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Hitting and Martingale Characterizations of 
0ne-Dimensional Diffusions * * *  

By 

MICHAEL A. ARBIB **r162 

Abstract. The main theorem of the paper is that, for a large class of one-dimensional 
diffusions (i. e. strong Markov processes with continuous sample paths) : if x (t) is a continuous 
stochastic process possessing the hitting probabilities and mean exit times of the given diffu- 
sion, then x (t) is Markovian, with the transition probabilities of the diffusion. 

For a diffusion x (t) with natural boundaries at :t: r162 there is constructed a sequence 
z~n (t, x) of functions with the property that the Zn (t, x (t)) are martingale,~, reducing in the 
case of the Brownian motion to the familiar martingale polynomials. 

I t  is finally shown that if a stochastic process x (t) is a martingale with continuous paths, 
with the additional property that 

x(t) 
~ (o, y ]  d y  - -  t 

o 

is a martingale, then x (t) is a diffusion with generator DmD+ and natural boundaries at • r 
This generalizes a martingale characterization'given by L~v~" for the Brownian motion. 

I. Introduction 

I t  is well known tha t  if x ( t )  is the Brownian  motion,  then  
a) almost  all paths  of x (t) are continuous,  
b) x (t) is a mart ingale ,  and 
e') x ( t )  2 - -  t is a mart ingale .  
Tha t  the converse is true, i. e., t ha t  a stochastic process satisfying a), b), and  

c') mus t  be the Brownian  motion,  has been s ta ted (in slightly different form) by  
Paul  L~v,z [5]. J .  L. Doo~ [3] gives a full proof, which relies heavily on Fourier  
t ransforms and  the known t rans i t ion  probabil i t ies for the Brownian  motion.  I t  
is no t  amenable  to generalization. 

The Brownian  mot ion  is bu t  one of a large class of (one-dimensional) diffusions, 
i. e., s trong Markov processes with cont inuous sample paths. We were interested 
in generalizing L]~vY's theorem to cover this class. We noted  t ha t  for a cont inuous 
stochastic process, the provision t ha t  x (t) and  x 2 (t) - -  t be mart ingales  ensures 
t h a t  the process x (t) has the same hi t t ing  probabil i t ies and  mean  exit t imes as the 
Brownian  motion.  We then  c o n j e c t u r e d  t ha t :  for a large class of one-dimensional  
diffusions, ff x (t) is a cont inuous stochastic process, then  the possession of the 
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hitting probabilities and mean exit times of a diffusion implies tha t  x(t) is Mar- 
kovian, with the transition probabihties of the given diffusion. We found this 
to be true. 

I t  is well to contrast  our result with the theorem, implicit in the paper of 
BLUMEN~HAL, GETOOR, and McKEA~ [2], that  if two Markov processes, satisfying 
HunT's  condition (A), have the same hitting probabilities and mean exit times, 
then they are identical. Our result is stronger [or the one-dimensional case in tha t  
we need only assume one process Markov. I t  is tempting to speculate tha t  our 
result is true without the dimensionality restriction, but  the verification of this 
would require methods quite different from those tha t  we employ here. 

Throughout this paper we are concerned with one-dimensional continuous 
stochastic processes. We may  consider such a process as defined on the "path-space" 
tg, the set of continuous paths w: [0, c~) -~ R. We refer to R as the "state-space",  
and set x(t, w) ~- w (t). 

We shall denote by  ~t  the usual a-algebras generated by the sets {wIx(u,w ) e F }  
(0 ~ u ~ t, /" e ~ ,  the a-algebra generated by the open sets of R). ~ '  will be 
the a-algebra generated by  the intervals on the line 0 ~ t < r and ~ will be 
the a-algebra of subsets which is generated by the sets {x (t, w) e F} (t => 0, _FE F2). 

A (continuous, one-dimensional) stochastic process X = (Y2, ~t, Pz) is then 
given by a family of probabili ty measures Px, one for each x E R, such tha t  
Px{x(0, w) = x} = 1, and tha t  for any B e ~,  the function Px(B) is an ~ ' -  
measurable function of x. Px may  be interpreted as the probabili ty measure 
induced on $2 by the process if started at  point x at  t ime 0. Thus a process in our 
sense is really a ' family'  of processes, one for each x e R. 

Let  ~(w) be a ~-measurable function on $2. We shall denote by Ex{~} the 
integral 

f ~ (w) Px (dw). 

We say tha t  the non-negative random quanti ty ~ = T (w) is a stopping time 
if, for any t, the set {T (w) ~ t} belongs to ~ t .  The sets A ~ ~ which for arbi trary t 
satisfy the condition {T (w) ~ t} (3 A e ~ t  form a a-algebra tha t  we shall call ~ r .  
The conditional expectations with respect to the a-algebra ~ r  will be denoted by 
the symbols Ex[-- I ~ ] -  (The definition and properties of conditional probabilities 
and expectations with respect to a a-algebra may  be found, e.g.,  in Doob's 
"Stochastic Processes".) 

