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Hitting and Martingale Characterizations of
One-Dimensional Diffusions * **

By

MicHAEL A. ARBIB***

Abstraet. The main theorem of the paper is that, for a large class of one-dimensional
diffusions (i. e. strong Markov processes with continuous sample paths): if z(¢) is a continuous
stochastic process possessing the hitting probabilities and mean exit times of the given diffu-
sion, then z(#) is Markovian, with the transition probabilities of the diffusion.

For a diffusion «(f) with natural boundaries at - oo, there is constructed a sequence
7ty (¢, ) of functions with the property that the 7, (f,  (f)) are martingaler, reducing in the
cage of the Brownian motion to the familiar martingale polynomials.

It is finally shown that if a stochastic process x (#) is a martingale with continuous paths,
with the additional property that

2(t)
_[m (09 y] dy —1
0

is a martingale, then z(t) is a diffusion with generator D;, Dt and natural boundaries at -+ oo.
This generalizes a martingale characterization given by Livy for the Brownian motion.

I. Introduction

It is well known that if z(t) is the Brownian motion, then

a) almost all paths of z(f) are continuous,

b) z(¢) is a martingale, and

¢’) z(£)2 — ¢ is a martingale.

That the converse is true, i. e., that a stochastic process satisfying a), b), and
¢') must be the Brownian motion, has been stated (in slightly different form) by
Paul Lévy [5]. J. L. Doos [3] gives a full proof, which relies heavily on Fourier
transforms and the known transition probabilities for the Brownian motion. It
is not amenable to generalization.

The Brownian motion is but one of a large class of (one-dimensional) diffusions,
i. e., strong Markov processes with continuous sample paths. We were interested
in generalizing L&vyY’s theorem to cover this class. We noted that for a continuous
stochastic process, the provision that z(f) and 22(f) — ¢ be martingales ensures
that the process x(f) has the same hitting probabilities and mean exit times as the
Brownian motion. We then conjeciured that: for a large class of one-dimensional
diffusions, if x(f) is a continuous stochastic process, then the possession of the
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hitting probabilities and mean exit times of a diffusion implies that z(f) is Mar-
kovian, with the transition probabilities of the given diffusion. We found this
to be true.

It is well to contrast our result with the theorem, implicit in the paper of
BLumENTHAL, GETOOR, and McKEax [2], that if two Markov processes, satisfying
Hux~t’s condition (4), have the same hitting probabilities and mean exit times,
then they are identical. Our result is stronger for the one-dimensional case in that
we need only assume one process Markov. It is tempting to speculate that our
result is true without the dimensionality restriction, but the verification of this
would require methods quite different from those that we employ here.

Throughout this paper we are concerned with one-dimensional continuous
stochastic processes. We may consider such a process as defined on the “path-space”
£, the set of continuous paths w:[0, co) — R. We refer to R as the “state-space”,
and set z(¢, w) = w(f).

We shall denote by B; the usual o-algebras generated by the sets {w|x(u,w)e '}
0 =u =t I'e M, the g-algebra generated by the open sets of R). I’ will be
the ¢-algebra generated by the intervals on the line 0 =< ¢ < oo, and B will be
the o-algebra of subsets which is generated by the sets {x(t, w) e I'} (¢ =0, I'e I).

A (continuous, one-dimensional) stochastic process X = (2, %B;, P,) is then
given by a family of probability measures P, one for each x e R, such that
P, {x(0, w) = x} = 1, and that for any Be B, the function P,(B) is an IN'-
measurable function of x. P, may be interpreted as the probability measure
induced on £2 by the process if started at point x at time 0. Thus a process in our
sense is really a ‘family’ of processes, one for each x € R,

Let &(w) be a B-measurable function on 2. We shall denote by E,{£} the
integral

fg ) Py (dw).

We say that the non-negative random quantity v = 7(w) is a stopping time
if, for any ¢, the set {7 (w) =t} belongs to B;. The sets A € B which for arbitrary ¢
satisfy the condition {z(w) < ¢} N 4 € B, form a o-algebra that we shall call B,.
The conditional expectations with respect to the o-algebra B, will be denoted by
the symbols E,[— | B;]. (The definition and properties of conditional probabilities
and expectations with respect to a c-algebra may be found, e.g., in Doob’s
“Stochastic Processes”.)

