thus, if we show 

supP(As_k,,)--~O as s ~ o o .  (28) 
k >>_sg 

(27) will follow since e is arbitrary. Since As_k,s=A(k, MS-krl, ce as-k) and 
A(s ,  rl, c)--= A l  w A2 ,  

P(As_k,s)<=p {[y(k, M s-k+1 q)[ >ce "Cs-k) eak} + P {A2(k, ms-krl, ce"(s-k)} 
= I '+  II'. (29) 

By Chebychev's inequality 

< e--5~-E Y k, ealS_,) 

const 1 ( 1 )  2~+a (2 s - k )2 '+ l - ( s - k )  2~+1 
-] S2y+l < e 2`~s~ S 

(the last step can be established using (17) in much the same way as Lemma 2) 

--~0 as s--* oo. 

Turning to II' we notice first that 

A2(k ,  MS-kr l ,  cea(s -k ) )c  {IR (k, MS-krl)[ > c e  '~(s-k) eak[ea(k + 1)r+~-- kY+~]}. 

Thus 

II =< const �9 E {[R (k, M s -g t/)l 2 } {e 2"(s- k) e zak [ea(k + 1) ~+~- k ~ +~] }- 2 

( s  - k )  2 
= const 

e2akk2,+,[ea(1 1U '+~ -i~- 

again using the fact 

sup 
S(1--~)NkNs e2a(s-k)(s--k)  27  < oO 

=<const - 1  e2eS(l_~ ) 

- , 0  as s ~ .  

(for s(1-O<k<=s ) 
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This =~ (29)~  (28)~  (26). F rom (26) and (25) we conclude that  

s 

1 ~__oYGl(s - cea~, (S_F 1)27+1 = r, M~t/) ~ 0 

To finish the proof  we need to show 

1 
~'P~'2"o G 2 ( s - r '  ce~ '  M~rl)---'O 

(s+ 1 ) 2 7 +  1 

Recall that  

as s - r o e .  

as s--* oe. 

G 2 (s, tl, c )= 2 E {I Y (s, Mr/)I2 ; I Y (s + 1, ~/)l > c e~(~+ l), I Y (s, Mq)l < c e a e ~}  

- - 2 E { I Y ( s ,  Mt/)l 2 ZA2(s,r/,c)}, 

where ZA stands for the indicator function of the set A 

~ 2E {17(s, Mt/)I 2 Zx2(~.,,~)} 

(30) 

(31) 

Thus, 

__< const ( f ( s ) ) -  2 E 117(s, M r/)l 2 ~ Z~ (s) e - ~ f/*/7~ 'I 
i = 1  

p~ G 2 ( s - r ,  ce  a', Mrq)  

< c o n s t E  [17 ( s - r ,M~+lr l ) [2~ ,Z i ( s - r ) e -Z ' (~ - r )~ea~r7  ] , e , ~ r T j  
i = 1  

�9 r 2~' ( f ( s  - -  r ,  c e a r ) ) -  2 

< const E cear g O ( S - r )  i=1  

r + l )  - ( s  r) ] x(ce ,~e~(~-~) )Zx[ea(s_  7+~ __ 7 + � 8 9  2 

< c o n s t (  1--~-"/2~ i f ( s - r ) > l  
\ s - - r l  

= r  27 if r = s .  

where f ( s ,  c) = c e ~ [e~ (s + 1)7 + ~ _ s 7 + ~], 

(by condit ioning on the o--field lFs) 

____ const E {I 17(s, M,1)12 E (Ig (s, ~)12 IF3 (f(s, c))-2 } 

____2E (L 17(s, Mn)l  2 E(zx2{s,.,c~l F~) 

where /{2 (s, q, c) = {IR (s, 17)[ > c e ~s [e~ (s + 1)7 + ~ _ s ~ + ~] }, I7= y on {I Y(s, M t/)[ __< 
ce" e ~s} and 0 otherwise 
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Again break up r into three regions r=s, s ( 1 - e ) < r < s - 1 ,  and r<s(1-e) .  

1 $ 

r~O pr G 2 (s - r, c e at, M r q) (S-t- 1) 2~'+1 = 

1 
--<(s+1)2~+~ [ E § Z + Z ]  r < s ( l - - e )  s(1--e)<_r<--s--1 r = s  

<const - 1  s 2y+a ~--- ~ r_  
~- S s ( l _ e ) < _ r ~ s _ l  S 2'2 k s - - r /  S .] 

--*0 as s ~ o e .  q.e.d. 
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