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1. Introduction 

L e t  X b e  a B o r e l  r i g h t  p r o c e s s  o n  E w i t h  t r a n s i t i o n  s e m i g r o u p  (Pt).  ( T h e  p r e c i s e  

h y p o t h e s e s  a r e  s e t  d o w n  in  (1.1) ,  b u t  i n  e s s e n c e  t h i s  r e q u i r e s  o n l y  t h a t  X b e  r i g h t  

c o n t i n u o u s ,  s t r o n g  M a r k o v  w i t h  B o r e l  t r a n s i t i o n  s e m i g r o u p . )  T h i s  p a p e r ' s  p r i m e  

c o n c e r n  is a s y s t e m a t i c  s t u d y  o f  w e a k  d u a l i t y  o f  X w i t h  a n o t h e r  B o r e l  r i g h t  p r o c e s s  

J ~ r e l a t i v e  t o  a o-- f in i te  m e a s u r e  rn. P a r t  I I I ,  t o  b e  d i s c u s s e d  l a t e r  i n  t h i s  i n t r o d u c t i o n ,  

* This research was supported, in part, by NSF Grant MCS 79-23922 
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contains the principal results and Part II is a collection of  preliminaries under even 
weaker hypotheses. In the course of  our study of  weak duality, we encountered a 
number of  issues not directly related to duality. T h e  bulk of  Part I is devoted to 
these questions, and we believe that this material is of interest in its own right. 

Part I is organized around the notion o f  natural processes, the natural G-algebra 
A/being the trace of  the predictable a-algebra ~ on N0, (W, with ~ the lifetime of  X. 
Developing some ideas introduced in [40], we discuss projections and dual 
projections on W,, criteria for a process to be natural, and so on, in w The reason 
for using the term natural is that in the special case where Xis standard, an additive 
functional (AF) A will be natural in the sense above if and only if it is natural in the 
sense used in [4]. These are precisely theAF's  in the class (U) of  Meyer [25]. Another 
theme of  Part I is that conditions should be stated in terms of hitting t imes rather 
than arbitrary stopping times wherever possible. This appears in w 3 for the first time 
where we describe the representation of natural potentials by natural AF's, without 
standardness hypotheses. What is novel here is that the condition that a function on 
E be a natural potential is reduced to a condition involving hitting operators rather 
than arbitrary increasing sequences of  stopping times. See Theorem 3.3 for the 
precise statement. For  later applications it is necessary to extend such 
representations to not necessarily finite potentials, a step which requires the 
introduction of homogeneous random measures (HRM's). This is carried out in w 4 
which begins with the technicalities needed for extending the previous results on 
AF's to HRM's. The main extension is given in Theorem(4.11). The most 
important result in w is a characterization of  standardness in terms of  hitting 
operators. What we show in (5.5) is that a Borel right process X is standard 
provided XTn'-~ X T a.s. on {T<  (} whenever Tni" T, the T, being hitting times of 
finely closed sets. A second result on standard processes, which we consider 
interesting, is a characterization of  natural stopping times T as those with XT_ = X r  
a.s. on {0 < T <  (}. Here, Tnatural  means ~T~ eW. It has long been known that if 
X r_ = X r a. s. then T is accessible. The above result is much stronger, for ~T~ ~ A/ 
means that there exists an increasing sequence (T,) of  stopping times with T, < T, 
T, < T and T, t  T on {0 < T <  ~}, and lim T, > ( on { T>  (} (see (5.4)). Another 

n 

important fact about standard processes is given in Theorem 5.2 which states that 
the natural projection of h (X) is just h (X_) 1 ~0,~ whenever h is a Borel function on 
the state space E. 

In Part II we set down some facts about X relative to a fixed P" ,  m being a 
countably finite excessive measure. In case m is the potential 2U of  a finite measure 2 
and the lifetime ~ is P~ a. s. finite, Azbma [3] developed very powerful time reversal 
tools which have a bearing on some of  the questions we investigate later, but we 
make no such specific assumptions here. Among the results of this part, which are 
preliminary to the study of weak duality, (7.4) is a typical sample stating essentially 
that a natural functional which is P "  additive may be perfected to a genuine natural 
AF. 

In w 8 we introduce the Revuz measure of  a HRM, extending the definitions first 
given in [35], and discussed at length in, for example [36-38, 14, 15, 21]. 

The first section (w of  Part III continues the discussion of  Revuz measures 
under the hypotheses (9.1), (9.2) of  weak duality of  X, 2 relative to a o--finite 
measure m, there being no absolute continuity hypotheses. The most important result 
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here is the replacement (9.3) for the formula uA(x ) ( -EXA~o)=  Su(x,y)vA(dy) 
of Revuz [35], in which A is a N A F  with Revuz measure vA, u (x, y) the potential 
kernel density, it being assumed that X, k are in classical duality as in [4, VI]. 
The point here is that under weak duality, one does not necessarily have a potential 
kernel density. The replacement formula vU(dx) = UA(X ) m (dx) is valid however, 
and is the basis for much of the subsequent work. In particular, it yields (9.10) 
a uniqueness theorem for NAF's, or more generally, natural HRM's. Some of 
the results of this section have been obtained independently by Atkinson and Mitro 
in [2]. In w 10 we bring in the stationary process Z associated with the dual pair X, X. 
This process looks in the forward direction like X under pro, and in the reverse 
direction like X_ under pro. In the case of symmetric processes, this process was 
discussed by Silverstein [42], though in a different framework. The general case was 
discussed by Mitro [29]. See also [23] for related work. Systematic use of Z makes 
intuitively clear a number of facts about weak duality, and arguments involving Z 
are freely used in subsequent sections. The first important example occurs in w 11, 
where (11.3) gives a switching identity relating the hitting operator for X with the 
left hitting operator for X. This result generalizes the original switching identity 
[4, VI-1.16] for hitting operators given by Hunt [22]. The related identities (11.7) 
and (11.8) contain important information for manipulating the general Revuz 
formula. An important application of these results is (11.11) characterizing those o-- 
finite measures which are the Revuz measure of some (necessarily unique) natural 
HRM as simply those not charging m-copolar sets. The proof of(11.11) also makes 
essential use of our earlier characterization of natural potentials in terms of hitting 
operators. 

The connection between HRM's of X, 2 a n d  Zis  studied in w using methods 
of [30]. The main result here gives a very simple interpretation of the Revuz measure 
of a HRM in terms of the corresponding HRM over Z. In essence this identifies 
Revuz measure with Dynkin's characteristic measure [11, 12]. This connection has 
been discovered independently by Atkinson and Mitro [2] in a somewhat different 
setting. 

The ideas of w are applied in w to give a probabilistic interpretation of 
capacity, extending the ideas of Chung [6] and the authors [17] (see also [28]). It 
turns out that by using Z we are able to give a probabilistic explanation of the 
equality of capacity and co-capacity of transient sets over standard processes. This 
equality, which is due to Hunt  [22] (see also [4, VI-4.4]), does not appear to have a 
direct interpretation using X and 2 above. Actually, the discussion in w 13 is more 
general, the specialization to standard processes being given in w The most 
interesting formulas are given in (13.16) through (13.19). A key observation is that if 
2B= sup {t: Z t ~ B  } and o-B= inf{t: Z t_ ~B}, then under suitable transience 
hypotheses one has P [2 B e dr] = c (B) dt and P [(r B ~ dt] = ~ (B) dt where P is the law 
of Z and c (B) (resp. ~ (B)) is the capacity (resp. co-capacity) of B. 

In w we give the weak duality version of the time reversal theorem (for 
classical duality) of Nagasawa [32], modifying the proof of that theorem given in 
[41 ]. It turns out that this result remains valid provided the initial law does not 
charge m-polar sets. 

In w 15 a number of the foregoing results are specialized to standard processes. 
Actually the appropriate notion here is m-standard which only requires 
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X(T,,) ~ X ( T )  almost surely pm on {T< ~} when (Tn) is an increasing sequence of 
stopping times with limit T. See (5.1) for the precise definition. We also discuss the 
relationship between some of these results and Hunt 's hypothesis (B) in this 
context. For example, if B is m-semipolar and J? (the weak dual of X relative to m) is 
m-standard, then pm almost surely X t_ = X t when X t E B  (see (15.12)). Theo- 
rem (16.15) shows that this condition is also sufficient for )? to be m-standard. 

Finally in w 16 we give a number of structural results under the hypothesis of 
weak duality. The key technical fact (16.4) states that if Y is predictable and 
homogeneous on IR ++ (more precisely, Y~ ~ j f 0 ) ,  then there exists a Borel 
function g such that Y and g (X_) are pm indistinguishable on ~0, ~[[. An important 
consequence (16.8) is that a o--integrable natural HRM, ~c, is pm almost surely 
diffuse if and only if its Revuz measure v~ doesn't charge m-semipolars and is pm 
almost surely purely discontinuous if and only if v~ is carried by an m-semipolar. 
Exact terminal times are characterized in (16.14). Theorem (16.21) gives a number 
of equivalent conditions each of which, in light of (16.19), implies that Xis m-special 
standard. 

It had been one of our original aims to give an elementary exposition of Revuz 
measures and the Revuz formula based on the formulas (8.4) and (8.8) as a separate 
part of this paper in order to make these important topics accessible to readers with 
limited background. This material comprises most of w 8 and w 9, and it is our hope 
that these two sections can be read almost independently of the rest and that their 
essential simplicity is not obscured too much. The reader of limited background 
might find it helpful to replace HRM by AF throughout these two sections, at least, 
the first time around. 

Among the reasons why, in our opinion, processes in weak duality are worthy of 
a detailed study, are (i) once a result is proved for weak duality, a stronger result 
usually follows automatically in the classical duality case; (ii) weak duality survives 
passage to space-time processes, and this is usually not the case with classical 
duality (cf. [19]); (iii) every process with stationary independent increments in 1R d 
(or more generally, a separable LCA group) has an obvious weak dual relative to 
Lebesgue (or Haar) measure - see [34] for a detailed discussion of the potential 
theory of such processes; (iv) the growing literature [11-13, 24, 42], to name just a 
few, on Dirichlet space rr/ethods in Markov processes fits in as the symmetric (i. e., 
self-dual) case in weak duality. Some aspects of the asymmetric case which are 
closely related to the latter works have been discussed recently by LeJan [24]. 

Finally, we set down the notation and minimal hypotheses which will remain in 
force throughout. 
(1.1) The state space E is a Lusinian topological space - that is, E is 
homeomorphic to a Borel subset of some compact metric space. 
(1.2) g is the Borel ~-algebra on E and g* is the universal completion of & 

(1.3) The semigroup (Pt) maps Borel functions to Borel functions. 
(1.4) X is right continuous, strong Markov in E with transition semigroup (Pt), 
with lifetime ~, death point A. 

A process X satisfying (1.1), (1.3) and (1.4) is called a Borel right process. We 
have chosen to deal with Borel right processes rather than right processes in general 
in order to keep technicalities to a minimum. The essential assumption is (1.1): the 
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fact that E is Lusinian. The assumption (1.3) may always be accomplished for an 
arbitrary right process by passing to the Ray topology (see [16] or [39]). However, 
we want to emphasize that the results of  this paper, sometimes with minor changes, 
are valid for arbitrary right processes. 

We shall use the standard notation of Markov process theory [4, 16] and [26] 
without special mention. Thus ~ o ,  ~ o ,  y ,  ~ ,  ~ ,  and ~ u  have their usual 
meanings, o ~ *  will denote the a-algebra of universally measurable sets over 
(~2, ~-0). Given q > O, (Pt q) will denote the semigroup Pt q =_ e-qtpt .  Here and in the 
body of the paper " = "  is the symbol for "defined to be". The a-algebra on E 
generated by those functions which are q-excessive for some q > 0 is denoted by ge. 
Thus d~ 8 ~  ~*. We use IR + = [0, oe[ and N+ for the Borel a-algebra on IR +. 
Any numerical function f on E is automatically extended to E~ - E ~ {A } by f ( A )  
= 0 unless explicitly stated otherwise. We shall use rcll (resp. lcrl) as abbreviations 
for right continuous left limits (resp. left continuous right limits). Standard 
references for the results from the general theory of processes that we need are [9] 
and [10]. More specialized results on projections and supermartingale theory over a 
Markov process Xmay  be found in [8] and [39]. Some also appear in [27]. We also 
shall need some facts about Ray theory. These are all contained in [16, 39], or [45]. 

Part  I: Naturality 

2. The natural a-algebra W 

Throughout  this section it is supposed that X is a Borel right process with state 
space E as described in w 1. We examine here a a-algebra A / o f  natural processes over 
X which is better suited than the predictable a-algebra to describing the left limit 
behavior of X. For  example, even if X t_ exists in E for all t < ~, the process 
X t_ 110,~E(t) is not generally predictable unless ~ is predictable, but it will be the case 
(see (2.1)) that it is natural. The term natural here comes from the connection with 
natural additive functionals to be described later. 

A rather cryptic explanation of  the relationship between predictable and natural 
additive functionals was given in [40]. This section is a systematic development of 
some of  the ideas introduced there. 

Following [39], let J denote the class of processes overlR + x ~2 which are P"  
evanescent for every probability/L on E, and let Jg = (~+  x ~ )  v J be the class 
of  measurable processes. Here N + is the a-algebra of  Borel sets of  IR + = [0, Go [. 
Then ~ and (9 - the predictable and optional a-algebras respectively - are obtained 
by adjoining J t o  the a-algebras generated by processes adapted to ( ~ )  which are 
lerl, rcll respectively. 

Let A/denote the trace of ~ on ~0, ~ - {(t, co): 0 < t < ~(co)}, and call A/the 
natural a-algebra for X. Thus, a process Y defined on ~0, ~[ is natural in case Y 
extends to some predictable process onIR + x ~2. It is convenient to permit Y to be 
defined arbitrarily off  ~0, ~ so that Y being natural means Yl?0 ~ = Wl?0 ~ for 
some W e  ~. Since ~0, ~ is predictable one may suppose that Wvanishes off~0, ~ .  
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(2.1) Lemma. Let Yt be adapted to ( ~ )  andsuppose t ~ Yt is lc on ]0, ~[. Then Y~  J.. 

Proof. We may suppose that Yvanishes off~0, ~W, without loss of generality. Then 
Y~ ~/. Let _Y. = lim inf Yr for t > 0. It is known, [9] or [10], that Yis PU predictable 

r~ f t  t 

for every initial law/z, and so _I1 ~ ~ because of [39, 23.1]. Clearly Y = _Y on ~0, ~E 
which establishes (2.1). 

Following [39] a stopping time T (over (~-)) is predictable provided it is P" 
predictable for every/z. Given a predictable T, there exists an increasing sequence 
(T,) of ( ~ )  stopping times that announces T for all/z simultaneously; that is, almost 
surely T, < Ton  {T> 0} for all n and 7", ~ T(see [39, 23.1]). 

(2.2) Definition. A stopping time T is natural provided there exists a predictable 
stopping time R with [FR~ ~ ~0, ~ = ~T~ ~ 0 ,  ~[F. 

(2.3) Definition. (i) An increasing process A is a process in J / w i t h  A o = 0, t ~ A t 
right continuous and increasing, A t < m  if t < ~ ,  A t=Ar  if t > ~ ,  and 
Ar = l i m a  t--  ~ i fA~= m. 

t t~  

(ii) An increasing process A is natural if A~ = Ar and A e X. 

According to our definition an increasing process cannot have an infinite jump. 
Clearly a natural increasing process is optional. 

(2.4) Proposition. The following conditions on a stopping time Tare equivalent. 

(i) T is natural. 

(ii) [[T~ eA(. 

(iii) There exists an increasing sequence {T,} of  stopping times with {T,} strictly 
increasing on {0 < T <  ~}, lim T, = Ton {T< ~}, and lim T, > ~ on { T >  ~}. 

n n 

(iv) A t -= 1 [r, ~[(t) 1 {0 < r< r is a natural increasing process. 

Proof The implications (i) =~ (ii) r (iv) are immediate. So is (i) ~ (iii) once one 
observes that i fR satisfies (2.2) and R' = R on {T > 0}, R' = 0 on {T = 0}, then R' is 
predictable and ER'~ (~ ~0, ~W = ~T~ (~ F0, ~[-. In other words one may replace ~0, ~[[ 
by ~0,~ in (2.2). If  (ii)holds, then let 1110,~= Yl?0,~ E where Y is predictable and 
vanishes off ~0, ~ .  Thus { Y = 1} is predictable and each of its co sections contains 
most two points. Therefore its debut R is predictable [9, IV-T. 16] and satisfies (2.2). 
It follows from (2.1) that 11s, ~ is in A/for any stopping time S. Hence, if (iii) holds 
Y = 1 ~r,~l~o,~is in A/because l ~ r . , ~  Y. Then 

1Er~ 1~0,r = (1 IT,([-- I~T, C0 110,r 

and so (iii) =~ (ii). This establishes (2.4). 
In this and subsequent sections, given M e  J/+ or b~g, PM and ~ denote 

respectively the predictable and optional projections of M, defined independently 
of the initial law (see [8] or [39]). In what follows equalities or inequalities between 
processes or sets are understood to hold up to evanescence. The process l and set A 
defined in the next lemma will be of great importance in the remainder of this 
section. 
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(2.5) Lemma. Define l =- P110,r ~ and A -- {l > 0}. Then ~0, ~W c A ~ 20, ~ .  

Proof. Although a proof  was given in [40], the result is important enough and the 
proof  simple enough to warrant repeating. As 20, ~ s ~, the second inclusion is 
obvious. In addition, l = 110, r - vl g~ and so ~0, ~ m {l = 0} c {Pl Er > 0}. Given an 
initial law/z choose P" predictable stopping times T, such that the graph of the P" 
accessible part of ~ is contained in ~ ~T~. Then {vl [r > 0} c w WT,~, and so the 
predictable set { l= 0} m ~0, ~ is contained in u ~T,~. Therefore there exist pu 
predictable stopping times R, so that { l= 0} m ~0, ~ = w ~R,~ (see [9, IV-T.17]). 
Now 

0 = E" [IR,; R, < oo] = E" [110, ~[(R,); R, < 0o] 

= Pu[0 < R , < ~ ] .  

Since # is arbitrary this proves that {l = 0} c~ 20, ~ ~ ~ ,  oo~, and so ~0, ~ ~ {l > 0} 
as claimed. 

The natural a-algebra has the following section theorem. 

(2.6) Theorem. Let Y~, y2 e W be bounded or positive and suppose that E ~ {YT~; 
0 < T < ~} = E ~ { y2; 0 < T < ~} for every natural stopping time T. Then Y~ and y2 
are P"-indistinguishable. 

Proof. Let YJ 110, r = Wj 110,~w with W s ~ ~bounded  if YJ is bounded, positive if YJ is 
positive. From the hypothesis it follows at once that 

E" {W~ lr; T <  oe} = E u {W ] lr; T <  oo} 

for every predictable stopping time T. If  W ~ and W 2 are bounded, the result is 
immediate from the usual section theorem [10, IV-87]. If  both W ~, W 2 are positive, 
the result follows applying [10, IV-85] to {W ~ > W 2 + e} a {W a -__ k} to show that 
this set is PU evanescent, then interchanging W ~ and W 2. 

Given M e ~ + ,  define the natural projection "3//of M by (recall l = P110, ~) 

(2.7) "3//= V(M 110, ~[) l -  ~ 110, ~. 

The right side of (2.7) is unambiguous because of (2.5). Operationally, "3//is 
determined as follows. 

(2.8) Proposition. Let M ~ ~r Then "3/1 is the unique member of Wsuch that 

(2.9) E" (nMr; 0 < T <  ~) = E" (MT; 0 < T< ~) 

for every natural stopping time T. [Uniqueness here means up to evanescence on 

Proof. It is enough to check (2.9) in case T is predictable and M bounded. Using 
(2.7), properties of predictable projections, and setting 0/0 = 0 

E" ("Mr; 0 < T <  ~} = E" (fV(Mll~ (~---" 0 1 ( T )  ' < T <  ~} 

E" ~ p(MI1~ (T) l(T)~ 
( l(T) 

= E" {(M1~0,r T <  oe} = E" {MT; 0 < T< ~}, 
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where the third equality holds because P(M110,~ 0 vanishes on {/=0}. This 
establishes (2.9). The uniqueness is an immediate consequence of (2.6). 

(2.10) Lemma. I f  M 6 b J l  vanishes off,O, (~, then PM = P("M). 

Proof IfMvanishes off~0, (r~, then PMvanishes offA = {l > 0}. Consequently the 
result follows from (2.5) and (2.7). 

In defining the dual natural projection of an increasing process one needs to 
exercise a modicum of care. Recall the definition of an increasing process A given in 
(2.3). Let us say that A is carried by a random set F if the measure dAt(co ) is a.s. 
carried by F (co). We shall consider only those A for which the dual predictable 
projection A p of A exists as an increasing predictable process. See [39, w for 
precise conditions under which A p exists. Under the present assumptions A~ is 
carried by ~0, (]. We shall define A", the dual natural projection of A, only when A 
satisfies, in addition, the condition that A is carried by A = {l > 0}. Recall, again, 
that l = Pl ~0, ~E" 

(2.11) Definition. Let A be an increasing process carried by A for which A v exists. 
Then one defines A" by 

(2.12) At = ~ 110,ct(s)(/~) -1 dA~, 
]0, t] 

or, equivalently, in terms of measures 

(2.13) dA 7 = 110,~t(t ) l, - ~ dA~. 

Since t --* ~ l~- 1 dA~ is a predictable process that agrees with A" on ]0, ([, it is 
]o, t] 

clear that A" is a natural increasing process as defined in (2.3). Clearly A" = (AP) ". 

Remark. If  A p exists but A is not carried by A, one may define ( l a *  A )  n and one 
might call this the dual natural projection of A. [Here, ( Y * A ) t -  ~ Y~dA~.] 
However, the above definition is more convenient for us. 1o, t] 

The next few propositions contain important properties of A". 

(2.14) Proposition. Let A be as in (2.11). 

(i) I f  M 6bJC[, then 

(2.25) E" ~"MtdA t = E" ~ Mtd(llo,~i* A)7. 

(ii) A ~ = (A") p. In particular A" = (A")", and A" = (AP) ~. 

Proof Using standard properties of dual predictable projections, (2.7), and 
l -- P110. ~I one has for M 6 bdt' 

E" S"M, da t = E" 

~ E  ~ 

= E  ~ 

= E  ~ 

S P(M 1 ]0, ~[) (t) lt- 1 110, ~t(t) dAt 
P(M 110, :E) (t) I, -1 d (110, :~* A)f  

Sm, alo,:E(t) l, -1 dO~o,:~. A) ~, 
S M, d(I ~o,~* A)']. 
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Since A is carried by the predictable set A so is A p. Thus by (2.13) 

d(A")~ = It -1 d(1)0,~w*AP)f 

= l t - l l tdA~ = 1a(t) dA ~ = dA~. 

The remaining assertions in (2.14-ii) are immediate. 

(2.16) Proposition. I f  A is a natural increasing process, then A n exists and A n = A. 

