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Error Estimates for Low Rate Codes 
UDO AUGUSTIN 

Summary. Gallager [1] and Gallager, Shannon, Berlekamp [2] establish exponentially decreasing 
upper and lower bounds, respectively, on the error of the best codes for fixed code rates R smaller 
than the capacity for the standard channels (stationary finite alphabet channels without memory). 
These bounds happen to coincide up to the first order for rates near to the capacity. 

The authors of [2] regret that their proof of the lower bound cannot be extended to infinite 
alphabet channels or nonstationary channels because of the use of "fixed composition codes" (while 
the proofs of the upper estimate can be easily transferred to those channels). 

Changing parts of the proof in [2], we automatically obtain estimates of the same type as in 
[2] for the latter channels. 

Furthermore, as a matter of minor importance, we show that the order of coincidence of upper 
and lower bound for the high rates R can be rigorously improved. 

w 1. The Model for the Channel Without Memory 

In order  to avoid unnecessary effort with measurabil i ty considerations (which 
have no strong bearing on the estimates in our  problem) and with index nota t ions  
we will choose a model  for the general channel  wi thout  memory  that  differs from 
the usual model.  

Let the triple (X, F, M) denote  a set X +  ~ with a a-field F on X and a nonempty  
set M =  {p} of  probabilities on the measure space (X, F). 

Remark. (X, F, M) may be considered as the model  for a channel (for a fixed 
time) as long as one is concerned only with the relation between the length and the 
error  of codes. Interpret ing X as the set of  output  symbols of  the channel and M 
as the set of  transit ion probabilities f rom a set of  input  symbols to X one can 
neglect the input  symbols, because the receiver can separate different input  sym- 
bols only if they have different transit ion probabili t ies;  the relation between the 
length and the error  of  a code depends only on the structure of  M as a set of  prob-  
abilities. (Usually a measure kernel is taken as the model  for an infinite a lphabet  
channel. In  that  case only the set of  output  sources determines the relation between 
length and error  of  codes. The set of  output  sources (on X) can be considered as 
the set of  all transit ion probabilities (to X) for a new channel which is an extension 
of  the kernel channel. The set of  output  sources may  be identified with a set M. 
For  a more  complete discussion of  this remark  see [3].) 

Definition 1.1 (code, length of  a code, error  of  a code). Given (X, F, M). 
A finite code {(pi Ei)} 1 <_i<_N of M is a finite sequence of  pairs (pl Ei ) (1 =<i=< N) 

where the pi~M, and E~ ~F are pairwise disjoint sets. (The E~ are the decoding sets; 
the empty set is admissible for a decoding set.) We call N the length of  the code 
and pc ,=  sup p~(CE~) (where CEi:= X-E i )  the error of the code. Fur thermore ,  we 

set P~(M, N ) : = i n f { p e :  p~ is error  of  a code of  length N of  M}. 
We are interested in estimates of  the error  of  codes in case that  M has "p roduc t  

s t ructure"  and we derive these estimates by deriving estimates for finite subsets 
of M. 
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Now, for every natural v (1 < v < t) let a triple (Xo, F~, M~) be given as above. 
Furthermore, let 

t 

Xtl, tl: = 1~ ~X~ denote the product space, 
v = l  

F~t ' q." = ~ the product a-field o n  X[1 ' tl 
\ V = I  / 

and 
M[1, tl:  = M1 x ... x M d = {Pl x ... x Pt: P~Mo,  1_-< v =< t} 

the set of product probabilities on (Xt~" tj, Ftl. q) with v-th component in Mo. 

Definitionl.2 (channel without memory and stationary channel without 
memory for the discrete time [1, t]). 

(XE1, t~, Fit, q, Mp, q) (or Mr1 ' q) is the model for a channel without memory 
operating for the discrete time interval [1, t]. If, in addition, the M~ are copies of 
each other then we speak of a stationary channel without memory for the discrete 
time [1, t]. 

Along with the remark at the beginning of this paragraph one finds that this 
is a version of the classical definition of a channel without memory (see Wolfo- 
witz [4]). 

Convention. The lower index on probabilities will be used to indicate the time 
(index for the components of product probabilities), the upper index will be used 
for a denumeration of finite sequences of probabilities and the upper index in 
brackets on probabilities for denumerations of finite subsets of M and M~ (1 < v < t) 
respectively. 

w 2. Stochastic Inequalities for the Error 

Gallager [1] uses the random coding method (see f.i. [4]) to upper bound 
Pc(M, N). We review his estimate for our model of the channel: 

Let (X, F, M') be given where a/t,- ~,,(~)t is any finite set of probabilities ~ ' ~  - -  ( l - "  l l < j < n  

on (X, F). Furthermore, let 2 be any probability s.t. p ~ 2  for p~M'. 
One derives a code {(pi, Ei)}l_<i_<2N of length 2N for M' from an arbitrary 

{P }l:<i_<2N sequence i in M' for instance by prescribing for the sets E~: 

{ d l  P } 
a) Ei= x ~ X : - - >  V - - , ( I < k < 2 N )  2 - a . e .  and 

d2 k*i d2 
b) the E~ are pairwise disjoint (1<i_<2N). 

For all i ( l<i<2N)  holds for such a code: 

u 1 

u 1 

(@,~l+u r /c/pkg'+"] " 



Error Estimates for Low Rate Codes 63 

and therefore 
1 1 

(dpi~ l+u i- idpk\l+"l" 
(1) pi('Ei)<fd2\-d-~] l_ ,ta) J for l<i<_2N and 0 < u .  

n 

Now let a(J)>o (1 <j<n)  be real numbers with ~ a(J)= 1. 
j=l 

Pick sequences {pi}l<i<_2 N of length 2 N  from M', every pi independently, 
according to the probability (aO), ..., a (")) (a (j) is the probability that p~=p(a)) and 
let these sequences define codes as above. 

Keep p~ fixed. Then for the average error ~ belonging to p~ holds with (1): 

l 1 

/ d~ixl+u n ( dp{j)tl+u]u 
p'~<=Sd2(~)  [ ( 2 N - 1 )  y' a 0) 

a=* \d-2-I J 
if 0_<u_<l 

(Jensen's inequality for the concave function y"). Hence 

I 1 

P'~<(2N)"Sd2 \~-j]] Lj=, a \d2--] �9 

(2) 

One obtains for the average e r r o r  fie for the i-th place in a sequence of length 2N" 

1 1 

fe~(2X)Ufdl~ [~Ll=l a(I) {dp(l)]l+u]\~-] J '-j=[~a(J) \ ~ - ]  J 

1 
=(2N)" fd2  a (a' (dp<"]'+"l*+" 

_ \ d 2  / J (0=<u<l). 

At least one code of length 2 N  has a subcode of length N with error pe< 2re. 

Therefore we have: 

Lemma2.1 (compare: Gallager [1]). Let (X ,F ,M' )  be given where M'= 
{p(a)}l__<j<, is any finite set of probabilities on (X, F) and 2 a probability s,t. p ~ 2  

n 
for peM' .  Furthermore, let a(J)>=O (1 < j<n) ,  ~ a(J)= 1 and 0_<u<l.  

j = l  

Then M' has a code of length N with error 1 
Pe<~4NU~d~[~,__ '-J=1 a(j)(dpO')~l+u] J " 

(Observe that the right hand side integral is independent of 2.) 