A stochastic process is called a Markov process (homogeneous in time) if, for
any positive constant 7, and for any I't, I's, .. , I e M, 0 <ty <to- -+ < iy,
we have for each z,

Pyle(r+t)eln, .. .x(v 4 tn) € I'n| Bl = Poy{e(t) e I, .. ,x(tn) e Ty} .

If this condition is satisfied not only for every constant v but also for any
stopping time v = 7 (w), then we shall call X a sirong Markov process. In the case
developed here where X is a strong Markov process with continuous paths, we
shall call X a diffusion.

In Section ITI, we verify our conjecture. The idea of the proof is very simple.
Essentially, we show that for a large family of functions f, and any starting point ag,

By [f@(t + 0)) | Bol = Hago) [f(2(t)] 2. €. Py, (1)
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where X is a given diffusion, and X is a process with the same hitting characte-
ristics. The left-hand side of (1) is an expectation taken with respect to the
probability measure Pm of X, while the right-hand side is with respect to the

probability measure Px(o') of X. We choose the family of f' s so large that the
left-hand sides determine the distribution of z (¢ + o), given 8. Since the right-
hand sides are functions of (o), our process X is Markov with the same transition
function as X.

The only problems of any technical difficulty are the choice of the class of
functions f, and the proof of (1).

The Brownian motion has generator 1/2 d2/da2, and is but one of the class of
diffusions z (£) with natural boundaries at £ oo, and generators D,, D+. In Section
IV, which is concerned with martingales and diffusions with natural boundaries
at £ oo, we shall see that, for such an z (), there is a sequence 7, (¢, ) of functions
with the property that the s, (¢, x(f)) are martingales, reducing in the case of the
Brownian motion to the familiar martingale polynomials. In particular,

m(t,x) =2
and

= [m(0,yldy —1.
0

We then see that a stochastic process x () satisfies the conditions
a) almost all paths of z(f) are continuous,

b) (t) is a martingale, and
()

c) f m (0, y}dy — t is a martingale
0

if and only if it is a diffusion with generator D,, D+, and has natural boundaries
at - co. This generalizes LivyY’s martingale characterisation of the Brownian
motion [c) clearly yields ¢’) when setting m (0, y] = 2y].

II. Preliminaries

This section recapitulates, in a form convenient for our use, relevant material
from the paper by DYNKIN [4].

Let us denote by B the space of I-measurable bounded functions on R,
whose norm is

[f] = sup |{ (@) |-
zeR

Given a Markov process X, the formula

Ti [ (@) = Bg[f(x(t)]
defines uniquely a one parameter semigroup of linear operators in B, such that
[7:f] <|f], andforalls = 0,t =0, Ty = Ts 7.
Let fu, f € B. We write f = lim f, if |fs — f] — 0. The set of all fe 5 for
which lim 7' f = f shall be denoted By. If

t—0
h(z) = lim TO=TD (4 p e )

t—0
we write fe Dg, and & f = h.
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® is called the (strong (infinitesimal)) generator of the Markov process.
We next define hitting probabilities and mean exit times for a random processX.
Given an interval (x1, #2) and a stopping time 7, we define

T+ v(T, %1, 22) to be min(t = T |z (t) ¢ (1, 22))

which is itself a stopping time.

Let @9 be an arbitrary starting point that we can hold fixed. B[z (T)| Br]
is referred to as a mean exit time. (If 7’ is a time for which x(7') = x, and 2 (?)
is a diffusion, then this mean exit time reduces to K;[7(0)].) The hitting pro-
babilities are

(T, 21, 22) = Py [x(x(T) + T) = 1| Br]
(T, 22, 21) = Py [o(x(T)+ T) =2 ] Br].

We write p (xo, x1, %2), etc., if T = 0.
We shall consider below triples (7', #1, #2) in which the path is almost sure to
leave (x1, z9) so that we have

p(T,xl,WZ) 'I‘P(T:Tz,xl) =1.