A stochastic process is called a Markov process (homogeneous in time) if, for 
any positive constant % and for any /~1, F~ . . . . .  Fn ~ ~J~, 0 ~ tl < t2 " �9 �9 < in, 
we have for each x, 

Px[x(~ -~ tl) e 1"1 . . . . .  x(~: -~ tn) e In]  ~ ]  = Px(~) {x(tl) e 1"1 . . . .  , x(tn) e I n } .  

I f  this condition is satisfied not only for every constant ~ but  also for any 
stopping time ~ = ~ (w), then we shall call X a strong Marlcov process. In  the case 
deve]oped here where X is a strong Markov process with continuous p~ths, we 
shall call X a di#usion. 

In  Section I I I ,  we verify our conjecture. The idea of the proof is very simple. 
Essentially, we show that  for a large family of functions ], and any starting point xo, 

Ezo[/(x(t ~- a)) l ~z] --~ Ex(z)[[(x(t))] a. e. P~o (1) 



234 MICgAEL A.  ARBIB: 

where X is a given diffusion, and X is a process with the same hitt ing characte- 
ristics. The left-hand side of  (1) is an expectat ion taken with respect to the 
probabil i ty measure Pzo of X, while the r ight-hand side is with respect to the 

probabil i ty measure /~x(~) of X. We choose the family of [ '  s so large tha t  the 
left-hand sides determine the distribution of x (t ~- a), given ~ .  Since the right- 
hand  sides are functions of  x (a), our process X is Markov with the same transit ion 
funct ion as X. 

The only problems of  any  technical difficulty are the choice of  the class of  
functions [, and the proof  of  (1). 

The Brownian mot ion has generator  1/2 d2/dx 2, and is bu t  one of the class of  
diffusions x (t) with natural  boundaries at  4- co, and generators DmD+. I n  Section 
IV, which is concerned with martingales and diffusions with natural  boundaries 
at  • c~, we shall see that ,  for such an x (t), there is a sequence ~n (t, x) of functions 
with the proper ty  tha t  the Zn (t, x(t)) are martingales, reducing in the case of the 
Brownian motion to the familiar martingale polynomials. I n  particular, 

~ l ( t ,  x)  = x 
and 

,T 

~2(t,x) = ] m(O,y] dy -- t. 
0 

We then see tha t  a stochastic process x (t) satisfies the conditions 
a) almost all paths  of  x (t) are continuous, 
b) x (t) is a martingale, and 

x(t) 
c) ~ m (0, y] dy -- t is a mart ingale 

0 

if and only ff it is a diffusion with generator  D u D  +, and has natural  boundaries 
at  • c~. This generalizes L~vY's martingale eharacterisation of  the Brownian 
motion [e) clearly yields e') when setting m(0, y] = 2y]. 

II .  P r e l i m i n a r i e s  

This section recapitulates, in a form convenient  for our use, relevant material  
f rom the paper by  DY•xIN [4]. 

Let  us denote by  B the space of ~ -measurab le  bounded functions on R, 
whose norm is 

!]li[ = sup I i ( x ) I .  
~6R 

Given a Markov process X, the formula 

Tt /(x) = E~[l(x(t))] 

defines uniquely a one parameter  semigroup of  linear operators in B, such tha t  

li 111 < [I Ill, and for all 8 > 0, t > 0, Ts+t ~-- Ts Tt .  
Let  In, [ z B. We write l = lim In if II 1~ - ]II --> 0. The set of  all [ z B for 

which lim Tt [ = I shall be denoted B0. I f  
t---> 0 

h(x) = lira TJ(x) - f (x )  ([, h e Bo) 
t >O t 

we write ] e D~, and | / = h. 
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| is called the (strong (infinitesimal)) generator  of the Markov process. 
We next  define hi t t ing probabilities and mean exit times for a random processX. 

Given an interval  (xl, x2) and a s topping  t ime T, we define 

T ~- 7:(T, xl ,x2) to be min(t  ~ T Ix(t) ~ (xl, x2)) 

which is itself a stopping time. 
Let  Xo be an arbi t rary  s tar t ing point  tha t  we can hold fixed. Exo[~(T) I~T] 

is referred to as a mean  exit time. (If  T is a t ime for which x (T)  =-- x, and x (t) 
is a di]usion, then this mean exit t ime reduces to Ex[~(0)].) The hit t ing pro- 
babilities are 

p ( T ,  xl ,x2) = Pxo[x(v(T) + T) = xl ]~T] 

p ( T ,  x~, xl) = Pxo[X(~(T) + T) = x2 I ~T].  

We wri tep(xo,  xl, x2), etc., if  T = 0. 
We shall consider below triples (T, xl, x2) in which the pa th  is almost  sure to 

leave (xl, x2) so tha t  we have 

p ( T ,  xl ,  x2) + p ( T ,  x2, xl) = 1. 