We discuss this estimate for time structure and for nonfinite sets of probabilities 
within the next paragraph. It should be remarked that the method of maximal 
codes (see f.i. [4]) gives only estimates for low rate codes which are less tight than 
the estimate above. 
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Now a stochastic inequality for the lower estimate of Pe(M,N) will be 
established: 

Given any code {(p, Ei)}l<i<_:v with error Pe and a probability 2 s.t. p ~ 2  
(1 < i < N) then 

�9 d i 

for every S~ > 0 and hence 

(3) 
1 1 N 1 N . d i 

(s,>0, (l__< i__< N)). 

One uses these inequalities to upper estimate the maximal length of codes for 
fixed error with the time. Applying Chebyshev inequalities to them (for 2 suitably 
chosen) one obtains even in nonstationary cases (see [3]) sharp bounds for the 
length of codes. 

However, (3) estimates for fast decreasing error somewhat into the wrong 
direction and cannot be used to obtain tight lower error bounds. 

The following change of (3) (see [2]) is an improvement for low rate codes: 

Let {(pi, Ei)}x< - i<_N be a code of M and let pi<~ }~ (1 < i <  N). Then for 0 < S 1 < 
$2< oo and 0 < s < l  holds 

pi(CEi)>=Pi ( {Sl < ~ <S2} c~ CEi) 

>= s; S de  ( dP'  -s 
{~,<~<~}~, ~-~ 

(4) 

Observe 

and put 

and 

>-$2 u-~' S dP i [ dpi]-s 

0<Sdp'  ~ - !  = 

, 
F(s):= In S dP i \ ~ ]  , 

( dpi] -s i 
i . _  i exp[-_F(s/]. dQ(s).-dp \ ~ ]  

QI,) is a probability. (4) implies 
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i E Lemma 2.2. Let {(i 0 , i)}l<i<N be a code of M, pi~A ( I < i < N ) .  Then 

exp [ - F4) - s S1] p~ (~E~) + exp [ - F(~) + (1 - s) $2] 2 (el) 

> i (_oo  < S 1 < $ 2 < o o )  = Q(s) $1 < In < S 2 

(I=<i=<N). 

Chebyshev inequalities applied to the right hand side of the last inequality 
and an averaging procedure (with 2 suitably chosen) will finally give our lower 
error estimate. 

w 3. Properties of the Estimating Parameters 

Definition 3.1. Let (X, F, M) be given, M'= {P~/)}l__<.1__<n (n arbitrary) any finite 
subset of M and 2 a probability such that p ~ 2 for p ~ M'. For u => 0 let 

1 { [j~=l a {dP~ l+u" } H(u,M'):=inf ln~d2 o) a(.1)_>0, ~, aO)=l 
,, TI j - 

- . 1 = 1  

and 
H(u, M)." =inf{H(u, M'): M'  finite ~ M } .  

We already know from Lemma 2.1 

P~ (M, N)_-< exp [o in f< l(H(u, M) + u In N) + In 4]. 

Within the next paragraph we shall prove a similar lower estimate for P~(M, N) 
using H (u, M). 

Definition 3.2. Let (X, F, M) be given, M ' =  {pU)} < < (n arbitrary) any finite l = j = n  
subset of M. 

and 

Let 

t ~ dP~ 
C (M'): = sup a ~i) ~ dp~ In , 

C(M):=sup{ C(M'): M' finite _~M}. 

" a~ ~ aO~=l t 
j = l  

(5) Remarks on C(M): 

a) For p ~ 2 

is well defined and 

~ d2 dp , dp ~ , dp 
~ m ~ -~=  j a p  in d2 

O<Sdpln dP <oo 
d2 = 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 14 
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(let z (y)= y In y. z (y )~  0 (y ~ 0), z (1)= 1, z (y) is convex.) 

b) 0 <= ~ dp (Jl In 

~d2z(~2)>z(~dP)=Z(1)=O).  

dPtJ) 1 < k <= n} < sup {a~fk): a (k) > O, 
n 

(with the notation in Definition 3.2). 

dp(J) 
c) ~a(J)~dp'J'ln <~a 'J '~dP (j) lndp'j~ 

= d2 
j=l d j=l 

\ k =  1 I 

for any 2 such that pO)~ 2 (1 < j  < n). (Write 

, dp(J) 
y' a ~ ~ dp (~) In 

j= 1 d a (k) 
\ k =  1 

dPCi) ( ~  a (k) dP (k)] 
- ~ a ( J ) f d p ~  ~ - !  

j = l  

(z as defined in a)) and observe 

d2z (E  a(k) dp(k)] >0.) 
\ dR ] 

d) i a(J~ ~ dP (J~ In dP(J) _< In n. 
j= t d a (k) 

k = l  

Put 2 = - -  p(k) in c) . Hence 0 < C (M')< Inn  if I M'I < n. 
Y/ k = l  

e) Furthermore,  it follows from c) that dp/d2<K ( 2 -  a.e.) for all p e M  implies 
0<  C(M)< ln  K. 

(6) Let for {P(J)}I =<j_<, and {a(J)}l <j=<. (a 0) > 0, ~, a (J)= 1) fixed 

1 

[j~a (dP(J)]a+"] 1+" 
*q(u)." = In ~ d2 a ~ 

_ \ d 2 ]  J 

One obtains: 

a) ol<im o ~ u  H(u) = -  ~a~ O) ln dP(J) 
j = t  

(O<u< oo). 

n 



Error Estimates for Low Rate Codes 67 

b) H(u) is a non-positive monotonically decreasing continuous convex 
function of u. 

Remark. a) Can easily be checked. Put for a simplification 2 = ~ a ok) pCk). 
k = l  

b) Should be checked by differentiation. Assume a(J)> 0 ( l < j  < n). One verifies 

where 

and 

Observe 

d 2 

du 2 -~(u) = [ d/~ [ (~  a(/) g(J) In g (j))2+ ~ _ u (  ~ 1  a(J) g(D(1 n g(i) 

- ~ a (j) g(J) In g(j))z)] _ [~ d#  (Y' a (j) g(~) in g(J))] 2 > 0 

d#= 

1 

d2 [ ~  a (j) 
t ~ !  J 

1 

[ +. 1 ' + u  ~d2 [ Z  a(j) 
t ~ - !  J 

g ( J )  _ 

1 

( d p(J) ] ~ + " 

d2 ! 
1 

a (k~ [ dP(k)tt+" 

I 

( dp' ' t'+"11+. 0 < j" d2 [ ~  a ~j' _< 1, 
�9 \ d)~ ! I - 

that /~ is a probability and that ~ a (j)g(j)(x)=l for all x~X .  Hence we have 
d 2 _ 

expressed -~uzH(u)  as a sum of variances which proves the convexity of _H(u). 