A process X and a diffusion X are said to have the same hitting characteristics
if for each starting point x9, stopping time 7', and interval (z1, x9)

B [v(T)| 811 = By (v (0))
p(T,21,22) = Pary[z(z(0)) = 1]

p(T a2, 21) = Pyeeny[2(7(0)) = 2]
these statements all holding a. e. P,,.

Note that, in our general definition of the hitting probabilities and mean exit
times, we have conditioned on By, that is, on the past up to some stopping
time 7', not merely on hitting x as in the case of a diffusion. The necessity for
this stronger conditioning was shown to me by D. B. Ray with an example of a
stochastic process that is continuous, but not a diffusion, while having the same
Ex[7(0, 21, 22)] as a diffusion but not the same E, [t(7T, &1, %2) I%T], ete. In
fact, take a standard Brownian motion b (£, w1), w1 € £2. Then such a process is
z(t, w), w = (w1, ws) € 2 X [0,2), with

z(2n -+ t,wy=>b(ws -+ 3n 4+, w)
x2n+1-4tw) =bwy+3n-+1+26w) 0581

where we have the measure 1/2 dz on [0,2), Brownian measure on £, and the
product measure on 2x[0,2).

In a way, then, our Theorem 1 below may be interpreted as saying that, to
make a continuous stochastic process Markov, it suffices to make its exit times
and hitting probabilities possess the Markovian property of being independent
of the past, once the present is given.

We say that a point g is a right transition point (or left) for a diffusion z ()
if there is some ¢ for which P, {x(t) > 2o} > 0 (or P, {x(t) < zo} > 0). We say
that x(f) is regular on the segment [a, b] if all points of (a, b) are both left and
right transition points.

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4 17
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Theorems 2.1 and 13.1 of DY~NKIN [£] link mean exit times, hitting probabilities,
and the generator of a diffusion as follows: Let X be a diffusion regular on the
segment [a, b]. Then

1. The function p (x) = p(x, b, @) is continuous, strictly increasing, and satisfies
the conditions

lim p() =0, lm p(x)=1.
z—>a+0 *—>b-—-0

Foralla < x1 <2 < w2 < b, we have

plxa) —p(x)

p(xyxlaxZ) = ])(xg) _p(xl) .

2. n(x) = B4 (7(0, a, b)) is continuous on [a, b], and the derivative

exists for all € (a, b) and is continuous on the right, and monotonically decreasing.
We set
m(x) = — D} n(x).

Thus m(z) is continuous on the right and monotonically increasing. Since it is
continuous on the right, we set m(x, y] = m(y) — m(x).

3. If f € Dg, then for any x € (a, b), the derivative D} f(x) exists and is conti-
nuous on the right. In the interval (a, b) we have

®f(@) = DnDy f(x).

The meaning of this is perhaps most clearly expressed by the equation

frl) — 1) =] (O ) @ mdd); f+ =Dy f.
<y
Since p () is continuous and strictly increasing, it is permissible to make the
change of coordinates on our state space: p(x) — x. Of course, this change affects
m too, but we shall still denote the new function by m. Our diffusion is then so
standardized that, on the regular interval [a, b], if @ < 21 << x < 22 = b, we have:

—x r—x
plwanm) = plow,m) = — - )
1 &y
T — X x—x
Ez(T(O:xl,xZ)):xZ_E m(xay]dy_l‘xz__xl_l m(x:?/]d?/ (3)
z z

Furthermore, after this standard change of scale, the generator of a diffusion
on a regular interval always has the form

®f = DpD+f.

III. The hitting charaeterization

This section is devoted to the proof of the following theorem.

Theorem 1. Let us be given a diffusion ¥ and a stochastic process Y (with
continuous paths) having as common state space some interval of the real line. Let
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{a, b) be an interval of regularity for the diffusion. Let X be our diffusion stopped
at the end points of the interval (@, b), that is,

y(t, w) t < 1(0,a,b)

Q(t(O, a, b), w) t=7(0,a,b).

Similarly, let X be the given stochastic process stopped at the end points of (a, b).