A process X and a diffusion 2~ are said to have the same hitting characteristics 
i f  for each s tar t ing point  xo, stopping t ime T, and interval  (xl, x2) 

E~o[~:( T) ] ~T] = Ex(T) (T(0)) 

p ( T ,  xl ,  x~) = ~ (~ ) [x (~ (0 ) )  = xl] 

p(T, x2,  xl) = P ~ ( T ) [ x ( ~ ( 0 ) )  = x~]  

these s ta tements  all holding a. e. Pz0. 
Note  that ,  in our general definition of  the hi t t ing probabilities and mean  exit 

times, we have condit ioned on ~T,  t h a t  is, on the past  up to some stopping 
t ime T, not  merely on hi t t ing x as in the case of  a diffusion. The necessity for 
this stronger conditioning was shown to me by  D. B. R a y  with an example of  a 
stochastic process t ha t  is continuous,  bu t  not a diffusion, while having the same 
Ex[~(0,  xl, x2)] as a diffusion bu t  not  the same E~0[~(T, xl, X2) I~T], etc. I n  
fact, take a s tandard  Brownian mot ion b (t, wl), wl ~ ~ .  Then such a process is 
x(t, w)~ w = (wl, w2) E/2 X [0,2), with 

x (2 n § t, w) = b (w2 + 3 n + t, wl) 

x ( 2 n - ~  l - ~ t , w ) = b ( w 2 +  3n -~  l ~-2t ,  wl) 0 ~ t < l  

where we have the measure 1/2 dx on [0,2), Brownian measure on /2~ and the 
produc t  measure on [2x[0,2). 

I n  a way, then, our Theorem 1 below m a y  be interpreted as saying that ,  to  
make  a continuous stochastic process Markov, it suffices to make its exit times 
and hi t t ing probabilities possess the Markovian proper ty  of  being independent  
of  the past,  once the present is given. 

We say tha t  a point  x0 is a r ight  t ransi t ion point  (or left) for a diffusion x(t) 
if  there is some t for which Pxo{x(t) > x0} > 0 (or P~o{X(t) < x0} > 0). We say 
tha t  x (t) is regular on the segment In, b] if  all points of  (a, b) are both left and 
right transit ion points. 

Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 4 17 
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Theorems 2.1 and 13.1 of  D:zN~r~ [4] link mean exit times, hit t ing probabilities, 
and the generator  of  a digusion as follows: Let  X be a diffusion regular on the 
segment [a, b]. Then 

1. The function p (x) -~ p (x, b, a) is continuous, strictly increasing, and satisfies 
the conditions 

lim p (x) = 0 ,  lim p (x) ~ 1. 
x-~-a + 0 x-->b ~ 0  

For  a l l a ~ x l ~ x < x 2  ~ b, we  have 

p (x~.) - p (x) 
p (x, x l ,  x~) - ~ - ~ ) .  

2. n(x)  ~ Ex(T(O, a, b)) is continuous on [a, b], and the derivative 

D+n (x) = lim n(y) - n(x) 
y--->x + o 2~ (Y) -- P (x) 

exists for all x e (a, b) and is continuous on the right, and monotonical ly decreasing. 
We set 

re(x) ~- - -  D + n ( x ) .  

Thus m (x) is continuous on the r ight  and monotonical ly  increasing. Since it is 
continuous on the right, we set m (x, y] = m (y) - -  m (x). 

3. I f  [ ~ Dc~, then for any  x e (a, b), the derivative D+l (x )  exists and is conti- 
nuous on the right. I n  the interval  (a, b) we have 

(~[(x) = Dm D+ [(x) .  

The meaning of this is perhaps most  clearly expressed by  the equation 

/+(y) - -  ]+(x) = f ( |  (~)m(d~); /+ - D + / .  
(x,y] 

Since p (x) is continuous and strictly increasing, it is permissible to make the 
change of coordinates on our state space : p (x) -+ x. Of course, this change affects 
m too, bu t  we shall still denote the new function by  m. Our diffusion is then so 
s tandardized that ,  on the regular interval  [a, hi, if a g xl < x < x2 ~ b, we have:  

p(x,  xl x2 ) - -  x 2 - x  x - -x1  , , p ( x ,  x 2 ,  xl)  - ( 2 )  
X 2  - -  X l  972 - -  X l  

Xl  X 2 

/ x J Z x -  m ( x , y ] d y - ~  ~ x - ~  m ( x , y ] d y .  (3) E ~ ( T ( 0 ,  x l ,  x 2 ) )  - -  ~ _ x ~  

Furthermore,  after this s tandard  change of scale, the generator  of  a diffusion 
on a regular interval always has the form 

~ /  ~ D m D + / .  

III. The hitting characterization 

This section is devoted to the proof  of  the following theorem. 

Theorem 1. Let us be given a digusion Y and a stochastic process Y (with 
continuous paths)  having as common state space some interval o/ the real line. Let 
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(a, b) be an interval o/regulari ty/or the di]usion. Let f~ be our di~usion stopped 
at the end points o/the interval (a, b), that is, 

~(t ,w) ~--{ y ( t ,w)  t <  T(0, a,b) 
(3 (0, a, b), w) t > ~ (0, a, b). 