The continuity and monotonici ty of _~(u) is easily to be seen. 
The next Lemma describes a few properties of H(u, M): 

Lemma 3.3. For H(u, M) holds." 

a) O > H ( u ,  M )  (u>O).  

b) H (u, M) is monotonically decreasing. 

c) I f  H(uo, M) is finite for some u o > 0 then H(u, M) is a continuous function 
of u for u>0.  

d) - u C (m) < H (u, M) (u > O) and lira inf ~1 H (u, M) = - C (m). 
O < u ~ O  U 

e) I f  [MI is finite then H(u, M) is finite and continuous for u>=O. 
5* 
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Proof a) and b) is true because H(u, M) is infimum of functions H(u) as in (6). 
For c) observe that H(uo, M)> - o o  for some u0>0 implies H(u, M)> - o o  for 
all u > 0  using (6) b). The continuity of H(u, M) follows from 

0 ~ H(Ua, M) - H(u2, M) <= ul - u2 H(u, M) 
Ul 

(O<u~_-<u2). 

d) follows again from (6) a) and (6) b). e) follows from c), d) and (5) d). 

Remark. The condition C(M)<oo on M is considerably stronger than the 
requirement that H(u, M)> - ov holds for u>O. H(uo, M)= - oo implies H(u, M) 
= -  oo for all u>0.  If H(uo, M ) = -  oo then M has arbitrary long finite codes 
with arbitrary small error according to Lemma 2.1. Let N(Pe) denote the supremum 
over the lengths of all codes for M with error at most Pe" H(u, M) is finite for u > 0 
at least ifN(Pe) is finite for some Pe>O. If C(M)< ov then the estimate used for the 
weak converse of the coding theorem (see I-4]) implies sup (1--Pe) In N(pe)< oo. 

O < p e < l  

One finds however easily sets M where the latter is not the case but where 
N(pe) is finite for all Pe (0 <= Pe < 1). 

We remark furthermore without proof (because we do not need it later on) 
that H(u, M) is continuous at u = 0 iff N(pe) is finite for all Pe (0 < Pe < 1). The latter 
is equivalent to the condition that M is equi absolutely continuous with respect to 
some probability 2 (see [-3]). 

Example of a function H(u, M) which is finite and discontinuous at 0: 

Let X = {0, 1, 2,...  }, F be the discrete o--field and M = {p{J): j = 1, 2 . . . .  } where 
p~J) (0) = �89 p(~) (j) = �89 One calculates: 

{~n for u = 0  
H(u, M) = �89 for u > 0. 

The described properties of H(u, M) are mainly interesting for the upper error 
estimate. The next part of this paragraph prepares the connections between upper 
and lower estimate. 

Let M'={p(D}I=<j=< . on (X, F) be given. Consider for fixed u > 0  

1 

K"(a{1) .... a(")):=~ d2 a(S) \ - -d~l  J " 

Ku(. ) is a (continuous) convex function of the simplex 

1} 
because of the convexity of the function yl+,. {However In Ku(') is generally not 
convex and H(u, M) is generally not convex either.) 
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Lemma 3.4. Let M' = {P(J)} l <=j <<_n on (X, F) be given and u > 0  fixed. Then there 
is exactly one measure #(,)(" ) on (X, F)for M' which can be represented in the form 

1 

d/~(,) = d2 a \ ~ - !  j 
-- j=l 

such that ~ d#(,) = exp [H(u, m')] holds. 

Proof There is such a measure/~(,)(.) because K, ( . )  depends continuously on 
the a (j). Assume that there are two different measures pl and ]A 2 with the above 
properties. Then 1 

[1 (dul l+,, 1 

has a representation in the above form but 

d# 3 < �89 ~ d# ~ + �89 d# 2 (=  exp [H(u, M')]) 

because of the strict convexity of yl+, for fixed u>0 .  

Remark. If 1 
i'd2 [ ~ (J){dP(J)~l+u] l+u 

L j= 1 a \ ~ - !  �9 J = exp [H(u, M')] 

then a (j) = 0 in the integral for all p(J) which are non extremal points of the convex 
hull of M'. The minimizing a (j) are, however, i.g. not uniquely determined. 
Lemma 3.4 admits often easier calculations of H(u, M') if M' satisfies certain 
symmetry conditions. 

Lemma3.5. Let M'={p(J)}l<=j<=, on (X,F)  be given and s fixed ( 0 < s < l ) .  
Then there is exactly one probability q for M' and s such that 

d 1-s d p q s 

holds for all peM' .  (For 2 any probability may be taken with p ~ 2  for all p~M'  
and q ~ 2. Observe again that the integral is independent of 2.) 

S 
Proof 1. Existence of q: Put u=  1 - s  and let Ku(. ) be defined as above and 

assume that K ~ (a (1) . . . . .  a (")) is minimal�9 One obtains together with ~ a(J)= 1 
1--s 

at the minimum (putting a(J2)= 1 -  ~ a (j) and keeping a ~ fixed for j # j l , j z  )" 
J~zJ2 

S 

~ [--~1 
8a(j~) K (a (1) . . . .  , a("))= d2 a (j) { dp(J)]l-~] 1-~ 

l~_s j_ \ d 2  ] J 
1 

i s s 
1 - s  ~j=l a . [ \  d2 ! \ d2 ! J -  

(for J2 +Jl)" 
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Hence 
1 

dR ( dp{k)t:t-s [ ~ a O' ( dP~ l-s] 1-~ 
\ dR ] L j= 1 \ dR ] ] 

1 

--> *dR [j--~t- a (j) ~,{ dP(J)~l-S] ] J ,..j=l a ~ 'j) \( dP(J)~l-s]l-SdR ] J 

1 

=~d2 a (j) for l<k<_n. 
_ t ~ - 1  J 

Put 
1 ~__~[~ <,, ~ ( " 7 - S l  x-s 

Lj=t a \ dR I ] 

(q is a probability.) 
The last inequality gives 

exp[-"(~,~')  1 

1 

\ d 2 - ,  (~ - )>JdR[ j=~ la  \dR , ] exp \ l - s '  ] ]  

=exp [ ( 1 - s ) H  ( l@s, M') ] (1< k<=n). 

2. Uniqueness of q. Consider a probability # which is not equal to the above q 
and let the a ~ be the same minimizing coefficients as before. 

(dp(J)] ~-~ d# ~ s ~a("~'d~, ~ ,  (~)--exp[(~-~)'/(~,~')]~',~t~q'~l-~C~'~'~ s 
j=~ \ d2 ] \ d2 ] 

and 

where 

E={x~X" " d# > O} 
k .  

/ rot) ~ d q t ( d q  ) <lbecause#=~qandthestrictc~176176 

Hence for every # # q  there is at least one peM' such that 

( dp ]a-s d# ~ 
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Lemma 3.6. a) Let M'I, M 2 be finite and s f ixed (0< s<  1). The uniquely deter- 
mined probability q on X 1 • X 2 such that 

" dp .~-s [ dq ? >  s M'a x ME) 
~d;0 ( d 2 )  t ~ - ~ ) = e x p  [ ( l - s ) H  ( l~ - s '  ] for all p~M'  1 • M; 

holds is a product probability q = q~ x q2 with 

~d2(dP"] ~-s[dq"~'- r i s  M']] 
\d2fl ( d ~ )  =exp [(1-s)U \ l - s '  ~]J for all pv6M'~ (v = 1, 2). 

b) For arb!trary M1, M 2 holds 

(0<s<l). 