1f the given stochastic process has the same hitting characteristics as the diffusion,
then X is a strong Markov process, and thus a diffusion, and has the same transition

%(t, w) =

probabilities as X

Let X have generator D, D+ in the domain under consideration. (The standard
change of scale of Section II does not vitiate the truth of our theorem.) We know,
from McKzran [6], that if p(¢, s, 2) (@ < s << b) is the fundamental solution of
the “‘generalized heat equation”,

Dy Dtu(t,x) = % u(t, x), (4)
subject to the boundary conditions that u(z, ) is 0 for z ¢ (a, ), then
[Pty ) m(de) = Py(@(®)e D).
T

We also know that if f(z) is any continuous function of support in (a, b), then

y(tx) = fp t,z,s)f(s)m(ds)  (¢>0) ()

is a solution of (3) with ¢ (0, z) = f(x); and w({, ) = 0 when{ < a or t = .

We consider the class C(m, a, b) of functions y(t, x) of the form (5) with the
properties that y; = Oy/0t is uniformly continuous and that both y; and D+ p
are bounded, less than M say, in any bounded interval of x and ¢. (It suffices
that f be in the domain of the generator.)

For such a p, we have

Boolylt—s,z(6))] = [t —s,8) pls, z(0), &) m(dE)
= [I1() t—SE, 1) p (s, %(0), &) m (dy) m (d&)
= [ p(t,2(c), n) m(dn),
:w(t,x(a)).

We shall soon prove
Lemma 1. For all y of the class C(m, a, b) defined above, 0 < s < ¢,

Ely(t —s,2(s + 0)) — p(t,2(0)) | Bs] =0.

[Throughout the rest of this section we shall write £ and P as abbreviations for
E,, and P,, where zy is an arbitrary starting point that we can hold fixed.]

Let us first observe, however, that from Lemma 1 we may deduce Theorem 1.
Lemma 1 tells us that

Elyp(t—s,2(s + 0) | Bol = oo [y (t — 5, 2(5))] (6)

for all funetions 9 of the class C(m, a, b). We wish to see that these equalities
determine the distribution of z(s -+ ¢), given By. But

#’i—sx J.f S:”»?/)m(dy),
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where f may clearly approximate any continuous function, vanishing outside
(a, b), arbitrarily closely. Now, ¢ — s may be made arbitrarily small without
affecting the freedom of choice of s and ¢. Since (0, z) = f(z), it follows, by
continuity of y in ¢ — s, that the ¢’ s form a determining set. We thus obtain (1),
whence the theorem follows as in Section I.

To prove Lemma 1 we must estimate our quantity in terms of exit times, and so
forth. To this end, we sub-divide the interval (@, b) into 2# equal disjoint intervals.

We define ¢ + ¢f = min {{ = o|z(f) is an end point of an interval of our
sub-division}. Then, provided x(c 4 ¢}) + a or b, and ¢} < s, we define

min {6 = 0 + e} | 2() = 20 + &) £ 35

oo if no such ¢ exists.

0'+67cb+1=[

We thus obtain a sequence of stopping times
oteg=oct+e = Zotey=0c+te; forall k>m,
where
éy, = min {7 (0, a,b), ek}
# =min {k|e}_, <s,e} =s}.

% will now be used as an abbreviation for By - e}, whilst 2 will be short

notation for z(o + €}). Furthermore, we shall usually suppress the superseript =.

We shall need to use the fact that E{m(n) | Bs] < oo for each n. To see this,
first note that '

Eley —ep_i|af_y +a or b; Bl

a+(g+1)(b—a)2-
> min [ m@+q®—a)2-nyldy
0=g=2r—1 a+qb—a)2 "

=i(n) >0,
since m is strictly increasing on (a, b). Thus
Elr(0,a,b) ] Bl = E[ z (¢F — e5—1) l Bs]

= i(n) E[m(n)| Bs].
Hence
1

Em(n)| Bs] émE[‘E(O‘, a,b)| Bs] < oo.
We also have, from (2) and (3) ,
Elay — xp-1| Bl =0 (M)
and
E[xfm(xk—l, yldy — (ex — ep-1) | Bxr-11=10 (8)

We now compare "