Similarly, let X be the given stochastic process stopped at the end points o] (a, b). 
I / t he  given stochastic process has the same hitting characteristics as the di]usion, 

then X is a strong Markov process, and thus a di]usion, and has the same transition 

probabilities as 2~. 
Let X have generator Dm D+ in the domain under consideration. (The standard 

change of scale of Section I I  does not vitiate the t ruth  of our theorem.) We know, 
from McKEAN [6], tha t  if p (t, s, x) (a < s < b) is the fundamental  solution of 
the "generalized heat equation", 

a 
Dm D+ u(t ,x)  = -~[ u(t, x) , (4) 

subject to the boundary conditions that  u(x, t) is 0 for x ~ (a, b), then 
A 

] p  (t, y, x) m (dx) -~ Py (x (t) ~ F ) .  
F 

We also know tha t  if ] (x) is any continuous function of support in (a, b), then 

b 

v~ (t, x) = S P (t, x, s) l (s) m (ds) (t > O) (~) 
tl 

is a solution of (3) with ~v(0, x) : / ( x ) ;  and yJ(t, x) = 0 when t ~ a or t > b. 
We consider the class C(m, a, b) of functions ~v(t, x) of the form (5) with the 

properties tha t  ~vl = a~f/8t is uniformly continuous and tha t  both ~Pl and D + ~p 
are bounded, less than M say, in any bounded interval of x and t. (I t  suffices 
tha t  / be in the domain of the generator.) 

For such a ~v, we have 

~x<~) [9  (t - s, �9 (s))] : ] ~ (t - s, ~) p (s, x (~), ~) m (d~) 

= f f l ( V ) p ( t  - s, ~, v )p ( s ,  x(~), ~) m(d~) m(d~) 

--  f /(rl)p(t ,  x((~), ~1) m(d77) , 

= w (t, x (a) ) .  

We shall soon prove 
Lemma 1. For all ~f o/the class C(m, a, b) defined above, 0 <~ s < t, 

E[~f( t - -  s , x ( s  + a)) -- y~(t,x(a)) [ ~)a] : O. 

[Throughout the rest of this section we shall write E and P as abbreviations for 
Ex0 and P~o, where x0 is an arbi trary starting point tha t  we can hold fixed.] 

Let  us first observe, however, tha t  from Lemma 1 we may  deduce Theorem 1. 
Lemma 1 tells us tha t  

E l 9  ( t -  s, x(s + a)) I ~ ]  = ~ ( ~ )  [9 (t - -  s, x (s))] (6) 

for all functions ~f of the class C(m, a, b). We wish to see tha t  these equalities 
determine the distribution of x (s + a), given ~z .  But  

(t --  s, x) = ~ ] (y) p (t -- s, x, y) m (dy), 

17" 
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where / m a y  clearly approx ima te  any  continuous function, vanishing outside 
(a, b), arbi t rar i ly  closely. Now, t -  s m a y  be made  arbi t rar i ly  small wi thout  
affecting the  f reedom of choice of  s and  a. Since ~ (0, x) = f (x), i t  follows, b y  
cont inui ty  of  ~ in t - -  s, t h a t  the  ~v' 8 form a determining set. We  thus  obta in  (1), 
whence the  theorem follows as in Section I .  

To prove  L e m m a  I we mus t  es t imate  our quan t i ty  in te rms  of exit  t imes, and so 
forth.  To this end, we sub-divide the  in terva l  (a, b) into 2n equal  disjoint intervals.  

We  define a -~ e~ - -  rain {t > a[x(t) is an end point  of  an in terval  of our  
sub-division}. Then,  provided x (a -~ e~) ~= a or b, and  e~ < s, we define 

min t > o + e ~ l x ( t ) = x ( o ~ - e ~ ) •  

a Jr e~+i  -~ (oo if no such t exists. 

We thus  obta in  a sequence of s topping t imes 

0 - ~ - e ~ < o - { - e ~ < =  = . ' . < a + =  e~ n n ( . ) ~ o + e ~  f o r a l l  k > m ,  
where 

e~, : rain {'~ (0, a, b), e:~} 

~ =min{~ l e  ~_~ <~,e~ >~}.= 
e n ~3~ will now be used as an abbrev ia t ion  for  ~36 ~- k, whilst  x~ will be shor t  

no ta t ion  for x (o -{- e~). Fur thermore ,  we shall usual ly suppress the  superscr ipt  n. 
We  shall need to  use the  fact  t h a t  E [ m  (n) I ~ ]  < oo for each n. To see this, 

first note  t h a t  

E[e~-- e~_llX~_ 1 =~ a or b; ~z ]  
a + ( q §  

> rain ~ m (a + q (b -- a) 2-n, y] dy 
0~q__<--2n--I a + q ( b - - a ) 2  -n 

= i(n) > 0, 

since m is s tr ict ly increasing on (a, b). Thus  

E[~(o, a, b)] ~3 >_ E[ ~ (~ - 6~-~) l ~ ]  

> ~ (n) E[m (n) I ~ ] -  
Hence 

1 
E[m(n) [ ~ ]  g i~) E['v(o,a,b) [ ~(~] < ~ .  

We also have,  f rom (2) and (3) 

E[x~ .i_ xk-ll  ~-i]  = 0 (7) 
and  

Xlc 

E [ y m(xk-1, y] dy - -  (e~ -- e~-i) [ ~/~-1] = 0 (8) 

