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Some Refinements in the Theory of Supercritical Multitype
Markov Branching Processes

KRrisHNA B. ATHREYA

§ 1. Introduction

Let {Z(t);t=0} be a p-type (2= p< o) continuous time Markov branching
process. The problem of studying the limit behavior of #- Z(¢) as t— oo where
n is an arbitrary complex vector was attacked by the author in [2]. Kesten and
Stigum [3] studied the discrete time case. The objectives of this paper are i) to
refine some of these works and ii) to fill a gap mentioned in [2]. These are important
in themselves as well as for their methodology which we believe will have applica-
tions elsewhere.

§ 2. The Statement of Results

We shall use the set up in [2]. Briefly, we consider a supercritical, positively
regular and nonsingular multitype Markov branching process {Z(t); t=0} with
mean matrix M(t)=exp(A¢) and finite second moments. Let the eigenvalues of
A be arranged such that 4,>Re i,=Red;=---=Rel, where 1;,4,, ..., 4, are
the distinct eigenvalues and let u and v denote respectively the left and right
eigenvectors of A with eigenvalue A, normalised such that u, v are both strictly
positive and u - v=1. It is known that in the supercritical case, that is when A, >0,
Z(t)e *'—uW almost surely as t—oco where W is a nonnegative random
variable such that P(W >0)>0 for any P with P(Z(0)=0)>0. If 7 is any complex
vector such that #-u=0 then it follows that #-Z(t)e~*'— (- u) W, Thus the
problem is easily solved in this case. When 5 -u=0 we have to use different
normalisation. In [2] we had established a trichotomy in the behavior of 7 - Z(¢).

Let {v,k=1,2,...,d;,j=1,2,...,r} be the generalized eigenvectors of A.
Here d; is the algebraic multiplicity of the eigenvalue 4; and {v;} satisfy

tl_k
M(t) vy =e" Z o 1£1<d,. (1
Given any vector # we can find unique constants c;, such that
I3 d;
= Z Z Cik Vjk- )
j=1 k=1

Define four objects connected with # as follows:
a(n)=sup{Re 4;; ¢;;+0 for some k}
P(n)=sup {k: there exists j such that Re A;=a(n) and c;, #0}
ym=3m—1
Im)={j: Re l;=a(y), ¢;3*0, ¢, =0 for k>7}.
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The trichotomy mentioned earlier is based on whether 2a(y)>, =, or <4,.
In this paper we shall refine the result proved in [2] for the case 2a(n)> A, and
also fill a gap in the case 2a()=24,. The gap in question is simply to establish
the following

Theorem 1. Let 2a(n)=2A,. Then for each ¢>0

lim E, {ln- Z(s)? e=** s~ @74V [y - Z(5)|> 5?7+ el 495y =0 )

where for any 1<r<p, E, stands for expectation when Z(0)=e,=(5,1,0,,...,9,,)
where 8, ;'s are Kronecker deltas.

We take this up in §4. In [2] we established the following

Theorem 2. Let 2a(n)>1,. Then, there exist random variables Y; for jel(n)
such that if
X(O=plt7 e - Z()~ ¥ Ve 5)
jel(m
then
EX0PF=0("? (6)

where b;=1Im(4)).

It is immediate from this theorem and Borel-Cantelli that in the discrete
time case
X({t)—0 as. ast—oo. (7

However, the almost sure convergence is far from obvious in the continuous time
case. We can, of course, establish the following

Corollary 1. For each 6 >0 there exists a set AzelF where (Q,IF, P) is our basic
probability space such that P(As;)=1 and

weA;=lim X (nd, w)=0.

