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Summary. We prove that at low enough temperatures the phase separation 
line, when it is suitably normalized, converges almost surely in a suitable 
probability space to the path of a one-dimensional Brownian bridge. The 
convergence is in the sense of the distance between compact sets in [0, 1] 
x R  1. 

w 1. Introduction 

Let Z 2 be the square lattice and L its dual lattice, i.e. Z 2 =  {(xl, X2) ; X 1 and x 2 
are integers}, and L = { x + ( 1 / 2 ,  1/2); xeZ2}.  For each integer N >  1 let 

v u = {(x,, x2)+(1/2,  1/2); O<x~ < N -  1, 

- I-N/2] < x  2 _< [ ( N  - 1)/23 }, 

where [u] is the largest integer smaller than u. We consider the following 
interacting system: the energy of the system on V N is given by 

(1.1) UN(q)=-  Z ~l(x)q(y)- ~ q(x)cn(y) 
(x,y) (x,y) 

x ,  y ~ V  N x E V N ,  y~OVI~" 

for every t /~2N={- -1  , +1} v~', where ~o: L ~ { - 1 ,  +1} is defined by 

c9((xl x2)+(1/'2'1/2))={ 1 ififx2>0'x z<0 ,  

and where ~ is taken only over nearest neighbour pairs. For a given fl, the 
(x ,y )  

Gibbs state on g2 N for the interaction energy (1.1) is defined by 
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288 Y. Higuchi 

PN(rl)=exp{--~UN(rl)}/ ~ exp{--/~UN(()} t/e~2N 

fl is called the inverse temperature. Let 

VN = {(xl, x2) eZ2;  0-<_Xl <__N, - IN/2] <x2 < [(N + 1)/2]}. 

Let t/e ~2 N be arbitrary; then for each bond in VN+ 1 connecting two points, say x 
and y, with t/ (x) t/ (y) = - 1 or r / (x )co(y)=-  1 (if y e 0VN+ 1), let us colour red the 
bond in l? N which is perpendicular to (x, y), where (x, y)  is used to denote the 
bond connecting x and y. After doing this we obtain a red subgraph of V N, 
which can be partitioned into connected components. Among the components 
we are interested in the particular one which contains (0, 0) and (N, 0). Let us 
denote this component by 2N(r/); 2N(~/) is called the phase separation line or the 
interface. We are interested in the asymptotic behavior of 2 N as N ~ o e .  
Concerning this, G. Gallavotti has made a very essential contribution in [4]. He 

proved that the distribution of max{k/ l fN;(N/2,  k)~2N} converges to a Gaus- 
sian distribution. It is a consequence of [4] that we obtain the same limiting 

distribution when we take min{k/ l /N;  (N/2, k)e2N} instead of the above 
maximum. Since 2 N is fixed at (0, 0) and at (N, 0), the fluctuation of 2 N will attain 
its maximum near x I =N/2 ;  i.e. the above result seems to imply that the curve 
{(xl/N, x2/N);(Xl, x2)~ 2N} will in some sense converge to the segment connect- 
ing (0, 0) and (1, 0). This is why we say that 2 N is a "line". Further, the above fact 
tells us the order of the fluctuation of 2 N. Let d N be a mapping from R 2 to R 2 
such that dN(xl ,x2)=(xl /N,  Xa/Crl/N ), where ~r>0 will be defined later. Then 
Gallavotti's result seems to imply that the normalized curve ~r will 
converge to some random curve in R e, more precisely to the path of a one- 
dimensional Brownian bridge. Two young mathematicians are working on this 
conjecture and have got some interesting results. C. Cammarota announced to 
the author that he had almost proved the convergence of the finite dimensional 
distribution of SCN(J~N(')) to the corresponding distribution of a one-dimensional 
Brownian bridge. Also R. Durrett  recently sent the preprint of [3] to the author, 
in which he proved the weak convergence of measures, not for the interface itself 
but for a more probabilistic model. 

Now we are going to state our result. For real t, let qt be the vertical line 
passing through (t, 0). Let cg={c; connected compact set in [ 0 , 1 ] x R  1, 
ccsql =1=0, cc~q0+0}, and for any c, c' ~cg, let 

iT(c, c ' ) - �89  inf ] x - y [ + s u p  i n f l x - y [ ] .  
XEC y E c '  y E c '  x ~ c  

Then it is easy to verify that (~f, ~) is a complete separable metric space. 

Theorem 1.2. Assume that f l>0  is sufficiently large. Then there is a probability 
space (~, ~,  P) and ~-valued random variables ~1,22,..., B~ such that (i) the law 
of f's is the same as the law of (~4S(2N), PN), (ii) B ~ is a one-dimensional Brownian 
bridge, and 

P(C3(2N, B~ as N---~ oo)=l .  
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The statement of Theorem 1.2. is equivalent to the weak convergence of 
PN ~ ~ 7 1  on r by the well-known theorem of Skorokhod (for example, see [7], 
p. 10, 11). 

In w 2, we will exhibit some results and estimates due to Gallavotti [4, 5] and 
DelGrosso [2], which we will use later. In w we give the proof of the 
convergence of the finite dimensional distribution of S~N(2N) to the correspond- 
ing distribution of a one-dimensional Brownian bridge. In Sect. 4, 5, 6, we prove 
the tightness of {PN}~= ~, which together with the result of w 3, proves Theo- 
rem 1.2. 

The author  would like to thank T. Shiga for many useful discussions. 

w 2. Some Auxiliary Results and Estimates 

In this section, we introduce some expression of PN and ,~N(/~), and some basic 
results which appeared in [2, 4]. Also we give a slite modification of estimates 
given in [4]. 

Let I s =- {(xl, x2) ~Z2; 0=<x 1 <N},  and /i N -  {connected subgraph 2 of I N 

such that (i) the length 12[ is finite, (ii) 2~A =(0, 0), and (iii) there exists a point B' 
in {(N,j); j ~ Z  1} c IN such that 2 can be regarded as a curve from A to B'}. If we 
define A N by AN={2N(t/); ~/ef2N}, then it is easy to see that A N c A  N. In the 
condition (iii), we said that 2 can be considered to be a curve from A to B'. To 
be more precise, we must say that 2 is unicursal. Then A N = {2 e A N; 2 c I~N}. 

Now we introduce very important concepts "shapes" and "clusters" which 
reduce A N to a one-dimensional particle system. Let 2 e A~N be given arbitrarily. 
We define two sequences of integers (~v)v=l,~"rNl"k()') (~v)v~lf~'N'~l:(2) depending on 2 by 

N _ f m i n { 0 < j < N ,  j s Z 1 ;  # { 2 ~ q j } > 2 } ,  

~1 = ) o o  if the above set is 0, 

[ m i n { r ~ < j ~ Z 1 ;  # { 2 ~ q j + ~ } = l } ,  

f~ - -~X if z~<oo and the above set is 0, 
[oo if ~ u = ~ ,  

z 

u_~min{~-~ < j ~ Z 1 ;  #{)~r~qj}>=2} ' ) - I  

~ =~oo if the above set is r 
\ 

[min{vT__<jEZ~; ~ {2r~qj+~}=l},  
f ~ - ] N  if z~<oo and the above set is 0, 

[ ~  if z ~ = ~ ,  

and/~(2)=-max {v; r,N < ~ ,  ~-N < ~}.  
�9 U < j < f ~ }  to be a cluster (of 2). For each 1 < v_</~(2), we call ~ = {j ~ Z 1, r~ 

"The shape ~ over ~ "  is the set 2r~ { ~)< %}. For a fixed cluster ~, two 
, v - -  - -  v 

shapes ~r 5~' are identified if one of them is merely a translation of the other. 
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Since we are given )~, we can define the "entrance" and the "exit" of each 
uniquely (as we consider that A =(0, 0) is the starting point and B' is the end 
point). Conversely, if we are given a collection of non-intersecting clusters 
(ill, ~2, ..., ~s) in {0, 1 .. . .  , N} and shapes (5r 5r .. . .  , ~r over the clusters with 
their entrances and exits, there uniquely corresponds a curve 2 s YIN. Hence we 
can represent each 2 c A  N by (~1,~2 . . . . .  ~(~); 5er wi th  their 
entrances and exits. For each (~u, ~ ) ,  let (i) &,c--=(the height of the exi t ) - ( the 
height of the entrance), (ii) I ~ l _  %=N _ %N, (iii)1~r (the total length of 5r 1~[. 
We call (i) the jump 65~,, (ii) the cluster length [~[, (iii) the excess length [ ~ [  of 

see) .  