Ely(t—s,z(c+5) — p(t, 2(0)) | Bo]
with

E[‘P(t — em, Tm) — ?P(t — eg, o) I Bs]

= E[ i [y (¢ — ek, xx) — p (f — ex~1, 25-1)]1|Bo (9)
E=1
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The difference between the two expressions is at most
Byt — eo, w0) — p(t, x(0)| | Bl + B 9t — ems 2m) — p(t— 5, 2(0 + 5))[| Vo],

We shall prove that the second term tends to zero as » — co. The proof for
the first term is simpler, and is omitted. The second term is less than or equal to

El| vyt — em xm) — p(t — em, (0 + 5))| | Bo]
+ B[yt — em, 2(0 + 8) —p(t—s,2(d + )| | Bs]-

The portions of these terms corresponding to e, = 7 = s clearly vanish, by the
definition of . Hence we have only to limit the portions on which e, 1 < s < ep.

If we choose N so large that |y — y'| <2 ¥and 0 < r < ¢ implies |y (r, y)
— y(r, y')] < €, then for » > N, the first term is less than €. The second term
is less than s, = M. Elep, — s, €y,_; <s = ¢,| Bs]. Since the e}, form a
decreasing sequence, the s, form a decreasing sequence of positive terms, and
hence has alimit = 0. It equals zero, since we have, for all &, H e — ef_, | Bi-11{ 0
as n — oo, since, by using (8)

+Ha+ D =02
Blef — e 1| Beal <max "7 a4 g (b — a) 27, 9] dy
0202 4pq—ayz-n
< K-2-7n,
where K = m(a,b]- (b — a).

Hence, it remains to be proved that (9) tends to zero as n tends to co. We note
that

g [i vt — e a) =yl — ey, ) | %J
&}

= B[ M - (e — ) + gm0 (0)| Bo]
< o0,

m(n) m(n)

Y3 " 1
éE[ZM-(ek —e_q) -+ ZM.2T
k=1 k=1

(9) is thus absolutely convergent, and so may be rewritten
]2 lE[w(t — e, xx) — Pt — ex—1, ¥p-1) | Bo] .-
Bearing in mind the usual Taylor series, and its simply proved analogue
[6) =10+ 6~ ) D) + ([ m(a.1)dy) - Do D* @

for some z between a and b, we have
Pt — ek, xp) — p( — ex—1,%p-1) = [9(t — ex, ¥x) — P (t — ep-1, 2x)] +
+ [y — ex—1,28) — p(t — ep-1, 25-1)]
= — [p1(t — e (k). wx) (er — ex—1)] -+
+ [yt (¢t — ep—1, Zk-1) (%% — 2p-1)] +
+ [Du Dyt — ep-1,z(k)) - [ m(zp-1,y]dy],

Lr-1
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where ez_1 < e(k) < e, and z(k) falls between xx_; and xy,

= 9+ (t — ep—1, 1) (¥x — Tx—1)
Zr

— 1t — -1, @p-1) [(er — ex-1) — [ m(zx—1, y] dy]

k-1

- [yt — e(k), wp) — w1 (t — ex—1, xx—1)] (ex — €x-1)

+ [p1(t — ex—1, 2(k)) — p1(t — ex—1, TE-1)] 'Tkm (@k-1,y]dy,

ZTr-1

since 91 = Dy, ¢+, by assumption,
= T+ Tox + T3x -+ Tar, say.
Since B[y — xx-1|Br-1] = 0, we see that > B[T15|Bs] = 0 by condition-

E=1
ing the k'™ term first with respect to By—1, and then with respect to By.