In general, a result of the above type does not imply the a.s. convergence of X (¢).
For a counterexample see Kingman [4]. For a related difficulty see Athreya [1].
Our approach to establish (7) in the continuous time case uses the representation
(2) of 17 in terms of generalized eigenvectors vj,. The assertion (7) is an easy corol-
lary to the following complete breakdown of the asymptotic behavior of - Z(¢).

r dj
Theorem 3. Let n= Y > v, ¢, We can always write
j=2 k=1

it (=1

n-Z(t)= Z Z ik %=1 jk(t)

(ZRedj> A1) k=1

+ Z Z Cik gMti2 (=3 ij(t) (8)

(2ReAj=4;) k=1

dj .
+ Z Z Cjk 8111/2 ij([)

(2Re A < A1) k=1
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h
wiere (k—=1)le M %Dy . Z(), 2Rel;>A
Yo(t)=1v;- Z(t) e~ 212 1=, if 2Re ;=14,
Ui Z (1) e M2, if 2Re 4;<4,.

Further, if 2Re A;> /4, then for all k, Y, }k(t) converges in mean square and almost
surely to a random variable Y; independent of k; if 2Re 4;< Ay, then Y (1) converges
in law to a mixture of normal dzstrlbutlons and sup EY, ,c(t)|2 <oo. F lnally if20>2,

and 2Re A;< Ay then e™* vy, - Z ()~ 0 almost surely and in mean square.

The case 2a(n)> 4, is discussed in Section 3.

§ 3. Two Basic Lemmas and Their Corollaries
Lemma 1. Let

wy(f)=e 10" ”Z —t)k j
Vig—n (9)
W (t)=w; (1) Z(2).
Then for n=1
E, |W. 2
R( sup_ (Wo)>M)<k T (10)
n—-1=<t=n M
where K is a constant independent of n and M.
Lemma 2. O(t=20-1) if 2Re =2y, 122
E, W) ={0(t™") if 2Re ;=4 (11)

O(er=2Re2ty  if DRe A;<4y.
We now get a few corollaries as easy consequences of the above two lemmas.

Corollary 2. Let 2Re 4;> 4, and 1=22. Then W, (t)—0 almost surely and in
mean square as t— co.

Proof. Use (10), (11) and Borel-Cantelli. q.e.d.
Corollary 3. Let 2Re ;> A, and
Y, (O=(1-1)e %"V, Z(1). (12)
Then tlin;.) Y,,(t) exists in mean square and almost surely and is independent of I.
Proof. For I=1 the result follows from martingale arguments since v;; being

an eigenvector with eigenvalue 4; makes Y;;(t) a martingale and 2Re 4;> 4,
makes sup ElY;()]? < o0.

By Corollary 2 .
lim W,;()=0 a.s. for [=22.
t— oo

Note that
_ -1 (—I)k
mz(l)—kgom Y (D) (13)
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The result now follows by an induction on [ and an use of the identity

-1 (—l)k 3 1 -1 (l—l)'(—l)k 1l—k
k;k!(l—l—k)!_(l—l)! [k=o kl(i—k—1)! "1]

1
==y -1+ =1

1

=— - g.e.d.

Corollary 4. Let 2Re ;< 4. Let a and y be constants and
Ty =eter =0y, (1
Wﬂ(t)=6~(a—/1j)t — -+ le(t).

(14)

Then W, (t) and Y,(¢) both tend to zero in mean square and almost surely provided
either 2a> A or 2a=2, and v=1

Proof. From Lemma 2 we get
E|W,(t))* Sconst e~ (a4t ;=2 =141

and the mean square convergence follows. Also v;; being an eigenvector we know

from [2] that
E|Y;;(0)|> Sconst ettt ~2Re A

and this clearly implies the mean square convergence of le(t). From (13) we get

W= 3 G0 (15)
il k=0 k'(l—l_k)y G1—k\L).

The mean square convergence of Y;,(t) follows by induction.
Next we turn to almost sure convergence. Since Y;;(¢) is a martingale in ¢

P{ sup [Vi()|>M}<P{ sup |Y;(5)]>Mele-ReA =D (n_1)0-1+1}
n—1=<t=<n n—1<t<n ’ ’

2
<const E |Yj1£n)| g~ 2@—Redin y—20-1+1)

Clearly, Y e~ n’<oo for 6>0, |6|< oo or =0, 6> 1. The almost sure conver-
n=1

gence of f’jl (t) follows by Borgl-Cantelli. An exactly similar argument yields

the almost sure convergence of W;,(¢) for all L. The rest of the argument is the same

as in Corollary 3 except that one uses (15) in place of (13). q.e.d.