The first result by Gallavotti about the representation of Pu is the following 
theorem. 

Theorem 2.1 (Gallavotti [4]). Let fl > rio > 0 be sufficiently large. Then there exists 
a function Uu: AN--~R 1 such that 

(i) for every bounded function f: .4N--+ R t, 

(2.2) 2 f(X)PN(2)= ~_ f(2)ffN(2)/ 2 fiN(2)+~ 
~,~AN 2EAN .~AN 

as N--+ oe for any integer ( >  1, where y]N={2~Au; B'=B},  

(2.3) PN(2)=exp {--2filSexl--UN(5~X)}/ Z exp{--Zfl[SvY]--Uu(5~Y)}, 

where 5r x is the "shape" representation of 2 e.AN, i.e. X=(~I ,  42 . . . . .  ~().)), and 5Vx 
. . . . .  

(ii) there exists a constant k(fl, rio) > 0 which converges exponentially to zero as 
fi - rio -~ oQ or flo-+ 0% such that 

(2.4) IUN(5~x)l<k(fl, flo)lSVx[. 

Naturally we define that [5~xl = ~ I ~ l  if/~(2) =s. 
i=1 

Since each 5Px eylu can be regarded as a configuration of "shape" particles 
.Sf~, 5~ ,  ..., 5~  in [0, N], we can extend our notation to the space of all 
configurations of finite number of "shape" particles in Z ~ (i.e. in the horizontal 
line). 

The next theorem is obtained by following the line of the proof of Theo- 
rem 2.1, but it is very labourious to carry out the whole calculation (see [4]). 
Here, we merely give the result. 

Theorem 2.5. There exists a function U on the space of configurations of finite 
number of shape particles in Z ~ which is translationally invariant and 

(2.6) I UN(5~x)- U(5~x)l < C, (]5~x[ + C2) x 100- 2(l~ 

if X c [ ( l o g N )  2, N- ( logN)2 ] ,  

and U satisfies the estimate (2.4) for the same k(fi, rio). The constants C~ and C2,~0 
exponentially as f i -  flo --+ oo or rio --+ o~. 
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Let fiN on JN be 

(2.7) PN(;)=-PN(;)/PN(fIN). 

Then, as [6], Lemma 1, we have the following estimate. 

Lemma 2.8. Let (A, P) be (AN, Px) or (AN, PN) or (AN, PN). Then for any ~ > O, there 
exists fl(e)>0 such that if fl>fi(e), 

(2.9) P(2~A; ]2]>=(I+e)N)=o(1/N t') 

as N--~ o~ for any positive integer {, or equivalently, 

(2.9)' P(S~xeA; I5~x[>=eN)=o(1/Ne) 

as N 0-, o~ for any positive integer {. 

The proof is much easier than [6], Lemma 1. Using (2.4), we have 

/~(5~X~JN; 15Px[>eN)< ~ e-~l~xl+k(P'~~ 
I~xl ~,N 
eflN" Z e- (~- k(t~'t~~ 

), e ft-N; [).1 > (1 + ~)N 

since [2[=N+lA#xl if 5Px corresponds to 2. The right hand side of the above 
inequality is smaller than 

e/~N. ~ 3Je (fl- k (fl, flo))j 
j=(l+e) N 

1 
-- 1 -- 3 e- p + k (~, ~o) X exp { - N- (fie - (1 + e) (k (fl, rio) + log 3))} 

which converges exponentially to zero as N-~ oQ if f l - f io ,  flo are sufficiently 
large. The same argument applies in the case of PN or fiN" (q.e.d.) 

Combining Theorems 2.1 and 2.5 with Lemma 2.8, we obtain the following 
result. 

Theorem 2.10. Let ON: ZIN--+R 1 be 0~(SPx)= UN(SPx)--UN(SP~)+ U(SP~), where 
= {~ ~ X; ~ ~ [-(log N)  2, N - (log N) 2] }, and let 

(2.11) P~(5~x)=exp{-Zfl]Jx[-(Ju(S~x)}/  ~ exp{-ZfllS~ }. 
Y y e A ~  

Then we have 

(2.12) ~ f(YX)PN(SPX)= ~ f(Yx)P~(S~x)+O(1/N~ ) 
~X e fin ~X e J~ 

as N ~  ~ for every bounded f and positive integer {. 

To state the second representation theorem for PN by Gallavotti, we need 
some more notations. Let ~ - = { ~ ;  shape over a cluster ~ Z 1 } ,  and 
Ar~ {(~1, ~2  . . . .  , ~s) ;  family of shapes, ~ i  6 ~ for each i}. Two shapes ~ , ,  ~ j  



292 Y. H i g u c h i  

of 5~ can not only overlapp but also be just the same. Of course if X 
=(41, 42 . . . . .  ~s), then each pair 4i, ~j of X can intersect. X is merely a collection 
of clusters in Zl.  

Theorem 2.13. Let P=/~N or P~, then there exist functions 4u, ~b~ respectively 
such that if X: ~r---~ R1 is multiplicative, i.e. X(S~x~y)=X(Yx) X(SPy), and if for large 
f l > f l 0 > 0 ,  ~ = ~ N  or ~*, 

[Z(~x)l I~(~x)l �9 e-2(P-fl~ < oQ, 
6"X eSf, X c [0, N ] 

then 

Z('Yx) P(Sgx) = exp { ~ q~ (SPx) e-  2(~-'~ ISfxl (Z(5~x) - 1)}, 
A'~X ~ AN ~X s~ ,  X c [0, N] 

where ~N, ~b* have the following property. 
e- flotIS~ 1) 

(i) S-y~e.Y"Y = [0~N] I~b(~Y)l--<-i -/~(fi, flo) for ~ [0, N], for sufficiently large 

flo, ~ - ~ o ,  and k(~, ~o)---,0 exponentially as ~o-~ o~. 
(ii) There exists a translationally invariant ~ independent of N, such that 

qb*(SP~) = qS(SP~) for any 5~ x ~ Y(. 
(iii) Let T: ~ ~ ~ reverses every ~ ~ ~ with upside down (see Fig. 1 a and b). 

Obviously T is bijective from ~ to ~, and it can be extended to Y( by TSe x 
=(T~r T5~r ..., T5~r if 5~x=(5~, 5r . . . . .  5~). Then ~b(TS~x)=~b(S~x) for 
every ~x ~ 37, and for (o = ~u, ~b~. 

The idea of the proof is given by Gallavotti [4]. We can obtain the above 
result just by following his idea with a little technical change. But it takes too 
long time to get to the conclusion, so we omit the proof. 

The third result by Gallavotti is about the correlation functions. Let 5~ x ~ A u. 
We define correlation functions PN, P* by 

(2.14a) pN(,_9~ ~ ~ Pu(APxuy), 
YuX;N.O. 5~y 
Yc[O,N]  

(2.14b) P*(~x)= ~, ~ P~ (SPxuY), 
YuX;N.O. ~ y  
Yc[O,N]  

where ~ is the summation over all collection Y's of clusters such that 
Y~X;N.O. 
Yc[O,N]  

X u Y consists of non-overlapping clusters in [0, N]. 

_ 

Fig. 1 a and b 
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Theorem 2.15 (Gallavotti  [4]). Let ~ = p u  or p}. Then we have 

1 
I/~(~)[< e -'ls~d for any r  N] 

-- 1 -/~(fl, rio) 

and any shape ~ over ~. 