Proof. Let mar'--S,(J)t ' S"(k)~ a (J) and b (k) may denote non- ~ " l - - t F 1  Jl<j<n,  M 2 ~ t F 2  JI<-k<-m 
n 

negative coefficients with ~ a r = 1, ~. b (k) = 1. 
j = l  k=a 

1 

exp ~ - s ' M ; x M ' 2  <~d2~xd22 =~t ~a(J'b(k)(dP]D dp(2k)]l-s] 
j -  k = l  \ ~11 d )~ 2 ] ] 

1 1 

[ "  (dP~S)~'-s] i-~ [k~= ' [dp(zk)~a-s] '-s = ~ d21 ~la  (s) �9 ~ d22 b (k) 

Minimization of the product on the right hand side gives 

H ~ _ s , M l X M ' 2  < H ~ l _ s  , a ] + H  l _ s , M 2  (0<s<l). 

Now let 0 < s<  1. Furthermore, let qa and qz, respectively, be the probabilities 
such that 

~d2v(dPvt 1-s[dqv\s-- l>exp s , 

for all p ~ M "  (v=l ,  2). 

For all p e M '  1 x M' 2 (P=P l  • P2) holds 

~dl~lXd~)~ 2 ( d p I X d p 2 ]  1-s  (dq l •  s 
\d21 x d22] \d21 x d~2! 

{ d p q l - s  d s 

S , S , . 
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But 

inf ~d2, xd22 ( dp ~1-~ (dqlxdq2]S 
v'~g~ • g", \ d 2 ~ ]  \d.~ 1 x d2 2 ] 

<exp [(1- s) H ( l@s , M'l x M2) ] 

according to Lemma 3.5, and the remaining part of a) follows also from Lemma 3.5. 

S , S S 

for all finite M'I, ME implies b). 

Remark. One may prove similarly that C(MI x M2)= c(ml)+ c(m2) holds 
t 

using (5) e). ~ C(Mv)= C(Mtt ' q) replaces t- C (C the capacity) if one goes over 
v = l  

from stationary channels without memory to non stationary channels without 
memory (see [3]). 

We remark the following for completeness" 

Lemma 3.7. Let M be any set of probabilities on (X, F), s fixed (0<s< l )  and 

( " )  H 1-~-s' M > - oo. Then there is exactly one probability q with 

[ dp ~l-'~ d " s M 

(2 chosen with respect to p, q). 
The reader may prove this by showing the following steps which may be 

derived with the previous lemmas. Let q' for M' finite (___ M) and q" for M" finite 
(_~ M) be the optimizing probabilities in the sense of Lemma 3.5. There is a con- 
stant K(s) depending only on s 

[;-( ) ( ) ( )] , , , <  s +5-H ~ , M "  - H  T2~_ ,M s.t. klq-q I[=K(s) H ]~_s,M' 1 s s 

(11" ]1 the totally variation norm). 

Hence with 

'-I ( x+s , M') - '  " ( l+s  , M ) 

(q' for M') one has [[q'-qll ~ 0  for exactly one q. 

One shows that exactly this q has the property 

( dp ~l-s d s s 
for all p~M 
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(2 chosen with respect to p, q) using an uniform absolute continuity argument for 
sequences q,k ~ q (keeping p fixed) and using again the strict concavity of yS. 

w 4. Estimates for Pe (Mr1,,7, N) 
The Upper Error Bound 

From Lemma 2.1 and from the last paragraph follows the theorem: 

Theorem 4.1. 

P~ (Mtt, ,1, N)<  exp [o i n f  ~(H(u, Mr1" ,1) + u In N)+ In 4 ] 

t 

= e X P [ o i n f l Q ~ = H ( u , M ~ ) + u l n N ) + l n 4 1 .  

Corollary. Let a sequence {Mo} v = 1, 2, ... be given, where the M o are copies of 
M 1 and C(M1)>0. Let N = N t < e x  p [,tR] where R is f ixed and 0 < R <  C(M O. 

Then for Mtl" ,1 = M1 • • Mt holds 

P~ (Mt~, tl, Nt) < exp It- o i n f  ~(H(u, M 0 + u R) + In 4 ] 

and the right hand side of the inequality decreases exponentially with t. 

(Observe with Lemma 3.3 that inf (H(u, MO+uR)<O for 0 < R <  C(MO. ) 

If C(M1)= oo then the corollary particularly implies that Nt (pe), the supremum 
length of codes (see w 3) for fixed error pe (0 < Pe < 1) for the time [,1, t], grows either 
faster than exponentially with t or N t (Pe) = OO for t > t o . (Both cases are possible.) 

Corollary. Let a sequence {(M v, Rv) } v = 1, 2...  be given, every (Mv, Rv) a copy 
of an element of the finite collection {(Mu), R(j))}l<j<=n where M(j) is a set of prob- 
abilities on (Xtj),Fu)) with C(M(j))>O and where R(j) is a positive number, Rtj) < 
C (m(j)). 

I f  In N t < ~, R v then 
v = l  

')1 P~(Mtl'q'Nt)--<exP[Lo=<,,__<l\inf (H(u,M~l,q)+uv~=lR v 

and the right hand side of this inequality decreases exponentially with t. 

The Lower Error Estimate 

We partly follow the idea of the proof in [-2] : The use of the intermediate value 
theorem for continuous functions will be similar as in [-2]. However, we cannot 
use the method of fixed composition codes, a method which is rather unstable 
against non-stationary changes of the channel with the time and which allows no 
interesting generalizations of the proof in [-2] to infinite alphabet channels. 
Instead of the method of fixed composition codes an averaging procedure for the 
probabilities q=q(~)(see Lemma 3.5) will allow to obtain estimates as in [-2] 



74 U. Augustin: 

uniformly enough for large parts of the given codes provided the following is 
fulfilled: 

(7) Condition. For every e > 0 there is K > 0 s.t. u > K implies 

uniformly for all t (t = 1, 2 . . . .  ). 

At least most of the interesting channels without memory have this property: 
a) For example the condition is for the stationary channel nothing but the existence 

o f l i m ~  H(u, M1). But this limit exists because ~ H ( u ,  M1) increases monotoni- 
4 . I  

u~oo U R 

cally with u. b) Another example may be: Let {M~}v=l, 2 .... be given where for 
every M~ there is a measure R~ with 112~lt > b  (for some b>0)  s.t. p~>R~ for all 
p, eM,(v=l ,  2, ...). 

1 t 1 
Then H(u, M~)> In b and ~- H (u, M[1, q ) -  0 < ~-  in b-" 

At first, we need as a generalization of the procedure in the annex of [2] the 
following 

Lemma 4.2. Let M ' =  {P(J)}l<-_j<n on (X, F) be given and 2 : = 1  ~ p(a). Let for 
s (0 < s < 1)/~ (s) be the unique measure satisfying n j= a 

s (dP~l -~{d~(s '~>exp[H( l@s,  M') ]  

for all peM'). 
Then for every So(0<so<l )  holds: lim II/*(s)-#(so)il = 0  (where [l" II is the total 

variation norm). ~--*~o 

and 

Proof Let 
{ n t T(~):= f{~,= • a (') ( dP(a)]*-* 

j=l \ dR ] :a~ ~ a ~  
j = l  ) 

1 

dg~): = {r(s~: d ~ )  *-s = d R  f<s )  , 

For every e > 0 there is b > 0 s.t. I s -  So I < b implies for every f{~)e T~s) 

inf {5 dR I f(,)-f(,o)[ } <~. 
f(so) E T(.o) 

T~o) is L~-norm compact. Every sequence f(,~) (s k + So) has a L'z-norm clusterpoint 
in T(so). 

