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On Asymptotic Sampling Theory for 
Distributions Approaching the Uniform Distribution* 

By 

LIO~a~L W]~Iss 

1. Introduction and summary 

Suppose X1 . . . .  , Xn are independent  and identically distr ibuted random var- 

iables, the common probabil i ty density funct ion being [n (x), where [n (x) = 1 + r(x) 
no 

1 

for 0 < x <  1, w h e r e l r ( x )  d x = 0 a n d  ]r"(x)]  < D  < c~ for 0 ~ x  ~ 1, and 
0 

is some positive constant .  Str ict ly speaking, ]n (x) is not  defined when x -~ 0 or 1, 
r(O) 

bu t  when we wr i t e /n  (0) we shall mean  1 + %o , and when we wr i te /n  (1) we shall 
r(1) x 

mean  1 + ~ 7 "  f / n  (u) du is denoted by  Fn  (x). 

Let  Y1 ~ Y2 ~ "'" ~ Y n  denote the ordered values of  X 1  . . . . .  X n ,  and let Y0 
denote 0, Yn+l denote 1. Define Vl as Y i - -  Y/-1 for i---- 1 , . . . , n +  1. Let  
gn (vl . . . . .  Vn) denote the joint probabi l i ty  densi ty function for V~ . . . . .  Vn. 

Let  U 1 , . . . ,  U~+I be independent  identically distr ibuted random variables, 
each with probabi l i ty  densi ty funct ion e-U for u > 0, zero for u < 0. Define W/as  

n + l  

U~ for i = 1 n + 1, T~ as ~, W~, and Z~ as ~ for i = 1 . . ,  n + 1. 
[ _1( i /]  . . . . .  ~=~ T~ '" 
h \ / J  

Let  hn (zl . . . . .  Zn) denote the joint  probabil i ty densi ty function for Z 1 . . . . .  Z n.  

For  each n, let R n  be any  measurable set in n-dimensional space. We shall prove 
the following 

Theorem. 
lira I f . . .  fg~(v~ . . . . .  v ~ ) d v ~ . . . d v ~ - -  f ' ' "  f h~t(v 1 . . . . .  v ~ t ) d V l ' " d v n l  = O .  

r~-->c~ Rn Rn 
Applications of  this theorem to finding the asymptot ic  power of  tests of  fit are 

discussed. 
2. Proof of the theorem 

I t  is easily seen tha t  g .  (vl . . . .  , vn) -~ n !In (Vl)/n (Vl + v2) " ' " /n  (vl + "'" + vn) 
for vi > 0 (i = 1 . . . . .  n) and vl + "'" + vn < 1, and is zero otherwise. 

-1 i 
Let  Qn(z l  . . . .  , z n )  denote ~ { ] n [ F .  ( n + l - ) ] - - / n [ F n ~ ( 1 ) ] }  z i - l - ]n[F;~(1)]"  

i = 1  
A s tandard  calculation shows tha t  hn(z l  . . . . .  Z n ) = n ! [ Q n ( z l  . . . . .  Zn)] -n -1  

I ~ / n  F n for  zi > O(i = l . . . . .  n) and  z l  + ""  + zn < l ,  and is zero 
i=l'= 
otherwise. 

g~(V1 . . . .  , V~) 
Now we investigate log hn (V1 . . . . .  Vn) over the region V / >  0 (i = 1 . . . .  , n) 
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and V I + ' " +  V n < l .  Recalling tha t  Y i =  V l q - ' " - k  Vi for i =  1 , . . . , ' n ,  
g~ ( V1 .. . . .  Vn) 

we find tha t  log hn (V1 ...... Vn) can be wri t ten as the sum of the following three 

terms:  - -  log ]n [F~ 1 (1)] (2.1) 

(n q- 1)log Qn(V1 . . . . .  Vn) (2.2) 

log fn(Yd (2.3) 
F_ ~ i " 

By  our assumptions abou t / n  (x), for  all sufficiently large n we have Fn  1 (1) = 1, 
and from now on we assume tha t  n is large enough to make this so. S ince /n(1)  
approaches 1 as n increases, the expression (2.1) approaches zero as n increases. 