Corollary 2.16 ([-4]). Let P =Pu or P~. Then we have 

/5(2~Au; 2 contains a shape ~ such that 15~l>(logN) 2) 

=o(1/N ~) as N-+ oe for any positive integer ~. 

w 3. Central Limit Theorems for the Jumps over Intervals 

Let us fix an integer k:>l and 0 = t o < t ~ < . . . < t k + ~ = l ,  and real numbers 
- oo < Tj < Tj' < + oo, j = 2, 2 . . . .  , k, arbitrarily. Let a} N)-= I N .  tj.], j = 1, 2 . . . .  , k 
+ 1. Define functions Z~Y )' ~ -* RI, j = 0, 1, ..., k + 1 by 

and Z } m ( ~ ) - ~  1 if ~ [ 0 ,  a}N)], z(N) =. 0 
[o otherwise. 

For  y t , y 2 , . . . , y k + ~ e R  ~, the function fN=fN(y~,y2 . . . . .  Yk+I): 3V~R~ is 
defined by 

k + l  

L(Jx) = E y~ X ;r ~ .  
j -  1 ~_sX 

Now let us consider the function 

(3.1) <e~S~(ex)/r - ~ e~S~(~x)/~P~(~x) 

X;N.O. ,  .1,a' X 
Xc[0,N] 

which is the characteristic function of the random vector 

(E zSN)(~)~; ]=I, 2, ..., k+O. 
CsX 

For  each j, ~ z}N)(5~) - 65r denotes the total jump of 5~ between qo and 
~_sX 

qa}N~. Our first theorem is; 

Theorem 3.1. For sufficiently large fl > flo > O, 

P*(Lo/-~-  -< E z}N) (~Ia~- -<L '~  -, j--~,2 .... ,klaSx=01 
~sX 

, P ~ ' ~  Tf] j = l , 2 ,  k) 

where a=a( f i ,  f io)>0 is a constant, 35Px = ~ 65P~, and (X(t),P~ ~ is a one- 
dimensional Brownian bridge. r 
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It is not a short way to get to the above result. We need several lemmas to 
carry out the proof. 

Since for any ml, m 2 . . . . .  rag+ 1 ~Zl ,  

(3.2) P*(~ ,Z~m(@).6@=m2 , j = l , 2 , . . . , k + l )  

we must first analyze (e~/~(SOx)/~e~) *. 

Lemma 3.3. 

= exp { ~ ~b*(3~x) e-  2(~-.o)lS~xl (eif~Wx)l.r 1)}. 
5r 

X=[O,N] 

Proof. From Theorem 2.13, putting X(~x)--e if~'( x)/ovN we obtain the above 
equality provided that 

Iz(~x)l  I~b*(~x)l e - 2<'-r176 < ~ .  
~.~X ~,~; 

X=[O,N] 

The above equality is true because 

IZ(~x)l I~(~x)l  e- 2<B-~~ 

X~[O,N] 

< ~ ~ 14~(Sex)l e -  2 (B- m I~xl 
p~[0,N] S P X ~ X ~  p 

_-< ~, ~, ~ I~b*(~x)le  -2(~-~~162 
p~[0, N] r r 1 6 2  

< ( N + I ) ~  ~ (  ~, Iq~*(~x)l)e -2<p-'~ 
r b% ~XS~ r 

oo ~ ,  e -  (2,e-/~o)t 

=<(N+ 1) ~ ~ Z 1 -/~(fi, rio) r=O ~.~p;l~l=r d = r + l  ISQl=t 

=-(N + l)A(fl, fio)< OO. 

We used the fact that (1)I~]+1_<1~1, (2) :~{@;1.Yr for given 4, 
and the estimate (i) of Theorem 2.13. (q.e.d.) 

Now we change the variables Yl, Y2 .... , Yk+ 1. 
Let g~N)(~)_ ~,(N)~c~_ ~,(N) ,~i ~r ~i_ ~(59, j = 1, 2,... ,  k + 1, and ~j = y j +  y j+ 1 + " "  

+yk+ ~, j =  1,2, . . . , k+  1. Then 

k + l  

fN(S~X) = ~ Y3 ~ g~m(~)" 6 ~ ,  
j=  1 ~ x  
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and (3.2) is rewritten into 

(3.2)' P~* ( ~ Z~ N)(~). 8 ~ = m;,j = 1, 2, ..., k + 1) 
~eX 

( 1 ~k+l ~ . ~  ~ 
- ~2rcal/~ ] -=!r162 (e'f~(s~x)/~ 

where m o = 0. 
Let X = ( ~ ,  ~z, . . . ,~)  be a collection of clusters in Z 1 which may be over- 

lapping, and ~ ;=(v ; ,v ;+ l  .... ,v;+]~;I), j = l , 2 , . . . , s .  Define X=-{m(X),m(X) 
+1 ... . .  nS(X)-l,  rNX)}, where re(X)-= min v; and r~(X)--max(v;+l@).  The 

1 <=j<=s 1 < j < s  

following lemma is the most important in this section. 

1 
Lemma 3.4. lim sup ~ ~ ~ I~b}(S~x)l =0. 

N~cr p~[0,N] Xc~O,N] ~X 
X~p 

Proof. Let us fix N and p ~ [0, N] arbitrarily. 

X ~] O,N] 5aX 
X~p 

< 2 2 l  *(Jx)l 
X~[0,N] ~X 

X ~ [(logN) 2, N-  (logN) 2] 
X~p 

+ ~, ~ ] qS*(~x)[ ~ I + II. 
Xc[ ( logN)2 ,  N -  (logN) 21 YX 

X~p 

From Theorem 2.13, (i), as in the proof of Lemma 3.3, 

r~[O,(logN)2]u[N - (logN)2,N] X~r ~X 

<2( l~  ~ ~ f~b*(~x)l <2(logN) 2'-A(fio), 
~3p sa G ~X 

where A (rio) --* 0 exponentially as rio--* oo. Next, by Theorem 2.13 (i), 

~b*(~x) = ~(~x) if X ~ [(logN) 2, N - (logN)2], 

and ~ is translationally invariant. For each integer d >  1, let 

Y Y 18(S x)J, 
X = Z I . ~ O ,  5P x 

*~(~i= d 

where # (X)=r~ (X) -m(X)+  1, i.e. the cardinality of X. Using the invariance of 
~, we obtain 
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O<=~(d)=d. ~ ~. [ q~(SPx) ], 
XcZ1,m(X)=  0 "~X 

:~ (X) = d 

which implies that 

0(d) 

X=Zt ,m(X)  = 0  ~ X  X c Z l  5aX 
X~O 

By Theorem 2.13, (i), (iii), the right hand side is not larger than A(fl, ]30) < 00. 
Thus, 

N N 

(3.6) ii_< Z l = r 
d~ 1 X~Z1,X~p,  ~X d= 1 

# (X)=d  

Combining (3.5), (3.6) with the fact that <0% we see that the 
assertion of the Lemma is true. (q.e.d,) e= 1 t *  

Before explaining how we make use of the above lemma, we claim the 
following fact which is also merely mentioned in [4]. 

Lemma 3.7. All the following limits exist and positive if fl > flo > 0 are sufficiently 
large. 

1 e- 2 <e - ~o) l~xl(~ ~x)2i (i) lim ~ Z ~b*(Yx)' 

Xc[O,N]  

=~Bj(fl, flo), j = 0 ,  1,2. 

(ii) lim 1 

X~[O,N] 

-/~j(fl, rio), j = 0, 1, 2. 

Moreover, if  f l - r io  is large enough, 

(3.8) 1 < B 1 (fi, rio) < B1 (fl, flo) </~ 1 (fl, rio) < 

The proof of (i), (ii) is similar to the proof of the existence of the mean 
energy, for q~* is asymptotically translationally invariant. (3.8) comes from the 
following estimate obtained by Gallavotti [4]. 