We  now compare  
E [~  (t - -  8, x (o  + 8)) - -  ~ (t, x (0))  1 ~ ]  

with 
/ ~ [ ~ ( t  - era, xm) - ~ ( t  - e0, x0) l ~ ]  
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The difference between the two expressions is at  most  

Z [1W (t - -  e0, x0) - -  W (t, x (~ 1 ~ ]  + EEl W (t - era, Xm) - W (t - -  s, x (~ + s))ll ~ ] ,  

We shall prove t h a t  the second term tends to zero as n --> c~. The proof  for 
the first te rm is simpler, and is omitted.  The second term is less than  or equal to 

E [  I ~ ( t - -  era, x ~ )  - -  ~ ( t - -  e~ ,  x ( ~  + 8) ) ] ]  ~ ]  

d- E [ I  V (t - -  em, x ((~ -t- 8)) - -  V (t - -  s, x (a d- s)) l  l ~(r]. 

The portions of  these terms corresponding to e m =  ~ <= s clearly vanish, by  the 
definition of  V. Hence we have only to limit the portions on which em-1 < 8 ~ era. 

I f  we choose N so large t h a t  I Y - -  Y'J < 2 - N  and 0 < r ~ t implies I ~f (r, y) 
- -  V (r, y ')  ] < ~, then  for n > N, the first te rm is less than  e. The second term 
is less t h a n  8n M .  E [ e  n s, e n = --  s~-I < 8 =< e~J ~a]. Since the em(n ) n  form a 
decreasing sequence, the 8n form a decreasing sequence of  positive terms, and 
hence has a limit > 0. I t  equals zero, since we have, for all k, E[e~ - -  e~_ 1 ] ~-1][~ 0 
as n ---> c~, since, by  using (8) 

n n a §  

E l %  - -  %-11 !~ -1 ]  < max  f m ( a  -]- q(b - -  a) 2 -% y] dy 
0 ~ q < 2 "  a + q ( b _ a ) 2 _  n 

< K . 2 - n ,  

where K ----- m (a, b].  (b - -  a). 
Hence, it remains to be proved tha t  (9) tends to zero as n tends to oo. We note 

t h a t  

E V( t ~ ~ n x n - %, xk) - ~ ( t  - ~ - ~ ,  k - ~ ) l  I ~ 

Fro(n) m ( n )  . ] 
J 

M 

~ o o .  

(9) is thus absolutely convergent,  and so m a y  be rewrit ten 

~. E [ ~ ( t  - -  e~, x~) - -  v ( t  - -  e~-l ,  x~-l) [ ~ga]. 

Bearing in mind the usual Taylor  series, and its simply proved analogue 

! (b) = ! (~) + (b --  a) D+ / (a) + m (a, y] dy �9 Z)~ D§  

for some x between a and b, we have 

~f (t - e~,  x~) - ~ (t - ek -1 ,  x ~ - l )  = [~f (t - e~,  x~) - ~ (t - e ~ - l ,  xk)]  + 

= - [ ~  (t - ~ (/~), x~) (e~ - e ~ - l ) ]  + 

+ [~+ (t - e~_~, x~_~) (x~ - x~_~)] + 
X~ 

d- [Dm D+ v (t - -  ek-~,  x ( k )  ) " f m (xk_~, y] dy] , 
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where e/c-1 G e (k) G e/c, and x (k) falls between xk-1 and x/c, 

= ~v + (t - e / c - l ,  x ~ - l )  (x~  - -  x / c - l )  

- -  ~fll (t - -  e/c-1, x/c-l) [(e/c -- e/c-l) - -  f m ( x k - 1 ,  y ]  dy] 
Xk--1 

- -  [~1  (t - ; (k) ,  x~)  - ~vl (t - e / c - l ,  x k - 1 ) ]  (ek - e / c - l )  
X~ 

-~- [~vl (t - -  ee-1, x (~)) - -  ~vl (t --  e/c-l, x/c-i)]" ~ m (x/c-i, y] dy, 

since ~01 ~ Dm ~+, by assumption, 

= TI~ -}- T2/c -}- T~/c ~- T4/C, say. 
co 

Since E [x~ - -  x/c-1 ] ~ k - 1 ]  = 0 ,  W e  see that ~ E IT1 e ] ~e]  ---- 0 by condition- 
k : l  

ing the k th term first with respect to ~ - 1 ,  and then with respect to ~3~. 
co 

Similarly, (8) implies that ~ E [ T ~ / c l ~ ]  = 0. 
k = l  

N o w  pick e > 0, and N so large and ~ so small that for t, t' > 0, with 
I t - - t ' ] < 8  and I x - - x ' l < 2  - iv ,  w e h a v e  l ~ v l ( t , x ) - F l ( t ' , x ' ) l < s .  