It is easy to verify (7) from the definition of a(y), y(n), I1() and Corollaries 3
and 4.

Modulo a gap in the case 2Re ;=4 it was established in [2] that ?jk(t) as
defined in Theorem 3 converges in law to a mixture of normal distributions when
2Re 4;= 4;. Thus the proof of Theorem 3 is complete.

We shall finish this section with a proof of the basic lemmas.
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Proof of Lemma 1. Let T=inf{t: n—1=<t=<n,|W,(f)|>M} and n if the set in

braces is empty. Then T is a stopping time for our Markov process {Z(t); t=0}.
Hence if IF; is the o-field associated with T we have

11( n)k

E(W,(n)|IFp)=e~%"p~—0-1
Jl T. o k'

~ L M(n—T)v,,_ Z(T).

But on using (1) we get

11 k -1 k Ik k-

(=n) (=n)" (n—T)y "7
: M > et T’} A
K=o k! (n=T) 0.1 = kU Uim (I—k—m)!

e P=T) " (—n)f
e T)Z “"Z (—k—ml k!

-1
-7
=D Y 1y

m=

Thus,
(7). (16)

il

E (W, ()| TFy) = (%) W

Next
E |W;,(n)|?> = E |Wjy(n) — W;,(T)+ W, (T)|?

=E(W;(m)— jl(T))W (T)+ E(Wy(n)— W(T)) W;,(T)

+E|W;,(n) = W (T)* + E W, (T))%.
In view of (16)

E(WG'I(")_VVJ'I(T))M_GZ( )= l(n) jl(T)) VIG,(T)
T -1
~E ( - =)

E|Wy(n)> 2 E|W,y(T)? [2 %)1_1—1}4—1].

Since n—1<TZhn,

2{(%>H—1}+1gz ( ”;1 )l_1—1

2 (1—i)P_1—1 (<p)

n

:

Hence

1\

>4 for n large enough.
For n large enough

P{ sup_[W(0>M}<P{W,(T)>M}
o E|W, ()

where K is any constant larger than 2. q.e.d.

4*



52 K.B. Athreya:

Proof of Lemma 2. We get from [1] that

E W, (t))*=(M() W)* D,(0) (M(t) w;; (1))
: — 2 (17
+ (=0 w0 ( Ym0 BS) (M(t—1)wy (1) d.

The calculation made in Lemma 1 tells us that
X I—-1
M(t—-x) le(t)z(T) wi(x) for 0=x<t.
Thus the first term on the right vanishes. The second term is of the form

t‘z("l’jtf(r)dr.
0

Now use Frobenius theory, the definition of w;(7), and the relation between
2Re 4; and 4, to estimate the growth rate of

6f|f(r)| dr. ged.

§ 4. The Gap in the Case 2a(y)=4,

We now tackle the gap mentioned in § 2 namely to establish Theorem 1. From
the definition of a(n) and y () it must be evident that

(M(s)n)e=*s~0+H 50 as s—>c0.
Thus (4) is equivalent to
lim E, {|Y,(s, n)|*; | Y, (s, )| > e’} =0 (18)

for ¢>0 and 6>0, where
Y,(s,m=[1-Z(s)—E,(n - Z(s))] e 5=+
— [1/] . Z(S)_(M(S) n)r] e—us S_(y+%)‘

Using the fundamental property of branching processes, namely additivity,
we get the identity (dropping the sub index r)

y+%
Y(s+1,m)=(6+1)"9Y+*PR(s,n)+ (_sj——l) e " Y(s, Mn) (20)

b1 (- 29 (1)~ (M),
J

(19)

where

M=M(1),

Rin=Y — Y.

a >
i=1 € j=1 €

as

and Z%(1) {for j=1,2, ..., Z,(s)} is the vector denoting the offspring population
in one unit of time of the j-th particle among the Z,(s) particles of type i at time s.