Lemma3.9. (i) Let  {=[0 ,N] ,  ~q:0,N, I{[=0 and I~l=j, for j > l .  Then .for 
sufficiently large f i -  rio > O, flo > O, 

q~ (5~r = exp { - 2 fioJ - z e-  s~j + 3 5 e - 1 op 0 (fi)j}, 

where (~=~b u or (a~v or c~, and [0(fi)[<l. 

(ii) ~ ] ~(~ax) [ ~ e  -2~~ • C(fl, fio) 
l Yxl--> 2, ~x~aC, 

paX~[0 ,N]  

for any pe[O,N],  where C(fi, flo)---~O as (fi--fio)A fio-+ 0% and ~b=@v , q~*, 4~. 
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Now we are going to estimate the right hand side of (3.2)'. 

Lemma 3.10. 

=exp , ,~  ~ qS~ (Yx) 
L J= 1 Xc[acJ l  + 1,a} ~')] 5~X 

% 

�9 e- a(P-B~ 1) + o ( g ) t  

as N - ~ .  

Proof. If X ~ [a~)i + 1, a}S)], then for any ~ X ,  g~m(~)= @, where @ = 0 i f j  4= { 
and 5# = 1 for any j. Hence fN (~x) = Yj' c~ Yx if X c [a~'l + 1, a~  )] for some j. On 
the other hand, if X ~; [a}N_)~ + 1, a} m] for any j, then-X c~ {a} s);j  = 1, 2 .... , k + 1} 
= 0. Hence we have 

~oranyj ~ 

<2 ~ ~ I'/'*(~x)l e- 2(fl-fl~ 
X ~ [(logN)2,N- (logN) 2] ~X 

k + l  

+ 2  y'  ~ y" [q~(St'x)[ e -2(/~-/~~ 
j=  1 X~a (,~), J X  

X c [(logN)2,'}V-- (logN) 2] 

=o(N) 

as N-- ,  oo from Lemmas 3.3 and 3.4. (q.e.d.) 

Lemma 3.11. For any 1 > g > 0 ,  there exists f i (0>0  such that if f l - f io  > fi(e), then 

( ei Y~(S'x)/~r * = o(1/N e) 

as N-+ o0 for any positive integer f whenever there exists j ;  1 <j < k + 1 such that 

course we assume that I)jl<r~o-1/N for any j Remark. Of because 
(eiZN(aex)/'l/F) * is a periodic function of each Ya with period 27;alfN. 

Proof of Lemma 3.11. First note that 

1 

X ~ [ a j -  1 + 1,a}~r ~ X  

1 <-- E E ~*(5~)e-2(B-~~176176 
- N ~ c[a}NY, + 1.a(N)] a50g= 1 

- I~I=o " 
2 

+ ~ -  N)E E I~}(~-qCx)l e-2(P-/~~ 
X < [a(j-,  + 1,aSV)] la~ > 2 

and the left hand side is real for all yj. Using Lemma 3.9, we obtain 
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1 
(,,>~ E ~b}(~x) e-2(~-~~ d ~ j o s e x / ~ -  1) 

X~ [a j -  ~ + 1,a~. N)] 5a x 

<= ( t j  - -  t j _  1) e- 2~- 3e-~.((eif~/~r 1) + (e - i~/"r  1) 

+ 2 e- 2(~- ~o)+ 3~-8~ C(fi, ]30)) + o(1). 

Note that d ~ d ~ - - l + e - ~ ; ~ / ~ / N - l =  - 4 s i n  2 Y~ =< - 4  sin2 ~ if 

rco.1/N>lyfi>r Hence if we take f i>/~o>0 sufficiently large such that 

2 s i n  z _e > 2 e -  2 (~ -  ao) + 3e - ~" C(]3 ,  ]30), we get 
2 

,,~,2 2 ~(S~x) ~- ~"-"~ ~ ' ' ~ ' x / ~  1) 
X~ [ad -  i.+ 1,a~ ~)] 5~X 

< - 2 N  t j- t~_l)e-2~-3e-8~sin2~+o(1 . 

For other j's such that ] ~ j l < e o . l ~ ,  from Taylor's theorem and Theorem 2.13, 
(iii), 

( 1 (,~x) ~ _~+~ (,~x) ~ ) 
x 2 oZN Y1 12o.4N 2 0(yj, SPx) , 

where I 0[ < 1. 
The right hand side is not larger than 

Y~ 
(t~- % 1) B1 (]3, G / -  6 o.~ s ~2(/~, ]3 o)(t~- % 1) + o(1.) 2o. 2 

2~2 (t/%1) Bl(]3,]3o)-~-Bd]3,]30) +o(1) . 

From Lemma 3.7, the right hand side is non-positive for sufficiently large 
f i>]3o>0 as N ~ o o .  

Thus, we obtain from Lemma 3.10 and the above argument, 

=o(1/N ~) as N ~  0o for any positive integer d. (q.e.d.) 

Hereafter we put o .2 = o: (fi, ]30) = B1 (]3, ]30). 
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Lemma 3.12. For sufficiently large fl >fi0 > 0, and any given ml, me,... , mkeZ 1, 

Pu* ( Y, Z ~ ~ ) ( 5~ ) (5 5~ = m j, j = 1,2,..., k, c~SPx = 0 ) 

--  ( 1 "k+l lyj l<log N I- 2 2r S..4 '"., ]-Ie-  J ~ d y  1...dyk+ 1 
j = l  

tor all j 

+ o (1/N e) 

as N-~  o~ for any positive integer d, where m o =ink+ 1 =0. 

Proof From (3.2)' and Lemma 3.11, we have 

(3.13) PN*( Z Z}N)(5'~)65~=mj, j=  l,Z, ...,k, 55Px=O) 
~eX 

(17+, - 2 ~  ~,~Yq~=~{ }df~...dy~+~+o(1/Nfl 
forallj 

as N ~  oQ for any positive integer {, where { } is the same integrand as in the 

above equality. As in the proof of Lemma 3.11, if lYjl <eat~N, then we have 

>,~ ~ r e- ~(~- ~o)i~',,J(e'~,~',,/<,V~_ 1) 
X=Ca~r + 1,a(dN)l S X 

< (ta-tj_,) Ba(fl, flo)--~D2(fl, fio ) +o(1) = 20.2 

Since B2(fl, fio)<2Bl(fl, flo), e < l  and Bl(fl, flo)=a2, the right hand side of the 
above inequality is smaller than 

~2 y 2  

- 12a yj 2~(tj--tJ-1)Bi(fl'fl~ --~2 ( t j - t j -  1)' 

Hence we have 

Y...S { ) d L  ...  a ~ k + l  
|371 [ ->logU 

[yl H y2 [,...,]-y~ + i I < ea l /N 

~+1 tj--tj 1 ,,~ = <-211] ] ~  . y e - ' 2~n2d~ ,=o( l lN  p) 
- ( j = 2  1/ 12 '3 logN 

as N--+ oo for any positive integer d, which proves the lemma. 

Lemma 3.14. I f  lYj[ < l o g N  for every j, then 
_ ( k+I k+t 

(eiS~(S~x)l~gS)*=exp [ zi~=aV ~=l?}N)yiYj+o(1/l/N)t 

(q.e.d.) 

as N-~  ~ ,  where 
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1 
/l~)-a2N ~ ~b*(~x)e-2(~-P~ 

Xc[O,N] ~ X  
~XE~ 

for l<=i,j<k+l. 