Then, for • > N,  noting that e~ - -  e/c-1 ~ 0, we obtain 

1 1 
oo 

1 

oo 
ss < s ~ E [ e ~  n n ~ < (~]!Sz] e k - l  ~ e k  - -  e k - - 1  

1 

oo 

1 

< e E [ v ( ~ ,  a ,  b ) I ~ ] ,  
r 

1 
co 

< 2 M . ~ E [ e ~ - -  e~_~ ,e~- -  e~_~ > ~ 1 ~ ]  
1 

< 2M" E[e n -- e~, max (e~ - -  e~_l) > ~ l ~ ] .  
k 

To prove that  this goes to zero as n -+  ~ ,  we show that P (A n I ~ )  ~ 0 as n ~ ~ ,  
An = {max(e~ - -  e~_~) > c3}. But  this amounts to showing X has, with pro- 

bability 1, no interval of constancy. Since such an interval of constancy must  
contain a rational t~, and since there are only denumerably many  of these, it 
suffices to prove that 

P [ x ( t )  ~- X ( t l ) ,  ~1 g t ~ t2] ~--- 0 
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for any given pair ll < tz. Now, 

P[x(t)  ~ x(tl),  tl ~ t ~ t2] 

= l i m ~  P[]c2 -n < x(t) < (k + 1)2 -n, tl ~ t <= t2, lc = [x(t~)2n]] 
n k 

= l i m ~ E ( P [ k 2  -n < x(t) < (k + 1) 2-n, ti < t < t~ I~3t~ ], k = [x(h)2n]] 
n k 

- -  - -  ]im +--,/~ - -  n k [ t2 - -h  , ]~=[X( t l )2  n] = 0  

where Ik  is the interval of length 2-(n-l) centered at (k + 1/2)2 -n, e I~ is the 
exit t ime from this interval, and we know that  E (er~l~t~) ~ 0, by  our hitting 
assumptions. Thus 

~E[T3~:I~a]--~O as n--~c~.  
k = l  

Noting now tha t  f m (x, y] dy is always non-negative, we have, for n > N, 
2C 

k = l  [ k = l  kxe-1  i 

<= eE['~(~,a, b ) l ~  ] . 
o o  

Thus ~ E[T4kl  ~3~] --~ 0 as n --~ oo, and we may  finally conclude that  

E [  (~ (t - -  ~, x (~ + s ) )  - -  ~ (t, x ( ~ ) ) t  ~ ]  = O. 
Q.E.D.  

IV. lIfartingales and diffusions with natural boundaries at :L r 

In  this section we restrict ourselves to diffusions that  are regular on every 
finite interval, having natural  boundaries at  -4- eo and generators DmD +. For a 
definition of natural  boundaries, see McK~A?r [6]. The intuitive meaning of 
natural  boundaries is tha t  "it  takes a particle moving under the diffusion in- 
finitely long to reach them".  

The classical example of such a diffusion is the Brownian motion (Wiener 
process) b (t), determined by m (x) = 2x, which thus has generator 

1 d 2 
2 dx 2 " 

I t  is normally characterized by  the fact tha t  it has gaussian increments : 

Px{b(t) F } =  1 e ]r~2~e -~ 

Recall that  a stochastic process x(t) is a martingale if, for s < t, 

E[x(t)  If~s ] = x(s) .  

I t  is well known tha t  we may  associate with the Brownian motion a sequence 
of polynomials Un (t, x) with the property tha t  the stochastic process Un (t, b (t)), 
obtained by  replacing x by  the random variable b (t), is a martingale, for each n. 
~Te ~hus call un (t, x) a marLingMe function for b (t). These polynomiMs are in- 
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timately related to the heat polynomials of ROSE,BLOOM and WIDDEtt [7] (which 
go back at least to A1)PELL [1], 1892) and have the generating function 

e(15~)~-~t = ~ u n ( t , x ) ~  
n = 0  

Thus, up to a multiplicative constant, 

u o =  1, 

~ I ~ X ~  

U2 ~ X 2 - -  t ,  

u a = ~ x 3 - -  t x ,  

t~ u4 = �89 x4 - -  tx2  + ~, etc. 

A compact expression (again up to a multiplicative constant) using the I-Iermite 
polynomials Hn (y) is 

/ t  \./2 ( x )  

We recall that  L~v~'s theorem tells us that  ff a continuous stochastic process 
has both ul and u2 as martingale functions, then it is the Brownian motion. 

We thus ask: Given the diffusion x( t )  with natural boundaries at ~ c~, does 
there exist a sequence of martingale functions ~0, ~1, 7~2 . . . .  for x (t), reducing 
naturally to u0, ul ,  u2 . . . . .  for b( t )?  Furthermore, if a continuous stochastic 
process has ~1 and 7~2 as martingale functions, must it then be the diffusion x (t) ? 
The answer to both questions is in the affirmative. 

We note that  
co 

and that the sequence 

has the property that  

2n /2  x n 
p ~ ( x )  - ~! 