The densities f(s) are uniformly bounded for an interval around s o. Hence, 
1 

for &~k) (sk ~ So) holds (d/~(sk)= dR f~7 *~ for some f(s~))" 

/~(,~) has a norm clusterpoint/~,o) in dT(~o). 
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Because 

rS i d 1 1 dp dr (dp~l-s(~)=~d(~)~4-gr'(d(l~+lr, ( Sd~ ~ - /  d(l~+~_r) 

depends norm-continuously on changes of r and continuously on s, one obtains 
for/5(so) (observing that H is continuous in s): 

and 

~ d[Z(so)=exp [H ( l S_~~ ,M') ] 

Sd)~{dP]l-S~176176 So M') ]  
~ - /  ~ d,~ / =  1-s~' " 

This implies/](so) = #(so) because of Lemma 3.5. 

Remark. One can formulate Lemma 4.2 with M arbitrary instead of M' finite 
using for the proof the proof of Lemma 4.2 and the remark following Lemma 3.7. 
We do not need this general result for the construction below. 

Lemma 4.3. Let be given M'= {P(J)}a_<j__<, on (X, F) and #(s) (0 < s < 1) as before. 

Then the probabilities 

s 
q(s) where dq(s)=d#ts) eXp [ - H  (~_s_s,M')] 

and 

satisfy 

(1-s)t-J 

gl(~) where q(s):= t ~ dy q(~+y) 
- - s t  1 

lim Ilq(s)-q<so)l[ : lira II ~s)-~<so)l[ : 0 .  
s ~ s  o s - - ~ s  o 

(s ,) 
Remark. M' is finite and therefore H ~ ,  M finite and continuous in s. 

We can write ~ dy q(s+y) because of Lemma 4.2. 

Lemma 4"4" Let M'= {PU)} ~ <=j=n< on (X, F) be given. Then for O < s < l holds for 
all peM': 

a) lnSd).[dp~l-s(dgl(s)~ s 

> s ( 1 - s ' ) g  ' t - 1  ~ _ s , , M  + ( 1 - s ) ( 1 - s " ) H { ~ , M ' ] ]  \ 1 - s  ]J 

where s '=s (1 - t  1), s"=s+(1-s )  t -1, 

( d p t l - s  d" s (aq(s,]_> t inf 1 H(u,M'). b) in d 2 \ a z !  f --c= \ d2 ] - t - l o < = , l + u  
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Proof 

ln~d2 \ ~ - ]  d2 = t  _s!-i dyln~d2 \d2/  

(Jensen's inequality). 

i) For 0 < y < ( 1 - s )  t -1 holds 

1 - - S  

=ln~dq(s+y) [ \  d2] 

=>(1-S) l ~ y  - \ d 2 ]  \(dq~+"]S+Yd2 ! " 

With Lemma 3.5 follows that this is 

) ( . )  i '+Y i ~ , M ' ~  ' - s " / -  > = ( 1 - s ) H \ - l ~ - - y , M '  > ( 1 - s ) H  -- \ l - s  1 = ~ ( 1  l~-s , , ,  M' 

Thus 

t ~o dy~lnd2(~-~) >(1-s) tt~_l(1-s")H ~ , M '  . 

ii) For - s t -  1 < y < 0 holds 

id,p~l_s s 

s 

i-idp~ ,s+,,,~ , s+.~; ,  

> In y d2 Y~ =s+y \ ~ l  " 

1 - s - y  1 l n S d 2 [ d p ~ l - ~ - ' ( ~ f + '  
=s-  s + y  1 - s - y  \d2] 

With Lemma 3.5 follows that this is 

l - s - y  ( s+y > _ s - - H  
- -  s+y 1 - s - y  

M') 1- s' ' 

1 
The last inequality sign holds because - -  H(u, M') increases with u. Therefore 

U 

0 

t 
_ s t - 1  

"dp .1-~ 
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Thus we obtain part a) of the lemma from i) and ii). 
S r S 'r 

Setting u = ~  and u =  1-s"- '  respectively, we obtain part b). 

Now, let any code {(pi E~)}~<~N of length N for Mt~,o = M~ x . . .  x M, be given 
and let M'~ denote the smallest subset of M~ containing the sequence 
of v-components of the sequence {pi} 1 <_i <_ u (1 < v < t). 

Let q(~) be the optimizing probability of M(t, ~1 = M'a x ... x M; in the sense of 
Lemma 3.5 for every s ( 0 < s <  1). q(~)=ql(s)x ... x q,(s), where q~(s) is optimizing 
for M; (see Lemma 3.6). Furthermore, let 

(8) Define 

( 1 - s ) t  - 1  

0~(s):=t ~ d y q v ( s + y )  and gt(s) ,=Ol(s)x. . .xOt(s) .  
_st-1 

, . _  ,[  dp; 
F~ (s). - In 5 dp~ \ dgl~ (s) ] 

i - - s  

dQ~(s), exp i - d p ~  \ dgl~(S) ] I - F ;  (s)], 

_ i dpi~ 
m'~ (s): - 5 dQ~ (s) In - -  

d~o(s )  ' 

i . i dpiv i 
gv(s). = In mv(s) dQ~(s) d ~ ( s )  

i i (with respect to g/~s)) analogue, dropping the lower index v and F(~), dQ{~), m(~), go) 
everywhere. 

Finally let 

F(~):= inf F,i,, Fv(s):= inf i l<_i<N tsl I<_i<_NF~(s) (l=<v=<t) �9 

These expressions make sense for the estimates with the convention: 

(9) Convention 

d p  i 

dgJ~s) 

d2 ] " if the Radon-Nikodym derivatives dp~ 
d 2 '  

d~(s~)O are defined and > 0, 
d2 

0 otherwise. 

df f  \d~(~)! is a substitute for d2 \ ~ U ]  and the three integrals F(~), 

~ depend only on a support of pgAqls). re(s),  g(s) 

F~) is finite because of Lemma 4.4 and because M~I ' a is finite. 
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Furthermore,  the integrals z m(~), g(s) are well defined and finite: Consider the 
integrals 

" d i --~ d i / d_i .1 s 
idp, { ap" ~ ink ap" = y d O ( ~ , / . ~ - ]  ink dp' (k= l ,  2). 

\ dgt(~) ] dgG) \ dq(~) ] dgl(s) 

The functions yt-~ in k y (k = 1, 2) satisfy yt-S in k y _. 0 (y -* 0, y ~ oo). 

L e m m a  4.5. miv (s) are F~(s) and continuous functions of s. 

This is a consequence of the proof of Lemma 4.2 and of Lemma 4.3. 