Proof. By the same reason as in the proof of Lemma 3.11, using Taylor's 
theorem and Theorem 2.13, (iii), we obtain first; 

(3.15) (eifN(SaX)/r * 

1 } 
+ 12N2 2 r e- 2(~-~~ 1. O(fN(~x)/Ol/N) , 

X=[0,N] 

where [ 01 < 1. 
Since lYj] < l o g N  for every j, 

(3.16) N2 ~ ~b~ (SPx) e - 2(~-~~ 
X c [0,N],5~XeX 

• 

v =  1 ~ X  

[ (l~ x [-/~2(/3,/30)(tj-tj-0+0(1)] if Jl =J2-~J3=J4=J, 

<=] (log N )  4 x o (1) otherwise, 
t N 

by using Lemmas 3.4, 3.7, and the fact that 

e-  2(~- ~:)i S~xl ~l(r 3 ~ ) 

4 

=< sup l~ (e- 2(~- eo)t%) < 1 
fl,f2,f3,~4~ 1 "0= 1 

if /3-/3o > 0 is sufficiently large. We also use the fact that for i +j,  

( 2  g}N)(N) 6 N ) ( ~  g}m(~) c ~ )  = 0 if X ~ [a(tm i + 1, a(tN) ] 
~sX ~ X  

for some f. (3.16) implies that the contribution of the second term of the right 
hand side of (3.15) is smaller than 

(logN) 4 
N (B2(fl, fio)+O(1)), 

which proves the lemma. (q.e.d.) 
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Lemma 3.17. Let F~-------(?IN)). Then F N is a strictly positive definite (k + 1)x (k + 1)- 
matrix for sufficiently large N. 

Proof By Lemmas 3.6 and 3.7, 

o/(N) 
t l  - -  t l -  

ii (72 [B~(fi, f io)+~ +~ 

as N--, 0% i=1,2,  . . . , k+  1, and 

7U'(N)=~ as N ~ c ~  ifieej. 

This implies that F N is strictly positive definite for large enough N. 

Lemma 3.18. For m0=0 , mi, m 2 ... .  ,mk~Z 1, m~+ 1 =0, 

( 2 ~ 1 ) k + l .  < >N[I e- k + l . . ( , l j , - O  . . . . .  o-]//N ]j~.i[mlogN]"'[" eif'(S~x)/"~ *a=, 'Y'- g-~ dYl""df~k+l 
forallj 

1 

1/(2r~a~ N) k+l detF N 

(q.e.d.) 

1 tm(FN )- i m} + o(1/N (k+2~/2) 
_ _  exp 2a2N 

as N--* o% where tm=(ml,rn2-ml, ...,ink--ink_ > --ink). 

Proof. Note that 

- i .  tm'~r dy I dyk+ 1 e x p ,  - I'~(FN) ~r + ~  a l / ~ J l  " 

=o(1/N0 as N--+oQ 

for any positive integer ~, where t~ = @1 .. . .  , Yk+ 1). This comes from the fact that 
if we define 6 N by 

6~-= max ~. Iv(. m 
IlJ I , 

I__<i<k+i 1<=j<k+1 

then 
k+l 

t~(FN)~> ~(? j j - -6u)y  2, and min(?jj-cSN)>?>0 
j=1 J 

for some 7 > 0 if N is sufficiently large. 
Since 

- 12 ;S !_t - 

+o(I/N (k+2)/2) as N~oo, 
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we obtain the desired result using the fact that F N has its inverse F N- 1 since F N is 
strictly positive definite. (q.e.d.) 

Corollary 3.19. 

1 
P~*(bJx=0 ) 2 r c a ~  N as X-->oo. 

Now it would be obvious to see that Theorem 3.1 holds, since 

( tl 0 t t2--t  1 
I~N--> . .  

tk - -  t k -  1 J 

0 1 - t k / 

as N--~ oe and 

Po~,'o~ 7~], . . . , X ( t ~ ) ~ [ T ~ ,  T~']) 
Ti T~ 

=]/2~ [" dxp ( t l , x l )  [ d x 2 P ( t 2 - t l , x a - x l )  x . . .  x 
T1 T2 

T~ 

x ~ d xk P (tk- tk_ 1, x k -  x~_ 1) P (1 - tk, - x~) 
Tk 

where p (t, x) = (2 ~ t)- 1/2 e- x2/2t. 

w The Maximum Process YN(t) 

Throughout this section, we assume that fl> fl0 > 0 are sufficiently large so that 
every result in w 1 ~w 3 holds. 

Let us fix N > 0 .  For any )~/IN, let us define YN(t;2) by 

YN(O; ,~)=-- YN(1; 2)=---O, 

YN(k/N;2)=_max{f ; (k ,E)~} /a l /N k = l , 2 , . . . , N -  1. 

and 

[L YN \/k+l'2~N ' ] -  YN(k/N;2)] YN(t;2)= YN(k /n ;2 )+( t - -k / i )  

for k / N < t < ( k + l ) / N .  Then it is easy to see that YN(t;2) is continuous in t. 
Moreover, Theorem 3.1 and Corollary 2.16 imply the following result. 

Theorem4.1. Let O = t o < t l < t 2 < . . . < t k < t k + l : l  , and - o o < T j < T ] < o o ,  j 
= 1, 2,. . . ,  k be given. Then for large enough fi > flo > O, 
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P2 ( YN(t~)e [ L ,  T;],  . . . , YN(t~)e[ T~, T;] l a ~ x  =0) 

- ,  Po~,o~ ( tO~[T , ,  T;] . . . .  , X  (t~)E[T~, T;1) as N - - ,  oo, 

where ~p,~,o 0,o, {X(t)}o_<t_< 1) is a one-dimensional Brownian bridge. 

Proof. For simplicity we prove in the case k = 1. Note that 

{u T .  T1'1} m {l~l  <(l~ 2 for any ~ e 2 }  

{ ~ z]N)(5~) aS~c/al/Ne[T~ -( logN)2/al /N,  T; +(logN)2/a]/Nl}, 
r 

where 

(N) _ f l  if ~ ~ [0, a]N)], 
){1 (5~r 0 otherwise, 

and a]m=[taNl. Combining this with Corollary2.16, we obtain the above 
convergence. (q.e.d.) 

In this section we will prove the following theorem which states a stronger 
fact than the above theorem. 

Theorem 4.2. Let % - C [ 0 ,  1] =the space of all continuous functions over [0, 11, 
with supremum norm as usual. Let p* be the distribution of {Yu(t;2); 0 < t < l }  
derived from Pff. Then #* converges weakly to Plo; o as N--* ~ ,  if fl >flo > 0 are 
sufficiently large. 

Remark. Since we have proved the convergence of the finite-dimensional distri- 
bution of p}, we have only to show that the following conditions hold: 

(4.3) there exist constants M > 0 and 7 > 0 such that 

E~[fVN(0)l~[6SPx-=01- ~ ]Y N(0; 2)[~P*(21/Iw)<M 
2~A~v 

for sufficiently large N, 

(4.4) there exist constants L >0, e > 0, ~ >0  such that 

E~[I YN(t)- 7,,(s)l~ I ~ ~x =03 < L  I t - s l  l +~ 

for every t, s e [0, 1], if N is sufficiently large. 
(4.3) and (4.4) are well known conditions for the convergence of #} (see for 

example [11, p. 95). 
Now we are going to check conditions (4.3) and (4.4). In our case (4.3) is 

trivial. Because we put YN(O)=--O for any 2 and N, First we consider the case 
when t=k/N,  s=k' /N and for simplicity we assume that k>k'. Let A ={k', k' 
+ l , . . . , k }  and A * - [ O , N ] \ A  ={0, 1 . . . . .  k ' - l } w { k + l  . . . . .  N}. 

Lemma 4.5. Assume that 1 < IA]<=N 1/4. Then (4.4) is true for e = 6, 5 = 1/3, i.e. 