P r o o f  Because of (2.1), A _ = (At_)  defined on ]0, ~[ is in X. Hence AA in in A/and 
so A A  = Yl~0,,[ with Y~ ~ vanishing off~0, (~. Let A c be the continuous part of A, 
and define 

(2.17) B t = ACt + ~ Ys = At + Y~IE~1(t) - 
S < t  

Since AA is finite one may choose Y finite and so B is an increasing process, and 
since A c e ~, B s ~. From (2.17), dA = 1 ~o, ~* dB and so dA p = l * dB exists as an 
increasing process. Consequently 

dA] = ll0,~[(t ) l, -~ dAf  

= ll0,~[(t ) 1A(t)dBt = dAt,  

and (2.16) is established. 

(2.18) Proposition. Let  A be an increasing process such that E x (A oo) < oo for  all x. 
Suppose, in addition, that fo r  every M ~ b/g+ one has 

(2.19) E" ~ M t d A  t -- E" ~nMtdA t . 
]0, ~[ 

Then 110, ~L(t) dAt is a natural increasing process. 

P r o o f  Replacing A by 1 ?0, ~[* A one may suppose that A is carried by ~0, ~[[ ~ A. 
Also E~(A~o) < oo for all x guarantees that A v exists. See [39, w or [8, w Then 
using (2.15), the condition (2.19) implies 

E" ~ M t d A t - ~  E" ~ M, dA7 

for all M ~ bJg+. As these are finite quantities it follows that A t = A t  for all t > 0 
(see [39, w 30]). This establishes (2.18). 

(2.20) Corollary. A stopping t ime T is natural i f  and only i f  f o r  all M ~ b(9 + 

(2.21) E" (mr; 0 < T <  ~) = E" ("Mr; 0 < T <  ~). 

P r o o f  Let A t = 1 tr, ~ot(t) 1 (0 < r<,/. Because A is optional, (2.19) holds provided it 
holds for all M ~ b(9+. Note that "M = "(~ is immediate from (2.7). Thus (2.21) 
implies that A is natural, and (2.20) follows from (2.4). 

If A is an increasing process, its potential Y is defined to be the optional 
projection of t ~ ~ dA~. (This projection always exists, though it may take the 

]t, oo[ 
value + oo.) Given an initial law/~ such that E u Yo(= EUAoo) < o% t ~ Yt is a right 
continuous supermartingale relative to (s ~ u ,  pu). It follows from (2.14-ii) that, 
assuming A p exists and that A is carried by A, A, A p and A n all have the same 
potential. 
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(2.22) Proposition. l f  A a, A 2 are natural increasing processes whose potentials ya, 
y2 are Pu indistinguishable and E ~ Yj < oo then A 1, A 2 are P~ indistinguishable. 

Proof Combining (2.16), (2.14-ii) and the above remarks it follows that (A1) v, 
(A2) v have the same potential relative to (f2, ~ ,  P~) and they are therefore P~- 
indistinguishable. Appealing to (2.16) and (2.14-ii) once again, we establish (2.22). 

We next describe how natural projections behave under shifts. We define O t and 
Ot as follows. If  Y is a process and A an increasing process, then 

(i) ( o ,  Y) (s, ~o) = 1 t,, o0t (s) Y(s  - t, 0 , ~ ) .  
(2.23) 

(ii) ds(OtA ) (s, co) = 11~ ' ~t(s) dsA (s - t, 0~o9). 

In terms of A rather than the measure dA, (2.23-ii) becomes (recall Ao = 0) 

(0~A) (s, co) = l t t  ' :r A (s - t, 0tco ) 
(2.24) = (OtA) (s, co). 

The dual shift should really be viewed as a transformation of random measures and, 
hence, (2.23-ii). However, we postpone a discussion of random measures until w 
Of course, if T: f 2 ~  [0, ~ ]  one defines Or and 0 T on {T< ~}  in the obvious 
manner. It is shown in (22.11), (31.7), and (29.3) of [39], that if Tis a stopping time 
(relative to (~-)), then up to evanescence 

O) l~r,~V(Or Y) = l]r,| 

(2.25) (ii) 1)r, oo~*(0rA) v = I?r,~*0T(AV), 

(iii) OT(Y* A) = (OTY) * (OrA),  

provided YE ~ ' +  is finite and A is an increasing process (A v must exist for (ii)). 
From (2.7), (2.13), and the fact that 1 ?r, ~i is predictable one checks readily that up 
to evanescence 

(2.26) (i) lir, ool"(OrY ) = llr.ooiOr("Y ), 

(ii) l~r,~E* (OrA)" = l~r ' ~[* Or(A")'  

where in (2.26-ii) it is assumed that A p exists as an increasing process and dA is 
carried by A. There are results analogous to (i) and (ii) of (2.25) for optional and 
dual optional projections. We refer the reader to [39]. 

The most important class of increasing processes in Markov process theory is 
the class of additive functionals. 

(2.27) Definition. A raw additive functional (RAF), A, of X is an increasing 
process such that A ~_ = A c and A~ + ~ = A t + A~ o 0t almost surely for each fixed t and 
s. An additive functional (AF) is a RAF that is adapted to (~) .  

Because of standard perfection theorems [46] or [39, w 35] one may suppose that 
At+ ~ = A t + A~o 0 t identically in t, s, and co in (2.27) without loss of generality, and 
we shall do so in the sequel. I f  one drops the condition Ac_ = A~ in (2.27) one speaks 
of a RAF or AF possibly charging ~. A natural additive functional (NAF) is a RAF 
that is a natural increasing process and, hence, an AF. 
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It is a routine matter to verify that an increasing process with A~_ = Ar a RAF 
if and only if 0 tA = 1 jr, ~ *  A for each t > 0. Consequently because of  (2.26), and 
using (2.25i) to see that llt, oo~Otl A = l~t, oo[1A, one has the following important 
result. 

(2.28) Proposition. I f  A is a R A F ,  possibly charging ~, and / f (1A*  A)" exists, then 
(1 A* A)" is a NAF. 

If A is a RAF, its q-potential function u q = u 3 is defined by 

(2.29) u ~ (x) = uqA (x) = E x ~ e -qt dA t . 
0 

It is immediate that u q is q-excessive. If  u ~ (x) < co, then the potential as defined 
above (2.22) of  the increasing process t --, ~ e-qs dA~ is given by e-qt u q (XO. Thus it 

]0,  t[ 

follows from (2.22) that if A and B are NAF's  with u~ = uS < co, then A = B. 
The following elementary fact will be used in the next section. We leave its proof  

to the reader. 

(2.30) Proposition. Let  f be a q-excessive function and ct an initial measure with 
~ f dl_t < co. Let  A be a R A F .  Then 

fo r  each t > O, i f  and only i f  f (X)  = u } ( X )  up to P" evanescence. 

The following is an equivalent reformulation of the conclusion of  (2.30): 
( e -q t f (X t ) )  is the potential of  the increasing process t ~ ~ e -q~ dA~ relative to P" 

]o,  3[ 

in the sense of  the general theory of  processes if and only if f =  u q a.e. ~P~ for all 
t > 0. In particular, under the assumptions in (2.30), it follows that if Tis a stopping 
time, then 

(2.31) f ( X r )  = u3(Xr)  a.s. P".  

One additional fact concerning homogeneity will arise in subsequent sections. 
(The proof  of  (3.3) contains a typical example.) We need the fact that i fg  is a nearly 
Borel function on E, then Pg (X) may be specified as P0 g (X2) where (X 7_ ) is the Ray 
left limit of  X in a Ray compactification E of E and (~) is the Ray semigroup 
constructed from (P~) (see [16, 11.15] or [39, 42.1 ]). The point is that Y = Pg (X)  may 
be taken to be perfectly homogeneous on ]0, co[; that is, Y~+~ = Y~o 0~ for all t > 0 
s _> 0. Thus the process l = Pl - - ?0,r l l0 ,~Ple(X) may be assumed to be perfectly 
homogeneous on ]0, co[. 

3. Natural Potentials 

As in section 2, Xdenotes a Borel right process with state space E. Let 5 "q denote the 
cone of  q-excessive functions, q > 0. It is well known that i f f e  ~q is finite and 
satisfies the condition E~f(J fr , )  ~ 0 whenever {T,} is an increasing sequence of  
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stopping times with lim T, > ~ almost surely px, thenf i s  the q-potential of a natural 
additive functional. This is proved in [4], p. 299-302 for standard processes. (The 
proof does not use standardness.) The purpose of this section is to show that it 
suffices to consider only increasing sequences of hitting times in this result. This will 
be crucial in the following sections and also is of interest in its own right. 

We begin with the following lemma which is a variant of results in [4] and [7]. 

(3.1) Lemma. Let Tbe an exact terminal time. 

(i) Let O, = {x: EX (e - r) > 1 - 1/n} and T, = T~ be the hitting time of O,. I f  T 
is P" predictable, then almost surely pu, T, < T on {0 < T <  oo}, limT, = T, and 
{t: XtsD,}  contains an open interval ]U, T[, U < T if  T > O. I f  T is predictabIe the 
assertions in the preceding sentence hold almost surely (rather that almost surely P" ). 

(ii) LetD, = {x: EX(e -r^~) > 1 - 1/n} andT, = TD. I f  T is natural, thenalmost 
surely T , < T  on { 0 < T < ~ } ,  l imT,=  T on {T<~}, l i mT ,>  ~ on {T>~}, and 
{t: X teD,)  contains an open interval ] T -  ~, T[ ifO < T < ~. 

T 

Proof For (i) let u(x) = EX(1 - e  -r) = E ~ e - ' d t  and Yt= e-~u(Xt) lt0,rE(t). 
0 

Since T is exact, Y = (Y~) is almost surely right continuous. A simple calculation 
gives 

fi Yt = E~ e-S 
t . T ^ t  

T A t  

and so Yis the potential of the increasing process t ~ ~ e -s ds relative to each P~. 
o 

In particular Y is a supermartingale. Now suppose T is P" predictable and let (R,) 
announce T relative to Pu. The assertions in the remainder of this paragraph hold 
P" almost surely. Since 

t } YR = E" S e-S dsl~R, , 
k Rn 

YR, is strictly positive on {T> 0} and YR~ 0 as n ~ oo. It follows that Y > 0 on 
]0, T[ and Yr- = 0 on {T> 0}. Since D, = {u< l/n} and reg(T) - {x:P~(T=O) 
--- 1 } is contained in D, for every n, one easily checks that T, = TD, has the desired 
properties. 

Obviously if Tis predictable, the above argument is valid for every initial law/~ 
and so (i) is established. 

T^~ 

For (ii) let u(x) = E ~ ~ e - td t  and Yt = e- tu(Xt )  1E0,rt(t) �9 As before Yis the 
0 

potential of the increasing process 

t 

B t = ~ e -s 1 f0, r^cL(s) ds. 
0 

Let T o = inf{t: Yt= 0}. Since Yr0 = 0 if T o < o% B must be constant on [To, oo[. 
Therefore TA ~ < T o. In particular Y >  0 on [0, TA~[. Using 2.4-iii) the 
remainder of the proof goes exactly as before. 
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(3.2) Remark .  If  in (ii), T is only/~-natural in the sense that there exists a Pu 
predictable R with IT]] ~ ~0, ~ = ~R~ ~ 0 ,  ~[[ up to P~ evanescence, then the 
conclusion of (ii) holds P" almost surely. Since each Tn is an exact terminal time 
without exceptional points, it follows from (i) that an exact predictable terminal 
time is equivalent to one without exceptional points. In other words (3.1-i) gives a 
simple proof of the perfection theorem for predictable exact terminal times. It also 
follows from (3.1-ii) that i fR = lim T, on {lim T, < ~}, R = oe on {lim T, > ~}, then 
R is a predictable exact terminal time such that ER~ ~ It0, ~ = [FT~ ~ 0, ~[. 

We come now to the main result of this section. Recall from w that a NAF is an 
AF which is also a natural increasing process. 

(3.3) Theorem. Let  f be a f ini te  valued q-excessive function (q > O) and p an initial 
measure with S f @ < oo. Then there exists a NAF, A, such that f (X) = UqA(X) up to 
pu evanescence, with uqA < f everywhere, i f  and only i f  

(i) Ptq f ~ O a.e. lt as t ~ oe. 

(ii) given a decreasing sequence (D,) o f  fi'nely closed sets in ~ e with hitting times 
T, - T~, satisfying lira T, > ~ a. e. pu, one has E ~ [e-qT"f (XT,)] ~ 0 as n ~ oe. 

P r o o f  The necessity follows from (2.31). For the converse, we construct a NAF, A, 
such that Y~ = e-q~f(X~) is the potential of S e -qs dA~ relative to P", in the sense of 

]o,t] 
the general theory of processes. Then (2.31) gives the desired conclusion, except that 
u~ < f need not hold. However, f / x  u~ is also the q-potential of a NAF, and this 
NAF satisfies all requirements of the theorem. 

First of all, we shall show that the right continuous supermartingale Y - (Yt) is 
of class (D) relative to pu. LetD,  = { f >  n} and T, - TD. Since f i s  q-excessive, D, is 
finely closed, D. E d ~ and 

n E  u [e-qr,; T , <  ~] < E u [e-qr, f ( X r ) ]  <= ~ f  dl~ < oe. 

Therefore if T = lira T, 

E" [e-qr; T <  ~] __< aim -1 ~fdp  = 0, 
n 

and so (T.) satisfies (ii). Given an arbitrary stopping time R, if e - R f ( X R )  > n, then 
T. __< R, and so (recall Y~ = e - t f ( X t ) )  

E" [YR; YR > nl < E" [YR; T. < R] 

____ -+ o 

as n -+ ~ because of (ii). Consequently the family (YR) as R ranges over all stopping 
times is pu uniformly integrable proving that Y is of class (D) relative to PU. 

Because f is finite valued, Yt = e-qtf(Xt) is a positive super-martingale relative 
to P~ for every v with ~fdv < ~. Therefore Yhas a Doob-Meyer decomposition of 

t 

the form Yt = Mt - ~ e- q~ dB~ where M is a local martingale relative to each P~ with 
o 

~fdv < w and B is a predictable additive functional of X possibly charging ~ (see 
the remarks following (2.27)). This decomposition is independent ofv (see [8, 3.12] 
or [39, VI]). But Y is a class (D) potential relative to pu and, hence, is the PU 
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potential of  a predictable increasing process. From the uniqueness of the Doob- 
t 

Meyer decomposition it follows that Yt is the potential of ~ e-qs dB~ relative to P" (in 
the general theory of  processes sense), o 

As in section 2 let I = P110, ~[ and A = {l > 0}. We claim that almost surely P", dB 
is carried by A. To this end let C = 1Ac* B. As we pointed out at the end of w one 
may choose I = P110, ~ so that l t + s = It ~ 02 identically for t > 0 and s > 0. As a result 
Cis a predictable AF possible charging ~. According to (2.5), A c ~ 20, ooV[ c [[~, ooV[, 
and so dC is carried by ~ .  Let R = inf{ t :ACt>O }. Then R is a predictable 
terminal time with [[R~ c ~ .  Since R is thin, it is exact and we may apply (3.1-i) to 
find a decreasing sequence (Dn) of  finely closed sets in de whose hitting times Tn 
satisfy lim T, = R with T, < R on {R < ~}  almost surely. Since R ___ ~, condition (ii) 
of(3.3) gives 

E" ~ e-q~dB~ = E u [e-qr, f(Xr,)] -* 0 
]T., oo[ 

as n - * ~ .  Hence E u ~ e-q~dB~=O. But if R < o o ,  then O<ACR<=AB R. 
[R, 00[ 

Consequently P" (R < oo) = 0 and so P" almost surely B is carried by A. Define now 
A = (1 A* B) ~- By the discussion above together with (2.14-i) and (2.28), A is a NAF 
and the P"  potential of ~ e -qs dA s is Y. This completes the proof. 

]0, tl 
It is known that the condition that a function be a regular q-potential may be 

expressed in terms of  hitting times. See (IV-3.6) and (IV-3.8) of [4], at least for 
standard processes. We shall see below that this is an easy consequence of  (3.1) and 
(3.3). 

(3.4) Corollary. Let f be a finite q-excessive function satisfying the conditions of 
(3.3). If, in addition, given any decreasing sequence (D,) of  finely closed sets in ~e with 
hitting times Tn and T = lim T, one has E ~ [ e -qT~ f ( X T )  ] --+ E" ( e -qT f ( XT) ], then the A 
in (3.3) is continuous almost surely P". 

Proof. Of course, the condition in (3.4) contains (ii) of (3.3). Given ~ > 0 let 
R = inf {t: AA t >= e}. Then R is a natural thin terminal time, and by (3.1-ii) there 
exists a decreasing sequence (D,) with lim T, => ~ on {R > ~}, lim T~ = R if R < 
and T~ < R on {0 < R < ~}. But dA does not charge [~, oo [ and so if T = lira T,, 

E" ~ e-q~dA~=E u ~ e-q'dA~ 
]Tn, R] ]Tn, T] 

= E" [e-qr~f(Xr~)] - E ~' [e-qrf(XT)] 

---~0 a s  n---~ o o .  

Consequently P" (R < ~) = 0 completing the proof  of  (3.4). 

(3.5) Remark. We have assumed in this paper that X is a Borel right process. 
However, (3.3) and (3.4) are valid for arbitrary right processes. This is clear from 
the proofs given above. We shall need (3.3) for a right process which is not 
necessarily Borel in the proof  of  (4.11). 
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4. Homogeneous Random Measures 

In order to discuss results such as (3.3) for excessive functions which are not 
everywhere finite, it is necessary to extend the concept of  an additive functional. 
The appropriate objects are the homogeneous random measures to be introduced in 
this section. A more detailed treatment is given in Chapter IV of  [39]. 

Again in this section X is a Borel right process. A random measure tc is a kernel 
from (f2, .fi) to (lR +, ~ +) which is carried by ~0, ~ .  That is, for each co, tc (co, �9 ) is a 
measure on the Borel sets N + of  IR + = [0, oe [ which is carried by ]0, ~ (co)] and for 
each B e N § co ~ ~c (co, B) is Y measurable. We shall always suppose that for  almost 
all co, ~. (co, �9 ) is the countable sum o f  f inite measures (possibly depending on co). This 
will permit the use of  Fubini's theorem in most manipulations. Two random 
measures tq and to2 are equal provided tq (co, . ) =  tc2(co , . )  for almost all co. 
Inequalities between random measures are defined similarly. Thus ~c is finite if 

(co, 1R § < oe for almost all co. We shall adopt the usual convention of  suppressing 
co when convenient so that ~c (B) denotes the function co--, tc (co, B). If A is an 
increasing process as defined in (2.3), then ~c (co, dt) = dAt(co) is a random measure 
which is actually a-finite for each co. Clearly ~c is finite i fA~ = A~ < oe. 

A random measure ~c is a-integrable on (9 (resp. ~, W) if there exists a strictly 
positive process Yin (9 (resp. ~, W) such that E x ~ Yt ~c (dr) < oe for all x. It suffices 
that {Y>0} carry ~c, replacing Y by Y +  l{r>0 ~. Note that replacing Yt by 
Z t = Yt/(1 + f (Xo)  ) where f ( x )  = ExS Yt ~: (dt), one may suppose that E ~  Yt ~: (dt) 
is bounded in x in this definition. Since Ye Wis arbitrary off,O, @ in the natural case 
ExS Y~ ~: (dt) is short for E ~ ~ Yt ~: (dt). In other words if Y e A/we suppose that 

]0, ~[ 
Y = 0 off~0, ~ .  A random measure is optional (resp. predictable, natural) provided 
it may be represented in the form tc (dr) = Y, dAt (written ~c = Y* dA) where Y is a 
positive everywhere finite process in (9 (resp. ~, W) and A is an optional (resp. 
predictable, natural) increasing process. The RM tc generated by an optional 
increasing process is a-integrable on (ft. See [39, w A similar assertion holds in 
the predictable case, and the natural case is a simple consequence of this. Observe 
that ~c is natural if and only if ~: = 1 ~0, ~E* ~ where 7 is a predictable random measure. 
In particular a natural random measure is carried by ~0, ~ W. If  ~: is o'-integrable over 
(9 (resp. ~) ,  then the dual optional (resp. predictable) projection of~: is defined and 
denoted by ~c ~ (resp. ~cP). These are the unique optional (resp. predictable) random 
measures such that for all/~ and Z e d//+ 

E .  S = S (4.1) 
Eu ~ Z, tcP(dt) = Eu ~ PZttc(dt ) . 

In the representation toP= Y * d A  with Y~ ~+ ,  Y <  oo and A a predictable 
increasing process one may suppose that E ~ (A ~o) is bounded. A similar statement 
holds for ~c ~ 

Let tr be a-integrable over ~ .  Then there exists Y > 0 in A/(ofcourse, this means 
Y ~ W a n d  Y >  0 on ~0 ,~ )  such that At= ~ Ysllo,~[(s)~c(ds) is an increasing 

10, tl 
process with sup E~(Ao~) < oe. This certainly implies that A p exists as an increasing 
process. Obviously dA is carried by ~ 0 , ~ c A  where as in previous sections 
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A = {l > 0}, l = Pl?0,~ ~. Consequent ly  A" the dual natural  project ion o f  A exists and 
we define ~" the dual natural  projection o f  ~ by 

(4.2) ~c"(dt) = Ytt - 1  dAT. 

Since dA~ is carried by ]0, ([  it is clear that  ~c" is a natural  r andom measure as defined 
in the preceding paragraph.  I f  Z e Nis  such that  1 to, ~ Y = Z 11o, ~E, then using Z it is 
clear that  11o,~* ~ is ~-integrable over N. Therefore  f rom (2.12) 

~:"(dt) = Yt -1 (11~ dA)P 
l( t)  1 ]0,c[(t) 

= yt_x (1 ]o,([(t) Z t Is (dt)) v 
l ( t)  1 ]0,~[(t) 

= yt -1 Z t (l]~ ~:(dt)) p 
l ( t )  110,~[(t) 

= 110, ~I(t) (110, ~[(t) ~ (dt)) p 
l 

in other  words 

(4.3) 
~, (110,r ~)v 

= 1~~ l 

Hence ~c" does not  depend on the choice of  Y in (4.2). Moreover  this shows the 
consistency o f  the definitions in (4.2) and (2.13) for  ~c" and A". The  results 
established in Sect. 2 for  A" extend without  difficulty to ~" and we shall use them in 
this situation. However ,  it should be remembered that  ~:" has only been defined for ~c 
which are ~-integrable over K. 

The shift Ot is defined on r andom measures by 

(4.4) (0tK) (co, B) = K (0tog, ( B -  t) ~ ]0, oe D. 

Since K is carried by ]0, oo [ - more  precisely ]0, ~] r~ ]0, oo D it is convenient  to 
extend K (co, . )  to N by setting it equal to zero off  ]0, oo [. Then  (4.4) may  be 
written (OtK) (e), B) = K (0tco, B - t). The definition (4.4) agrees with (2.24) when 
K (dr) = dA t with A an increasing process. Formulas  (ii) and (iii) of  (2.25) remain 
valid when A is replaced by a r andom measure K which is a-integrable over ~ -  in 
(2.25-iii) K may be any r andom measure. Finally if ~: is o--integrable over A /one  
checks that  the analog o f  (2.26-ii) holds; that  is, for any stopping time T 

We define now the not ion o f  a homogeneous  r andom measure (HRM)  which 
bears the same relationship to a r andom measure (RM) as a R A F  does to an 
increasing process. However ,  there is no known general perfection theorem for a 
H R M  so one must  use some care. 