We have 
n -1 i 

Q n ( r l  . . . . .  rn )  /n  [/Sanl ( l)]  t = ~ l { [ n [ F n  ( ~ - - @ l ) ] - - / n [  ~ n l  i q -  1 

= I n ( l )  

where 

r [F_ ~ i 

i 

r (i, n) - -  1 { f~.[o~(~)] /~[0~ (n)] 

n 
1 ~ r (i, n) y~ 

2(nq~ 1) 2 i=1 

' f.[Oi( )] 
fn [o~(~)] ' 

(2.~) 

O,(n) being some value in (0, 1). By  our assumptions about  In(x), r(n) = max 
l~_i<=n 

I r (i, n)] approaches zero as n increases. Since I Y~ I ~ 1 for all i, the third term in 
r(n) 

(2.4) is less in absolute value than  2(n-~-1) " The second te rm in (2.4) can be 

i 
wri t ten 1 ~ f ~ [ F n l ( n ~  1)1 { ~  __ F n l ( ~ ;  1_)} - 

(2.5) 

B y  an e lementary computat ion similar to tha t  used in proving the lemma in [2], 
and using the fact t ha t  sup II;(x) l approaches zero as n increases, we find tha t  the 

0 < x < l  
second term in (2.5) can be wri t ten as 

1 t 1 
f f.[FX (x)] ~-1 (x~ s(n) j ? ~ - - n  , , d x  - k  (2 .6 )  

0 jnk ~ ~ /J n-4-1  

where Is (n)[ approaches zero as n increases. Making the change of variable 
y = 1v~1 (x) in (2.6), we find tha t  the second te rm in (2.5) is equal to 1 - - / n ( 1 )  q- 

-k (n q- 1) " Therefore 

�9 . . ,  z.., i L Y~ - - F n  - -  Qn(V1, Vn) = 1  ~ q - L  , /j [F~ ( n ~  1/] (2.7) 

s(n) 1 ~ r ( i , n )  y ~ _ ~ + l  
2(n + 1)2 i=l 
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X 

I n  [3] it was shown tha t  for any positive e, m a x  I - -  F ~  1 I n l / 2 - e  converges 
l <iNni I 

" x  . K �9 stochastically to zero as n increases. Since sup I f"  (~] is less t h a n - - f o r  sufficiently 
0<X<I f n (x )  n o "~ 

large n, where K is a finite constant ,  it follows tha t  

-1 i 

(2.S) 

converges stochastically to zero as n increases. Then, using (2.7), i t  follows tha t  
(2.2) can be wri t ten as 

where zJ n converges stochastically to zero as n increases. 
We can write (2.3) as 

{,-/-. (< + -. (< )Ill 

t i , i �9 } 

where 0 (i, n) is some value in (0, 1). Expanding  this last expression, using the 

proper ty  of  max  y ~ - -  F n l ( n ~  ) s tated above, and the fact  t ha t  

rr X } f Ij'(x/I + 5J~ 15 < 
0<~<lsup ~, /~(x) ~ 

where K1 is a finite constant ,  for sufficiently large n, we find tha t  (2.3) can be 
wri t ten as 

F 1  i 

i = 1  (n--@--l) ] 
t 

where A n converges stochastically to zero as n increases. 
Collecting the information we have developed about  the expressions (2.1), (2.2), 

g~ ( V1 . . . . .  V,) 
and (2.3), we see tha t  we have proved tha t  log h~(V1 . . . . .  V~) converges stocha- 

g~ ( vl . . . . .  V~) 
stically to zero as n increases, or equivalently,  t ha t  h n ( V 1 , . ~ . , V n )  converges 

stochastically to unity.  I f  we define Sr~ ( V1 . . . . .  Vn )  by  the equat ion 

g~(V1,  . . . ,  Vn) 
1 -~ Sn(V1 . . . . .  Vn) hn(V1 ,  . . . ,  Vn) - -  

then S n ( V 1 ,  . . . ,  Vn )  converges stochastically to zero as n increases. This means 
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tha t  there are two sequences of positive values, {en}, {(in}, such tha t  lim en 
= lim dn = O, and ~--'~ 

n-->oo 
~ " "  f gn(vi . . . . .  vnldvi  "'" dvn > 1 --  (in. (2.11) 

I s~  (vl, . . . ,  v~)l < ~ 
Now we have 

!lSn(V  . . . . .  IS (vl . . . . .  < ' 