E}[[ YN(k/N)- Yu(k'/N)[6 [ f Sex=01 < Const. x (rA[/N) 4/3 

where IAJ=k-k' .  
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Proof. Assume first that k=k'+ 1. Then by Theorem 2.15, 

P~ (I YN (k/N) - YN (k'/ N) l = E /a 1 ~  I ~ Sex = o) 

<P*({There exists ~ such that ~ k  or k' and I~1 >_-~} I ~sex=0) 

< { ~  ~ P~(Ser ~ ~ P*(sec)}x2al/nN 

for sufficiently large N. (Use Corollary 3.18.) 
Since for any O<_k<_N, by Theorem 2.15, 

2 p~(~r ~ (r+ 1) ~ 32Se-P~/[1-1c(fi, fio)] 
r=0 s~(v+ 1)v~' 

< Const. x f ( f +  1)(9 e-  ~).~ 

we obtain that 

E~v[I YN(k/W)- gN(k'/N)161b sex = 03 

< ~ 2]/~/a 5 N 5/2 x 2 Const. ~ ( (+  1)(9e-~) e 
~=0 

-<_Const. x N -  5/2 

Hence if O< k - k '  < N 1/~, 

E~,[IXN(k/N)- YN(k'/N)I6 1 ~se,,=0] 
k-k '  

< E~ [ (k-  k '? .  ~ I rN((k + j -  1)/N) - YN((k +j)/N)l 61 ~ sex = 03 
3"=1 

<IAI 5' ]AI" Const.(1/N 5/z) 
= Const. x (]A I6/N 5/2) <= Const. x ([A I/N) 4/3. (q.e.d.) 

In the case when I A[>= N 1/4, we must obtain better estimates for Pff(I YN(k/N) 
-YN(k'/N)I = ~/aVFNIbsex=O). To do so, let us define functions JA and Ga on 
by 

where 

1 if ~ A  
(~)-= 0 otherwise. Zd 

Lemma 4.6. 

Gd(sex) = ~ (1 - ZA(~r 6 ~ ,  
~EX 

E~EI YN(k/N)- YN(k'/N)L616~x =0-1 
~E~C2 ~ IJ~,(~x)l~/o-~ N3 I 6 ~x = 0] 

211(logN) 12 ( ~ ) 4 / 3 + o  (N1--7) 
o .6N 2 

as N ~ ~ for any positive integer (. 
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Proof. L e t / 5 , ( . )  be 

P*(2)=-P*(2)/P~(flN) for every 2 ~ / ]  N. 

Then as L e m m a  2.9, we can show that for any e > 0, 

-<_ e ~ ~ ~ 3" e -  (p- k(~, So)), 
n= (1 +DN 

= [ 1 - 3 e -  ~ + k(~, 8o)]- 1 exp { - e fiN + (1 + ~)(k(fl, rio) + log 3). N}. 

N o w  let e = 1 + O/N. Then 

P~ (5fx ~/IN ; lYxl > N + f )  

< [ 1 - 3 e -  p + k(p. ~o)] - 1. exp {(N + d ) ( -  fl + 2 k(fl, rio) + 2 log 3)}. 

Thus, 

E* [1 YN (k/N) - Yw (k'/N) l 6; 12J >= 2 N] 

e= u ~ tiff (1Yu (k/N) - YN(k'/N)[ = d/a I /N,  121 > 2 N) 

N 6 
+ ~ / 5 2  (I YN (k/N) - YN (k'/N) t <= N/a l ~ ,  [2[ > 2 N) 

<2a~N-e~=N a--g~5 [1 - 3 e-~+k(f'e~ -1 e e(--e+2k(e'e~176 

N 6 
+ 2 er l / ~  a~-~5- [1 - 3 e-~+a(P'~~ - ~ e N(-~+ 2a(e'&)+ 21~ 3) 

=o(1/N r as N--* oo for any positive integer d. 

Moreover ,  f rom L e m m a  2.9, we obtain 

/ ~ [ [  YN(k/N)- YN(k'/N)I6; 121 =<2N] 

<YE*[I YN(k/N)- YN(k'/N)I6; 12J < 2 N ,  15r <( log  N) 2 

for any 5 ~ s 2 ]  +o(1/N ~) 

as N ~ oe for any positive integer d. 
Finally if (;t[ < 2 N  and t ~ t  <( Iog  N) 2 for any 5~E2, then 

I YN(k/N) - YN(k'/N)I 6 <~6N~- [IG(~x)l + 2( logN)2]  6 

2 5 
< [IJA (~x)[6 + 26 ( logN) 12 ] 
=O.6 N3 

which proves the lemma. (q.e.d.) 
N o w  it is sufficient to estimate the probability. 

/5~* (Jz (5~x) = k) = P~ (J~ (Sfx) = k, G~ (SPx) = -- k)/P 2 ((~ 5Px = O) 

for every k. 

305 
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Since 

P*  (J~ (~,,) = k, G (aex) = - k) 

=(2n)-2  i i ( eiy'sA('~x)+i~'~c'a{~x))*e-iy'k+iy~kdy' dy 2 

we can estimate the above probability by the same argument as we used in 
Sect. 3. The only different part is; since [A[ may be o(N) as N--+ o% we can not 
apply Lemma 3.4 in this case. But we can use Lemma 3.9 since we need only the 
upper estimate. 

Hence, we obtain the following lemma. 

Lemma 4.7. I f  N/2>IAI> N1/% then 

Py (& ( ~ )  = k, G ( ~ x )  = - k) 
1 k2 e-7(1/=N+(1 +/~x/a~v)Z/&v) 

4nl /7~-  3 N 

+ 0  (]/~ (l~ 

IAI+ 1)(IA*I+I) 

as N--+ c~, where 

x ((IA I + 1) -~ +(IA*I + 1)- *))) 

for some constants M l (fi, riD, M e (fi, rio) >0. 

Proof. The main idea is the same as in w 3, so we briefly sketch the proof. 
Just in the same way as in the proof of Lemma 3.11, we obtain 

(4.8) (ely~&(~x)+ir~G~(Wx))}=o(1/N ~) 

as N-+  00 for any positive integer ~, if ly,I or [y21~1, and 

(4.9) [. [. (eiYlS~(S~x)+iY2G~(S~x})}e-iY~k+iY~kdyl dY2 
logN [y21= < 1 - - ~ _ [ y l l <  1 

r  
= o(1/Nt), 

(4.9)' ~ , .~ ~ { } d y l d y z = o ( 1 / N  e) 
l Y l I = < x ~ < I y 2 I  <1 

as N--+ oo for any positive integer ~, where { } is the same integrand as in (4.9). 

:~N- Y~ r176  2, 
~ X  r 1~; X n A  * 0 

fin -~ ~ 4) ~ (JX) e -  2(~-/}~ ['yxl JA [ qS/~'x)'G ,t (~C~ 
..,O'Xs~;Xc~A ~ 0 

XnA*:~O 

YN ~ E (/) } ('5#X) e -  2(/~- b'~ I*xl [Ga(~ 12' 
Jxe~C;xc~a;'# o 

and 

aN=--WN - ~V/~N>=M~(3,/~o)(IA*l + 1), (z N -  fi2/w~v> M2(fl, flo)(IAl+ 1) 
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Now let 

ly~l< b ,21_-<- -  
and 

A'-fle~p{- y~ 
~ X ~ f ; X  ~[O,N] 

--iy 1 k + iy 2k} dy l dy2, 

{ } dYl dY2, 

t ~  (~X) e -  2(fl- flo)]5"~XI (fN(dGOX))2/2 

where the integration range is the same as in the definition of A. Taylor's 
theorem and Theorem 2.13, (iii) together with the estimate; 

I ~, 0}(Yx) �9 e- 2(fl-- flO)15aXI (fs(SPx))41 
5'~X ~ s X c [0, N] 

<23 ~ I(o*(SPx)le-2(~-a~ 
5#X~,Xc[O,N] 

< 23 (y~(IA I + 1)+ y~(IA*I+ 1)} e- 2P(2 + 2 r e- 2 (fl- flo) C(fl, flo)) 

[0ogN~ r 0ogN) ~] 
<24e-2e( l+8e-e (P-e~176  [~[~-q- ~ [A*[+IJ 

for I Yl I < (log N)/] /~I  + 1, [Y21 < (log N)/I1/~*] + 1, imply that 

[ 1] (logN) 6 1 + ~ -  
IA-A'I  <C~ x ] ~ 1 +  i)(IA,I+ 1) 

for sufficiently large N. Obviously the constant depends only on f, rio. 
Since 

1 { ~N A'=  ~ exp yx 2 
1/~1+ 1)(13"1+ l)]ylI, Iy21<=IogN IA/+I 

- 2  fin 7N YlY2 y2 
]/(IA[ + 1)(IA*[ + 1) IA*t+I 

iky l  iky2 
+ dyldy2 ,  

if we take 

1 T r < ,  Y2tdyldy , 
~+a)IIA*r+ll . . . .  

where F(y, ,  Y2) is the same integrand function as in A', it would be easy to see 
that I A ' - A " I = o ( 1 / N  ~) as N-+ ~ for any positive integer # provided that 2N 
-- f2/7u>MI(]A[+ 1) and 7 ~ -  fl~/~N~M2([A*I + 1) for some positive constants 
M 1 , M  2. 