(4.5) Definition. A homogeneous  r andom measure (HRM)  ~c is a r andom measure 
carried by ~0,~[[ such that  for each stopping time T, 0T~C = llr ,~*~C a.s. on 
{T< oo) 
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Observe that  since ;r is carried by 10, ~ ,  6 r ~  is carried by IT, ~ .  (The difference 
between (4.5) and the definition (35.3) o f  [39], is that  in this paper  we always 
suppose that  a r andom measure does not  charge {0}.) I f  one drops the condit ion 
that  ~c is carried by 10, ~ ,  then one speaks o f  H R M  possibly charging ~. Of  course, a 
r andom measure always is carried ~0, ~ .  The defining proper ty  o f  a H R M  may also 
be writ ten ~c (0rco, B) = tr (co, B + T(co)) for  B ~ ~ +. N o w  (2.28) takes the form: 

(4.6) Proposition. I f  ~c is a H R M ,  possibly charging ~, which is a-integrable over 
then (14.  ~c)" is a natural H R M .  

Finally we shall need the not ion o f  a perfect H R M : A  r andom measure ;c carried 
by ~0, ~[ is a perfect H R M  provided there exists f2*c  Q with px(~?.)  = 0 for all x 
such that  6~ t ~: (co, �9 ) = 1 it, ~E;c (co, �9 ) for  all t > 0 and co r f2*. Clearly a perfect  H R M  
is a H R M .  

We now have in place the basic definitions and properties o f  r andom measures. 
The first result o f  this section is an extension theorem that  is useful in constructing 
HRM's .  Fo r  its s ta tement  recall that  a nearly Borel set E ' c  E is absorbing if 
PX(Te_E, < o e ) =  0 for all x eE' .  Since starting f rom x e E '  the process almost 
surely never enters E - E '  one may define the restriction, X', o f  X to E' .  It is 
convenient  to suppose that  X '  is defined on 

(4.7) ~2'= {co~2:Xt(co)~E'w{A } fo ra l l  t__>0}. 

Clearly f 2 ' s ~ ,  P*(f2 ' )= 1 for x ~ E ' ,  P ~ ( O ' ) =  0 for x?cE', and X'  defined 
on ~ '  by Xi(co ) = X~ (co) is a right process with state space E', al though not  Borel 
unless E' is Borel. No te  Otf2'c f2' for  all t > 0. Also ~ '  = @ (X') may be identified 
with the intersection over all initial laws/~ carried by E '  o f  the Pu complet ions o f  
o~ ~ 

Let  ~c' be a perfect H R M  of  X' ;  that  is, there exists a set f2* c ~ '  with P~ (Q*) = 0 
for all x e E '  such that  ^ ' Ot~c (co, . ) =  llt, oottc (co, . )  for all t >  0 and co e l 2 ' - ( 2 " .  
Wi thout  loss o f  generality, we shall assume that  f2* is empty. Also we suppose that  
~c' has been extended to IRby setting it equal to zero off]0,  oe [. Finally we suppose ~c' 
is a countably Radon kernel on ]0, oo [; that  is, ~' = ~ tc', where each ~c', is a kernel 

n 

f rom (f2', ~ ' )  to (IR + +, N + +) such that  i f K i s  a compact  subset o f  IR + + = ]0, oe [, 
to', (co, K) < oQ for each n and co ~ f2'. However ,  it is not assumed that  the ~c', are 
homogeneous .  We may  now state the extension result. 

(4.8) Theorem. Let E', (2', X', andre' be as above. Let T = T E, be the hitting time of 
E'. Then there exists aperfect H R M ,  ~:, of  Xsuch that K(co, . )  = ~'(co, . )  if  co sQ ' .  
Moreover, ~c is coun tably Radon, carried by ~ T, ~ ,  and ~ = ~c' a. s. P~ for all x ~ E'. If, 
in addition, to' is optional (resp. predietable, natural) over X', then tc is optional (resp. 
predictable, natural) over X. 

Proof We fix a strictly decreasing sequence (t,) in ]0, oe[ with t, ~ 0. Almost  
surely X ~ E ' w { A }  on ]T, oe[. (This interval is empty if T = o e . )  Thus if 
~2o = {co: Xr+t(co) ~ E '  w{A} for  all t > 0}, then PX(~2o) = 1 for all x e E .  Also if 
t > 0, then 0 t ~2o c (2 o and if co ~ f2 o with T(co) < t, then 0,co s f2' defined in (4.7). 
Fo r  B ~ ~ + + define 

(4.9) tc,(co, B)=tc'(Or+~co, B - T ( c o ) - t , )  i f  c o ~ g 2 o ~ { T < o � 9  } 

= 0 if co r f2 o or T(co) = o~. 
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This is well defined since OT+tn09~O' if 09sf2 0 and T(09)<  ~ .  No te  also that  
~:,(09, .)  is carried by ]T(09) + t,,  o0[ for every eg. 

We first claim that  i fn  < m so tm< t, then ~, and ~m agree on ] T +  t,,  ~ [ .  For  
this if 09 s f2 0 ~ {T < ~ }  and B ~ ]t, + T(09), ~ [, then B - T(09) - t~ c ]t. - t,., ~ [, 
and so 

x. (09, B) = ~c'(0r+t 09 , B - T(09) - t.) 

= re' [0r+tm+(,,_ tm~09' B -- T(09) - t,, - ( t . -  t,,)] 

= ~' [0t._tm0r+tm09, B -- T(09) -- tm -- ( t , - -  tin)] 

= tO' (0r+,m09, B -- T(09) - tin) 

= ~ (09 ,  B) 

where the fourth equality uses the homogenei ty  o f  ~' and Or+~,09ef2'. 
Consequently we may  define rc (09, ~ ) to  be the consistent extension o f  the ~, (09, �9 ) to  

]0, m [. In  particular, ~ (09, B) = lira ~:, (09, B), and ~c (co, .)  is carried by ]T(09), ~ [. 
n 

More  precisely, ~, (09, �9 ) is carried by ]T(09) + t.,  ~ (0r+,09) + t, + T(09)[ = [T(09) 
+ t , ,  ~(09)[ since ~ o 0 r + , = ( ~ - t , - T )  +. Therefore ~(co , . )  is carried by 
]r(09), ~ (co)[. 

We next show that  ~ is homogeneous  on f20. Fix t > 0 and 09 ~f20 c~ { T <  ~} .  
Then 0t09 e ~2 0 and T(Ot09 ) < ~ .  Suppose B c ]T(09), m[c~ It, m[ ,  by considering 
the cases t < T(09) and t > T(09) one sees that  B - t ~  ]T(0,09), m[ .  (Note  we are 
using t +  T(Ot09)= t if t > T(09) and co e f20.) Then for some n, B - t ~ ] T ( O t 0 9 )  
+ t.,  ~ [ and so 

~c (Otco , B -  t) = ~c' (Or+tOt09 , B -  t -  T(Ot09 ) - t.) 

= to' (Or+ r(0, ~) +,,09, B - (t + T (0t o))) - t ,) .  
I f  t < T(09), this becomes 

x'(Or+t09, B -  T(09) - t.) = ~c(09, B ) .  

I f  t > T(CO) let u = T(09). Then t + T(Ot09) = t and so the above becomes 

tr B -  t) = tc' (Ot+t 09, B -  t -  t,) 

= ~:' ( O , _ . O , + , c o ,  8 - ( u  + t . )  - ( t  - u ) )  

= ~' (Ou+ t,09, B - u - t,) = Ir (09, B ) ,  

where the third equality uses the homogenei ty  o f  ~:' and 0,+ tn09 ~ f2'. 
I f  T(09) = ~ then T(0~09) = ~ and so both  x (co, B) and ~: (0~09, B - t) are zero. 

Because ~ (09,-) is carried by ]T(co), ~ [  we have shown that  x(09, B ) =  ~r (0t09, 
B - t) for all t > 0, B ~ ]t, oo [, and co ~/2o (actually co ~ ~2o w { T =  oe}). Since 
P~ (~0) = 1 for all x, ~c is perfectly homogeneous .  

It  remains to check the measurabil i ty o f  ~. Fo r  later applications the mos t  
impor tan t  cases are when x '  is predictable or natural.  We shall give details in these 
cases. The other cases are handled similarly. Firstly, suppose ~' is predictable. Then 
x'  ( d t ) =  Y[ dA~ where Y' is a positive everywhere finite process and A'  is an 
increasing process with bo th  Y '  and A'  predictable over ~ '  = ~ ( X ' ) .  Clearly it 
suffices to show each x, defined in (4.9) is predictable. To simplify the nota t ion  let 
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R = T +  t,. Then R is a stopping time with X R ~ E '  v { A }  almost surely and 
Xt+R(CO ) e E '  W {A} for all t > 0 if co e f2 0 . Then if co ~ ~2o 

~.(co, ") = 0R~'(co, ") 

= ORY'(co ) * d(ORA'  ) (co), 

and so it suffices to show that i f Z '  is predictable over ( ~ t ) ,  then 

z ,  (co) = 1 ~R(~), <( t )  z ;_  R(~)(ORco) 

is predictable over (~-). Note Z is defined on the set of  full measure (2 o since 
ORf2o~ 0'. For this it suffices to consider Z ' =  l]~v~ where U and V are ( ~ ' )  
stopping times. In this case Z is the indicator of  '~R + Uo OR, R + Vo 0~ ,  and 
consequently it suffices to show that S = R + Uo O R is an (~-) stopping time for any 
( ~ ' )  stopping time U. Now 

{ s<t } :  t) { R < t - q , ~ o O R < q } ,  
qEQ + 

and so finally it suffices to show {Uo OR< q, R <  oo} ~ ~e+R. Given an initial 
a ~ -  t law/~, v =/~PR is carried by E'.  Since {U < q} s ~ (X),  it follows readily that there 

exist HI ,  H ; e ~  ~ with H[ < l{v<q}<H'  ~ on O' and P' (H '~+H'2)=O.  Let 
Hj - 1 {R < ~} Hj o OR, j = 1,2. Then H~ and H 2 are in ~q + R, H1 < 1 {vo O,< q,R < ~} < HE 
and PU(H 1 =4= H2) < P'(H'I 4: H; )  = 0. This then shows that Z is (~-) predictable 
and establishes the fact that ~ is predictable if ~:' is. 

The natural case is an immediate consequence of  this because tr = Y '*  A' with 
Y' and A' natural over X'. Let Z '  and B' be predictable over X' and agree with Y' 
and A' on ]0, .C[. Then ~" = 1~o,~[* (ORZ'*  d(ORB'))  and hence K" is natural. The 
optional case is the came as the predictable except that ~ U, V~ must be replaced by 
[U, V~. In the general case one uses the fact that ~' is countably Radon to reduce to 
the case of  an increasing process A'. This is handled exactly as the predictable case 
except that U and V are positive ~ '  measurable random variables rather than ( ~ ' )  
stopping times. This completes the proof  of  (4.8). 

We shall now use (4.8) to extend some of  the results of  w First of  all if  K is a 
HRM one defines its q-potential function u = uq = u~ for q > 0 by 

(4.10) u~ (x) : E x I e-~tlr (dt).  

It is immediate that u q is q-excessive. If/~ is an initial law, then 

E U { j t , ~ e - q ~ t ~ ( d s ) ' ~ } : e - q t u ~ ( X t ) ,  

and if ~ u~ d/~ < o% this expression is the potential in the general theory of  processes 
sense of  the increasing process t ~ ~ e -q~ t~ (ds) relative to PU. Since ~: is carried by 

]0, t] 
]0, ( [  it follows from (2.14-ii) extended to random measures that if~ is a-integrable 
over ~,, then ~", the dual natural projection of  ~, and ~ have the same q-potential 
function for any q > 0; that is, u~, = u~. This remark will be used in the proof  of  the 
next result which extends (3.3). 
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(4.11) Theorem. Let f be a q-excessive function and let IZ be an initial law with 
S f  dlt < oo. Suppose that conditions (i) and (ii) of (3.3) hold. Then there exist a 
NHRM, ~: such that f (X) and u~ (X) are Pu indistinguishable. 

Proof Let E ' =  { f <  oo}. Since Sfdl~ < o% # is carried by E'. Also E' is a nearly 
Borel absorbing set for X. Let X' be the restriction of X to E' as described above 
(4.8). I f f '  is the restriction o f f  to E', then f '  is a finite q-excessive function of X' 
which satisfies the conditions of Theorem (3.3) relative to X' and #. (Observe that if 
D ~ E' is finely closed for X', then since/2 is carried by E', T~ = TFa. S. P" where Fis 
the fine closure relative to X of D.) Therefore there exists a NAF, A' of X' with 
f ' ( X ' )  = u%,(X') up to P" evanescence relative to X'. Apply now (4.8) to obtain a 
NHRM, ~ carried by ~T, ~ where T :-- T~,, with K extending A'. Clearly f ( X )  and 
u q (2) are PU-indistinguishable, establishing (4.11). 

5. Standard Processes 

Perhaps the most important subclass of Bore1 right processes is the class of standard 
processes. The reason for this is that often one can obtain much sharper results for 
standard processes as will be illustrated in the sections devoted to standard 
processes in what follows, and also that most familiar processes are standard - or 
even better. By a standard process we mean a Borel right process X which is quasi 
left continuous (qlc) on [0, ~[; that is, if (T,) is an increasing sequence of stopping 
times with limit T, then X ( T , ) ~ X ( T )  almost surely on {T< ~}. This is the 
definition used in [26, XIV], where it is shown that almost surely Xthen necessarily 
possesses a left limit X t_ in E for all t e]0, ~[. Therefore we shall take aspart of  our 
definition of  a standard process that X t_ (co) exists in E for all t ~ ]0, ~(co)[ and all 
co e ~2. 

This definition differs slightly from that in [4], where it is always assumed that E 
is locally compact with a countable base. However, it is possible to use most results 
from [4] directly in the present situation because of the following artifice. Let Fbe a 
compact metrizable space containing E~ = E wA topologically. Then E is 
necessarily Borel in Fby  Lusin's theorem. Extend Xon Eto  a Markov process Xon 
F b y  setting .~ = X t if.,Y o e E l ,  Xt = Xo ifXo ~ F - E~. The process Xis obvious ly  
standard in the sense of [4], and results about Xare obtained by simple restriction to 
E~. From now on we shall use results from [4] without further comment, leaving the 
technicalities to the reader. 

In applications it is often necessary to consider a fixed initial measure/t. 

(5.1) Definition. A Borel right process X is/~-standard provided 

(i) P~ almost surely X t_ exists in E on ]0, ~ [, and 
(ii) given an increasing sequence (T,) of stopping times with limit T, 

X(T,)  --* X ( T )  almost surely pu on {T< ~}. 

It is immediate from the main result of this section - Theorem 5.5 below - that 
condition (i) in the above definition is a consequence of (ii). Obviously if X is/~- 
standard for each initial measure #, then X becomes a standard process after 
deleting the null subset of f2 in which X t_ (co) fails to exist in E for some t ~ ]0, ~ (co) [. 
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We also need to consider some of the results of  section 2 for a single initial 
measure. To this end let j u  be the ideal of  pu evanescent processes and let 
dgu - ( ~  + x f " )  v J "  be the~t-measurable processes on IR + x f2. It is evident that 
~ u  = (~+  x f ro )  v i v .  The class Xu  of / t -natural  processes consists of  those 
processes in ~ "  which are P"  indistinguishable on ~0, ~[~ from a natural process. A 
process in J "  is (~tt") adapted. It is easy to check that Y ~ A/~' if and only if there 
exists W E ~au which is P"  indistinguishable from Y on ~0, ~[[. An (~'~t") stopping time 
is/t-natural provided it is equal to a natural stopping time P" almost surely. A/t-  
natural increasing process A is an increasing process which is/t-natural and satisfies 
A s_ = A~. We claim that such an A is P"  indistinguishable from a natural increasing 
process B. To see this one may suppose A uniformly bounded. Since A is ( f t  u) 
adapted it is a standard fact that A is P"-indistinguishable from an (optional) 
increasing process A- with ~ = Jr for all t > ~. We may also assume that .7 is 
uniformly bounded. Then A-" exists as a natural increasing process, and in 
particular it is a dual natural projection of ~T, hence of  A, relative to PU. Therefore 
A" and A are P"-indistinguishable, establishing the claim. If  A is a /t-natural 
increasing process for every/t ,  then A being ( ~ " )  adapted for every/ t  is (,~-) 
adapted. Consequently A is (indistinguishable from) a natural increasing process; 
namely A". 

The next result shows that the natural projection of a function of  X has a very 
simple form when X is standard. 

(5.2) Theorem. Let h be apositive (or bounded) nearly Borelfunction on E. I f X  is 
~t-standard, then "(h(X)) is pu indistinguishable from h (X_) 1 >,~E. Of  course, 
h (X_) 1 ~o. ~w is only defined a. s. P". 

Proof Clearly we may suppose h Borel in proving (5.2). By a monotone class 
argument it then suffices to assume h is a bounded continuous function. Let 
Yt = lim inf h (X~) for t > 0. It is known, [9] or [10], that Yis P~ predictable for all v, 

s t ?  t 

and hence Ye N (see, for example [39, 23.1]). Now h being continuous, Y is pu 
indistinguishable from h (X_) on ~0, ~[. Let "h(X) 1> cf = W 1> ~with W ~ b N .  I f T  
is a predictable stopping time X r = Xr_ a. s. pu on { T ~ ~ } because of  (5.1-ii), and so 

E .  [WT; 0 < T <  ~] = E" [h(Xr);  0 < T <  ~] 

= Eu [h (Xr_); 0 < T <  r 

= E u [ Y r ; O < T < ( ] .  

Therefore P(1 ~0,~W) = P(1 ~0,~ Y) up to P" evanescence, and the result follows from 
(2.5). 

We are now able to characterize natural increasing processes over a standard 
process. 

(5.3) Theorem. Let X be ~t-standard. Then an optional right continuous increasing 
process A is ~t-natural i f  and only i f  A is carried by ~0, ~ and AA vanishes P" almost 
surely on {X # X_ }. Of  course, {X  =# X_ } is the set of  (t, co) with 0 < t < ~ (co) such 
that either J(t - (co) does not exist in E or X t _ (co) exists in E but X t _ (co) # X t (co). 

Proof I fA is/t-natural, then dA is carried by ~0, ~[ and by the discussion preceding 
(5.2) one may suppose A is natural in showing that AA vanishes P" almost surely on 
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{X 4: X_ }. Let 6 > 0 and let R = inf {t: AA t > 6}. Then R is a natural stopping time. 
It follows from (2.4-iii) and (5.1-ii) that X R_ = XR almost surely P" on {R < ~}. The 
same argument applies to the successive times at which AA > 3 and by varying 3 
one sees that AA vanishes on {X:#X_}  almost surely P". For the converse let 
H = {t > 0: X t_ exists in E and X t_ = Xt} and B = in*  A. Then B = A up to pu 
evanescence and B is an optional increasing process with dB carried by ~0, ~ and 
AB vanishing off {X= X_} = H. It suffices to show that B is natural, In other 
words to complete the proof of(5.3) it is enough to show that an optional increasing 
process A with dA carried by ~0, ~ and AA vanishing off {X= X_} is natural. For 
this we may assume A bounded. Let W = Yh (X) with Y e b ~ a n d  h e b & Then from 
(5.2) and (2.7), ~(Yh (X)) = Yh (X_) 1;0,r and hence 

E" ~ Y h ( X ) d A  = E" ~ Y h ( X _ ) d A  = E" ~ " ( rh (X) )dA .  

But processes of the form g generate (9 and consequently E" ~ Z dA = E" ~ "Z dA 
for all Z e b(9. Since A is optional this last equality holds for all Z e b ~ .  Therefore 
(2.18) implies that A is natural, completing the proof. 

(5.4) Corollary. Let T be a stopping time. I f  X is g-standard, then T is g-natural i f  
and only if  X T_ = Xralmost surely Pu on {0 < T <  ~}. Under this last condition there 
exists an increasing sequence of stopping times (T,) such that P" almost surely the 
following hold: (T~) is strictly increasing on {0 < T <  ~}, lim T, = T on {T< (}, and 
lim T~ > ~ on {T> ~}. 

Proof Applying (5.3) to the increasing process A, = 1 tr, , t(t) 1 (0 < r< ~) and using the 
fact proved above (5.2) that a g-natural increasing process is P" indistinguishable 
from a natural increasing process, the desired conclusions follow from (2.4). 

Remark. The best previous result along these lines is that if X is a right process and 
T a stopping time with X r =  X T_ on {0 < T <  ~}, then T is accessible (see [45] or 
[16]). Corollary (5.4) greatly strengthens the conclusion when X is standard. Of 
course, i fXis  a Hunt process and XT= Xr_ on {0 < T <  oo}, then Tis predictable. 

We come now to the main result of this section. It characterizes standardness in 
terms of hitting times. 

(5.5) Theorem. Let X be a BoreI right process and g an initial law. Then the 
following are equivalent: 

(i) I f  (D,) is a decreasing sequence of finely closed sets in ge and T = lim TD, , 
then X(TD~ ) --+ X(T)  a.s. P" on {T< (}. 

(ii) X is g-standard. 

(iii) P~ a.s. Xt-  exists in E on ]0, ~ [ and if  X~_ denotes the Ray left limit in a Ray 
compactification E of E ~ {A}, then up to pu evanescence 

({x {x = x}) {x_ = x} 

Proof In proving (5.5) we may suppose that A is isolated in E ~ - E w { A } .  
Obviously ( i i )~  (i). The majority of the argument is to show that ( i ) ~  (iii), so 
suppose that (i) holds. Let F be a compact metric space containing E u{A}  
topologically as a Borel subset. (W e are not using the Ray topology here.) The first 
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step is to show the existence of X t_ in F. To this end ifg is a continuous function on 
F and a < b, then the set 

(lim inf g(Xs) < a, lim sup g(Xs) > b~ F 
[ s ~ t  s t ~ t  J 

is predictable (see [9, VI-(T3)] or [39, w Since t ~ g(Xt) is right continuous, F 
does not contain any infinite strictly decreasing sequence. It follows that the debut T 
o f f  is a predictable thin terminal time with [UT~ ~ F. We shall show that pu (T < ~) 
= 0 and by letting a < b run over the rationals and g over a countable dense subset 
of C (F), this implies the existence of X t_ in F o n  ]0, ~ [ almost surely P". Let (D,) be 
the sets in (3.1-i) and T, = TD. Because X, eD,  on an interval ] T -  e, T[ if 0 < T 
< oe and [[T~ = F, the hitting times of D, c~ {g __< a} and D, ~ {g > b} respectively 
both increase to T o n  {T< oe}. Using (i) for these sequences we obtain g(Xr) < a 
and g(Xr) > b almost surely pu on {T< ~}. Consequently PU(T< ~) = O. 