-<- I " "  I h ,  (Vl . . . . .  v,) I s~ (Vl, . . . ,  v~)l a ,~. . ,  ev~ < ~ 
ISn(Vi . . . .  ,Vn)[ < en and h n ( v i , . . . , V n ) > O  

and using (2.11), we find tha t  

f "" ] hn(vi . . . . .  Vn) d v i . "  dvn > 1 --  (in --  en. (2.12) 

Now, for each n let bn (vi . . . .  , vn) be a measurable function of vi . . . . .  vn, saris' 
fying I bn (vi . . . . .  Vn) I < B < oo for all vi . . . .  , vn. We have 

l Y "  yb~(vl,...,v~ .....  v~)dv~. . .ev~- 
! I g~(v~,..., us) > o 

- ~ . . .  ~b~ (vi . . . . .  v~) h ,  (vi ,  . . . ,  v~) dvi"" dv~ 
hn(Vl . . . . .  vn) > 0 I 

< B I " "  I hn (v l  . . . . .  Vn) I Sn (v l  . . . . .  Vn)] dVl"'" dvn @ B (in -~- B ((in + r 

[Sn(vi  . . . . .  vn) l < sn and hn(Vl . . . . .  Vn) > O  

B s ,  + B (i~ + B ((in + e~), 

using (2.11) and (2.12). The theorem now follows by  defining bn(vi . . . . .  vn) to be 
unity if  (vi . . . . .  vn) is in/~n, and zero otherwise. 

3. Applications 
A common problem is that  of testing the hypothesis tha t  the common unknown 

distribution of the hldependent random variables X 1 , . . . ,  Xn is the uniform 
distribution over (0, 1). For a given test  of this hypothesis, it would be of interest 
to know its asymptotic power against a sequence of alternatives {/n(x)}, where 

r(z) 
In (x) = 1 q- G~-"  The theorem proved above enables us to study this power by 

studying functions of independent exponentially distributed variables. ~+ 1 
As an example, we discuss the test  which rejects the hypothesis when ~ V~ is 

i = 1  

greater than ~ + 2 k (~) n -:~/9", where k (~) satisfies the equation 

c o  

1 I ~-1/2 t ~ dt = ~ . 

This test  is discussed in [4], where it is shown tha t  its asymptot ic  level of signifi- 
cance is ~. Here we want  to discuss its power against alternatives with probability 
density function In (x). 
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n+l ~+1~ [ 1( i )l}_b 
Let An denote ~ W~, and let cn (b) denote ~ ~/n Fn ~ . A straight- 

i=i i=i" 

forward calculation shows t h a t  for positive integral b, 

1 Kn(b) cn(b) b(b-- 1) f r2(y)dy_k  nl+~ 
n-l-1  - -  1 @ - 2 n 2 ~  ~ 

where [Kn(b) l < K(b) < oo. Let  An denote 

A ~. -- 2cn(2) and Tn denote ~" -- c~(1) 
1/26 ~ (4) 1/~(2) 

The central limit theorem shows tha t  asymptot ical ly  An and Tn have a joint 
4 

normal  distr ibution with zero means, uni t  variances, and c o v a r i a n c e - ~ .  The test  

A" 2 , , 
being considered rejects when (~,)~ > n -~ 2k(~)n-3/2" Expressing A n and T~ 

in terms of  An and Tn, and using the expressions for Cn (b) given above, we find 
tha t  the test rejects when 

1 

~/26 An -- 2 T~ > ]c(~) -- nl/2-20 f r2(y)dy ~ An 
2 

0 

where An converges stochastically to zero as n increases. F rom the asymptot ic  

~ /20~ - - 2 T n  has joint distr ibution of  An and Tn given above, i t  follows t h a t  2 ~ n  

asymptot ica l ly  a s tandard  normal  distribution. Then, letting ~(v)  denote 
oo 

1 ~e-1/2t~dt, we find tha t  the asymptot ic  power of  the test against [n(x) is 

1 
qb [k (~) - -  ~W ~-2~ ,I t  2 (y) dy] . 

0 

4. Relation to earlier work 

I n  [1], R n ~ u  studied the distr ibution of  the ordered observations from a 
populat ion with distr ibution funct ion 2v (x) in terms of  the distr ibution of  func- 
tions of  independent  exponential  variables. Since F(x) is not  approaching the 
uniform distr ibution as n increases, the Theorem of the present paper  does r, ot  
hold for all sequences {Rn} of measurable sets in n-dimensionM space. 
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