Similarly, (8) implies that Z BTz |Bs] =0.
k=1
Now pick £ > 0, and N so large and J so small that for ¢, £ > 0, with

|t—t] <6 and |z—a'|<2F, wehave |y1(t,x)—pi(t, )| <e.
Then, for » > N, noting that e; — ex—1 == 0, we obtain

;E[l Tsi||Bol =§E[| Tsx|, €y — ef_1 > 6]Bq]

S B T, — ey < 0[]
1
= 81 -+ $2,

§g << SZE[62-6%—1,625—62—1 = 6(By]
1

<£ZE[€%—€g_1ISBG]
i
< 8E[T(G; a, b)|%0']’

81=2E[| Tskl,e’é— €p.1> 6|Bs]
1

<2M'2E[€g—' 6]7:_1,62'—6%_1> 6|%(;}
1
< 2M- E[e, — e, max (€} — e _1) > 6|Bs].
k

To prove that this goes to zero as n — co, we show that P (4, [Bs) | 0 as n — oo,
Ay = {max (e} — ef_;) > 0}. But this amounts to showing X has, with pro-
k

bability 1, no interval of constancy. Since such an interval of constancy must
contain a rational t;, and since there are only denumerably many of these, it
suffices to prove that

Pa)=atr), h=t=1t]=0
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for any given pair {1 < {2. Now,
Pla(t) = a(tr), b St <1y
=lm Y P2 <a(t) < (k+1)2°7 11 <t <ts, b = [x(t1)27]]
[
=lim > B(Pk2 7 Sa(t) < (k+1)277,t; <t Zts[B,], b = [#(t1) 27]]
n ok
— 1§ E(elk(%h) — —
_h;n;E(W - [x(t1)2n]) —0
where I} is the interval of length 2-(n-1 centered at (k -+ 1/2)2-%, e!* is the
exit time from this interval, and we know that E(ef*|%,)]} 0, by our hitting
assumptions. Thus

> B[Ts:|Bs] >0 as n-—>oo.
F=1

’

x
Noting now that f m{x, y] dy is always non-negative, we have, for n > N,
&

SB[ Tw| |84 < sE[iEWm(xk_l,y] dy|Bi s }%a}
k=1 !

k=1 |zg- i

< ¢E[r(0,a,b)|Bs].
Thus ZE [T4x|Bs] ~ 0 as n — oo, and we may finally conclude that
E=1

El(y(t—s,2(c+s)) —yp(t,z(0)]Bs]=0.
Q.E.D.

IV. Martingales and diffusions with natural boundaries at 4 oo

In this section we restrict ourselves to diffusions that are regular on every
finite interval, having natural boundaries at -4~ co and generators D,, D+. For a
definition of natural boundaries, see McKeax [6]. The intuitive meaning of
natural boundaries is that “it takes a particle moving under the diffusion in-
finitely long to reach them”.

The classical example of such a diffusion is the Brownian motion (Wiener
process) b(t), determined by m(z) = 22, which thus has generator

1 a2
2 da?
It is normally characterized by the fact that it has gaussian increments:
—(y—a)*2t

1
Pm{b(t)ef}z——ime dy.
Recall that a stochastic process z(f) is a martingale if, for s < ¢,
Blx(t)|Bs] =(s).
It is well known that we may associate with the Brownian motion a sequence
of polynomials uy,(f, #) with the property that the stochastic process u, (£, b(f)),

obtained by replacing « by the random variable b(¢), is a martingale, for each n.
We thus call u, {4, #} a martingale function for b(f). These polynomials are in-
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timately related to the heat polynomials of RosENBLooM and WIDDER [7] (which
go back at least to APPELL [I], 1892) and have the generating function

o)
(V2zyz—22¢ __ 2"
ell2 = Zoun (t2) =
"=

Thus, up to a multiplicative constant,
Uy = 1 s

U=,

A compact expression (again up to a multiplicative constant) using the Hermite

polynomials H, (y) is
¢t \n/2 x
o) = ()" £ ()

We recall that Livy’s theorem tells us that if a continuous stochastic process
has both u; and uy as martingale functions, then it is the Brownian motion.

We thus ask: Given the diffusion #(¢) with natural boundaries at -+ co, does
there exist a sequence of martingale functions 7, 71, 72, ... for z(f), reducing
naturally to wg, 41, %a, ..., for b(t)? Furthermore, if a continuous stochastic
process has 711 and 7o as martingale functions, must it then be the diffusion x(f) ?
The answer to both questions is in the affirmative.

‘We note that

_ el 2
(Jze = zzn(”’ ﬁ)
=0 n!

and that the sequence

has the property that
1 d2
5 g7 P2 (%) = Pal).