Let X_ --- (Xt_) be the left limit o f X i n  Fwhich exists PU almost surely on ]0, ~[. 
We next claim that up to P" evanescence {X_ # X} ~ N0, ~ cannot intersect the 
graph of any thin terminal time T which is PU predictable. For, given such a T, let 
D, = {x: E~(e -r) > 1 - l/n} and T, = TD. Then according to (3.1-i) (T,) increases 
to Tstrictly from below almost surely pu on {T< ~}, and so it follows from (i) that 
J(r- = XTa. S. pu on {T < ~}. This establishes the claim in the second sentence of this 
paragraph. 

Recall that X"_ =(X[_)t>0 denotes the Ray left limit of X in a Ray 
compactification E of E~. Here E z plays the role of E in [16], [39], or [45]. It is 
known [16, 13.1] or [45, w that any stopping time with graph contained in 
{X2 = X} up to P" evanescence is P" predictable. Now let d be a metric for F 
and e > 0. Set H = {(t, co): X t_ (co) exists in F and d(Xt_ (co), X~(co)) > ~}. Then 
W =  { X 2  X} ~ H ~ 0 ,  ~[[ is a discrete optional set, and its debut T is a thin 
terminal time which is pu predictable. Consequently P" (T < ~) = 0. Hence up to pu 
evanescence 

(5.6) {X"_ = X} ~ ~0, (~ ~ {X_ = X} ~ ~0, ~ .  

At this point we require the following result from [39, w but for the 
convenience of the reader, a proof will be sketched in (5.9) at the end of this section. 

(5.7) There exists a predictable AF, A, possibly charging ~, with bounded one 
potential such that {AA > 0} = {X2 ~Ez} up to evanescence. 

Let T be the debut of {AA > e}. Then T is a thin predictable terminal and, by the 
argument given two paragraphs above, the intersection of {X ~= X_ } ~ ~0, ~ and 
~T~ is Pu evanescent. Varying ~ > 0 it follows that {X2 ~ E~} ~ ~0, ~ ~ {X 4 = X_ } is 
PU evanescent. Writing this in the form 

(5.8) {X ~_ ~ Z~} ~ ~0, ~ ~ {X_ = X} ~ ~0, ~I 

up to pu evanescence, and bringing in (5.6), the fact ([16, 13.4] or [39, w that 
X_ = Z ~_ PU almost surely on {X2 sE~, X2 # X.}, and the fact that A is isolated 
in E~, we see that X s E almost surely pu on ]~0, ~[ and that (i) ~ (iii). 
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To complete the proof  we show that (iii)=> (ii). Let (T,) be an increasing 
sequence of stopping times with limit T. We must show that X(T,)  ~ X (T )  a.s. P" 
on {T<  ~}. From [16, 13.1] or [45, w T is totally inaccessible on {X~r_~EA, 
X~_ + Xr, T <  ~}  and so T, = Tand  X(T,)  = X ( T )  for large enough n on this set. 
On {X r_ = Xr, T <  ~} one obviously has X(T,)  ~ X(T) .  In view of (iii) this covers 
all possibilities. 

(5.9) Proof of(5.7). In this argument the state space for Xis taken to be EA, SO that 
X has infinite lifetime and there is no difference between natural and predictable. 
Because the minimum of two natural q-potentials is again a natural q-potential, it is 
easy to see from the construction of  the Ray cone R -  see [16, w 10] or [39, w 39]-  that 
each g ~ R is a bounded q-potential for some q > 0. Let g E R. Then for some q > 0, 
g = u~with B a predictable AF of X. Using the fact ([16, 11.15] or [39, w 39]) that the 
predictable projection of g(JO is f iog(X2) where (~) is the Ray semigroup 
constructed from (Pt), it is not difficult to check that A Bt = g (Xt) - - Po g (X2) (see 
[39, 42.7]). Let ~ denote the continuous extension of g to E. Then ABt = ~,(X~_) 
- Pog(X~-) and so A t = ~ (~, - flog) (X~_) defines a predictableAF ofXwi th  q- 

O < s < t  

potential dominated by u~ = g. If  g < c then u~ = u~ + (q - 1) U 1 u~ < (q + 1) c, 
and so A has a bounded one potential. Next let (g,) be a uniformly dense sequence 
in R with g, being a q,-potential. Define 

At ~ @, - r = - Po g . )  ( x ~ _ ) ,  
O < s < t  

A t =  ~ 2 - " ( q , + l )  -~ I]g, ll-aA~ '. 
n > l  

It is evident that A is a predictable AF of  X with a bounded one potential and 
{AA > 0) = ~ {(ft, - flog,) (X2) > 0). But this latter set is precisely {X2 # EA) up 

n 

to evanescence - see [16, 11.16] or [39, w Thus A has the properties claimed in 
(5.7). 

(5.10) Remark. The somewhat peculiar looking condition (5.5-iii) will turn 
out to be technically very useful in section 16. In addition, it turns out that the 
condition (5.5-iii) is unchanged if we replace {X2 ~.EA} by {X2 e E}, because 
F = { X 2 -  A} ~ 0 , ~  turns out to be evanescent. To see this, observe that on 
one hand F is obviously in A/and has countable sections, while on the other hand, 
X 4= X2 on F implies, by [16, 13.1] applied to X with state space E~, that F is a 
countable union of graphs of  totally inaccessible stopping times. 

Part  II: Processes  With an Excess ive  Initial Measure  

6. Exceptional Sets Relative to an Excessive Measure 

A measure is countablyfinite provided it is a countable sum of finite measures. A 
measure m on (E, g) is excessive (relative to X or (Pt)) provided it is countably finite 
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and satisfies (i): m Pt < m for each t > 0, and (ii) m Pt $ m setwise as t $ 0. It is well- 
known (see the argument at the bottom of page 257 of  [4]) that when m is o--finite, 
(ii) is a consequence of  (i). The advantage of  the above definition is if 2 is a 
countably finite measure on E, then 2U is excessive, although 2U need not be o-- 
finite even when 2 is finite. We now fix an excessive measure m. It is not assumed 
that m is a reference measure. The countable finiteness justifies the use of  Fubini's 
theorem in the arguments involving m which follow. Actually some of  these results, 
particularly in w depend only on the inequality (i) and not on (ii). However, we 
have made no effort to separate off these results, especially since beginning in w we 
suppose that m is, in fact, a-finite. 

Let dora denote the completion of  C relative to m. If  f,  g ~ dora, we write f = g [m] 
to mean f =  g a.e.m. If  f ,  g ~ d~ and f =  g [m], then since m P  t <= m and qmU q <= m 
it follows t h a t P t f  = Ptg [m] and u q f  = Uqg [m] for t > 0 and q > 0. (Consider first 
the case f,  g bounded and q > 0, and then pass to the general case by taking limits.) 
Consequently given f E &~' and choosing g e do+ w i t h f  = g [m], Pt fand  Uqfare well 
defined as the m-equivalence classes containing Ptg and Uqg respectively. Therefore 
we may regard Pt and U q as operators on m-equivalence classes. In fact since 
(Ptf )  a <  Pt(f2) ,  Pt and U q send L2(m) into itself for t > 0, q > 0. I f f~bdo  m and 
g ~ bdo with f = g [m], then Uqg, Urg, and U ~ Uqg are Borel representatives of  the 
corresponding equivalence classes with g are replaced by f.  Hence (U ~) satisfies the 
resolvent equation on m-equivalence classes. We shall use the notation 
(f, g) = ~fg dm whenever the integral exists. Using the fact that m is countably finite 
it is a standard argument to show that if f,  g e do;", then t ~ (g, P t f )  is Borel 
measurable and that 

(6.1) (g, Uqf) = ~ e-qt (g, P t f )  dt. 

We shall encounter a number of  types of exceptional sets relative to pro. The 
definitions below depend on m only through its null sets, which are the same as 
those of an equivalent finite measure, and this permits us to use some results proved 
previously for finite measures. However, in general, pm is only countably finite. 

Given a nearly Borel set F ~  Ele t  T e - inf{t > 0: X t ~ F} denote its hitting time 
and S F = inf {0 < t < (: Xt-  exists in E and X~_ ~ F} denote its left hitting time. The 
argument in the first part of  the proof  of Theorem 13.4 in [16] shows that S F is a 
stopping time over (~-). Note that {Se< co} = {SF< ~} and {TF< o0} = {TF< ~} 
for F c  E. Also because E is a separable metric space and t ~  X,(co) is right 
continuous, the set of t for which X~ _ (co) fails to exist in E o r  X~_ (co) exists but is not 
equal to X~ (co) is countable for each co. 

(6.2) Definition. Let F c  E be nearly Borel. Then Fis  

(6.3) m-polar i fP  m {TF< o0} = 0; 

(6.4) left m-polar i f P  m {SF< oo} = 0; 

(6.5) m-semipolar if there exists a nearly Borel semipolar set G such that 
( F -  G) w (G - F) is m-polar. 

In (6.5), F ~  G is also nearly Borel semipolar, and therefore every m-semipolar 
set is the union of  a nearly Borel semipolar set and an m-polar set. 
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(6.6) Proposition. I f  f is a nearly Borel function on E, then there exist Borel 
functions g and h with g <= f <= h and such that {g < h} is both m-polar and left m- 
polar. 

Proof  It is known that the set {X_ 4: X} = {t: 0 < t < ~, X t_ exists in E, X~_ ~ Xt} 
= w ~R,~ where each R, is a stopping time for n > 1. See, for example, the proof of 
(13.4) in [16]. Let/~ be a probability equivalent to m and let v, (dx) = Pu [XR,_ ~ dx, 
R , <  ~}  for n > 1. Define v ---/t + ~ 2-"v,  and choose Borel functions g and h 

n>l  
with g < f =< h such that P~ [g (Xt) < h (Xt) for some t > 0] = 0. It is evident that g 
and h have the properties asserted in (6.6). 

One immediate conclusion from (6.6) is the fact that if G = E is nearly Borel and 
semipolar then there exist G 1 , G 2 ~ ~ with G1 = G ~ G 2 and G 2 -- G 1 is m-polar 
(and left m-polar). In particular, G 1 is semipolar. Consequently, the condition (6.5) 
is not changed if we require G to be Borel rather than nearly Borel. 

Azem~t [3] proved, assuming ~ < ~ a.s., that 

(6.7) Theorem. A nearly Borel set F is m-semipolar if  and only i f  P m {X t ~ F for 
uncountably many t} = O. 

Applying Az6ma's result to the q-subprocess o fX  (q > 0) and then letting q ~ 0, 
it is clear that (6.7) is actually valid in complete generality. Observe that the 
condition in (6.7) is unchanged ifX~ is replaced by X~_. That is, left m-semipolar is 
the same as m-semipolar. 

It should be observed that m-polar sets are not nearly as useful as polar sets. For 
example, if F ~  Eis  polar, U is absorbing (i.e., P~ {X t ~ F ~ for all t > 0} = 1 for all 
x e U)  and F may be deleted from the state space without affecting the process on 
U. This is not the case with an m-polar set, and for this reason we define a new type 
of exceptional set intermediate to polar and m-polar. 

(6.8) Definition. A nearly Borel set F c  E is m-inessential if U is absorbing and F 
is m-polar. 

It is clear that an m-inessential set F m a y  simply be deleted from E so that X on 
U is a right process and under P~ it is equivalent in law to X under P".  

It is almost immediate that if F c  E is nearly Borel and U is absorbing 
(for example, if F =  { f =  oo} with f q-excessive), then F is m-polar if and only if 
m(F)  = 0. 

(6.9) Proposition. Let {f,} be a decreasing sequence of  q-excessive functions and 
define f =  l imf, .  Then { f >  0} is m-polar provided m { f >  0} = 0. 

Proof Because Pr q f ,  < f ,  for every stopping time T, P~ f < f also. In particular 
P~rf(x) = 0 if f (x)  = 0. If  { f >  0} were not m-polar we could find, by the section 
theorem, an ~ > 0 and a stopping time Twith [[T~ ~ {f(X) > e}, P~ {T< or} > 0. 
Then if f ( x )  = 0 

0 = P~.f(x) >-_ ~E~[e-qV]. 

That is, P ~ { T < ~ } = 0  if f ( x ) = O .  Therefore, r e ( f > 0 ) = 0  implies 
P~ {T< ~}  = 0, a contradiction which establishes that { f >  0} is m-polar. 
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(6.10) Proposition. (i) I f F =  E is finely open, nearly Borel, and m (F) = 0, then F 
is m-polar. 

(ii) I f  FE gm and mUq(F)= O, then m ( F ) =  O. In particular i f  F is m- 
semipolar, then m ( F) = O. 

(iii) I f  f and g are q-excessive and f =  g [m], then { f  :~ g} is m-polar. 

Proof For (i), Fubini's theorem and the excessiveness of m give 

E m 1 F(X~) d t=  S mP~ (F) dt = O. 
0 0 

Hence F, being finely open, must be m-polar. For (ii) first note that F~  6 ~m implies 
that Fis  in the completion of g relative to rapt and mU q for each t > 0 and q > 0. 

oo 

Since S e -qt mPt(F)dt = m U q (P0 = 0, it follows that mPt (F) = 0 a. e. Lebesgue in 
0 

t. But mPt(F ) "r m (F) as t $ 0, so m (F) = 0. If  Fis  m-semipolar, (6.7) implies that 
mU(F) = 0. Finally setting F = {f4: g}, (iii) is immediate from (i). 

(6.11) Proposition. I f  f is q-excessive, then there exist Borel q-excessive g and h with 
g < f<= h such that {g < h} is m-polar. 

Proof Suppose first that q > 0 and f =  Uqk with k e b g * .  Choose k l ,  k z ebg+ 
with k 1 < k < k 2 and mUq({kl < k2} ) = 0. Then gqkl <-_f<-_ Uqk2 with the outer 
functions agreeing m a. e. Applying (6.10-iii) the result follows in this case. If  f is q- 
excessive with q > 0, choose f ,  e bg* with uqf, ~ f By the first case there exist Borel 
q-excessive g,, h, with g, < Uqf, < h, and {g, < h,} m-polar for each n. Define 

= lim inf g,, h =  lim inf h,. Then ~ __< f < h-and { ~ < h-} is m-polar. But ~ and h-are 
only q-supermedian (relative to (uq)). Let g=  lira rUr+qg, h= lim rU~+qh. Then g 

and h are Borel q-excessive functions with g __< g, h ____ h-and {g < os} has potential 
zero. Hence m ({g < g}) = 0 by (6.10-ii). Also g < f <  h. Since {g < h} is contained 
in {g < g} w {~ < h-}, it has m-measure zero, and again the result follows from 
(6.10-iii). Finally ifq = 0, f i s  r-excessive for each r > 0. Thus for each n, there exist 
Borel l/n-excessive functions g, and h, with g, < f__< h, and {g, < h,} m-polar. Let 

= lim inf g,,  h-= lim inf h,. Then ~ and hare Borel and 1/n-supermedian for each 
n, and hence (zero) supermedian. Since {~ < h-} is m-polar one now finishes the 
argument as in the previous case. 

(6.12) Proposition. Let F ~  E be m-polar. Then F is contained in a Borel m- 
inessential set which may be taken jqnely open if F is finely open. In particular an m- 
inessential set is contained in a Borel m-inessential set. 

Proof By (6.6), Fbeing nearly Borel, we may choose a Borel set Hwi th  F c  H a n d  
H m-polar. The following argument shows that if Fis  finely open, H may be taken 
finely open. Let q/(x) = P~(TF< co). Then qJ is excessive, ~, = 0 [m] since F is  m- 
polar, and F c  {qJ > 0} because F is  finely open. Now using (6.11) choose a Borel 
excessive function h with V __< h and {V < h} m-polar. Then F ~  {h > 0} and h 
= 0 [m]. In view of (6.10-i), H = {h > 0} has the desired properties. Now define 
~o (x) = P~(T~< oo). As before (p = 0 [m] and one may choose a Borel excessive 
function g > q) with g = 0 [m]. Let K = {g > 0} u H. Then Kis Borel, m-polar, and 
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finely open if His. To complete the proof  we must show that K c is absorbing. I fg  (x) 
= 0, then (p (x) = 0 and so PX(TH< oo) = 0. Thus if x s K  c = {g = 0} ~ H c, the 
process starting from x never enters H. Because (g = 0} is absorbing, it is now clear 
that K c is also absorbing. 

(6.13) Proposition. I f  F is m-semipolar then F is the union of an m-polar set and a 
countable number of totally thin Borel sets. 

Proof. As noted following (6.5) F is the union of  an m-polar set and a nearly Borel 
semipolar set. Since the latter is a countable union of  thin sets, it suffices to prove 
(6.13) assuming F thin. Let ~o(x)= EX(e-r~). Then (p < 1. Using (6.6) choose a 
Borel set H ~  F and  a Borel function h > ~0 with F - H a n d  {~o < h} m-polar. Then 

H, =_ H ~  {h < 1 - l/n} c F ~  {(? < 1 - 1/n} = F,. 

Clearly H,  is Borel, F = w F,, and F -  w H,  ~ • ( F , -  H,)  is m-polar. Hence it 
suffices to show that each H,  is totally thin. But TH~ > T e and so if x e H,  

EX(e-rI~,) < E~(e -~') = q)(x) < h(x) < 1 - 1/n, 

completing the proof. 
In dealing with X under P" ,  one sometimes has to extend the definition of 

excessiveness. 

(6.14) Definition. A function f ~  gg' is m-q-excessive (q > 0) in case both of  the 
following conditions hold: 

(6.15) e - q t P ~ f < f m  a.e. for each t > 0; 

(6.16) (g, e-q~Ptf) ~ ( g , f )  as t $ 0 for every g eg g ' .  

I f f ~  gg' satisfies (6.15), then since m is excessive, e-q~Ptf< e-qsPsfa.e,  m 
when 0 < s < t. Consequently the limit in (6.16) is an increasing limit as t$ 0. 
Moreover if (t,) is a sequence decreasing to zero e-q~,Pt,fincreases m a. e. to some h 
and from (6.16), (g, f )  = (g, h) for all g e d~. Hence f =  h[m] provided m satisfies 
the following condition: 

(6.17) / f f~,  f2 e 8g' and f f~ g dm = ~ f2 g dm for all g ~ 8~,  then f t  = f2 [m]. 

Clearly any a-finite measure m satisfies (6.17), but there are also interesting non-a- 
finite measures for which (6.17) is valid. The following proposition is now 
immediate. 

(6.18) Proposition. Suppose (6.17) holds for m. I f  f ~ gg satisfies (6.15), then f 
is m-q-excessive if and only if  for every sequence (t,) decreasing to zero e-qt"Pt.f  
--+ f m  a.e. 

I f f  is m-q-excessive, then because of  (6.1), (g, rUq+~f) increases to (g, f )  as 
r ~ oo for each g s g~'. Thus if m satisfies (6.17), r U ~ +"f < s U q +sf < f,  m a.e. for 
0 < r < s, and rUq+~fincreases t o f  m a.e. as r ~  ov through any sequence. 

(6.19) Proposition. Suppose m satisfies (6.17). Then f ~ gg is m-q-excessive i f  and 
only i f  there exists a Borel q-excessive function f with f = f[m]. 
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Proo f  If  there exists such an f t h e n  f is plainly m-q-excessive. Going the other 
direction, it is sufficient to suppose f bounded, replacing f by f / x  k in the general 
case. Note that it is enough to prove (6.19) for q > 0, and we shall so assume from 
now on. Let h, > 0 be a Borel function with h, = n ( f -  nU"+qf)  [m]. It follows 
from the discussion above (6.1) that 

Uqh, = U q [n ( f  - ng"+q f ) ]  = nU"+q f [ m ] .  

Let h = lira inf Uqh,. Then h is a Borel q-supermedian function and from remarks 
above (6.19), h = f [ m ] .  Let f b e  the q-excessive regularization of  h. Clearly f i s  
Borel and since f =  h except on a set of  potential zero, h = f [m] .  Hence f = f [m] ,  
completing the proof. 

The following properties of  excessive measures will be required in later sections. 
We do not assume (6.17) holds for m. 

(6.20) Proposition. (i) Let  T be a terminal time. Then pm [T=  t] = 0 f o r  every 
t > 0 .  

(ii) Let  F c ]R + + x f2 have an expression as U [(T"] where the T", n > 1 are the 
n 

iterates o f  a terminal t ime T. Then Pm { t ~ F}  = O for  every t > O. 

(iii) Given t > O, pm { X t-  doesn't exist  in E or X t_ exists in E but X t_ + Xt } = O. 

Proof. Let m = ~ m ,  with m , ( E ) <  oo. Then P m , [ T <  t] < oo for all t > 0, so 
pmn[T= t] > 0 can occur for only countably many t. It follows that P~ [T=  t] > 0 
for only countably many t. However, Pm [ T =  t + s] = P~ [T>  t, To 0 s = t] = 
pm [pxs(T= t); T >  t] < P'~s IT= t] <pm [T= t]. From this inequality, (i) follows at 
once. Part (ii) is a simple consequence of (i) because [.J ~T"] ~ U ~r + To 0~] 

n r 

where the second union is over all rationals r > 0. Standard arguments (see, for 
example, the proof  (13.4) in [16]) show that the set of  (s, co) for which either X,_ (co) 
does not exist in E o r  X~_ (co) exists in Ebu t  X~_ (co) 4: X~(co) is a countable union of 
sets of the type in (ii). Therefore (iii) follows from (ii). 

7. Homogeneous Random Measures 

When working with Markov processes with a distinguished excessive initial 
measure m one is led to construct functionals whose shift properties hold only up to 
Pro-null sets. For  this reason it is interesting to consider the following extension of 
the notion of  a HRM. 

(7.1) Definition. A random measure ~: carried by ~0, (~[ is a weak HRM of  X 
(relative to m) if for every t > 0, 

(7.2) ~c(Otco, B ) = ~(co, B + t )  foral l  B e N  + 

holds except on a pm null set, possibly depending on t. 

We shall prove later (7.4) that in many cases, a weak HRM may be perfected to 
give a genuine HRM as defined in (4.5). 
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Suppose now that ~: is a weak HRM of  X (relative to m). The q-potential of ~: is 
O3 

defined by u~(x) - E x S e-qt ~(dt). 
o 

(7.3) Proposition. The q-potential of  a weak H R M  is m-q-excessive (as defined in 
(6.14)). 

Proof Given t > 0 the weak additivity (7.2) gives 

E ~ ~ e -q~c (ds )=E  ~ e-qt e-qSx(ds o0 t 
It, col 

for m a . a . x .  The right side is equal to e-qtPtuq(x). Therefore, if g ~ g * ,  

(g, e-qtPtu~) = (g, E" ~ e -q~ ~c(ds) l. From this, (6.15) and (6.16) are evident. 

/ 

\ ]t, col / 

(7.4) Theorem. Let ~c be a natural weak H R M  whose q-potential u~ is finite m a.e. 
Then there exists a natural perfect H R M  ~ which is pm indistinguishable from ~c. That 
is, ~c may be perfected relative to pro. 

Proof The argument that follows is in the same spirit as those in (3.3) and (4.11). 
Let u denote the m-q-excessive function u~, and recalling (6.19), let f denote a Borel 
q-excessive function with m { u . f }  = 0. The set F -  { f <  oe} is absorbing and 
m (F  c) = 0 so U is m-inessential. Denote by X' the process Xrestricted to F, defined 
on ~'  -- {co ~ ~2: X t (co) ~ F ~ {A} for all t > 0}. The restriction ~c' of  ~ to Q' is pm a. S. 
finite valued on compact subsets of  [0, ~[. One checks that ~c' is natural over J('. 