Since 

~" --~-(Ct~V1 +(1 +flN/O~N)2/t~N) A" =  ~ e 
1/c~N " 3N 
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it suffices to show the existence of above M 1 and M 2. By using Lemma 3.9, it is 
easy to see that 

(4.10) 2e-2P-3e-8"(1-2e3e  8/~--2(fl--fl~ 
--< ~N/(141 + 1), ~N/(I4*I + 1) 
<2e-2~(1 + 2e-  :(P-eo)), 

and 

(4.11) ]tiNt< ~ ~ Iq~}(~x)l" sup k j e  -2(k+j)(#-#~ 
x c ~ a * o  laexl >_ 2 k+J >-2 

k >.>_ 0,y>= o X n A * * 0  

_-< {(141+ 1) A (14"1 + 1)} e-  2/~- 2(P- flo). 

From (4.10) and (4.11) we obtain Ml(fl, flo)>0 and M2(fi, rio)>0. (q.e.d.) 

Corollary 4.12. Assume that N/2 >= [AI > N 1/4, Then 

lal 3/5 k 6 ~ 

k~o ~ P~ (I-/~ (6ex)] = k) < Const. • (I A I/N) 3 . 

The proof would be obvious from Lemma 4.7. 

Corollary 4.13. Assume that 141> 14"1 _--- N ~/4. Then 

]A*I 3/5 k 6  

Y, a6N3 Pff([da(a'~x)l=k)<C~ 3. 
k = 0  

Proof. Since we can change the roles of Ja and G a, we obtain 

la*p/s k6 
Y~ ~6N~ P~(IJ~(~x)l---k)-<Const. •  3 

k = 0  

=<Const. • 3. (q.e.d.) 

Now we have to estimate P*([Jd(Sex)l =k) for k>=N 3Is. This leads us to the 
calculation of the probability of large deviation. We will carry out this calcu- 
lation in the next section. 

w 5. Probability of Large Deviation for IJa(.9~ 

Since 

ps . . . . . . . .  P* (J~ (6Px) - k) • ~ P~ (J~ (6Px) = k), [ J3 t~x)=K)~ ~ ( ~ - x - - - ~  =const. �9 

we estimate Pff(Ja(~x)=k) for k>_1413/s 
Let 

PN, k==-P~(Jd(oC, ax)=[413/5-t-k ) f o r  k__>O. 
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Then  

1 (eiYJa(5~X))~ e-iy(IAI3/5 +k)dy (5.1) PN, k--2~ _~ 

= 2 ~  exp {IAI h(iy)- k. (iy)} dy, 

where 

(5.2) 
1 

h(z) IAI S ~ x ~ , x < o , N ~  
~b~v (5~x) e -  2 {e- Co)lS~x I(e~ J~ <S~x) _ 1) 

-IAI-2/sz. 

Since h(z) is analytic if [zl <2 ( f i - f i o ) ,  we have 

(5.3) h'(O)=-IAl-2/s<O, h'"(0) = 0, 

h(4)(O) 3 
h'(z) = - I A  l- z/5 + h ' ( O ) . z + ~ z  + O(z 4) 

F r o m  L e m m a  3.9, we obtain that 

as z--+ O. 

1 
(5.4) h " ( 0 ) = - -  ~ qS*(O~ e-2(P ~~ 2 

Izll S~x~,xcco,Nl 
=>e-2P(e- 3e 8e__ 4 e -  2(a-t~o)) >0,  

and h (4) (0) > e -  2 p (e-  3 ~ -~ e _ 16 e -  2 Cp - ao)) > 0. 

Let  z o < r a i n { z > 0 ;  h ' (z)=0}.  Then  from (5.3) and (5.4), 

1 
(5.5) zo=h~[A]-2/5(l+o(1)) as N--+oo. 

Using the analyticity of h(z), we have 

1 
PN, k = ~ ! e x p  {I A I h(iy)- k. (iy)} dy 

1 zo+irc 
= 2 ~  ~ exp{lAlh(z)-kz}dz 

z o  - -  i r e  

=2rril ~exp{fAIh(zo+it)_k.(zo+it)}d t 

>exp{tA[h(zo)-kzo} x I. 

We decompose  I into two parts I1, 12; 

2rc[ I I= l  j" J+l j" 1=11+I2 . 
l/4__<lr[=<~ Itl<=ll,~ 

Lem ma  5.6. If fl-flo is sufficiently large, then 

IS 1 I< 2( re -  1/4). 

309 
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Proof Since 

I s = ~ dt exp{ ~ 0*(Sex) e-  2(P-fl~ 
~> Itl > 2/4 ~xe~,x c[0,N] 
• eZO J,~ (~x)(e it J,~ (~x) _ 1) -- i k t}, 

it suffices to show that [integrand] < 1. 

] integrand] 

= exp{Re ~ ~b*(~x) e - 2(fl-fl~ e~~ itsa(~x)- 1)} 
5PX~,~",X ~ A  = 0 

=exp{ ~ ~}(SPx)e-2(~-~~176176 
5 ~ X ~ f , X c ~ A  = 0 

< e x p { - 2 ( I A l +  1)e- 2a[e 3e-Sa sin2(1/8)_eZ_2(p_ao)]} 

from Lemma 3.8 and (5.5). Obviously, (5.5) depends on ]A I> N 1/4, so the above 
inequality holds for sufficiently large N. (q.e.d.) 

Lemma 5.7. I f  f i - f lo is sufficiently large, then 

[121__<1/2 as N--+ oo. 

Proof This time we need the Taylor Theorem for e iyJa(s~x), and use Lemma 3.9 
to obtain 

] integrand] 

<exp{_2e_2P(lA]+l)[e_3~ ~e 1 6.4 2 {e+8e2-2(P eo~}_2e2-2(fl-Po)]} 

< 1. (q.e.d.) 

Theorem 5.8. Assume that ]A[>]A*]>N 1/4. I f  B-rio, rio are sufficiently large, 
then for large enough N, 

pN,k<exp{ IA[1/5 k lAl~2/5; 
4h"(0) ~ J  

Proof From Lemmas 5.6, 5.7 

PN,k < exp { --IAIh(zo)-kZo}. 

1 1_2/s But from (5.5), Z o > ~ l A  for large enough N. Substituting this into 

h(z)=-IAI-2/Sz+ Z2-~O(z 4) as z-+0, 

and noting that h(zo)<h (2@(,(o~lA[-a/5 ) since h(z) is decreasing for 0-< z <_ zo, 

we obtain the desired result. (q.e.d.) 

Y. Higuchi 
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Corollary 5.9. Assume that I A*I > I A I > X ~/~. Then 

k= IA 13/5 

as N--~ o9 for any positive integer L 

Corollary 5.10. Assume that [ A I > l d* l >-- N1/4. Then 

PN* (J J~ (Jx)I = k ) = o  
k= iA*p/~ 

as N--~ oc for any positive integer ~. 