We generalize this sequence for the generator Dy, D+ by the defining relations:

po=1, p1=x,
P = [ Ofpn—z (&) dm. (@)

so that we do indeed have Dy, Dt pyio == py.

It can be verified by induction separately on odd and even n that p,(x) is
positive for » even, and has the sign of x for n odd.

Then we set

g(®,2) =§Z”10n(w)
n=0

so that

oo

— 2

g(@,2) et = zgfn (z,t) P
ne
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is, at least formally, the generating function of the space-time functions

=1,
qL=,
7y = pa(x) — ¢,

7 = p3(x) — tp1(x),
tz
74 = pa(x) — tp2 + 377 ete.,

and 7, reduces to u, after replacing p,(x) by 27/2x%/n! and factoring out an

unimportant V§ from each mop41.

Theorem 2. T'he 7y, are martingale functions for the diffusion with natural bound-
aries at 1 oo, and generator Dy, D,

We already know this to be true for m = 2z, and (as in fact the reader may
check from our construction), our experience tells us that it suffices to prove

Bolpan (#(1)] = -

Eo[pan+1(x(t))]=0.

We shall thus have our theorem as soon as we have proved Lemma 4 below.
We recall (McKEan [6]) that, for each « > 0, we have two positive solutions

g1(2), ga(®) of Dy Dtg(x) = ag(x), the first increasing, the second decreasing.

We normalize them so that their Wronskian g7 g3 — g193 is identically 1.
The Green function for D, D+ is

Ga (€, ) = Gu(n, &) = g1(5)g2(n) for &=n.
If p(t, y, ) is the fundamental solution of
0
Dy Dt f= 5 f

it has the property that the transition probability for the diffusion with generator
D, Dt is
Py, I =[p(t,y,x)m(d).
T

Furthermore,

Culy, @)= [e ™ p(t,y,x)dl.
b

Lemma 2. For a natural boundary at + oo:

(i) g2(c0) =0,

(ii) Agt(4)—0 as A-—oo.
Proof. (i) See McKEAN [6] (p. 524).

(ii) Since dg¥ = agadm =0, g2 must be concave.
Thus
[(4 — B)g3(4)| = g2(B) — 92(4).

AﬁmlAgg(A)[~gz(B)—gz(w)—90 as B—oo.
Q.E.D.
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Lemma 3. If x(t) is the diffusion with generator D, D*, and natural boundaries
at -+ oo, then x(t) is a martingale.

Proof. We first compute the Laplace transform

fem* Bola(t), x(t) = 0] dt

0

= fom (dx) xofe‘“‘p (t,0,2) dt
0

= f@:Ga (0, z) m (dx)
~ a9 j waga(x)m (d)
= _91050) fadgi (since Dy D*gs = ags) (10)
0
=Ah£1°° 91 (O) J‘ g5 (

9050 by Lemma 2

R

Ga (00

—ap (¢, 0,0)dt

I
9‘7—-
o—3 a
[

o ¢
= J'e““‘fp(s, 0,0)dsdi.
0 0

Thus, by the uniqueness of the Laplace transform, we have, for almost all ¢,

Eolx(f), z(f) =2 01 = fﬁs 0,0) ds.
Analogously, for almost all ¢,
Ep[z(t),z(t) = 0] = — J'tp (5,0,0)ds.
Thus ’
Eo[|z(t)]] =2 f'p(s, 0,0)ds for almost all ¢.
That is, ’
Ey[|lz®)|] <2 _ftp (s,0,0)ds for all t, by Fatou’s lemma .
More generally, ’
Eyfle®1=n+ pr(s, 7,0)ds for almost all ¢,
0

and
Eu{x@t)] =n for almost all £,

as may be shown by a slight elaboration of the argument above for # = 0.
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By the Chapman-Kolmogorov equation
Eylx(®)] = Ey[Ba [2(t — 9)]],

and so, since the measure ds/t on (0, f) has total mass 1

¢ oo oo
Eyfe0) = [ [ 26 npmdy) [pe—syam@). ay
Let v -
1 if Hylx(t—s)]l=y and Eylz(s)]=n
x(59) = { 0 elsewhers.
Then (oo

[% [ xsmman=1

b -
which allows us to modify (11) on an (s, ¥) set of measure 0 to obtain
Eylz()l=n forallt,
and so z(f) is a martingale, by stationarity. Q.E.D.
Lemma 4. Bol[paa(=()] = =

T n!