Now set _
F(s, e, )=E{|Y(s,n)|*; |Y(s, )| >ce’}

21
F(s,c,n)=s*"*1F(s, c,1). &1
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Clearly,
F(s+1,e,)SE{|Y(s+1,n)%; |Y(s, My)|>ce®®}
+E{[Y(s+ 1, [Y(s+ 1, g)|>ce®S*Y | Y(s, My)| <ce® e’}
=1+1I, say.
By the orthogonality of R(s,#) and the o-field IF, we have
I=(s+ 1)~ DE{R(s, m)?; | Y (s, My)|>ce” e’}

S 2y+1 1 5
. a 08
Hp) | e BOYG M Y6 Mpl>cete?)
and

II§2E{(S+1)_(2H1) !R(s,n)I2+( :

s+1

2y+1 1
) Yl
e

[Y(s+1,n)|>ce®c+Y [Y(s, Mn)| <ce"e‘75}
using the trivial inequality (a+b)? <2(a®+b?).
This leads to the recurrence relation

F(s+1,c,mSpF(s,ce’”, Mn)+G(s,n,¢) (22)
- where p=¢29,
G(S’ n, C) = Gl (Sa n, C)+ GZ (S’ f, C)

Gi(s,m, )=2E{R(s,m)*; A(s,m, c)}, A=4;U4,,
A (5,1, )={|Y(s, Mn)| > ce” e’}

Az (5,1, )={Y(s+1,m|>ce’C*D, [Y(s, Mn)| S ce” e’}
Gy (s,n, )=2E{|Y(s, Mn)I*; 4, (5,1, )}

Iterating (22) yields
F(s+1,¢,n) < F(s,ce’, Mn) N G(s,n,c)

prt = p* p*
< i G(s—r, M’n,ce"’)
2 P
which is the same as
F(s+1,c,11)__(T1)2—y+—12p G(s—r,ce”, M"y). (23)

Let us first look at N
Y p Gy(s—r,ce”, M ).
r=0

_ Y 2
pr Gl(s_ra Cear, Mrﬂ)zzE{Ma Ar,s}

eZar

By definition

where A, ;=A(s—r, M"y, ce”). We now make use of the definition of a(y), I(n)
and y(»n). If

lr,m)=e=r7 [M'n—— 2 et ]

V Jel(mp
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then
1
Next, by the orthogonality of R(s,#) and the o-field IF,

2

p|Re-p M) —E{Y. Zi{s=n) e Ty m, I )

e r?

Y, €M R(s—r, &)

jel(n)

where 7; is the covariance matrix of the vector Z(1) with Z(0)=g¢; (i.e., we start
with one particle of type i) and * denotes transpose,

const
< =z by (24).
For any set 4
Ris— ,Mr 2 . const
E{’u ;A}éZE{I Y Ris—r, &) e A} +220°
e r “jeltn) ¢

Thus

pr Gl(s_ra Cear, Mr’?)
r=1

s s (25)
<const (Zrz"E{J Y R(s—r, &) eibj'|22Ar,s}) +const ¥ 201,

r=1 jel(m r=1
Clearly,
1 s _
The first term on the right side of (25) is majorized using Minkowski’s inequal-
ity by .
const Y, Y rP7E(R(s—r, &)I*; A4, ).

jel(m) r=1

We shall now show that for each jel(y)

1 s
mmZVZVE(!R(S—'F,éj)|2;Ar,s)—’0 as §— 0. (26)
r=1

This is, of course, implied by

—i—iE{]R(s—-r,éj)lz;A,,s}—»O as §—00. 27

r=1

To establish (27) break up r into two regions; r<s(l—¢) and r>s(1—¢). Thus

EIRG-n&)d s~ % + % ]

(l1—g)s<r=<s r=s(l—eg

)

13
r=1

1
<conste+— )

r<s(l—g)
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since sup E |R(s, &;)|*< oo (use the fact 2a=4; and sup EZ,(s) e~ ** < o0). Next,
S s

1 1
— ¥ =— Y E(RK YA,y ).
S r<s(l—g) k=se
Since we can write l/_
1 B2~ e)
R _ .
( CJ) Z ]/Zi(s) jgl e"