1 d 2 

We generalize this sequence for the generator D m D +  by the defining relations: 

p 0 = l ,  p l = x ,  
x ~7 

0 0 

so that  we do indeed have D m D + p n + 2  = Pn .  
I t  can be verified by induction separately on odd and even n that  Pn (x) is 

positive for n even, and has the sign of x for n odd. 
Then we set 

so that  

g (x, z) e - ~ t  = z n  (x, t) n~.. 
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is, at  least formally, the generating function of the space-time functions 

~0~- 1, 

~I ~X, 

~ = p2 (x) - -  t, 

za = 298 (x) - -  t p l  (x) , 

t2  

~4 ----P4 (x) --  tp2 + ~. , etc., 

and zn reduces to un after replacing pn(X) by 2n/2xn/n! and factoring out an 

unimportant  V2f rom each 7~2n+1. 
Theorem 2. The ~n are martingale/unctions/or the di~usion with natural bound- 

aries at ~ co, and generator Dm D+. 
We already know this to be true for m --~ 2x, and (as in fact the reader may  

check from our construction), our experience tells us that  it suffices to prove 

t n 
E0 [P2n (x (t))] --  n! 

E0 [p2n+l (x (t))] = 0 .  

We shall thus have our theorem as soon as we have proved Lemma 4 below. 
We recall (1VfcKEAN [6]) that,  for each ~ > 0, we have two positive solutions 

gl (x), g2 (x) of DmD+g (x) ~ o~g (x), the first increasing, the second decreasing. 
We normalize them so tha t  their Wronskian g+ g2 -- gig + is identically 1. 

The Green function for D m D  + is 

G ~ ( $ , ~ ) = G ~ ( ~ , ~ ) = g l ( ~ ) g 2 ( ~ )  for ~ g ~ .  

I f  p (t, y, x) is the fundamental  solution of 

0 

it has the property tha t  the transition probability for the diffusion with generator 
Dm D+ is 

P (t; y, 1 ~) = f p  (t, y, x) m (dx). 
F 

Furthermore,  
c o  

G~ (y, x) = .[ e-~t p (t, y, x) dr. 
0 

Lemma 2. For a natural boundary at -~ co : 

(i) g2 (co) ---- 0, 

(fi) Ag+.z(A)-~O as A - ~ o o .  

Proo/. (i) See MoK]~A~ [6] (p. 524). 

(ii) Since dg + = ~g2dm >~ O, g~ must  be concave. 
Thus 

l (A - B ) g ~  (A)I ~ g~(B) - g2(A). 

. . .  ~ ] A g + ~ ( a ) [ ~ g 2 ( B ) - - g 2 ( c o ) - - > O  as B - ~ c o .  
A --> oo 

Q.E.D. 
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Lemma 3. I / x ( t )  is the digusion with generator DmD +, and natural boundaries 
at -t- ~ ,  then x(t) is a martingale. 

Pro@ We first compute the Laplaee transform 

co 

j" e -  ~ Eo [x (t), x (t) > 0] ~t 
0 

co oo 

--- f m (dx) x f e-  ~tp (t, O, x) dt 
0 0 

= ~ ~ G~ (0, x) m (dx) 
0 

co 

__ gl(O) S x ~ g2 (x) m (dx)  
CA 

0 

__ g ) f xdg  + (since DmD+g2 =~g~) (10) 
0 

A 

lim gl(o) ([xg+ (X)]o A _ fg+ (x)dx 
CA 

A -*- oo 0 

__ g l  (0) g2 (0) b y  L e m m a  2 
CA 

a a  (0 ,0)  

CA 

oo 

_ 1 fe_~tp(t,O,O)dt 
CA 

0 

0o t 

= ~e- : t fp ( s ,  O, O)dsdt. 
0 0 

Thus, by the uniqueness of the Laplace transform, we have, for almost all t, 
t 

Eo[x(t), x(t) ~ 0] = ~p(s, O, O) ds. 
0 

Analogously, for almost all t, 
t 

Eo Ix (t), x (t) > 0] = - -  j'p (8, 0, 0) ds. 
0 

T h u s  

That  is, 

t 

Eo [I x(t)l]  = 2 S~ (s, 0, 0) ds 
0 

for almost all t .  

t 

Eo[I x (t)[] ~ 2 f p (s, o, o) cls for all t, by Fatou's  lemma.  
o 

More generally, 
t 

E , [  1 x ( t ) [ ]  ~ ~ -{- 2 f p  (s, 7, O) ds for almost all t, 
0 

and 
E~ [x (t)] = ~ for almost all t, 

as may  be shown by  a slight elaboration of the argument above for ~ = 0. 
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By  the Chapman-Kolmogorov  equation 

E~ [x (t)] = En [Ex(s) [x (t -- s)] ] ,  

and so, since the measure ds/t on (0, t) has total  mass 1 

ds 
En[x(t)]= T p(s,~],y)m(dy) p ( t - - s , y , z ) m ( d z ) .  

Let  
1 if  E y [ x ( t - - s ) ] = y  and Ev[x(s)] = 

Z ( s 'Y )=  0 elsewhere. 
Then 

T X(s, Y) m(dy) = 1 
0 - - ~  

which allows us to modify  (11) on an (s, g) set of  measure 0 to obtain 

E~[x(t)] --- ~? for all t, 

and so x (t) is a martingale,  by  stat ionari ty.  
t n 

Lemma 4. Eo [P2n (x (t))] - -  n ! 