Eo[pen+1(z())]=0.
Proof. Let

¢n = Ho[pn(2)].
Then the Laplace transform of ¢, is

Lot =91(0) [ pugadm
0

_ 00 {padg}, just as we derived (10),
0

e

A
= 91;0) lim [z)n(fl)gz+ (4) — [ o (@) dgz(m)}
A—ro0 0
A
=g—10£9 lim [;@?n(A)gz+ (4) — p, (4)g2(4) +fgzpn—zdm}
A— o0 [}
for n=2, since pug=D,D"p,.
o Fot =~ Pof o+ PO lim [pa(4)g7 (4) — pif (A)ga(A)]. (12)
A—>c0
oo . A fore)
/pnggdmg%(—l/aggdm
A 4
) [
=-~pi )/dg;
4
(4
= 22D (g (4))
=0,
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since gp is decreasing and p,(4) > 0 for 4 > 0.
Pn(d)gd (4) =0 as A-—>o0.
Furthermore,

B B
Afpn g2dm = g2 (B) [ padm = g2(B)[p;r12(B) — Py 2 (A)];
A

. B
lim g2 (B) p;f+2(B) ~ lim [pygadm |0 as A -—>co.

B->00 B-—>o0d

Thus we deduce from (12) that
Lef = ‘:[30;4-2:
1
Loy =5 L e =a 1 —g5(0)g1(0)),

1
Lty = o LT =a1(g1(0)g2(0)).

Similarly,
& ez, = o719 (0)92(0)),

Z egni1=a"H—91(0)92(0)),
and we see that Ey[|pa(x)|] < co.

Thus, recalling that g7 g2 — g1 = 1, we have
1

Lo = 1
ZLeon1=0.
Eo[pon(z(t))] = L (e 1) = % for almost all ¢,
Eolpon(x(t))]=0 for almost all £.

The Chapman-Kolmogorov frick in the proof of Theorem 2 now permits us to
replace “for almost all #” by “for all £,
Q.E.D.

We are now in a position to combine Theorem 1 and 2 to obtain the promised
martingale characterization of which L#vy’s theorem is clearly a special case.

Theorem 3. Let x(t) be a stochastic process. Then tn order that x(t) be the diffusion
with generator Dy, D+ and natural boundaries at 4~ oo, it is both necessary and suf-
ficient that it satisfy all three conditions:

a) almost all sample paths of x(t) are contenuous,

b) x(t) is @ martingale,

a(t)
) [m(0,yldy —t is a martingale.
)

Proof. (i) The necessity follows from Theorem 2.

(i) Sufficiency will follow from Theorem 1, as soon as we show that the con-
ditions a), b), ¢) suffice to fix the hitting probabilities and mean exit times of
the process.
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We want to determine
p(T, 21, 22) = Plx(T + 1) = 31| B 7]
which yields
(T, 29,21) =1 — p(T, 21, x2)
and
E[t(T,x1,22)|Br).

Now, if optional sampling at 7' and T + 7 preserves “martingaleness” in b)
and c), we have

Ew—ﬁi%]_&a

X2 — 21 @2 — 21
That is,
r1 — &1 X9 — 1 x(T)-—xl
v — g Pz @)+ (T2, 0) =~ =
i.e.
(L'(T) -— X1
p(T, xz,xl) == xz_?.

Similarly, ¢) yields

Blz|B7] = p(T, z1, x2) [m(0, yldy + p(T, w2, 71) [ m (0, y] dy
0 0

(T)
0

and the determination is complete. To make the argument rigorous, we merely
replace 7' by max(—n, min(7,»)) and 7T -+ v by max(—n, min(7 + 7, n)),
apply Theorem VIL.11.8 of Doos [3] (p. 376) carry out the analogues of the
computation above, and then let n — oo.

Q.E.D.
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