L e m m a  4.6. 
1 

(giv (s)) 2 < s2 (1 - s) 2 exp [ - F~ (s)]. 

Proof. 
i 

i 2 ~  (gv(s)) = ~ dQ,,,(s) ln 2 dpv 

=expV-F~(s ) ]  ( l - s )  2 ~ ap~ <it 
t dT:/~ (s) = J 

s ( ts) 
+ 7  ~ dpiv ln2 

dqv(s)  ( dp,  v ~ l - S l n 2 (  dpiv ~ l -s  
\ dgl~(S) ] \ dO,(s) ] 

Observing x in 2 x < 4 e  -2 < 1 for O < x <  1, one obtains 

Finally, 

1 
(glv(s))2<exp[-F)(s)J(~fq (l__s)2) " 

1 1 1 
~ - +  (l__s)2 --<--sZ(l__s)2" 

We have from Lemma 4.6 and (8): 

(lo) v(s) 
t 

s(1-s) _ 
(I<=iGN).  

Next  we estimate ~ " re(s)" 

dp' dQi ,exp 1 
dq(s) J 

and 

dgG)>dQi~)exp [F(/~)-(1-s)ln dP~ ] 
dO(s)a 

implies with Jensen's inequality: 
�9 i 

and 0->_ F('~) + s m(.~) 

o >= G ) -  (1 - s) G ) -  
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Hence 

(11) O < m { ~ ) - - -  
1 - s  =< s = 

Now apply Lemma 2.2 for p~ and ~(~) instead for p~ and 2. Setting 

$1 = mls)- 2~ gl,), $2 = mls) + 2-~ gi~), 

we obtain from Chebyshev's inequality: 

pi (E) exp i i i [ - F(s ) - s m m + s 2 ~ g ( , ) ]  
(12) 

+gl(s)(Ei)exp[- F(is) +(1-  s)m{~) +(1-s) 2~ ig(s)] > g.1 

Put 
~ 1 F / - I ( 1  ) ~ 

(13) m(~) 1 - s  ( ~ ) - - s -  -i~7-s F<s) a(,). 

cSls ) is continuous for 0 < s < 1 because m~(s), Ftis), Fts) are continuous, and 0__< 61~ ~ =< 1 
( 0 < s <  1) because of (11). 

We obtain with Pe: = sup if(E) from (12) for all s ( 0 < s <  1): l<i<_N 

(14) 

where 

1 E PeeXp [ - - ( - i ~ - S  (s)) (1-tSis))~-sR�89 2 

= - F(s ) 3(s)+(1-s)2  ~ V ~ ) + ~ -  . 

The additional 1 and 1 - s  has be used in of the steps.t to one next 
N s ! 

We are going to use the intermediate value theorem and a distinction of cases 
as in [2], however, without using fixed composit ion codes: 

(15) Assume that 

Then 

N = i: W(~)> for a l l s ( 0 < s < l  > - -  
= 2 "  

1 1 1 1 < _ _  E i 
4 ILxIi~L, W(s)<(-+'--~ '  • 0(~)(Ei)) \ N  I L l l  ~ Z l  / 

1--s 
for all s ( 0 < s <  1). 

1 2 
Thus, with ~ i ~  0(~)(Ei)< ~ we obtain" 

3 1 - s  1 
~- exp [ - +  F(~) + (1 - s) 2~ V(~) + ~ ]  > ~  - for all s ( 0 < s <  1), 
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p~ > 0 and 

[ 1 s ~ s 12] 
0=  inf exp ~ - _ s F ( ~ ) + l Z ~ - _ s l n N / 1 2 - s 2 - V ( s ) + ~ Z ~ _ s l n ~ -  

0 < s < l  

as the trivial case of the estimate. 

(16) Assume 

N := i: W(~)< f o r s o m e s ( 0 < s < l )  >~- .  

For i e L  2 there is s i with W/(s,) --• because W(~) is continuous for 0 < s <  1 (gl(~)(Ei) 
is continuous in s and 61~), F(~), V(~) are continuous) and W(~)> �88 for s sufficiently 
small, because 

~ -  exp > ~-  

for s sufficiently small. 

There is L3~_L z with IL31__>t -z IL21 s.t. i , j ~L  3 implies 

ISi_Sj[<=t-2 W,,i j 1 

1 
Hence for i~L  3 (substituting for ~ F(~ 0 ~(~))we obtain: 

 eexp[ 1 s, - ~ - s ~  ( s ' ) + ~ - s i  ln(4gl(~')(Ei)+4/N) ~ = 4"  

a) Suppose that for every iEL 3 holds si> �88 and let sj be maximal under the s i. 
Let ( 1 - - s j ) t  - 1  

q'o(sj):=t I d y q o ( s + y ) ,  q'(sj),=q'l(sj)x.., xq~(sj). 
- -Sj  t - l - - t  - 2  

' ' 1 ' Ilqv(sj)ll = (1 + t -1) and IIq(~j)H =(  + t-1)t<= e, furthermore, q(~j)majorizes g/(s~)for 
all i e L  3. 

1 -- ' E < 2t2 
ILa[ i ~  q(~j)( i ) = ~  - e "  

Hence for some i ~L  3 

and for this i 

" " E ' <  2t2 
q(~i)~ ~ ) = ~  e 

[ I ~ E  S si l n (  8 e t 2 + 4  2 ~ - l n 4 ] .  
Pe >= exp [ 1 -- s i (~) 1 - s i N ) - si V(s O -  1 

b) If all solutions s i for i ~L  3 satisfy si<�88 then let sj be the maximal solution, 
define ( l _ s j )  t _ l  + t_  2 

q ; ( C . .  = dy qv(s+y) 
- - s i t  - 1  

and procede as before. 
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The result  of  (15) and (16) is: 

inf exp F{~) + ~ In - s 2 I- V(~) - 3 (17) P~>o<~<~ 

for t > t o. 
We have to invest igate when (17) gives bounds  which coincide with the upper  

bound  of T h e o r e m  4.1. 

The previous  l emmas  and (17) yield: 

Theorem 4.7. Given {M~}v= 1, 2 . . . .  where {M[1 ' t]}t= 1, 2 . . . .  satisfies (7). Let  c > 0 be 
fixed. 

( [ Then for t=to(c  ) holds setting Gt(M~):=su p exp - l ~ H ( u l ,  M ~ ) ~ _  1 m 

o<. l+u 
a) I f  {(pi, Ei)}t<_i<_ N is any code for Mrs , tl with 

l n N - > -  t ~ H ( 1 ,  M[~,tl)+Ct+21 Gt(M~) 
- t - 1  ~_ 

then its error Pe satisfies 

in Pe >- inf [ H  (u, M,~ t]) + u In N]  
--0<u__< 1 t , 

5 
l n g +  5~H(1, M[ , , t l ) -2  ~ Gt(M~) - O ( l n  t). 

t t v- 

b) I f  C(M~)<B (v=  1, 2 . . . .  ) and {(pi, Ei)}l<=i<_N any code for M~I ' tl with 

In N > - H(1, M[1 ' tl) + c t + 2" t ~ exp 

then its error Pe satisfies 

lnpe>->_ inf [H(u,M[1 t l ) + u l n N ]  
0 < u < l  

5 lnN_2~t~exp [ ~ B  1] 
- t [ t -  1 2 J - 0 ( ln  t) .  