E0 [p2~+1 (x(t))] = O. 
Proo/. Let  

c + = Eo [Pn (x), x > Or, 

c j  = Eo [p~ (x), x < 0], 

c~ = E0 [Pn (x)]. 

Then the Laplace t ransform of  c + is 
cx~ 

c + : gl (0) fPn g2 dm 
0 

o o  

gl(O) fPn g2 , just  as we derived (10), _ d + 

0 

_ gl(0) lim Tn(A)g+(A) - -  p+(x) dg2(x) 
O: A.--~ oo 0 

_ gl (0) lim Pn (A) g+ (A) -- p~+ (A) g2 (A) + ~g2Pn-2 dm 
A - - +  oo 0 

for n = > 2 ,  since P n - 2 = D m D + p n .  

1 + gl (0) A ~ . . .  ~ c  + = - ~ L f  cn_2 ~- lim [Pn( )g~ (A) --P+ (A)g2(A)]. 
A - - +  r  

p~( ) f png2dm >=- ~ - j e g 2 d m  
A A 

A 

_ p n ( A ) ( - - g + ( A ) )  

>=o, 

(11) 

Q.E .D.  

(12) 
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since g2 is decreasing and Pn (A) > 0 for A > 0. 

. . .  p~ (A) gr (A) -~ o as 

Furthermore,  

A - ~ o o .  

B B 
]Pn g2 dm ~ g2 (B) ~Pn am ~- g2 (B) [p++ 2 (B) - -  ~++2 (A)] ; 

A A 

.B 

l img2(B)p++2(Z)  N l im [png2dm~O as A- ->c~ .  
B--> r .B--> oo A 

Thus we deduce from (12) t ha t  

1 Lfc++2 ' 

1 2 f c +  = ~ - n - 1  . . .  s  = ~ ( - g +  (0) gl  (0)), 

1 z e c +  = ~-~-~(gl(0)g2(0))  

Similarly, 
~ e c ~  = ~-~-~ (~+1 (o) g2 (o)), 

e2n + 1 = 0r ( - -  g l  (0) g2 ( 0 ) ) ,  

and we see tha t  Eo[lpn(x)[] < r 

Thus, recalling tha t  g~ g2 - -  gl g+ ~ 1, we have 

1 
~'~ C2n - -  c~n+ 1 

C2n+l ~--- 0 .  

t n 
�9 ". -/~0 [P2n (X (t))] = ~ - 1  (0~-n-�92 __ n I for almost  all t,  

E0 [p2n (x (t))] = 0 for almost  all t.  

The Chapman-Kolmogorov  trick in the proof  of  Theorem 2 now permits us to 
replace "for almost  all t" by  "for all t". 

Q.E.D. 
We are now in a position to combine Theorem 1 and 2 to obtain the promised 

martingale characterization of  which L~v~ ' s  theorem is clearly a special case. 

Theorem 3. Let x (t) be a stochastic process. Then in order that x (t) be the di~usion 
with generator Dm D+ and natural boundaries at :J: 0% it is both necessary and su/- 
ficient that it sat:sly all three conditions: 

a) almost all sample paths o / x  (t) are continuous, 

b) x (t) is a martingale, 
x(t)  

c) ~ m (0, y] dy - -  t is a martingale. 
0 

Proo]. (i) The necessity follows from Theorem 2. 

(ii) Sufficiency will follow from Theorem 1, as soon as we show tha t  the con- 
ditions a), b), c) suffice to fix the hit t ing probabilities and mean  exit times of  
the process: 
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We want  to determine 

p (T, xl ,  x2) = P [x (T -l- ~:) = xl ]~T] 

which yields 

and 

p ( T ,  x2, xl) = 1 -- p ( T ,  x l ,  x2) 

E[~(T ,  x l ,  x2) [ ~T]  �9 

Now, ff optional sampling a t  T and T ~- ~ preserves "martingaleness" in b) 
and c), we have 

x(T) -- xl E[X(  + _ 
L x 2 - - x l  ~ 2 - x l  " 

Tha t  is, 
x ~ -  x~ x 2 - -  x~ . , .  x ( T ) - -  x~ 
x~ P ( T ' X l ' X 2 ) +  x'~-x~ p t I " ' x 2 ' x l ) -  x2- -x l  

i.e. 
x ( T )  - -  xl  

p ( T ,  x2,  x l )  - -  
X 2  - -  X l  

Similarly, c) yields 
Xl 922 

E [~ [ !~T] ---= p ( T ,  x l ,  x2) f m (0, y] dy ~- p (T, x2, xl) f m (0, y] dy 
o o 

x( T) 
- -  f m(O, y] gy,  

o 

and the determinat ion is complete. To make the a rgument  rigorous, we merely 
replace T by  m a x ( - - n ,  ra in(T,  n)) and T ~- v by  m a x ( - - n ,  m i n ( T  ~- 3, n)), 
apply  Theorem VII .11.8 of  DooB [3] (p. 376) carry out  the analogues of  the 
computa t ion  above, and then let n--> c~. 

Q.E.D. 
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