In what follows we assume m (E) = 1, replacing m by an equivalent probability 
law if necessary. Denote by Z '  the (P~, f2')-potential of ~ e -q~ ~c'(ds), so that for 
every t > 0 ]o,t] 

Then by (7.2), Zt' = e-qtu (Xt') P "  a.s. for every t > 0, so Z; = e-  qtf(X[) pm a.s. By 
right continuity of  both sides in t, the last equality holds up to pm evanescence. A s f  
is finite on F i t  follows as in the proof  of(3.3) that there exists a unique predictable 

t 

AF B' of  X', possibly charging ~', such that e-qtf(X[) + ~ e-~dB; is a P" local 
o 

martingale for every probability law # carried by F. As ~' is natural, then as pointed 
t 

out in w (~:')P exists. Since ~ e-q~(~c')P(ds) also has Z' as its P "  potential, B' and 
o 

(K') p are Pro-indistinguishable on O' in view of  the uniqueness of  the Doob-Meyer 
decomposition. Observe that as ~c' is carried by ~]0,~'W, (~c') p is carried by 
{l' > 0} -= A' (in the notation of w so that (~')P and 1A'* B' are Pro-indistinguishable 
on f2'. According now to (2.15-ii) and (2.16), ~:'= ((~:')P)" is Pro-indistinguishable 
(on f2') from (1 A, * B') ". However, in view of (2.30), (1A,* B')" may be taken to be a 
(perfect) NAF of X'. We now invoke (4.8) to get a natural perfect HRM y of  X 
extending (1A,*B')". Clearly 7 is pm-indistinguishable from ~, so the proof  is 
complete. 

We turn now to characterizations of HRM's by their potentials. 
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(7.5) Lemma. Let  ~1, to2 be H R M ' s  o f  X. Suppose ~1 and ~c 2 are pm 
indistinguishable and suppose that (2 o = {co: tcl(co, B ) @ tc2(co, B ) f o r  some 
B ~  ++} belongs to Y .  Then {x: PX(f2o)>0} is m-inessential. 

Proof. Additivity o f  tq and /t5 2 gives 0 t - l ( f 2o )=  {co:tq(co, B) 4:~2(co, B) for  
some B s ~  ++ with B =  ]t, oo[}, so 0,-l(f2o) increases to No as t$ 0. I f  we set 
(p (x) = px  (f2o), this leads to Pt ~o (x) $cp (x) as t $ 0, so ~o is excessive. But m (~o) = 0 
since Pm(f2o) = 0 by hypothesis.  Therefore  {(p > 0} is m-inessential, by (6.10). 

(7.6) Remark .  The condit ion f2 o e -~-in (7.5) is satisfied if, for  example, there exist 
t 

a strictly positive measurable process M such that  ~Ms~j(ds  ) < oo a.s. f o r j  = 1,2 
r 

for  each 0 < r < t < o% for then ~q and ~:2 are countable sums o f  finite kernels. 

(7.7) Theorem. Let  ~1, ~2 be natural H R M ' s  whose respective q-potentials u~ , u~ 
are both f ini te  m a.e. Then K 1 and tc 2 are pm indistinguishable i f  and only i f  u q = u~ 
a.e. [m]. 

Proof. Assume u q = u~ a.e. Both  {u~ =oo}  and {u~= oo} are obviously m- 
inessential and (6.10) shows that  {u~ 4= u~} is m-polar. We may,  by (6.12), choose a 
Borel m-inessential set F ~  {u~ = oo} ~ {u~ = 00} w {u~ 4= u~}. Let  X'  denote X 
restricted to U ,  f2' = {co e f2: X~(co) ~ U u {A} for all t > 0}, and let ~cl, ~; be the 
restrictions o f~a ,  ~c2 to (Y. Then  ~[,  ~ have finite q-potentials u] IF,, u~ I F'" Because 
N AF 'S  with finite q-potentials are uniquely determined by their q-potentials, it 
follows that  tr and ~c~ are indistinguishable on f2'. Because pm (~2 - ~2') = 0, ~ and 
~:2 are therefore pm indistinguishable. The reverse implication is obvious. 

8. The Revuz Measure of a H R M  

For  this section we require the addit ional  hypothesis that  X~_ exists in E for all 
t e ]0, ~[. Again, m is a fixed excessive measure. 

Given a H R M  ~, as defined in (4.5), and given f ~  g * ,  let f *  ~ (resp., 
jr_ * ~:) denote the H e M  ( f ,  ~c) (co, dt) = f ( X  t (co)) ~c (co, dr) (resp., ( f_  * ~c) (co, dt) 
= f ( X ~ _  (co)) ~c (co, dt). ) 

Excessiveness o f  m gives one 

E ~ ( ~ l s ,  s +  t]) = E~  (~(]0,  t])o 0~) = E'~',(~:(]0, t]) 

=< E '~ ~ (]0, t]). 

Therefore,  if one defines ( p ( t ) -  E~tc(]0,  t]), it follows that  ~o is subadditive: 
~0 (t + s) _-< q) (t) + ~o (s). Clearly (p is increasing with values in [0, oe ]. I f  (r (to) < oe 
for some t o > 0 then (p (t) < oo for all t > 0, 9 is right cont inuous on 1R + and 
(p(0) = 0. It is an elementary and s tandard fact that  if S =  sup cp(t)/t, then 

t > 0  

lim (p (t)/t  = S and that  2"q)(2 -n) increases to S as n ~ oo. See, for example, the 
t ,~0 

p r o o f  o f  II . l  in [35]. The Revuz  measure v m of  ~c (relative to m) is defined by 
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(8.1) v~ ( f )  = sup t -1 E m [(f_ * K) (]0, t])] 
t > O  

= lim t-1 E m ~ f (X~_)  tc (ds), 
t ~ 0  ]0, t] 

f o r f ~  #*.  It is immediate from the facts listed above that v~ is a measure on (E, #). 
For a fLxed m we often write v~ in place of v~ when there is no danger of 
misinterpretation. 

A HRM ~: is called integrable if v~(E) < 0% a-integrable if v~ is a-finite. (This is 
quite different from being a-integrable over (_9, ~ or W,, as defined in w In case 
~c (dt) = dA t with A a NAF of X, Revuz [36] showed that ifA has uniformly bounded 
jumps then ~c is a-integrable. 

(8.2) Lemma. I f  ~c is integrable and q > O, then ~m(dx)u~(x)  < v~(E)/q. In 
particular, u~ < oo a.e. (m). 

Proof  Integrability of tr gives E ' ~  ]0, t] < t G ( E )  for all t > 0, and together with 
excessiveness of m this yields E m ~c (Is, s + t]) < t v~(E). Consequently, 

m (dx) u~ (x) = E ~ ~ e-  qt tc (dt) 
0 

< v~(E) ~ e -~t dt 
0 

= q-1 v~(E). 

The following lemma contains a preliminary calculation which will be used 
several times in the sequel. 

(8.3) Lemma. Let go ~ + and f e g be positive, and let t l be a countably finite 
measure on E. I f  ~c is a H R M ,  then for  each t > 0 

(8.4) S q~ (s) ds E,e~(f(Xo) ~c (]0, t])) 
0 

= E '  ~ tc (dr) ~ ds go (s) f (Xs )  l[r_ t ,  r[(S) " 
0 0 

Proof  We may assume that t/(E) < ~ .  The left side of (8.4) is equal to 

oo 

go (s) ds ~ ~l (dx) ~ Ps (x, dy) E y [f(Xo) tr (10, t])] 
0 

co 

= ~ tl (dx) ~ go (s) as E ~ [f(X~) tr (]0, t]) o 0~] 
0 

oo 

= E ,  ~ dsgo(s)f(X~) ~c (]s, t+s] )  
0 

= E '  ~c(dr) ~ dsgo(s)f(X~) ll,_t,~(s ), 
0 0 

the countable finiteness condition on tc permitting Fubini's theorem to be applied in 
the last step. 
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(8.5) Corollary. With ~1 and ~ as in (8.3) and q > 0, one has 

(8.6) lira t -  1 E ,vqx  (]0, t]) = E ,  ~ e -qs ~ (ds). 
t ~ 0  0 

Proof  Applying (8.3) 

o3 

EnvqK(]0, t]) = ~ e-qSdsE~e,K(]O, t]) 
O 

= E" ~ lc(dr) e -q 'ds .  
0 (r-t)+ 

B u t t - t  i e - q S d s ~ e - q " a s t ~ O w h e n r > O ,  a n d i t i s d ~  
(r-t)+ 

t -1 e -q(r-')+ [ r -  ( r -  t) + ] < e - q ( r - t ) +  . 

If  t < 1, this is in turn domina ted  by eqe -q'. Hence, by the dominated  convergence 
o3 

theorem, (8.6) holds whenever E~ ~ e-qr~c(dr)<  o9. On the other  hand, if this 
integral is infinite, observe that  0 

t -1  i e - q ~ d s > = t - l e - q ~ [ r - ( r - t )  +]" 
(r-t)+ 

But t -  1 [r - (r - t) + ] $ 1 as t $ 0 for each r > 0, and so 

lira inf  t -a E~vqtr (]0, t]) >__ E,I ~ e-q~K(dr) = oo, 
t ~ 0  0 

complet ing the proof.  

(8.7) Theorem. Let  ~: be an integrable H R M  o f  X and let f e ~*  be bounded and 
positive. Suppose that t ~ f ( X t _  ) is pm a.s. left continuous on ]0, ([. Then 

t 
(8.8) lim t -  l Em ~ f (X~_) ~c (ds) = lim t -  l E~ [ f  (Xo) x(]O, t]) . 

t l 0  0 t,~0 

Proof  For  the first par t  o f  the argument  we do not assume that  ~: is integrable nor  
t h a t f  is bounded.  (This is o f  impor tance  in (8.11).) Note  that  the discussion at the 
beginning of  this section shows that  the limit on the left side o f  (8.8) exists (possibly 

+ c~) for any H R M  and any p o s i t i v e f e  g* .  Since m is excessive, u -  1 i mP~ ds < m. 
0 

Therefore  if u > 0 

(8.9) E "  [f(Xo) 1c (]0, t])] > u -~ i d sE '~*[ f (Xo)  tr (]0, t])]. 
0 

To evaluate the right side of  (8.9) we use (8.3) with r  u -1 11o,,1(s), and 
tt 

obtain t - 1 E  m [f(Xo) ~c (]0, t])] > u 1E  m ~ tc (dr) Jdr), where Jr(r) -= t -1 ~ lt~_~,rt(s ) 
0 

f (X~)  ds vanishes if r > u for t < r - u. If 0 < r < u then for sufficiently small t, 

J r ( r )  = t - X  i f ( X s ) d s  : t - 1  i f(~J(s - ) d s "  
r--t r--t 



34 R.K. Getoor and M.J. Sharpe 

The last expression converges pm a.s. to f ( X r _  ) as t--*0 provided 0 < r < ~, 
because of  the hypothesis on f Hence, by Fatou's lemma, 

u 

lim inf t -  1 E m [f(Xo) ~ (]0, t])] > u-  ~ E ~ ~ f ( X r - )  K (dr). 
t--*0 0 

As previously remarked, the right side has a limit as u $ 0 and so 

u 

(8.10) lim inf t - 1 E  m [f(Xo) ~ (]0, t])] > lim u -1 E m ~ f (X~_)  ~ (dr). 
t ~ 0  u--*0 0 

We suppose now that ~ is integrable and that 0 < f < 1. Applying (8.10) to 1 - f  
(which also satisfies the hypothesis of (8.7)) and using v~(E) < 0% we see that 

u 

lira sup t - 1 E "  [f(X0) tc (]0, t])] < lira u -~ E m ~ f ( X , _ )  x (dr) .  
t ~ 0  u ~ 0  0 

From this and (8.10), (8.8) follows at once. 

(8.11) Corollary. Let  ~c be a ~-integrable H R M  (relative to m)  and suppose f ~ o ~* 
is positive and t ~ f ( Xt_ ) is P~ a.s. left continuous on ]0, ( [. If, in addition, fro is an 
excessive measure then (8.8) obtains. 

Proof  Choose E, $ E with ~, = 1E,_* ~: integrable for each n. Clearly ~c, 1" ~c. Since 
f m  is excessive 

L = v~m(1) -- lim t -~ Em[ f (Xo)  ~(]0, t])] 
t ~ 0  

exists and, in fact, 2 k E s~ ~ (]0,2-k]) $ L as k ~ ~ .  Let fp _= f A p. Thenfp satisfies 
the hypotheses of (8.7) and 

L = lira lim lira 2kEf~m~C,(]O,2-k]). 
k n p 

The latter limit is actually increasing in k, n and p so we may interchange the order 
of limit operation at will. Using (8.7) on fp and ~c, gives 

t 

L = lira lim lira t -~ E m ~fe(X~_) 1E,(X~_ ) x(ds) 
n p t ~ O  0 

t 

L ~ lim t -1 E ~ ~ f (X~_)  ~(ds) .  
t-~ O 0 

But the opposite inequality also obtains because of (8.10) which, it should be 
recalled, was proved without assuming f bounded or lr integrable. These two 
inequalities establish (8.11). 

(8.12) Remark.  Corollary (8.11) is especially useful under the weak duality 
hypotheses of Part III, since it will turn out that any co-excessive function f such 
that f m  is a countably finite measure satisfies the hypotheses of (8.11) (see w 

(8.13) Remark.  If  we drop the hypothesis that X t_ exists in E for 0 < t < ~, the 
proof  of  (8.7) repeated almost word for word gives the following: if ~c is integrable 
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and f 6  b g *  is positive and t ~ f ( X t )  has left limits on ]0, ~[ a. s. (pro) then 

t 

(8.14) lim t -  1 E m [f(Xo) ~c (]0, t])] = lim t -  1 E "  S f ( X s ) -  ~c (ds) .  
t.~0 tJ. 0 0 

The corresponding statement in (8.11) is likewise valid. 

(8.15) R e m a r k .  There is a version of  this result which includes both (8.7) and 
(8.13). Left limits are not assumed to exist in E. Suppose Y = (Y~)~> o is a bounded 
positive measurable process which is homogeneous on ]0, oo[: (Ot Y)s = Y~ on 
]t, oo [, or equivalently, Y~ o 0 t = y~ +t for all s > 0, t > 0. Suppose further that t ~ Yt 
is left continuous on ]0,~[ a.s. P ' ,  and that there exists Y o e b ~ +  such that 
Em ~ I Yo o 0 t - Yt [ dt = 0. Then if tc is an integrable HRM 

(8.16) lira t -~ E m [Y0 ~c (]0, t])] = lim t -  ~ E m i Y~ ~c (ds) .  
t,[0 t,[0 0 

The proof  of  (8.16) is almost identical to that of  (8.7) if one uses the obvious 
analogue of  (8.3). 

Part III: Weak Duality 

For  the remainder of  this paper we shall work under the weak duality hypotheses 
(9.1), (9.2) below, unless explicitly stated otherwise. 

9. The Revuz Formula 

From now on we assume given two Borel right processes X, X on a common state 
space E with transition semigroups (Pt), (fit), together with a a-f ini te  measure  m on 
(E, g). Writing ( f ,  g) - S f g  d m  for f,  g positive functions in ~*, weak duality of (Pt), 
(P~) relative to m means 

(9.1) (Ptf, g) = ( f P ~ g )  

for all t > O , f , g  > 0 in g*. Weak duality of  X, kwi l l  mean (9.1) together with 

(9.2) Xt_ (resp.k~_) ex is t s  in E f o r  all t~]0,~[(resp.,]0, ~[). 

Actually, (9.1) implies that (9.2) holds except on sets in ~2, ~ which are 
respectively pro, pm null. This was shown by Walsh [47]. Assuming (9.2) identically 
on ~ (resp., ~) relieves us from carrying one more exceptional set everywhere. 

The condition (9.1) implies that m is excessive, for i f f ~  g*  

raP t ( f )  = ( 1 , P t f )  = (Pt 1 , f )  < (1 , f )  = m ( f ) .  

Similarly, m is co-excessive. As is customary, we use the prefix "co" to describe 
quantities associated with k.  Thus U q is the resolvent (for X) and 0 q denotes the co- 
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resolvent (the resolvent for J?). N6te also that for each t > 0, P " ( X t  �9 X t - ;  t < ~) 
= P "  (Xt 4: Xt- ; t < C) = 0. This follows from (6.20), but the proof  is simpler under 
the present hypotheses, 

We aim to get the version appropriate to weak duality hypotheses of a formula 
obtained by Revuz [35] under strong duality hypotheses. His result stated that ifA is 
a a-integrable NAF with Revuz measure v a then its q-potential is given by u~ (x) 
= ~ uq(x, y)vA(dy ), u q being the potential kernel density. As processes in weak 
duality need not have such densities, we have to settle for a weaker result. The above 
formula shows that in the case of  strong duality at least, 

u q (x) m (dx) = ~ v A (dy) (m (dx) u q (x, y)) 

= v~ O~ (dx). 

That is, v A 0 q < m and u3 is a version of d (v A CTq)/dm. We shall prove that this same 
result obtains just under weak duality, VA[7 q being defined by VAOq(.)  
= ~ v A (dx) uq (x , . ) .  To be more precise, we prove 

(9.3) Theorem. Let  ~c be a a-integrable H R M  with Revuz measure v~. I f  F ( t, x) is a 
positive Borel function on 1R + x E, then 

(9.4) ~ m (dx) E ~ ~ F(t,  x) ~c (dt) = ~ dt S v~P, (dx) F(t,  x ) .  
0 0 

In particular for  each q > 0 

(9.5) v~ (Y~ (dx) = u~ (x) m (dx) . 

Proof  First note that applying (9.4) with F(t ,  x) = e -q t f ( x )  gives 
~ f (x) u~ (x) m (dx) = ~ v~ (Jq (dx) f (x) which is (9.5). Thus it suffices to prove (9.4). 
In the course of  the argument for (9.4) we shall require the following fact: 

(9.6) If  h is q-co-excessive then t ~ h (X t_) is P'~ a.s. left continuous on ]0, ~[. 

This is a version of  a theorem of Weil [48], proved originally under strong duality 
hypotheses, which is valid in weak duality. The first part of Mitro's proof  [29, w 6] of 
Weil's theorem applies directly to give (9.6). (Once we discuss the associated 
stationary process in w 10, (9.6) will be practically obvious.) 

For notational convenience let v -  v~. It suffices to establish (9.4) when 
v ( E) < oo. Let ct ( x ) = E ~ (~c ]0, t]). Then ~ c t dm <= t v ( E)  < oo and ct + ~ = c t + Pt c~ . 
Let f be a bounded q-coexcessive function. Then e -q t~  f is again such a function 
and so by (9.6) and (8.7) we see that 

v (Ptf) = lim ~- (Ptf,, c~). 
s$O S 

Consequently 

l ( f ,  o ,+~ - c , )  = 1-(f,e,c~) 
S S 

1 (/~tf, cs) --* v (/3t f )  
S 



Naturality, Standardness, and Weak Duality for Markov Processes 37 

as s $ 0. Therefore v P, ( f )  is the right derivative of  (f, ct). I f  M is a bound for f ,  

(f,, ct+s - ct) = (P t fes )  <= M ( I ,  c~) <= M s v ( E )  

shows that t -0 ( f  c~) is absolutely continuous. Combining these observations with 
( f  Co) = 0 gives 

t 

(9.7) (f ,  ct) = ~VPs(f)  ds. 
o 

Given a positive bounded continuous h, f -  q 0 q h with q > 0 is a bounded q- 
coexcessive function and so (9.7) holds for such f But q Uqh--* h boundedly as 
q ~ ~ and consequently (9.7) holds for all bounded, positive, continuous f and 
hence for f 6  b g since both sides are finite measures i n f  Now (9.7) is just (9.4) when 
F(s, x) = 11o, t l (s) f(x) ,  and since both sides of  (9.7) and hence (9.4) are finite for 
such F w i t h  t < ~ a n d f ~ b g ,  it follows that (9.4) holds for F__> 0, F ~  + • g. 
This establishes (9.3). 

(9.8) Remark. Let tc be a a-integrable H R M  and f ~  g*  bounded and positive. 
Then the H R M f _  * tr has Revuz measurefv~. Applying (9.5) we get the formula 

(9.9) ( f v~ ) ( / q (dx )=  E x e-q' f (X t_ ) t c (d t )  m(dx ) .  

In case ~c(dt)=dAt  with A a RAF of  X which lives on { X _ = X } ,  

E x e - q t f ( X t _ )  tc (dr) = E x ~ e-qt f (X~) dA t is what is usually denoted U ] f ( x ) ,  the 
0 0 

q-potential operator for A, so (9.9) determines this operator up to m-null sets. 

(9.10) Theorem. Let  ~c, ? be a-integrable HRM's .  Then v~ = v~ i fandonly if~c" = V" 
up to pm evanescence. 

Proof  It  is clear using (2.14) extended to random measures that ~: and t;" have the 
same Revuz measure, so we may as well assume tc and 7 natural, and that v~ = v~. 
Writing E = w E,, (disjoint) with v~(E,) < ~ for each n, it is enough to prove that 
for each n, 1~_ * tc = 1E,_ * ? up to P~ evanescence. In other words, we may as well 

1 take E,  = E and assume v~(E) < ~ .  Then (9.5) gives us u~ = u~ a.e. (m), both 
functions being finite a.e. (m) by (8.2). The theorem is then an immediate 
consequence of (7.7). 

10. The Stationary Process 

Part of  the theory of dual processes is best understood by means of  a certain 
auxiliary stationary process, which we now discuss. In what follows, it is to use 
different burial points A, 3 for X, k respectively, and we shall do this systematically 
in the remaining sections. In addition we shall suppose that X is realized as the 
coordinate process on the space f2 of  maps co: IR § ~ E w {A} admitting A as a trap, 
and with co being right continuous on [0, ~[ and having left limits in E during ]0, ([. 
Similarly, k is the coordinate process on the corresponding path space ~). 
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The stationary process constructed from the data (Pt, Pt, m) may be described as 
follows. Adjoin A, zl to E as isolated points, and let Wdenote the space of  all maps 
w: 1R ~ E w {A, ~} such that (setting sup q~ --- - oe and inf~b = oo 

(10.1) (i) w(t)  = 3 implies w(s) = 3 f o r  all s < t; 
(ii) w(t)  = A implies w(s) = A for all s > t; 

(iii) i f  c~(w) --- sup {t: w(t) = A} and fl(w) -= inf{t: ~v(t) = A} then the 
restriction o f  w to Is(w), fi(w)[ is rcll in E, and w(ce(w))= A provided c~(w)e lk  
w (fi (w)) = A provided [3 (w) s IR. 

Note that c~(w) < fl(w), and ~(w) < fl(w) if either is finite. Let Z,(~0 = w(t)  
denote the coordinate maps on W. Then c~, fi are thought of as the birth and death 
times respectively of the process Z. Let 0t: W ~ Wdenote the shift operators, so that 
Zs~ 0, = Zs+,. 