Remark. It  is interesting to notice that  a) m a y  give p roper  est imates even when 
the C (Mr) are not  finite. 

Proof. a) Let  

R (N, t). = In ~ -  2 ~ 
24 t ~ ~_ 

We obta in  with (10) and  L e m m a  4.4b) f rom (17) 

[T -s In Pe ~ inf ~) + 
0 < s < l  1 - - S  

6 Z. Wahrscheinlichkeitstheorie verve. Geb., Bd. 14 
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Set H(u).. =H(u, M[1 ' t]) and with the notation of Lemma 4.4a) 

t [  s,,, (s, ,)  s ( s ) ]  
A ( ~ ) - - t - 1  ( 1 -  H ~ + 1L~_s ( 1 - s ' ) H  ~ . 

We have to investigate 

1 
1 - s  F(s) > A(~). 

inf [A (~)+ s R(N, t ) ]  
o<~<1 L ~ " 

Observe that H ( ~ s _  s ) _-> A(s) because of the proof of Lemma 4.4 and because of 

Lemmas 3.5, 3.6. 

1 
- - H ( u )  increases with u. Therefore 
u 

inf [H(u)+u(-H(1))]. inf [H(u)+u(-H(1))] = O<u_<_l 
O<u 

From the supposition that (7) holds, follows 

A(~)_> t ( s ) t s H +o(t) 
- t - 1  ~ t - 1  1-s  

uniformly for s > �88 
t 

Hence, for c > 0 fixed, t > t o (c), R (N, t) > ~ H (1) + c t, we have 

s s 

0 < s < l  �9 J 0<s< �89  

> inf A(s)+ l n N - 2  ~ Gt(M v - ln(24te) .  
=0<s__<�89 ~ v -  

Finally, 

oinf~ [ A , s , + 7 _ s  l n N ]  

can be brought into the form of the upper error estimate: 
For 0 < s < � 8 9  holds 

s ( l - s ' )H(  s' ) 

=sU ~ +T2T-s \1-s ! \~-s'7 +t-~ H(1) 

and therefore 

HI,~_s,,]=H ~Zs-s + 1-s  t - 1  : l l Z s _ s + ~ _ l }  for s <  1. 
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One computes for u < 1 using the monotonicity of I H(u): 
U 

inf [ t~H(u+ t@l )+UlnN]>_ inf [H(u)+ulnN] 
o < , = < l [ t - 1  - o < ,~1  

- 5 ~ l n g + ~ l  H(1) t - ( t> t~ 

This yields part a) of the theorem, Part b) follows from part a) using 

l + u  
- - - H ( u ,  M3< C(MO and - H ( 1 ,  M~)<= C(Mv). 

(18) 

where 

We will prove now a sharper estimate for the stationary finite alphabet channels 
and for a few more. 

For  this purpose, Berry's inequality can be used which says: For  independent 
random variables rl, . . .  , r t with expectation values ~ dP r , = 0  and finite third 
moments holds 

_ <co D~-' 

4)(y) is the standard normal distribution, co an absolute constant. (It is known that 
co = 1.322 is a possible choice for co.) 

Set co = 1.5 and let ~g be the inverse function of q~. Suppose, furthermore, that 
]r.] < B  (l__<v<t). 

B >R~ 
Then D, = D~ and because of 

/ 2~] / 1 t [ 1  ] < "-- E ~ dP Ir, I 3 one has __> t = 
k t , = l  J k t v = ,  D~ 

2B 1 
i) Suppose ~ - t < ~  -. Then for some fixed A > 0  holds 

\2 14I /1  2B\ (~)  2B=A2BDt ~' I ~ + ~ - J  <= ~' + A  D 
and we obtain from (18) 

6* 

e ro < A ~ V ,  ____P E rv <~" (~+~)  1), 
v L I v = l  I 

_>_2 2 .  - 2 . 1 . s  B=B___t -~ 
D t Dt D t-  
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2B 1 
> - -  Then D t < 8 B and Chebyshev's inequality gives ii) Suppose De = 4 '  

P r v < > rv <2 ~ D t > . 
V V 

It follows from i) and ii) that 

(19) P{v~=lr~ < A . B } > t  -~ ( t>4)  

for some absolute constant A if the independent random variables rv with ~ dPr~ = 0 
satisfy [r~[ < B  ( l < v < t )  for any B>0.  

Using (19) instead of Chebyshev's inequality for (12) and applying at the same 
time a method of small perturbations of probabilities we obtain: 

Theorem 4.8. Let {M~},= 1, 2 . . . .  be given where for every M~ there is a probability 
2~ s.t. 

1 
- - < d P ~ < K  pv-a .e ,  f o r a l l p ~ M v  (v=l ,  2 . . . .  ). 
K = d2~ - 

Furthermore, suppose that (7) holds for {Mil ' q}t= 1, 2, .... 

Let c > 0 be fixed. Then for t > t o (c) holds: 

I f  {pl, Ei}l=<i=< N is any code for Mtl ,,l with in N > - H(1, M[1 ' t]) + c t then its 
error Pe satisfies 

lnPe> inf [H(u, Mr1 q)+u in N ] - O ( l n  t). 
O<u__<l 

Proof. Let q(s): =ql(s) •  • qt(s) be given with respect to the code as directly 
before (8) and let 

q'(s).'= 1 -  0~(s)+ 2v, q~'.=qi(s)x..,  xq;(s). 

One has p~-a .e .  

d i d i t K > t  P~> p~ > 1 d2v 
- d2,=dq,(s)  = t dq'~(s) 

1 1 dg/~ (s) + 1 ]  - 1 > 1  1 -  K +  t 
t d2~ t ]  = t = t K  

, d~ /v ( s )<  
w h e r e - - _  K holds because 

d2~ - 
(1-s) t  -1 

~ ( s ) = t .  j dyq~(s+y) 
_ S t - 1  

and 1 
dqv(sq- y)=d~v [ ~Lj=I a(j) ~ dP(vJ)]l-s-Y] ] ~d~g. 
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Write the expressions defined in (8) with a bar if ~(s)  and ~/(,), respectively, 
are exchanged by q'v(s) and qls), respectively. 

Using (19) instead of Chebyshev's inequality, setting P = -~ dff~ Q(s) and r~ = in t 
-- i  - m,,(s), we obtain instead of (17) (observing Ir~l _-< 2 ]ln (K t)l): dq~(s) 

I- 1 -- S 1 
in Pe >- inf / - -  F, S, + - -  (In N -  O(ln t))] - O(ln t). 