Now, by Renyi’s generalization of the classical central limit theorem [5], we see
that for each j, R(s, ) converges in law to a random variable R (which is a mix-
ture of normal distributions). Further E|[R(s,&)|* — ER? Thus the sequence
IR(k, £)|* for k=1,2, ... is uniformly integrable. Thus, if we show

sup P(4,_, 9—0 as s—oco. (28)

kzse

(27) will follow since & is arbitrary. Since A4, _, ;=A(k, M* ¥y, ce**¥) and
A(S, H, C):A1UA2>

P(As—k,s)ép{fy(ka Ms—k+l1,l)l>cea(s—k) eék}+P{A2(k= Ms——kn’cea(s~k)} 29)
=I'+1I". (
)

)2y+1 (2S_k)2y+1_(s__k)2y+1
+

By Chebychev’s inequality

t Ms—k+1
rsS E {' Y (k,——ﬁ

ea(s-k)

€

II/\

T 2dse

e S

const 1
32 y+1

(the last step can be established using (17) in much the same way as Lemma 2)

-0 as s—ow.
Turning to II' we notice first that
A, M2 7417, e =) (IR (k, MP~ )| > ce"0=0 ¥ [ (k+ 1)7+4 — k7 +4]}
Thus
1< const - E{|R(k, M*~*n)[*} {296~ R 20k [ (k- 1)+ — 7 +¥]} -2
(s—k)*?

eZék k2y+1 [ea (1 +%>3’+%—1:|7

again using the fact

Rk,Ms_k 2
( IR( nl )<OO

eZa(s—-k)(S_k)Zy

<const -

sup

s(l—eg)<k=s

1 1
e26s(1—s) (S(l _ 8))2

1\
gconst( 1 —1) (for s(1—¢)<k<s)

-0 as s—o0.
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This =(29)=>(28)=-(26). From (26) and (25) we conclude that

1 s
[ EOP'Gl(S—V,ce“',M'n)HO as 5—00. (30)

To finish the proof we need to show

1 s
GriP Z,OP'Gz(S—V,Ce”,M'n)aO as §—00. (31)

Recall that

Gy (s, 1, )=2E{|Y(s, Mm)[*; | Y(s+ 1, | >ce®**, | ¥ (s, Mn)| S ce” e’}
:2E{|Y(S> Mﬂ)|2 XAz(s,n,c)} s

where y, stands for the indicator function of the set 4

S2E{Y(s, M) Lty6.m.0}

where A, (s, 1, O)={|R(s,m)|>ce®[e’(s+ 1)+ —s*¥]}, Y=Y on {|Y(s, Mn)|=
ce®e®} and 0 otherwise

§2E {lY(Sa Mn)|2 E(XA’;(s,n, c)l IFS)
(by conditioning on the o-field IF,)
<const E{|¥(s, My)? E(R(s,m)*[IE) (/(s, )~}

where f(s, c)=ce® [’ (s + 1) 2 —s"+3],

14
<const(f(s))*E {lf’(s, MY Z(s)e M it I, 17}
i=1
Thus,
pr GZ(S_ra Cear’ Mr’?)

~ p M'ﬁ * Mr’,’
<const EX|Y(s—r, M™ 9?3 Z:(s— —/h(s—r)( ) 1.
<cons {I (s—r ol le As—n)e Sy s

12(f(s—r, ce™)?
Y(s—r, M"*1y)

cear e&(s—»r)

2 p

<const E { Y Zi(s—r) e‘“s"’} x (ce® PNy p2Y
i=1

X (ce” N2 x [(s—r+ 1)+ —(s—r) T3]

ro\27

<const ( ) if (s—r)z=1
s—F

2y

=r if r=s.
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Again break up r into three regions r=s, s(I—¢&)<r=<s-1, and r<s(1—e).
1 N
1

seripl 4 T +1)

s(l—g) s(l-g)=<r<s—1 r=s

1 27 s(1—g) 1 1 ro\?? 1
o[ S g

2
S s(t-sygrss—1 8 \S—r N

-0 as s—o0. q.ed
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