By Z,_ (w) we mean the left limit of u ~ Z , (w)  at t if e (w) < t < fi (w), with 
Z t_ (w) defined to be A if t > fi (w), 3 if t < c~ (w). Thus Z t_ (w) s E if and only if 

(w) < t < fl (w). Next define 2 t : IR ~ E w {A, 3} by 

(10.2) 2,(w) = Z(_,I_ (w), t siR. 

The trajectories t ~ 2, (w) are precisely the reverses of t -o Z, (w) made rcll on 
the lifetime interval ]& (w), fi(w)[ - ] - fi (w), - e (w)[. Of course, 2, has birth point 
A and death point z~. 

Let d ~ denote the o--algebra on Wgenerated by the maps Z, ( -  oe < t < oo) or 
alternatively by the 2,. One may then, following Mitro [29] or Kuznetzov [23] 
construct a ~r-finite measure P on (W, d ~ which is invariant under O, and, in a 
manner to be made precise in (10.5) below, makes Z~ (0 <__ t < t )  on {Z o e E} a copy 
of  Xt (0 < t < ~) under pro, and 2 t (0 < t </~) on {2 0 e E} a copy of J?, (0 < t < ~') 
under pro, the forward and backward processes being conditionally independent on 
{z0  s E }  = {20 = < 0 < 

In order to set this description in precise form which is useful for computations 
we consider the maps 17,: W ~ f2 and/7, :  W ~ ~ defined for t siR by 

(10.3) l l ,  w(s) = w( t  + s), s > 0 i f  c~(w) < t < fi(w) 

= [AI (the path constantly = A) otherwise. 

(10.4) II, w(s) = w [ ( t - s )  - 1, s > 0 i f  ~(w) < t < fl(w); 

= [z]] otherwise. 

That is, provided w is alive at time t, Ht w and/Tt  w represent its forward and 
backward halves as viewed from t. If H ---- 17o, /~ = /~o ,  then it is evident that 
Ht = 17o Or, fit = / ~ ~  0t for t s ]t. Recalling that ~ o ,  ~ o  are the uncompleted 
~r-algebras on g2, ~ generated by Z, )(respectively, P may be characterized by the 
formula 

(10.5) P [ T o l I ,  P o I 1 , ; ~ < u < f i ] =  ~ m ( d x ) P ~ ( F ) P ~ ( P )  

valid for all u e l k  F e  ~-o, / ' e  ~ o  both positive. It is clear from (10.5) that P is 
stationary: 

(10.6) O,P = P for  every u e 1R. 
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There is another useful formulation of (10.5) in terms of  the joining operation 
((5, u, co) ~ e3: u: co defined by 

((3: u: co) (t) = o3 ((u - t) - )  if t < u, = co (t - u) if t > u. 

In other words, if co 4= [A] and & # [z]], 

(10.7) H,(e3: u: co) = co,/lu (05: u: co) = c3. 

It is clear that (&, u, co) ---, ~: u: co is a measurable isomorphism of (~ - [A]) x IR 
x (f2 - [A]) onto {c~ < u < fi} ~ W. Note that w =/~ ,w:  t: Fl, wifc~(w) < t < fi(w). 
By a monotone class argument (10.5) then leads to 

(10.8) P[H(&:u:co); c~ < u < fi] = Sm(dx)SPX(dco)~P~(&3)H(cb:u:co) 

for every positive H e d ~ 
Let d d e n o t e  the P-completion of s t  ~ and let j denote the P-null sets in s~. For  

arbitrary t e IRlet ~ ~ - a{Zs:s  < t} a n d d t  - .Mr ~ v J .  By a stopping time for Z is 
meant a random time T : W ~ I R v { - o o ,  oo} with {T<<_t}e~ for all t e N .  
Approximating such a T from above by countable valued stopping times, it is easy 
to see that 

(10.9) Lemma. I fTisas toppingt imeforZthenthereexis tsaP-equivalentrandom 
time T O with {T O < t} e d~ for every t e]R. 

Dually, let ~ o  = a {Zs: s > t} and ~ ~ ~ 0  v J .  By a co-stopping time for Z 
is meant a random time R: W---, IR w { - o% oo} such that {R > t} e ~ for every 
t e IR. Co-stopping times may be approximated from below by countable valued 
co-stopping times. 

In later sections we shall need to use the following strong Markov properties of 
Z (see Mitro [29, 31]). Of course, (IIr)(w) - / / r (~) (w)  if T(w) is finite with/~R 
defined similarly. 

(10.10) Proposition. Let T be a stopping time for Z. Then P is a-finite on the trace of  
~r {~ < T < ~ }, and for all positive F e y o ,  P e ~ o  one has 

(10.11) P {Fo l I rPo  l lr;  e < T < ~} = P {PZ(~(F) Po lIr; e < T < ~} . 

The formula (10.11) may be extended by monotone classes (a-finiteness of P on 
~'Tt{~<r<a/ being critical) to give the following formula, valid for all positive 
functions H(o~, t, co) in ~ 0  x N x ~ o ,  

(10.12) P { a ( I J r ,  T, IIr); ~ < T <  fl} 

= ~ P (dw) ~ Pz(r(~))(dco) H(IIT(W ), T(w), co) 1 {~< r<a)(w). 

Dually, if R is a co-stopping time, one obtains the corresponding formula 

(10.13) P {Fo HRPo/IR;  e < R </~} = P {/~z(R-)(p) Fo HR; e < R </~}, 

and more generally, for H as described above, 

(10.14) P{H( f lR ,  R, II , );  ~ < R < ~} 

= ~ P (dw) ~ pz(R(~)-)(dc~) H(c~, R(w), FIR(w)) 1 ~<R<a}(w). 
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The remaining results will require standardness of X. We show first how Z 
inherits quasi left continuity from X. 

(10.15) Proposition. Suppose X is standard, and let T n, T be stopping times for Z 
with T, $ T. Then Z(T,)  ~ Z (T)  a.s. on {~ < T < ~}. 

Proof According to (10.9) it may be assumed that T,, T are all (N ~ ) stopping times. 
It suffices to prove that for every fixed u e]R. P {Z (T,) -~ Z (T); c~ < u < T < / / ,  
Z,  s B} = 0 for every B ~ ~ with m (B) < Go. Now, for any stopping time S over 
(N ~ it is easy to see that 

(10.16) co --* [S (e3: u: co) - u] + is an ( ~ o )  stopping time; 

(10.17) (3 ~ S(e3: u: co) is #-o measurable. 

In addition, Zs(d): u: co) = Xs(~ ..... )_ ,(co) ifS(c~: u: co) > u so we have, using (10.8) 

P{Z(T.) + Z ( T ) ;  < u < 

= ~ m (dx) ~ fix (dd)) px {Xr,(a :.:.)_.(. ) + Xr(~ :.:.)_.(. ); 
B 

0 < T(o3: u : . )  - u < ~(')} 

= 0  

by quasi left continuity of X and (10.16). 

(10.18) Remark. Dually if )? is standard and (R,) is a sequence of co-stopping 
times decreasing to R, then Z ( R , - )  ~ Z ( R - )  a.s. on {c~ < R </~}. 

11. Switching Identifies and a Characterization of Revuz Measures 

Recall from w 6 that if B ~ E is nearly Borel, Ts and Ss denote respectively the hitting 
times of B by X, X_ respectively. We shall, as usual, denote by Pg the q-order hitting 
operator: P ~ f ( x ) =  EX{e-qrBf(XrB)}. Similarly, let P]_ denote the q-order left 
hitting operator: Pg_f(x)  = E x {e-qS~f(Xsp)}. It is clear from the correspondence 
between X, )?and the stationary process Z that Pg is related to fig_ and our first aim 
in this section is to establish the precise connection between them. First of all, 
recalling from w 6 the meanings of m-polar and left m-polar, we obtain the following 
preliminary comparison. (The restriction here to Borel subsets of E rather than 
nearly Borel is no real loss because of (6.12) and (6.13), in view of the fact that we 
shall be working with P",  and not an arbitrary initial measure.) 

(11.1) Proposition. Let B ~ g. Then B is left m-polar i f  and only i f  B is m-copolar. 

Proof Suppose B is left m-polar. The event {Z t_ ~ B for some t ~ ]~,/~ [} may be 
covered by a countable union of events of the form {r ~ ]c~,/?[, Z t_ ~B for some 
t > r}. However, the latter event is P-null, by (10.5). Reversing t, this proves that 
P {2 3 ~ B for some t ~ ]c~, fl[} ~ 0, which implies that B is m-copolar. The converse is 
evident by reversing the steps of the argument. 

(11.2) Proposition. Let B ~ g. Then B is m-semipolar if  and only i f  B is m- 
cosemipolar. 
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Proof. The same type of covering argument used above, in conjunction with (6.7), 
shows that each condition on B is in fact equivalent to 

P {Zt_ ~ B for uncountably many t~ ]c~, fl[} = 0. 

(See the remarks following (6.7)). 
The next result gives us the weak duality version of Hunt 's  switching identity 

[4, VI (1.16)]. 

(11.3) Theorem. I f f ,  g ~  ~*  areposi t ive  and i f B ~  g then for  all q > 0 

(11.4) (Pg Uq g, f )  = (g, b g_ (?q f ) .  

Proof. Using the relationship between X, Z, and J?, and pm (2t 4 = 2 t_) = 0 for each 
fixed t, one has 

E m [ f ( X o ) g ( X O ;  TB < t] = E m [ f ( X o ) g ( X t ) ;  3s, 0 < s < t with X s 6 B  ] 

= P [ f ( Z o ) g ( Z t ) ;  3s, 0 < s < t with Z s ~ B ]  

= P [ f ( Z _ t ) g ( Z o ) ;  3s, - t  < s < 0 with Z s ~ B  ] 

= / ~ "  [f(k~_)gO~0_);  3s, 0 < s < t with )(~_ ~B] 

= elm [ f ( 2 0 g ( 2 o ) ;  SB < t]. 

Multiply this by e -qt and integrate in t over ]0, oo[ to obtain (11.4). 

Remark .  Of course one also has the dual of (11.4), namely, 

(11.5) (Pq uq f g) = ( f ,  fig 0 q g).  

The next result generalizes (9.3). 

(11.6) Theorem. L e t ~ c b e a a - i n t e g r a b l e H R M w i t h R e v u z m e a s u r e v  = v ~ , a n d l e t B  
be a Borel set. Then 

(11.7) v Pg_ (?q ( dx) = Pq uq ( x) m ( dx) ; 

(11.8) v Pg (7 q (dx) = Pq_ u q (x) m (dx).  

Proof. It suffices to prove this when q > 0 and v(E) < oo. Let u = u q. Then 
u din < oo and so u is finite a .e .m. Let Uk = U/X k and g,,k = n (u k - P~/, Uk). Clearly 

1/n 

Uqg,,k = n S Pqukds  
o 

increases with both n and k, and so u = lim lira Uqg,,k = lira lira Uqg,,k . Suppose h 
k n n k 

is a bounded q-coexcessive function. Using (9.3), 

g,,k h d m =  n (u k - Pq/, Uk, h) 

= n (uk,  h - P ~ / .  h)  

--* n (u, h - Pq/, h) as k --* oe 

= n v ( O ~ h  - CJ~P~/.h) 

1/n 

= v ( n  ~ Pqhds )  ? v ( h ) a s n ~ o o .  
o 
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Therefore  

(11.9) v (h) = lim lim (g,, k, h) 
n k 

whenever h is a bounded  q-coexcessive function. I f  ~0 ~ b 6 ~ is positive,/3g_ 0 q ~0 is 
a bounded  q-coexcessive funct ion and  f rom (11.9) and (11.3) 

v (Pg_ 0 q ~o) = l im lim (g,,k,/~q- 0q q)) 
n k 

= lira l im (P~ U q g,,, k, q~) 
n k 

= ( P g u , ~ o ) .  

Consequent ly  v P~_ (Tq (dx) = Pg u (x) m (dx), proving (11.7). Tak ing  h =/~g 0 q q) 
in (11.9) the same a rgument  yields (11.8). 

(11.10) Remark .  The p r o o f  o f  (11.6) in case v (E)  < oo and  q > 0 used only the 
fact that  v 0 q (dx) = u (x) m (dx) with u q-excessive. The fact tha t  v = v~ and u = u~ 
did not  enter explicitly. This r emark  is used in the next  theorem characterizing 
Revuz measures.  

(11.11) Theorem. Let  v be a ~-finite measure on E not charging m-copolar sets. 
Then there exists a H R M ,  ~c, o f  X with v ~ = v. 

Proof. I t  suffices to prove  the result when v (E) < oo. Fix q > 0. Then v 0 q (1) 
< q - i v ( E ) .  I f  Bedo  with re(B) = 0, then O q l e = 0  a . e . m .  But  { O q l B =  0} is 
absorbing  for  )?, and hence cofinely open. Since it has m measure  zero, it is m- 
copolar  by (6.10). Since v does not  charge m-copolars  v 0 q (B) = 0. In  other  words  
v 0 q ~ m. L e t f b e  a posit ive density. Given  g e b do* with g > 0, 

(g, P~ f )  = (P~ g , f )  = v (7q P~ g $ v (fq g = (g, f ) a s  t$ 0.  

Therefore  f is m-q-excessive and  so by (6.19) we may  suppose v(]q(dx)  
= u (x) m (dx) where u is q-excessive and  Borel. Clearly ~ u dm < oo. 

We shall show tha t  u satisfies the hypotheses  of  (4.11). I f g  ~b  do* with g > 0, 
then (g, P~ u) = v 0 q P~ g ~ 0 as t --* oo and so P f  u ~ 0 a.e. m as t ~ oo. Next  let 
(Dn) be a decreasing sequence of  nearly Bore1 sets with l im To~ > ~ a.s. P~. Because 
of  (6.6) one m a y  suppose that  each D n is, in fact, Borel. Then  by (11.10), for a 
bounded  positive g s do 

(11.12) (g, Poq~ u) = v P~,_ 0 q g .  

We claim that  lim @ ,  > (" a. s. P" .  We shall use this to complete  the p r o o f  and  then 
establish this claim. Since 

ffqn- ( ;qg(x)  = E~ ~ e-qt g ( 2 t ) d t ,  

it follows that/31~,_ 0 q g $ 0 a. e. m as n --* oo i f l im So, > Ca. s. P~. Using (6.9) we find 
that  P]),_ 0 q g $ 0 except on an m-copola r  set. Since v does not  charge such sets it is 
immediate  f rom (11.12) tha t  P]),u ~ 0 a.e. m as n-- ,  or. Hence  (4.11) asserts the 
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existence o f a  N H R M ,  ~c with u~ = u a . e . m .  Using (9.3) 

v ~ (/ q = u~ dm = udm = v (7 q , 

and consequently by the uniqueness theorem for potent ials  o f  measures  v~ = v. 
Thus  to complete  the p r o o f  we must  show that  limSD > ~" a.s. tim. Given  

0 < u < v let 

W , , ~ = { w ~ W :  O{3t~]u ,v[ :  + O; ~(w) < u < v < fi(w)}. 

Then if m (B) < oo 

P[Z.~B, W.,~] 

= P ~ [ X o s B ,  ~ {XteD,  forsome t e ] O , v - u [ }  4= 4); v -  u < (] 

< l i m P m ( X  ~ 6B,  TD, < v - u < ~) = 0. 
n 

Since m is a-finiteP(W,,v) = 0 for  all pairs u, v. But 

0 = P (W,, v) 

= P m [ 9 { ~ _  sD . f o r s o m e  telO, v - u [ }  * 4; v - u  < C] 

> P "  [limS~ < v - u  < C], 

and since u and  v are a rb i t ra ry  this completes  the p r o o f  of  (11.11). 

12. HRM's  over X, X and Z 

We investigate now the connect ions between H R M ' s  over  X, Z and Z. These 
methods  are needed for  some later sections. The  correspondence  we discuss below 
was first considered by Mi t ro  [30], and  our  discussion will be similar to hers. To  
begin with, a r a n d o m  measure  K over  Z is defined to be a kernel K(w, dt) f rom (W, 
d )  to (1K ~ )  such tha t  for every w ~ W, K(w,.  ) is a countably  finite measure  carried 
by ]c~ (w), fi (w) [. Such a K is homogeneous in case 

(12.1) except for a null set of  w's, K (w, B) = K (O t w, B - t)for all t ~ IK B ~ ~ .  

Note  that  homogene i ty  here means  perfect homogenei ty :  the exceptional  set m a y  be 
chosen independent  o f  t. I f  one starts with a perfect H R M  (w ~c for X one m a y  
embed  ~: in a H R M  K for  Z by the following procedure.  With  no ta t ion  as in w so 
that  Xt(Hsw ) = Zt+s(w ) for  t > 0 and  ~(w) < s < fi(w), Xt(Hsw ) = A otherwise, 
set 

(12.2) K ( w , B ) = s u p ~ ( / / s w  , B - s ) ;  B e ~ .  
S E N  

Observe first tha t  because ~c ([A ],. ) = 0, ~c (H s w, B - s) = 0 i f s  < c~ (w) or s > fi (w). 
Then  note  that  i f e  (w) < u < v < fl (w) and  i fB  c Iv, fi (w)[ then addit ivity of  K gives 
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~c(II, w , B -  u) = ~c(O~_,II, w , B  - u - ( v - u ) )  

= tc ( I I~w,B - v).  

That is, the random measures x (//~ w, B - s) have enough consistency to show that 
K(w,  . )  is indeed a countably finite measure carried by ]c~(w),/~(w)[. The 
homogeneity of  K follows easily from these remarks. The following examples are 
easily checked. 

(12.3) If  ~c (dt) = f (J ( t )  dt [ f~  g+ ] then K(dt)  = f ( Z t )  dt.  

(12.4) If~c (dt) = ~ f (X~)  es dt) with f e  g+ vanishing of fa  semipolar set in E 
0<s<~ 

then K(dt )  = ~ f ( Z , )  ~ (dt). 
C(<S<fl 

In the next examples and in later sections we use the notation, for B ~ g, 

L B = sup {t: Xt ~B } 
(12.5) 

M s =  sup{t < ~:X t_ ~B} 

where, as usual, sup ~ --- 0. Note that L s __< ~ and M 8 < ~. 
For  the objects over Z corresponding to Ts, Ss, LB and Ms we use zs, as, )~s and 

/t s respectively. Thus, for example, a8 = inf{t e]7,/~[: Z~_ sB}, 28 = sup {t e]7,/~[: 
Z t e B}, with sup q5 = - 0% inf0  = + oo in this case. With this notation we obtain 
the following examples which will be used in the next section. 

(12.6) I f L  -= Lsand  2 - 28(B e g)  and if ~:(dt) 

- l{0<L<c}eL(dt) then K(dt )  = l{~<~<~}e~(dt). 

(12.7) I f M  -- Msand /z  = #s (B~  g)  and if~c(dt) 

- 10<M<~ieM(dt ) then K(dt )  = l{~<u<~}eu(dt). 

If  one starts instead with a HRM ~ for 2,  there is an analogous procedure for 
generating a HRM K of Z, simply replacing//~ by/7~ in (12.2). Instead of using the 
notation ~8, 8s etc. for the objects over 2 corresponding to "c8, as we shall use 
systematically zs, as, 2s,/~s with the obvious relations 

(12.8) z8 = - P s ;  8s = - 2 8  

etc. 
The duals of (12.6), (12.7) may then be stated in the form, with B ~ g, 

(12.9) if/], -= Lsand  a -- o-sthen P~(dt) =- l{o<~<c]e~(dt) 

extends to K(dt )  -- l{~<,<a}z~(dt) : 

(12.10) i f 3 )  = 2Qsand ~ - ~sthen ~(dt)  =- l{o<~<~)eM(d~) 

extends to K (dt) = 1{ . . . .  p} e~ (d t). 

The following computation gives a simple interpretation of  the Revuz measure 
of ~: in terms of K. 

(12.11) Theorem. L e t K b e a H R M o v e r Z a n d l e t ~ c  b e a H R M o v e r X s u c h  that for  
every u > 0, K(]0, u]) = ~(]0, u])o/7 o P a.s. on {c~ < 0 < oo}, as in (12.2). Then 

v~(E) = P {K(]0,11)}. 



Naturality, Standardness, and Weak Duality for Markov Processes 45 

Proof As n ~ Go one finds 

2 n -  1 

2 1]k2 -n , ( k+] )2 -n] l {c~<k2-n} '~  l ] 0 , 1 ] m ] a , m [ "  
k = 0  

Therefore 
2 n -  1 

PK(]0 ,1] )  = lim P ~ K{lk2-" ,  ( k +  1)2- ' ]}  l{=<k2-.}. 
n--+ c~ k = 0  

As K vanishes on [fl, ~ [, the indicator on the right may be replaced by 1 {~ < k2-, < ~)- 
By hypothesis, P a.s., K(]0, 2-"])  = ~ ( ] 0 , 2 - " ] ) o H  o if ~ < 0 < ft. Using the 
homogeneity of K and stationarity of  P, 

P{K(]k2-", (k + 1)2-"1); e < k2 - "  < fi) 

= P {K(]0, 2-"1); c~ < 0 < fl} = P~ {~c (]0, 2-"])},  

where we used (10.5) to get the last equality. Thus 

PK(]0 ,  1]) = lira 2" E m ~c (]0, 2-"] ) ,  

the right side being v~ (E) by the very definition (8.1) of  v~. 
The preceding theorem has also been obtained independently by Atkinson and 

Mitro [2]. 

Theorem. Let f e 08 x ~ be positive and let ~ be a a-integrable HRM for X. (12.12) 
Then 

(12.13) P~f ( t ,  Zt_)K(dt ) = ~ ~ f( t ,x)dtv~(dx).  
c~ E - ~ 1 7 6  

Proof. The casef( t ,  x) = lj0,q(t ) l e (x  ) is established in (12.11). On the other hand, 
stationarity of  P and homogeneity of Kimply that the measure B ~ PK(B) on 08 is 
translation invariant, and hence is a multiple of Lebesgue measure. It follows that 
(12.13) holds in case f ( t ,  x) = IB(t ) le(x ). It is then easy to see that i fg~b g+ then 
g_ * tc has Revuz measure g.v~, g (Zt_) K(dt) being the corresponding H RM over 
Z, and this gives (12.13) in case f ( t , x )  = l~(t)g(x). A routine monotone class 
argument completes the proof, taking into account the a-integrability of to. 

It follows from (12.12) that, in essence, what Dynkin [11] calls the characteristic 
measure of  a homogeneous random measure may be identified with the Revuz 
measure. See also [2] in this regard. 

13. Capacities 

We propose to give an interpretation of capacities in terms of Z. Recall [6, 17] the 
interpretation of capacity of a set F in terms of last hitting time L r of  F by X. We 
begin with a lemma, one form of which has been obtained independently in [2]. 