- o < s < l [ 1 - s  ~J 1 - s  

It remains to compare F(~) and F(~): ((+) 1 
i {dP'~] -s 1 -  d g L ( s ) + t d 2  ~ 

ln f dp~ \ ~q~q,j --- ln ~, dPi~ - ~ - 

1 " S >=(1--t-1)F~(s)+t -1 ln S d p i ~ K - S = ( 1 - t  - ) g ( s ) - -  In K. 
t 

Hence F(s ) > ( 1 -  t -  1) F(s) - sin K > F(~) - s In K and therefore 

[ 1 s ] 
in Pe -> inf . 7  F(s ) + ~ (In N - O (In t)) - O (ln t) 

- - O < s < t k l - - S  l - - S  

and one procedes as in the proof of Theorem 4.7. Finally 

_ _ t  1 1 
H(1, Mr1 ' a) >H(1, M[1 ' t])--~- C(Mtl, q) >= H(1, Mr1 ' ' ] ) - T  (t In K). 

t - 1  

Remark. In the situation of Theorem 4.7 {without a condition as f.i. 1 <  dpv 
K = d2 v \ 

< K p v -  a.e.) one still can replace the 2nd rootes in the estimates by 3rd rootes by 

means of Berry's inequality. 

Because we are interested when there exist lengths N for which conditions 
for N as in the corollaries following Theorem4.1 and as in Theorem 4.7 are 
simultaneously satisfied (restricting ourselves to stationary channels) we have to 
investigate when - H  (1, M ) <  C (M) is true. 

Let H(1, M ) >  - co. (H(u, M)=  - oo(u > 0) implies P~ (M, N)=  0). 

a) If C(M)= co then C(M)> - H ( 1 ,  m ) > 0 .  

b) I f M = M ' =  {P(J)}I<=j<=, and 

.1 

lnSd2 [ ~ (J)(dP(J)~l+"~176 
L j=l a \ d2 ] I = -  u~  for u o > 0  

and coefficients a(J)>O w i t h ~  aO)=l then H ( u , M ' ) = - u  C(M') for O < u < u  o 
because of (6). j= 1 
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d 2 
Moreove r  using the remarks  following (6) on ~ H(u) we obtain  for case b): 

inf ~ a (J) ~ dp (j) in 
t J=l 

2 
dP(J) C(M') " 

) 
, dp(J) } 

a ~j) ~ dp ~j) In , = C(M')  = 0. 

then 

A well known l e m m a  says: 

If  

a(~) ~ dp (j) In 
j = l  

dp(;) 

(k) (k) d a p 
\ k =  1 

= C(M')  

dp(;) 
~dp (j) In <_ C(M')  (1 < j <  n) 

n 

and = C(M')  for a l l j  with a(~)>0. 

(It m a y  be checked by differentiation with respect to the a(J).) 

This implies: 

L e m m a  4.9. Given M ' =  {P(J)}I=<j_<, and suppose that 

1 

- u  o c ( m ' ) = ~  d2 (J) 
_ J 

holds for certain coefficients a (j) > 0 with ~, a(J)= 1 and u o f ixed  (u o > 0). Then 
j = l  

dp(J) 
i) In - C (M') p(J) - a. e. 

n 

dk~=l a t~ ] 

for all j with a (J) > O, 

ii) the probability q = q(s) determined in Lemma 3.5 is the same probability for 
all s ( 0 < s <  1). 
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It remains to prove ii). With the coefficients a (j) in the lemma holds: 

1 

d)~[~a( . J ) (dP(J ) l l - s ] l -~  

Lj=, \ d2 / J 
1 

= d ~ a(k) p(k) ~', a (;) dp(J) -s 1-s 
n 

a , 

(i ) = d  a(k) p (k) [ e x p [ - C ( M ' ) ] ( e x p [ C ( M ' ) ] ) ~ - s ]  1 S  
k=l 

( ) [  ] s C(M') = d  ~a(k)  p(k) exp 1--s 
k=l 

Corollary. H (uo, M')  = - u o C (M') for  some u o > 0 implies H (u, M')  = - u C(M')  
for  all u > O. 

Remark. If M is infinite and C(M)< oo then (see [3]) M is relatively weakly 
compact (or equivalent: uniformly absolutely continuous). Take a countable 

subset ~ir of M with H(u, ~/)=H(u,  M) for all u>0.  For the weak closure co(29i) 
of the convex hull of ~/ holds H(u, c o ( M ) ) = H ( u , M ) .  Applying a Choquet's 

centroid theorem argument to co(H)  one obtains similar results as in Lemma 4.9 
and in the corollary. 

Thus, we have for  arbitrary M with C ( M ) <  oo 

- H ( 1 ,  M ) = C ( M )  iff - u H ( u , M ) = u C ( M )  

(as a consequence of the corollary and the last remark). 

then 

for all u >-> 0 

We still can formulate instead of Theorem 4.8 in a bit more natural way" 

In the situation of Theorem 4.8 holds: If for t > t o (c, u0) (any u o > 0) 

1 
In N >  - - - H ( u o ,  ME1, q)+ c t 

U0 

In Pe (ME1, q, N) > o inf,oEH(u' M[1, tl) q- u In N] - 0 (ln t). 

In E2] for the stationary finite alphabet channel without memory the lower 
bound 

in Pe (M[1, t~, N)  >= inf [H(u, M[1 tl) + u (ln N - 0 (t~))] - 0 (t ~) 
O'<U 

has been derived for all N__> 1. 

However, neither the upper bound of Theorem 4.1 nor the lower bound of [2] 
are i.g. tight for In N < - H ( 1 ,  Mr1 ' t~) as the following two examples show: 

1. Let X =  {1, 2, 3}, M =  {p(J)} j =  1, 2, 3 where pO)(j)=O, p(J)tk~-t~-~l for k=t=j 
( j=  1, 2, 3; k=  1, 2, 3). Then - H ( u ,  M ) = u  C ( M ) = u  In 2. 
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For Mr1 ' q where the M v are copies of M holds 

Pe(MLI,,~,N)>(�89 if U > 2 ,  because (pJlApJZ)(x)=l 

for different p J1, p~2 ~ M. But ~nf(H(u, ML1 ' q) + u In N) = - oe if I t  in N < C (M). 

2. Let X =  {1, 2}, M = {p(1), p(2)} where p(1)= 1, p(a)(2)= 1. Pe(M~x, '1' N ) = 0  for 
1 

- - l n  N <  C(M)= ln  2, (the My copies of M). But 
t 

inf ( H (u, Mt ~ q)+ u In N) >o inf  1H (u, Mt~ ' tl) = - t i n  2. 
0 < u < l  

I would like to thank Johan H. B. Kemperman for a very stimulating discussion and for pointing 
out a gap in my original proof. 

References 

1. Gallager, R.: A simple derivation of the coding theorem. IEEE Trans. Inform. Theory I T -  I 1, 
3 - 1 8  (1965). 

2. - Shannon, C. E., Berlekamp, E. R.: Lower bounds to error probability for coding. Inform. and 
Control, 10, 65 - 103 (1967). 

3. Augustin, U.: Ged~ichtnisfreie Kaniile fiir diskrete Zeit. Z. Wahrscheinlichkeitstheorie verw. Geb. 
6, 10-61  (1966). 

4. Wolfowitz, J.: Coding theorems of information theory. Ergebnisse d. Math. u. Grenzgebiete, 
Vol. 31. Berlin-G6ttingen-Heidelberg: Springer 1964. 

Dr. Udo Augustin 
Mathematisches Institut der Universitiit 
Erlangen-Niirnberg 
8520 Erlangen, Bismarckstrage 11/2 

(Received October 7, 1968) 