Proof. Since P~(J~(SPx)=k)=P*(aA(Sex)=-k) ,  we consider G~(Jx) instead of 
J~ (SPx) and 

1 

h*(z)=-JA*W S~x~,x=[o,Nj 

x e- 2(~- ~o)lS~x I (eZ o~(s~x~ _ 1) - I A * l -  2/s z 

instead of h(z). Then by the same argument as we did in this section, we obtain 
the desired result. (q.e.d.) 

LemmaS.11.  Assume that f l> f lo>0  are sufficiently large. I f  O<-k<<-N 1/~, N 
- N 1 / 4  <-k' <-N, then 

~ [~ (~)_ ~ (~)~}: (,;, F~ ~ (1) 

as N-+ c~. 

k Y 

Since ~,? J-YN(0)= YN(1)=0] = l, we obtain by the same argument as in the proof 
of Lemma 4.5, 

E* YN ~Const .  x \ ~ /  , 

[ (~--~')l 6 Y N  ]j < Const. x ( ~ _ ~ ) 4 / 3 .  

Hence 
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/~* [YN (Nk---) - YN (~---')6]-<Const. • ( k + ( N - k ' ) )  4/3 

=Const. x(1-~-)4/3=(]~-)4/3.0(N ) 

as N--~ oe. (q.e.d.) 
Combining Lemmas4.5,  4.6, 5.11 and Corollaries4.12, 4.13, 5.9, 5.10, we 

k k' 
obtain the estimate (4.4) for t = ~ ,  s = ~ ,  k,k'~{0,1,2 ... .  0N}. From this, it is 

very easy to get (4.4) for every s, t~[0, 1]. Thus, Theorem 4.2 is proved. 

w Proof of Theorem 1.2 

Note that the relative topology of c6 0 induced from ~ coincides with the 
topology of the supremum norm in c~ o. 

Let f be a bounded uniformly continuous function on c~. Then f i fo  is also 
uniformly continuous. 

Define rc N: (g- ,  (go by 

Then Theorem 4.2 states that 

if k=O,N 

for k/N<:t~(k+ 1)/N, 

(6.1) [.f(nu(c))(_@o d ~  1)(d c ) ~  ~ f(c)P01,b~ c) 
cg fro 

because the left hand side is equal to 

f(nN(c))(/5~ * o d ~  1)(d c) = ~ f(c) #*(d c) 

by the definition of #}. 
From Corollary 2.16, we obtain that 

I ~f(nN(c))(P* o d ~  1)(d e ) -  ~,f(c)(PN*o d N 1)(d c)[ 

< [, [f(~(c))-f(c)l(P~od~ 1)(dc) 
~vAN 

<= + I 
{c s~'N AN; t5 (n~v (c), c) < a} {ced~XN;p(n~r(c),c)>e} 
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< sup If(c)-f(c')] 
~(c,c') <e 

+ 2 {sup r f(e)]} • (P*o d u  1)({ceCg; fi(~aN(C), C)> e}) 
c~C~ 

-+ sup I f (c)- f (c ' ) t  as N--*oo. 
p(c ,c ' )<e 

Letting e ~ 0, we obtain that 

(6.2) 5f(c)(P*os~C~rl)(dc)-~ ~f(c)Pol,'o~ as N-*oc.  
go 

We used the fact that if ]~J <(logN) 2 for any ~ e 2 ,  then 

= =<( I~  

From (6.2), we can find the unique probability measure # on c~ such that 

&, o sjs i ~ kt weakly as N + or. 

If cgo is measurable in (cg,/5), then 1.o #=Po,o. We will give the proof of the 
measurability of go in the appendix. Here, we assume the measurability. 

From (2.2) and (2.12) we obtain for any bounded uniformly continuous f on 
cg, 

I ~ f (c)(P*o .~r163 1)(d c) - ~ f (c)(go ~r163 ~)(d c)] 
cg qf 

= I ~ f(xJ~v 2)(Pd (2) - P~.(2)) I = o(1/N ~) 
)~eAN 

as N--+ 0% for any positive integer #. Hence we have 

U(c)(go b(dc)  X f I IPol,o~ S f (c) Pol,o~ 
~o W 

as N--, ~ .  Thus, using Skorokhod's theorem [7], we proved Theorem 1.2. The 
idea appeared in this section is due to T. Shiga. 

Appendix. Measurability of  c~ o in (~,/~) 

Lemma A.1. Let G be an open set in R 1. For any c6Cg, te[O, 1], let 

c,--{x~R1; (t,x)ec} c R  1. 

Then A(t; G)~{cECg; c~ cG}  is an open set in (cg, p). 

Proof For any c~A(t; G), cc~ {(t,x)eR2;x~G c} =r Since c is compact 

sup inf IP-qf  >51 >0  
p~c, q~{( t ,x)~R2;xeG e} 
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and 

sup in f lp -q ]  >c~2 > 0  
q~{(t,x)eR2;xeGC}, pec 

Hence if 6-c~ 1/x6z, 

U(c, 6/2) =- {c'eCg; #(c, c') < 6/2} c A(t; G). (q.e.d.) 

Lemma A.2. For any re[0, 1], let 

St-{ceCg; c t consists of one point} 

and 

S ~ ('] S t 
t E Q n [ 0 , 1 ]  

where Q is the set of all rational numbers. Then S t and S are measurable, i.e. 

St, Sea{open sets in (qf, p)} =_ N(cg) 

Proof Note that 

St=n= l (~ k~Yz l{cecg; ct =((k-z )"  z -" ' (k  +~)" 2-")} (q.e.d.) 

k 
Let us fix n > l ,  0 < k < 2 " -  1, e > 0  and 6>0,  and define r,,k=2,, 

~.,k(~)~ {ce(r ..... cr.,~+l) >~}, 

where #I(A,B) is a distance between compact sets A, B in R 1, 

# i (A,B)- �89 inf IP-q] +sup inf IP-q[},  
p~A qeB qeB p~A 

and 

JL(~)=[ U U(c, 6)]~S. 

zt~,,k(e) is measurable for any n, k, ~, 6. 

Lemma A.3. Let 6, =- 2-". Then 

Sc~ {ceCg; there exists some tel0,  1] such that c~ is an interval of R ~} 

2 ~ -  1 - 6  

= m?l n~__ l kU= o Ann, k ( 1 )  e ~ ((~;)" 

Proof Let ce~V_l n=l k=0U A,",k . Then there exists m > 0  such that for any 

n >  1, we can find c(")eS and r,,k e[0, 1] such that 

Y. Higuchi 
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1 (c(n) (n) C~ ) > - -  and  fi(c, c (")) < 6,. 
F I \  r n , k n ~  n,kn+ 1 t~/ 

Hence  we can find rn, rs  such that  

r,,k,_ l <r,<r,,k, ,+ l ,r , ,k ,<rs <r,,k,+ 2 

and 

t - i ' n ,  k n 

F r o m  this, we have 

- (n) < 

1 
(A.4) fil(c~,, c , . ; ) > m - 2  @ 

Since 0<%,kn< 1, {%,k,},~__ 1 has an accumula t ing  point ,  say r. F o r  s impl ic i ty  let 
us assume tha t  r n , k ~ r  as n ~ o o .  Then r,, r~,--,r as n--+oo. No te  that  c is 
c o m p a c t  in [0 ,1]  •  1. So any accumula t ing  po in t  of  {cr,},~t and  {cr~},~__i 

belongs  to % F r o m  (A.4), we can deduce  tha t  diam(c~)>--.1 N o t i n g  tha t  c e S  and 
m 

c is connected,  we can find tha t  cr is an interval .  Hence  

c~Sc~ { c ~ ;  c t is an in terval  of  R 1 for some t~[0,  1]} 

The  o ther  inc lus ion is t r i v i a l  (q.e.d.) 

A t  last, no t ing  tha t  Cgo=S~ ~ )  we find the measur -  
l n = l  k 

abi l i ty  of  cg o. 
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