(13.1) Lemma. Let to, ~ be a-integrable HRM's of  X, X respectively. Then for every 
q>O 

(13.2) v~(fi~) = ~),(u~). 
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Proof  We remark first that in the case of  classical duality, each side of (13.2) is 
equal to ~ ~ v~ ( dx) u q (x, y) ~ ( dy) because of  the discussion preceding (9.3). That is, 
(13.2) amounts just to Fubini's theorem in this case. In the weak duality setting, we 

r  ~ q  ^ q  rely instead on (9.5). Us ingnt ;  ,~ $ u~ asn ~ ~ in the first equality and (9.5)in 
the second and third, we find 

v~(fi~) = lim ~ v~(dx) nU q+" ~ (x) 
n 

= lim ~ nu~ +" (x) m (dx) ^q u, (x) 
n 

= lim~ q+" ^ ^ nu~ (x)vrUq(dx) = lim~ v~(dx)nUquU"(x) .  
n n 

However, a routine calculation requiring only a-integrability of x shows that 

n U q u~ +" ( x )  = E ~ ~ ne "t dt e -  (q + ")~ ~ (ds )  
0 t 

=E~ine"~d te - (q+")~c (ds )  
0 0 

= E x ~ e-qS(1 _ e-"S) x(ds),  
0 

which increases to u~ (x) as n ~ oe. This establishes (13.1). 
Recall now the definitions ((12.5) and the subsequent paragraph) of the random 

times Ls, MB, zs, o-~, 28, #B etc., for B e g. 

(13.3) Definition. A set B e g  is strongly m-transient (resp., strongly left m- 
transient) for X i f P "  {L e = (} = 0 (resp. pm {Me = (} = 0). 

For  any B e g let ~n, rc~ denote the Revuz measures for the respective HRM's  
1(o < L~ < ~} eL,(dt), 1 Io < ~,~< ~} eM~(dt) �9 We shall call ~B, ~ci the right and left capacitary 
measures for B, and the numbers c(B), c - (B)  defined by c(B)=rce(E),  
c-  (B) = n~ (E), will be called the right and left capacities of B respectively. The 
following formulas are immediate consequences of (9.9). 

(13.4) ~ g(x) m(dx) EX { f  (X (L~ ))e-qL,; 0 < Le < ~} 

= ~ g (x) ( fne)  (Tq (dx), 

(13.5) 5 g(x) m(dx) E~ { f  (X (M~ ))e-qM"; O < Me < (} 

= ~ g (x) ( f n ~ )  (fq (dx), 

where f,  g e g*  are positive. 
Observe too that i fB e gis  strongly m-transient, then B is m-polar if and only if 

c (B) = 0, and that if B is strongly left m-transient then B is left m-polar (=  m- 
copolar) if and only if c-  (B) = 0. 

There is a rather obvious formulation of  the transience conditions in (13.3) 
using Z and the times z~, a B etc. defined after (12.5). 
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(13.6) Proposition. A set B e g  is strongly m-transient for X if  and only if  
P{2 B = fl} = 0, strongly left m-transient for X if  and only if  P {/~s = fi} = O. 

Using the examples (12.6) and (12.7), Theorem 12.12 specializes to give us the 
following formulas, assuming for (13.7) (resp. (13.8)) that B is strongly m-transient 
(resp. strongly left m-transient), and that f e  (~  x g)+ .  

(13.7) P { f ( 2 s , Z ( 2 ~ ) ) ; 2 B > ~  } = ~ ~ f( t ,x)dtzcs(dx);  
E - o o  

(13.8) P{f( l~s ,Z( t2~)) ; l~s>e}  = ~ S f ( t , x )d tzc~(dx) .  
E - o 3  

These formulas are more attractive in their respective differential forms 

(13.9) P { 2 s e d t  , Z(2 s )edx} = dt zcs(dx); 

(13.10) P {#sedt,  Z ~ s -  ) edx} = d t ~  (dx). 

In particular, under the respective transience hypotheses described before (13.7) we 
have 

(13.11) P {,~se dt} = c(B)dt; P {ase dt} = c - (B)d t .  

The formulas dual to (13.7)-(13.11) are likewise valid. If  B e g is strongly m- 
transient relative to )(, or equivalently, P {a s < a} = 0, then i f f e  (~  x g)+ 

P { f ( a s ,  Z(as)); as < fi} = ~ ~ f ( t , x ) d t ~ s ( d x ) .  
g - c o  

(13.12) 

That is 

(13.13) 

(13.14) 

P {as e dt, z (as) e dx} = dt ~s(dx), 

P {a s e dt} = ~ (B) dt, 

where, of course, ~sis the Revuz measure for the HRM of Xputting unit mass at s  
provided 0 < s  C, and ~ (B)=  ~s(E). We are using here (12.9). There are 
corresponding formulas, which we shall not record, in case B e 8 is strongly left m- 
transient relative to X. This is obtained using (12.10), substituting *s for a s and ~ 

A �9 

for ~zsln (13,12). 
The connection between capacities and cocapacities will be given in (13.20) 

below. We begin with an important computation. 

(13.15) Theorem. Let B e g  be strongly m-transient for X. That is, we suppose 
P {a s = c~} = O. Then, for every t > 0 

(13.16) t~(B) = t~ ~ x ~s(dx)P { L s >  0} + P { a s =  ~se ]0 ,  t[) 

= t [~s (dx )PX{Ms  > 0} + P { a s = / x s e  ]0, t[}. 

Proof. Because as is  a stopping time for Z and a < a s < fi a.s. on {as < oo}, the 
strong Markov property (10.11) applies to compute 

P {as = ~s e 10, t[} = P {pz~ .~{L.  = 0}; os  e ]0, t[}. 
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On the other hand, (13.13) gives 

P{PZ('~B){L.> 0}; aBE]O, t[} = j" J'P~ {LB> O} l~o, tf(s)dsP~B(dx) 

= tS~cg(dx)pX{LB>O}. 

Adding the last two equations and using (13.14) we obtain (13.16). Exactly the same 
proof  with/~8 replacing 28 gives the second equality. 

There are three other pairs of formulas analogous to (13.16), the proofs being 
modifications of the proof  above, and we simply record the results. For (13.17), 
(13.18), (13.19) below it is assumed respectively that B e N  is strongly left m- 
transient for 2,  strongly m-transient for X, strongly left m-transient for X: 

(13.17) t~-(B)  = t S ~ ( d x ) p x { L s >  0} + P { r g =  28810, t[} 

= t~ ~ (dx)PX{Ms > 0} + P{zs= /zBe l0 ,  t[}. 

(13.18) tc(B) = t~ rcg(dx)Px{s > 0} +P{aB=2~e]O, t [ }  

= t S 0} + P{z  = t[}. 

(13.19) t c - ( B ) = t ~ z c ~ ( d x ) P ~ { s  t[} 

= t ~ ( d x ) p X { f l ~ >  0} + P{zg=/~gE]0,  t[}. 

(13.20) Theorem. Let B ~ g be strongly m-transient for 2 and strongly left m- 
transient for X - t h a t  is, P{2 B = fi or a s = ~} = O- then ~(B) = c- (B). 

Proof. We use (13.16) and (13.19). The formula (13.2) gives us ~ B ( d x )  
P~ {M, > 0} = ~rcB- (dx)P ~ {L B > 0}. Using the first equation in (13.19) and the 
second in (13.16), the equality ~(B) = c-  (B) is now evident. 

Dually i fB s gis  strongly m-transient for Xand  strongly left m-transient for 2,  
then c (B) = ~- (B). 

The nicest form of the results above occurs when both X and )? are standard (see 
(15.14) and (15.16). 

14. Nagasawa's Theorem 

As an application of  some of the results developed in the preceding sections we 
present a version of  Nagasawa's theorem that is valid for Borel right processes 
under weak duality. The proof  is similar in outline to the proof  given in [41], and we 
shall refer to [41] for some of the details. 

We suppose only that X and J~ are Borel right processes in weak duality with 
respect to m. We fix an initial probability measure/z on E not charging m-polars. 
Then by (the dual of) (11.11), there exists a NHRM,  ~ of X having/~ as its Revuz 
measure. Let fi (x) =/~x {)~(]0, o9[)}. Then according to (9.3) 

(14.1) /~ U (dx) = (t (x) m (dx). 

Finally recall that L: f2 ~ [0, oe ] is co-optional for X provided L is ~ *  measurable, 
L < ~, andLo  0 t = ( L -  t)+. 
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(14.2) Theorem. Let / l  and f be as above. Let  L be a co-optional time for  J(. Define 
by 

X t = X ( L _ O _  i f  0 < t < L < o o  

= A otherwise. 

Then under pu, the process (Xt)t > o is a homogeneous Markov process on E with 
semigroup (fit) given by 

(14.3) /~f(Y) = fit(flY) (Y)/f(Y) if  0 < riO:) < oo 

= 0  if f ( y ) = O  or f ( y ) = ~ .  

Proof  Arguing exactly as in w of [41], it suffices to show that 

L 
(]4.4) Eu {YL~ e-qt g ( ~ ) d t ;  0 < L < oo} 

0 

=E.{r~g~g(X~ );0<L< ~} 

for g a bounded positive continuous function, Y a bounded positive process 
homogeneous on ]0, oo [, and for all co-optional times L of Y( satisfying L < ( 
almost surely on {L < oo}. In (14.4), f7 q is the resolvent of (/~) and is given by 

(14.5) Uqf(y)  = O q ( f f ) ( y ) / f ( y )  if 0 < f(y)  < oo 

= 0  if f ( y ) = 0 o r f ( y ) = o o .  

Again exactly as in 
= pU(hg)  with 

(14.6) 

where 

[41], the left side of (14.4) is equal to E u ~ h ( X t ) g ( X t ) d t  
0 

h(x)  = E x {e-q L YL; O < L < oo} 

= E ~ ~ e -  qt dBt, 

(14.7) Bt = YLl[r, oo~(t) l{0<L< ~} 

is a raw A F  of X. Let v denote the Revuz measure of B. Using (14.1) and the 
corresponding fact that v •q (dx) = h (x) m (dx) we see that the left side of (14.4) is 
given by 

(14.8) i~ U (hg) = ~ f (x) h (x) g (x) m (dx) 

=- ~ f (x) g (x) v (?q (dx) = v (?q (fig). 

We next compute the right side of (14.4). Let dC t = Oqg(X~_)dB~ so that the 
Revuz measure v c of C is given by v c (dx) = Uq g (x) v (dx). The right side of (14.4) 
may be written (with Uc(X) - E x (Coo)) 

E" ~ U q g ( X t _ ) d B  t = IJ(Uc) 

= ~ f (x) 8qg  (x) v (dx) 

= v 0 q ( fg) ,  
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where the second equality follows from (13.1). This establishes (14.4) and completes 
the proof  of Theorem (14.2). 

15. Specialization to m-Standard Processes 

In the last part of  this section we shall set down some improvements in some of the 
results of the last few sections due to standardness assumptions on X and J~. We 
begin without duality hypotheses, obtaining a comparison between m-standardness 
and standardness. Excessiveness o f  m is required throughout this section except in 
(15.8)-(15.11). 

(15.1) Theorem. Let X be m-standard, with m excessive. Then there exists a Borel 
m-inessential set F c E such that the restriction X '  o f  X to E'  - E - F is P~-standard 

for  all x ~ E'. (I t  follows then f rom the discussion in w 5 that X '  becomes standard once 
we delete f rom f2' the null set {X t _ fails to exist in E for some t < ~}.) 

Proof  Define g(x)  = P x { X  t_ fails to exist in E for some t s ]0 ,  ff[}. Evidently g 
is excessive and, m {g > 0} = 0 follows from (5.5) and the hypothesis. There- 
fore, {g > 0} is m-inessential. Following (6.12) choose a Borel m-inessential set 
G ~ {g > 0}. Let R denote the hitting time of  the absorbing set G c. Set ~u (x) = PX 
{there exists t > R with t < ~, X t_ 4= X t but either Xt'- ~ E~ or X(_ = Xt}. Because 
R o 0 s = (R - s) § it is easy to see that ~u is excessive. In addition, the m-standardness 
of X and (5.5) yield m {0 > 0} = 0 so that {0 > 0} is m-inessential. Choose a Borel 
m-inessential set H = {~u > 0}. If  we take x in the absorbing set E '  = G c c~ H c, 
then using the fact that (5.5iii) implies (5.5ii) we see that X is PX-standard. It is 
then immediate that the restriction X'  of  X to E' is P~-standard for all x s E'.  

In view of  the preceding theorem and the remarks at the beginning ofw 5, we may 
apply results known for genuine standard processes to m-standard processes as 
long as we make allowance for an m-inessential set. 

We discuss first the occupation time properties for X, X_ assuming X to be m- 
standard. In what follows, if B ~ E w A, {Xe B} denotes {(t, co): t > 0, Xt (co) e B} 
and {X_ eB} = {(t, co): t > 0, Xt- (co) exists and belongs to B}. For  any subset F of  
N+ x ~, F -  will denote the random set whose co-section is the closure of the co- 
section of  F. 

We emphasize that the next result makes no use of duality hypotheses. 

(15.2) Lemma. Let X be standard (resp., m-standard with m excessive). I f  B ~ E is 
nearly Borel, then 

{x_ 
up to evanescence (resp., P~-evanescence ). 

Proof  In view of  the remarks above (15.2) it is enough to prove the standard case. It 
is proved in [4, I-I0.20] that 

= {X  uA} 

up to evanescence. It follows that, up to evanescence 

{ X s B w A } -  = [ { X ~ B w A }  w { X _  e B w A } I -  
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and consequently {X_ e B w A }- c {X e B u A}- also up to evanescence. Because 
{X_ = A} c~ ~0, (~ is evanescent, the desired inclusion now obtains. 

(15.3) Proposition. Let X be m-standard with m excessive. I f  B e g is m-semipolar 
then {X_ eB}  ~ ~0, (~ ~ {X_ = X} up to P"  evanescence. 

Proof. Because of (15.2) an m-polar set is also left m-polar. It is therefore enough 
to prove (15.3) in case B e g is totally thin. As { X e B }  is then a.s. discrete, (15.2) 
gives {X_ eB} c~0, (~U < { X e B }  up to P "  evanesecence. Let d be a metric on E 
compatible with the topology of E. Given e > 0 write B = wB k where the B k are 
disjoint Borel sets with diam (Bk)< ~ for all k. Up to pm evanescence, 
{X_ eBk} c {XeBk} s o  if X t_ eB,  X,_ e B  k for some k implies X t e B  k and there- 
fore d ( ~ _ ,  Xt) < e. Since e > 0 is arbitrary, this completes the proof of (15.3). 

It will be proved later (16.15) that, under weak duality hypotheses, the 
condition in (15.3) is sufficient for m-standardness of X. That is, if {X_ eB} 
10, ([U ~ {X= x_} up to Pro-evanescence for every m-semipolar B e d ~ then X is 
m-standard. 

We assume for the rest of  this section that X, ~ are in weak duality relative to m. 

(15.4) Proposition. Let B e g. I f  X is m-standard, then up to P-evanescence 

(15.5) {ZeB}- 

On the other hand, i f 2  is m-standard then 

(15.6) {ZeB}- m~e,~[[c {Z_ eB}- ~]I~,3~. 
Proof The left side of (15.5) may be expressed as 

W{[{ZeB}  c5 ~r, fl~]- c~ ~ct, fl~: reQ, r > ct}. 

For a fixed reQ,  (15.2) applied to t ~ Zt+ r on {r > ~} gives that 

{ Z e B } -  a ~r, fl[ ~ { Z _  e B } -  a ~r, fi~ 

up to P-evanescence on {r > c~}. Therefore, up to P-evanescence, (15.5) holds ifXis 
m-standard. Interchanging the roles of X, )?yields instead (15.6), after a simple time 
reversal. 

Recall that T B denotes the hitting time of B and Se denotes inf{0 < t < (: 
X t_ (co) e B}. Using the relationship between X and Z the following result is evident 
from (15.2) and (15.4). 

(15.7) Proposition. Let B e g .  I f  2 is m-standard then { X e B } - a ~ 0 , ( ~  
= {X_ e B} - c~ ~0, ~ up to P"  evanescence, so in particular P"  {S, > T~} = O. I f  
both X and ~ are m-standard then { X e B } -  ~ ~0, ~ = {X_ e B } -  ~ ~0, ~ up to 
P"-evanescence, so in particular P"  {S~ + TB} = O. 

Note the connections with Hunt 's hypothesis (B) for a right process X. (No 
duality or excessive measure is assumed in the discussion of (15.8)-(15.11).) 
Hypothesis (B) states: 

(15.8) I f A  ~ G = E with A nearly Borel, G open, and i fq > 0 then P~P~ = P]. 
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It is proved in Meyer [26, III, T 17-19] that for a standard process, each of the 
following is equivalent to hypothesis (B): 

(15.9) I f  A is semipolar and nearly Borel and i f  A ~ G with G open in E then 
px {X(Ta) cA} = O for every x~-A. 

(15.10) I f  A ~ g is semipolar then { X ~ A }  = { X =  X_} up to evanescence. 

It is also known [38, 6.2] for example, that under standardness plus the 
hypothesis of absolute continuity (i.e., Meyer's hypothesis (L)), hypothesis (B) 
implies 

(15.11) SB= T B a.s. 

It is easy to see that (15.11) implies hypothesis (B), and it seems that (15.11) is in 
general a stronger condition. Our result (15.7) gives a weaker form of (15.11) 
appropriate to the weak duality setting. See Az6ma [3, 5.1 ] for a related result. The 
following result gives the appropriate weakening of  (15.10) in the present situation. 

(15.12) Proposition. Let B ~ g be m-semipolar. I f  X is m-standard, then 

(15.13) { X ~ B }  ~ {X = X_}  up to P"  evanescence; 

(15.14) { Z ~ B } ~ e , ~ c { Z = Z _ } ~ , [ 3 ~ u p t o P - e v a n e s c e n c e .  

Proof. The dual of (15.3) gives us {2_eB}a~O,~={2=2_} up to P "  
evanescence. Arguing then as in the first part of  the proof  of(15.4) one sees that this 
implies that, up to P-evanescence, 

{2_ {2 = 2_} 

The latter inclusion is identical to (15.14), by time reversal. The inclusion (15.13) is 
an obvious consequence of (15.14). 

From now to the end ofw we shall be assuming that both X and 2 are m- 
standard. [In view of (16.15) this condition is equivalent to requiring that for every 
m-semipolar set B e g, X is pm a.s. continuous on ({X_ ~ B} w {X e B}) a ~0, @]  

(15.15) Theorem. Let X and 2 be m-standard and let B ~ ~. Then the following are 
equivalent: 

(i) B is m-polar; 
(ii) B is left m-polar; 

(iii) {Z e B} is P evanescent; 
(iv) {Z_ s B} is P evanescent; 
(v) B is m-copolar. 

Proof The equivalence of  (i) and (ii) is an immediate consequence of  (15.7). If  B is 
m-polar, then dearly P (Z~ s B for some t) = 0 and so/3,. (2 t -  e B for some t) = 0. 
Thus using the equivalence of  (i) and (ii) for 2,  we see that B is m-copolar. Finally, 
as in the second sentence of this proof, we see that {Z_ ~ B} is P evanescent. 
Consequently the assertions (i) through (v) are equivalent. 

It is evident from (15.7) that the hitting operators P~(x , , ) ,  P~_(x , , )  are 
identical for (m) a. a. x. Therefore the switching identity (11.4) now takes the form 
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(15.16) (P~ Uq f ,  g) = ( f  Pg (7q g) 

with q > 0 , f a n d  g in  #* .  
The results of w 12 and w 13 are considerably simpler under m-standardness of X 

and J?. It is clear from (15.7) that one has the identifications 

(15.17) p m { r  e 4= S,} = Pro{L, + Ms} = P { z s *  a~} = P{2 B * r = 0. 

It follows that, using the terminology of (13.3), strong m-transience is identical to 
strong left m-transience. In addition, the capacitary measures K s, ~ are equal for 
every B ~ #, so c ( B ) =  c - (B) ,  and the corresponding dual equalities likewise 
obtain. In particular, (13.15) now has the following form. 

(15.18) Theorem. Let X and ~ be m-standard, and let B ~ # be strongly m-transient 
for X. Then 

(15.19) t~(B) = t ~ c B ( d x ) P ~ { L B >  0} + P{ae=/~B~]0,  t[}. 

The last term in (15.19) is also equal to P {ze = 2 B 6 ]0, t[}, and this is just the P 
measure of those paths w which enter B exactly once, the encounter happening 
during ]0, t[. 

Finally, (13.20) now states, assuming X, 2 both m-standard, 

(15.20) Theorem. I f  B s #  is strongly m-transient for both X and 2,  then 
(B) = c (B). 

This result is well known [4, VI-4.4] in the case of classical duality, this being 
one of Hunt's original results in the subject. 

16. Structure Theorems 

Unless stated otherwise, X and )? will be supposed in weak duality relative to m. 
In this situation one may describe rather precisely the structure of certain 
homogeneous functionals of X, up to P "  evanescence. Recall [39, w that Jr~ ~ d  
denote the a-algebras of processes generated by J and by processes Y which are lcrl 
(resp. rcll) and perfectly homogeneous on IR + + (resp. 1R + ). The latter conditions 
mean of course Yt+s = Y~~ Os for all t > 0, s > 0 (resp. all t > 0, s > 0). It is 
known [39, 24.28] for example, that assuming only that X is a right process, 
(9 ~J(fe = y-e v J ,  ~re denoting a { f ( X ) : f s  ge}. and that the trace of ~fd on 
70, oo~ is contained in ~o .  Similarly, W_~ denoting o- {f(X)_ :fq-excessive for some 
q > 0}, ~ '(~Rg -- ~ v ~ [39, w In addition, (9 ~ o  = ( N ~ f o )  v ~,~e 
[39, w Let J "  denote the P " evanescent sets. 

The central result of  this section is a characterization of the trace of s on 
~0, ~ ,  modulo jm,  as a {f(X_):  f ~  d~}. See (16.4). 

(16.1) Lemma. Let Y: ]R + x f2 ~ IR be a bounded measurableprocess satisfying 

(i) Y is adapted to (~m); 
(ii) Pm a.s., Yt+s = Yt~ all t, s > 0; 

(iii) t ~ 14, is P "  a.s. rcll. 
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Then there exists f 6 b ~ such that Y and f (X) are P"-indistinguishable. 

Proof  Let g (x) = E x Yo ~ g*. Then 

Pm { Yt =~ g(Xt)} = Pm { {Yo + g(Xo)} o Ot} < Pm { yo ~= g(Xo)} = O. 

Using Fubini's theorem we conclude that for m a.a. x, 
co  

(16.2) E~ S q e-q' Ytdt = E ~ ~ qe-qtg(Xt)dt  
o o 

= qU q g (x). 

From (ii) we see that, up to pm evanescence in the variable s, 

(16.3) ~qe-q'Yt+sdt=(iqe-qtYtdt)~ 

Now set f (x)  =-- lim sup n U"g(x)  ~ g e. As q ~ ~ through integral values, the left 

side of (16.3) tends boundedly to Y~. On the other hand, (16.2) shows that the 
optional projection of the right side of (16.3) is q Uqg (X,). It follows tha t f (X)  is a 
Pro-optional projection of Y, a n d f ~  g e. Because Yis pm optional, the result follows 
after taking (6.6) into account. 

(16.4) Theorem. For every Y ~ ~ c~ ~ ~ there exists a Borel function g such that Y 
and g (X_) are pm indistinguishable on n0, ~ .  

Proof It is well known, [39, 8.7] for example, that a product of two bounded q- 
excessive functions may be expressed as a difference of two q-excessive functions. 
Therefore the generators f (X)_  of Y's described above (16.1) have differences 
forming an algebra, and consequently the monotone class theorem shows that it is 
enough to prove the above representation for Y of the formf(X)_  wi thfbounded  
and q-excessive. In view of(6.11) we may assumefe ~. Seeing that t ~ f ( X t ) _  is a. s. 
Icrl on ]0, ~[ ,  it follows that t ~ f ( Z ~ ) _  is P-a .s .  Icrl on ]~,/~[. Fix w with 
t ~ f ( Z t ( w ) ) _  lcrl and set ~0 (t) = f ( Z t ( w ) ) _ .  It is clear that t ~ q~ ( -  t) is then rcll 
on ]8(w),/~(w)[. However, 

(p ( -  t) = lim U(Zs (w)) = lim f(2(_,)_ (w)) = lim f ( Z , _  (w)). 
s?~ - t  s~$ - - t  u ~ $ t  

This proves that t ~ l i m  f (X ,_ )  is /3~ a.s. rcll on ]0, C[. The process 
u ~ t  

V t = lim sup f ( X u - )  clearly satisfies the hypotheses of (16.1) relative to _~ and 
u$~t 

therefore V~ is P "  indistinguishable from g (Xt) for some g ~ g. This in turn leads to 
g(Zt) being P-indistinguishable from lim f ( 2 , _ )  and so, reversing t again, 

u ~ t  

g(Zt_)  is P indistinguishable from f ( Z t ) _ .  This shows that [f(Xt)_ - g ( X t _ ) ]  
1 ~0,~E ~ J " ,  completing the proof. 

Theorem 16.4 is a version, appropriate to the present hypotheses, of a result of 
Az6ma [3, w Note the following corollary of (16.4), the proof of which is 
immediate from the remarks preceding (16.1). 

(16.5) Theorem. Given Y~C9 c~r ~176 there exis ts f~ g • ~such that Y a n d f ( X _ ,  X) 
are Pm-indistinguishable on nO, ~ .  
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A more satisfying way to state (16.4) uses the natural ~r-algebra. 

(16.6) Theorem. A/~Jr ~~ is generated by X_ (on ~0, (~), up to pm evanescent sets. 

Proof. We need only show that if Y e ~ / V ~  ~ then there exists V~ ~ J / t  ~g with 
Y =  Vl10,~ ~. Recall that YEZ ,~g implies P Y e H  g [39, w so, using the remarks 
on the process l~ at the end of w it follows that V~ -= PY/l t belongs to ~ 4  ~g. 
However, YeA/gives us Y =  nY = Vl?0,~ , proving (16.6). 

Recall that if~c is a random measure then ~c {t} is the mass of~ at the singleton t. 

(16.7) Proposition. Let ~c be a H R M  with q-potential function u andlet T denote the 
hitting time of  the absorbing set {u < oo}. Then i f  ~: is natural (resp., optional) the 
process ~c {t} l]~,~[(t) is in W ~  g (resp., (9 ~ jg,o). 

Proof. We shall suppose tc natural, the optional case being quite analogous. By the 
definition of ~c being natural in w it is clear that ~: {t} e J .  It is also clear that 

llr,~ce ~ and, since {u < oo} is absorbing, ljT, ooleJg~ Define now H =  ~ e -qs 
tr (ds). By additivity of to, o 

Ho 0 t = e qt  ~ e- q~ tr (ds). 
]t,~[ 

By Lebesgue's dominated convergence theorem, t ~ V t =- H(Otco) is tell on [r, oo[ 
whenever V~(co)< oo. For every e > 0 ,  u(Xr+ ) < ~ a.s. on { T <  oo} and 
consequently t ~ V t is a.s. rcll on [T + e, co [. As e > 0 is arbitrary this proves that 
t~V~_ is a.s. lcrl on ]T, oo[. It follows, using homogeneity of Vt_, that 
1 it, ~E(t) Vt- ~ 0 .  However, 

llr,~r(t ) V t = lira llr,~L(t) V(t+~)- 
~$~0 

is then also in jgo and consequently llr, o~E(t) (V~- V~_) e~f ~~ 
Because V t_ = e qt ~ e -q~ ~c (ds) if t > T, this proves that l l r ,~( t  ) e q' e-qt~c {t} e-~g. 

[t, co[ 
Combining this with the first observations in the proof yields 
1]r,~[(t) ~ (t) ~ JV~C~, as claimed, 

(16.8) Theorem. Let ~c be a ~-integrable NHRM.  Then 
(i) there exists g ~ ~+ vanishing off  an m-semipolar set such that ~: (t} = g(Xt_)  

up to pm evanescence on ~0, (~. 
(ii) ~ is pm a.s. diffuse i f  and only i f  v~ doesn't charge m-semipolar sets. 

(iii) ~ b pm a.s. purely discontinuous i f  and only i f  v~ is carried by an m-semi- 
polar set. 
Proof. We may assume, without loss of generality, that ~c is integrable. Then 

1 u~ < ~ a.e. (m) and so, if T denotes the hitting time of (u~ < ~},  P~ (T > 0) = 0. 
By (16.7), ~(t} 1 ] r . ~ [ ( t ) ~ J r ~  ~ and so (16.6) gives us g ~ # + with g(X~_) and 
tc(t)l]r,~[(t) being P~ indistinguishable on ]0,(~. Since P ~ ( T >  0 ) =  0, this 
establishes (i). It is evident that {t > 0: g (Xt_) > 0) is pm a. S. countable, so by (6.7) 
and the subsequent remarks, (g > 0} is m-semipolar. Define ~ to be the discrete 
part of~, so that ~:~ (B) -= ~ ~c {t) l~(t). Clearly v~is carried by {g > 0). From this 

t > 0  

and the fact (9.10) that v~ determines ~ up to P~" evanescence, (ii) and (iii) are clear. 
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(16.9) Theorem. Let ~c be a ~-integrable optional H R M  over X. Then there ex&ts 
f ~ ( g x g ) +  with {x: f ( x , x ) > O }  m-semipolar such that to{t} is pro_ 
indistinguishable f rom f (X~_, Xt) 1 ]o.~[ ( t) . 

1 Proof. It may be assumed that ~c is integrable and so u~ < oo a.e. (m). Then 
(16.7) gives ~c{t} 1]r,~[(t)~(9 c ~  g, T being the hitting time of {u~ < oo}. As 
pm {T>  0} = 0, the assertion comes directly from (16.5). 

Theorem (16.8) has a partial converse. 

(16.10) Proposition. Let F~ g be m-semipolar. Then there exists a perfect 
integrable NHRM,  ~c, such that {X_ 6F}  ~ ] 0 , ~  and {t: ~c{t} > 0} are pro_ 
indistinguishable. 

Proof. We know (11.2) that F is also m-cosemipolar and so, by the dual of (6.13), 
there exist disjoint totally cothin Borel sets F, with F - (w F,) m-copolar. In view of 
(11.1) it suffices to produce, for a fixed n, an integrable perfect NHRM, ~c, such that 
{X_ e F,) ~ ~0, r = {t: ~: {t} > O} up to P "  evanescence. Fix n and set a = F,. 
As G is totally cothin, A t -- ~ la(2~) defines an A F  of Xhaving bounded q- 

O<s<-t 

potential for some q > 0 and having uniformly bounded jumps. Therefore ~ is 
integrable over )?by [36, 1.3]. Hence, we may find a strictly posi t ivefs  g such that 
/} - f_ */] is integrable over 2. Let Kbe the HRM of Z generated by/}, so that for P 
a.e. w, 

K(w, dr) = ~ f (Z~(w))  1 c (Z~_ (w)) es(dt). 
~(w) <s</~(w) 

Because/} is integrable, PK ]0, 1 ] < oo by (12.11). Let A = {co ~ f2: X~_ (co) ~ G only 
countably often}. Then A e ~-because of the measurability of penetration times [9, 
VI-D22]. By (11.2), P ' ~ ( X ) = 0 .  Let V ( x ) = P ~ ( A  ~) so that m{v >0} = 0 .  
Clearly V is excessive and hence {~u = 0} is absorbing. Let R = inf{t: ~ (Xt) = 0} 
and set 

7 (co, dt) = ~ llR.~t(s)f(X,(co))lG(Xs-)e,(dt). 
0 < s < ~  

By the definition of A, X~_ e G only countably often for s > R, andso 7 is a random 
measure which is a-integrable on X,, as discussed in w In particular, 7 has a dual 
predictable projection x. Seeing that {~ = 0} is absorbing, 7 is in fact a perfect 
optional HRM over X and therefore x is a NHRM over X. Because 7 generates K 
over Z, (12.11) gives us vr(E) = PK]O, 1] < oo and therefore v~(E) = vr(E) < ~ .  
By (8.2), u~ < ~ a.e. [m] so (7.4) shows that ~ may be assumed perfect. By 
construction, {t: 7 {t} > 0} = {X_ ~ G} r~ ~0, @ up to P~ evanescence. It follows 
that {t: rc {t} > 0} is also pm indistinguishable from {X_ e G} ~ ]0, ~[, since this set 
is in X. 

We examine next the connection between optional homogeneous closed 
random subsets of ]0, ~ [ and exact terminal times. By a homogeneous random set 
in ]0, ~ [  is meant a measurable subset M of ]0, ~ [ •  f2 such that for a.a. 
co, s + t ~ M (co) if and only if s ~ M (0 t co) for every pair s > 0, t __> 0. Given an 
optional homogeneous dosed random set Min  ]0, ~ [, its debut T -  T M--- inf { t > 0: 
t eM} is an exact terminal time for X. See [18] for a fairly complete discussion of 
the connections between M and T. In particular, M is the closure in ]0, co[ of 
{ t+  To 0t: t > 0}. If  we start with an exact terminal time Tthen the closure M of 
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{ t + T o 0 t :  t > 0} is an optional homogeneous random set, and if we set 
D t - lira (s + To 0s) then t ~ D t - t is the left limit of t ~ To Or, which is a.s. rcll, 

s t ~ t  

hence in jga. Therefore D e - t e Jg  ~ As is shown in [18], M = {t: Dt = t}, and 
consequently M ~ (9 ~ ~0 .  

It is easy to see that M is the closure in IR ++ of  {t + To 0t: t > 0, rational}. It 
follows from this remark that if T z = T 2 a. s. (resp., a.s. pro) then the associated 
optional homogeneous closed random sets M1, M 2 are indistinguishable (resp., pm 
indistinguishable). 

The following result is valid for an arbitrary right process. 

(16.12) Lemma. Let T be a thin natural terminal time with M the associated 
optional, closed, homogeneous random set. Let u (x) = E x e -r^r Then M c~ ~0, ~U( is 
indistinguishable f rom { u ( X ) _ = l } ~ 0 , ~ [ [ ,  which a.s. contains no strictly 
decreasing sequence. 

Proof  It is evident that u is 1-excessive and u ( x ) <  1 for all x ~E. The set 
{u (JO- = 1 } is obviously left closed. In addition, if t, $ $ t with u (Xt,)_ = 1 we 
would obtain the absurdity u (Xt) = 1. That is, {u (X)_ = 1} a.s. does not contain 
any strictly decreasing sequence. These observations prove that {u (i1)_ = 1 } is a 
closed, optional, homogeneous random set. Let S denote its debut. It follows from 
(3.1-ii) that S a ~ = T/x ~ a.s., and this implies the stated result. 

Going back now to weak duality hypotheses we obtain the following 
consequence of  (16.12) and (16.6). 

(l 6.13) Theorem. Let Tbe  a thin natural terminal time. Then there exists B ~ g with 
B m-semipolar such that M ~  ~0, ~ and {X_ e B }  ~ ~0, ~ are pm indistinguishable. 
In particular T A ~ = S B A ~ a.s. pro. 

In the same way, the observations prior to (16.12) lead to the following result, 
which uses (16.5) rather than (16.6). 

(16.14) Theorem. Let T be an exact terminal time for  X. Then there exists 
B ~ g x  o~ such that, P~ a.s., T A ~ = inf{t: 0 <  t < ~ ,  (Xt_, X t ) e B  } /x ~. 

Another important consequence of  (16.6) is a converse to (15.2), mentioned 
already following (15.3). 

(16.15) Theorem. Suppose that for  every m-semipolar set B ~ g the inclusion 
(16.16) (resp. (16.17)) holds up to Pm-evanescence: 

(16.16) {X_ eB} c~0,  ~ ~ { X =  X_}; 

(16.17) {X~  B} ~ { X =  X_ }. 

Then X (resp., ~ is m-standard. 

Proof  Assume first that (16.16) holds for every m-semipolar set B~ d ~ Let X2 
denote the left limit of  X in a Ray compactification of E~. Because X2 s ~ x/g ~ 
one has {XL 0/Ed} ~ ~0, ~[~ e A / ~  ~ and so, by (16.6) there exists an m-semipolar 
set B ~ o ~ with { X 2 ,  E~} ~ ~0, ~ = {X_ ~ B} ~ ~0, ~[~ up to pm evanescence. By 
hypothesis, this gives {XL dg E~} ~ ~0, ~ ~ {Jr = X_ } up to P~ evanescence. The 
set {X = X2,  X 4 = X_ } ~ ~0, ~ may be expressed in an obvious way as a countable 
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union of graphs of stopping times, and as every stopping time with graph in {X= X2 } 
is predictable, the set {X= X2, X 4  X_} ~ 0 ,  ~[r is in J# c ~  ~ It follows, again 
from (16.6), that there exists an m-semipolar set B e g  with { X = X 2 ,  
X . X _ } ~ O , ~ = { X _ e B }  up to Pro-evanescence. The hypothesis 
{X_ ~B} c {X = X_} can be satisfied only if {X = X2, X * X_} ~ ?0, ~[[ is pm_ 
evanescent. This proves {X = X2} ~ ~0, ff[[ c {X_ = X} ~ ~0, ~[[ up to pm evanes- 
cence. We have now proved that X satisfies the criterion (5.5-iii), and consequently 
X is m-standard. Assume next that (16.17) holds. Then {ZeB}  c {Z = Z_} 
up to P-evanescence. Time reversal makes the last inclusion equivalent to 
{ 2 _ e B } c { 2 = 2 _ }  up to P-evanescence, and this in turn implies 
{2_ sB} ~ 0 ,  ~ ~ { 2 =  2_} up to Pro-evanescence. The first part of the proof 
above shows shows now that 2 is m-standard. 

Before stating the final results of this section we remind the reader that a Borel 
right process X is defined to be special if T, 1' T (stopping times) implies 
~:r = V ~-~ for every initial law /Z. We shall call X ~z-special if ~-r" = ~/~-~ 

n 

whenever T, $ T. It is shown in [45, 13] and in [16, 13.2] that X is/z-special if and 
only if pu {X[~_ dr w A for some t > 0} = 0, X[~_ denoting the Ray left limit of X in 
some Ray compactification of E w A. If  we define ~0 (x) = P~ {X[t_ ~ E w A for some 
t > 0}, then cp is obviously excessive, so i fXis  m-special, {q~ > 0} is m-inessential. 
That is, we may delete a Borel m-inessential set from E so that the restricted process 
X' is in fact special, and not just m-special. Recall too that a special process can also 
be described as a right process which is a Hunt process in its Ray topology (see [45] 
or [16, 13.3]). 

Recalling from w 5 the meaning of#-standardness, we shall say that Xis/z-special 
standard provided it is both/z-special and/z-standard. 

The next lemma requires no duality, and is valid for an arbitrary right process X 
and an arbitrary initial measure #. As usual, X2 will denote the Ray left limit of Xin 
a Ray compactification of E~. 

(16.18) Lemma. X is /z-speeial standard if and only if X_ exists in E a.s. pu on ~0, ~ ,  
and X2, X_ are P" indistinguishable on ~0, ~ .  The latter condition is equivalent to 
the pu indistinguishability of X2, X_ on ~0, ~ c~ ({X2 = X} w {X2 ~E~}). 

Proof. The last sentence follows from the fact (16, 13.4) that X2 = X_ on {X ~_ e E~, 
X2 #=X}. If  X is /z-special then, as remarked above, X2 eE~ a.s. on ]0,~[. 
Therefore, if one knows that X is/z-special, the necessity and sufficiency of the 
conditions in (16.18) is a direct consequence of (5.5), using the criterion (5.5-iii). 
Thus it suffices to prove that the conditions of the lemma imply that X is/z-special. 
Let S = inf {t > 0: X[_ diEwA}. Because X[_ = A for all t > ~, the hypothesis on 
X2 and X_ implies that {t > 0: X[_ t c E w A } c ~  up to Pu-evanescence. In 
particular, {X'__ dg E w A } P ,  a. s. contains its debut and it follows from [9, IV-T 16] 
that S is PU-predictible. As l~(Xs) = 1 a.s. P" on {S < oe}, taking predictable 
projections leads to Fo (X}_, A) = 1 a.s. pu on {S < oe}. It is known [45, w that 
there are no degenerate branch points, that is, if0 ( x , . ) =  ey implies x = y. 
Therefore X~_ = A a.s. P" on {S < oo}. This proves that X[_ eE~ for all t > 0, a.s. 
P", completing the proof. 
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The following result requires no duality, but is of greatest interest under duality 
hypotheses because of the subsequent result (16.21). 

(16.19) Theorem. Suppose X_ exists in E a.s. pu on ~0, ~ .  Suppose also that every 
N A F  of X is P" a.s. continuous. Then X is p-special standard. 

Proof According to (5.7) there exists a NAF with bounded l-potential such that 
{AA > 0} = {X2 ~EA} ~ ~0, ~ .  In view of our hypothesis, this implies that 
{X2 #E~} ~ 0 , ~ [  is P" evanescent. Using now (16.18) we see that X will be 
p-special standard once we prove that {X2 = i7} ~ ~0, ~[ ~ {X_ = X} ~ ?0, ~ up to 
PU-evanescence. Fix a metric d for E, and for e > 0, let 

A t = ~ 1 {x2_ = xs} 1 {d(x~_, ~)  >= ~} l{s < ~}. 
O<s<=t 

As every stopping time with graph in {X2 = X} is predictable [16, 13.1] it is clear 
that A is a NAF of X. By hypothesis, A vanishes a. s. pu. It follows that {X2 = X, 
d(X_ ,  X) > 0} c~ ~0, ~ is PU-evanescent, and this establishes that X is p-special 
standard.. 

We return now to weak duality hypotheses. We seek to establish a number of 
equivalents to the condition that every NAF of X is pm a.s. continuous. 

In what follows, if F e g, let reg (F) - {x ~ E: P~ {T v = 0} = J } denote the set of 
regular points for F, with coreg (F) the coregular points for F. The following is the 
weak duality version of one of the basic facts [4, VI (1.25)] concerning classical 
duality. 

(16.20) Proposition. Let F ~ g. Then the fine and cofine closures of F differ by an m- 
semipolar set. 

Proof. The fine closure F w reg (F) of F has the property that {X ~ F w reg (F)} is 
a.s. the right closure in [0, ff[ of {Xe F}. As reg(F)e  ge we may choose by (6.6) 
G e gsuch that (F  w reg (F)) A G is both m-polar and left m-polar. Then {Z ~ G} is P 
a.s. the right closure in ]e,/~ [ o f{Z ~ F}. In view of(11.1), the dual of this fact is that 
we may choose H e  8 such that (Fwcoreg(F))A H is both m-polar and left m- 
polar, so that {Z_ e H} is P a.s. the left closure in ]c~,/~[ of {Z_ e F}. It is now 
evident that {Z s G} A {Z ~ H is P a.s. countable. The conclusion of (16.20) then 
comes from (6.7). 

(16.21) Theorem. The following conditions on J( are equivalent. 

(i) Every m-semipolar set is left m-polar (=  m-copolar). 
(ii) I f  F~ ~ then the fine and cofine closures of F differ by a left m-polar set. 

(iii) I f T  is a thin natural terminal time for X then P"  {T < ~} = O. 
(iv) Every N A F  of X is pm a.s. continuous. 
(v) Every a-integrable N H R M  of  X is pm a.s. diffuse. 

Proof We shall prove that (1) ~ (ii) ~ (iii) ~ (iv) ~ (i) and (i) ~ (v) ~ (iv). That 
(i) ~ (ii) is obvious from (16.20). Assume now that (ii) holds, and let T be a thin 
natural terminal time. As in (3.1), set D, - {x: E ~ e -r^r > 1 - l/n} so that each D, 
is finely closed. By (ii), D, differs from a cofinely closed set by an m-copolar set, 
and consequently, as noted in the proof of (16.20), {X_ ~D,} is pm a.s. left 
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closed in N0, ~ .  However,  we observed in (3.1) that  {XeD,}  includes an interval 
l r -  T[ provided T < ~, and so r e  a {x_ eDn} e m a. s. on {0 < r < That  is 
Ex(r-)e -r^c = 1 a.s. pm on {0 < T < if}. Because EXe -r^~ < 1 on E this implies 
P~ {T < ~} = 0. Tha t  is, (ii) ~*- (iii). N o w  suppose (iii) holds, and let A be a N A F  for 
X. Then for any e > 0, T - inf {t: A A t > e} is a thin natural  terminal time, so by (iii), 
e m { r  < ~} = 0. Thus  (iii) ~ (iv). Assume now that  (iv) holds, and let F e  g be 
m-semipolar. I f  F is in fact m-polar  then because (iv) implies by (16.19) that  X is 
m-special standard, (15.2) shows that F is left m-polar. Suppose next that  F is totally 
thin. Once again using m-standardness o f  X, (15.3) gives us {X_ e F} ~ {X_ = X} 
up to pm evanescene. However,  since Xis  m-special standard,  (16.18) shows that  X_ 
and X ~_ are pm indistinguishable on ~0, ff~. It  follows that, up to pm evanescence, 

{X_ e F} c {X_ e F} m {X2 = X} (~ ~0, ~[. 

As every stopping time with graph in {X2 = X} is predictable, 

O<s<=t 

is a N A F  over X. According to (iv), A is pm evanescent, so {X_ e F} is likewise pro_ 
evanescent. This proves that  F i s  left m-polar  whenever F is  m-semipolar,  assuming 
(iv). I t  is obvious f rom (16.8) that  (i) ~ (v), and (v) ~ (iv) is evident, completing the 
p r o o f  o f  (16.21). 

(16.22) Remark. In  light o f  (16.19), each o f  the conditions in (16.21) implies that  
X is m-special standard. 
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Note Added in Proof 

The remark in the sentence just above (8.2) is only true if X is a standard process. For a general right 
process the argument in [36] only shows that v~is a countable sum of finite measures. Further discussion 
and examples illustrating this point may be found in "Riesz decompositions in Markov process theory" 
by R.K. Getoor and J. Glover which is to appear in Trans. Amer. Math. Soc. As a result the proof of 
(16.10) is valid as written only when J~is standard. We have another proof of (16.10) which is correct in 
complete generality. 

In each of (13.16) through (13.19), only one of the claimed equalities is valid: namely, the second one 
in (13.16), the first in (13.17), the second in (13.18), and the first in (13.19). However, these are precisely 
the relations that are required for the proof of Theorem 13.20 and the remark following it, so the proof of 
(13.20) remains correct. The proof of (13.15) may be made valid by replacing 2 B and L B by/z B and M B 
respectively. 


