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1. Introduction and summary

Suppose X1, ..., X, are independent and identically distributed random var-
r{x)
“no

1
for 0 <z <1, Wherefr(x)dx=0and |7 (x)] <D < oo for 0 <z <1, and §
0

iables, the common probability density function being f, (z), where f5 (x) =1 -

is some positive constant. Strictly speaking, f, (%) is not defined when z = O or 1,
r(0)

né

. ffn () du is denoted by Fy, (x).

but when we write f,(0) we shall mean 1 4-
(1)
no

Let Y; £ Yg = -+ £ Y, denote the ordered values of Xy, ..., X,, and let ¥,
denote 0, Y11 denote 1. Define V; as Y; — Y,y for 1 =1,...,n+ 1. Let
gn(¥1, ..., vy) denote the joint probability density function for Vy, ..., V.

Let Uy, ..., Up+1 be independent identically distributed random wvariables,
each with probability density function e~ for w > 0, zero for u < 0. Define W; as

Us , n+1 W,
: fori=1,...,n-+1,T,as > Wy, and Z;as “fori=1,...,n+1.

af 8 L~ T,
|7 (| =
Let hp(z1, ..., 24) denote the joint probability density function for Zy, ..., Z,.

For each n, let R, be any measurable set in n-dimensional space. We shall prove
the following

, and when we write f,, (1) we shall

mean 1 +

Theorem.
Lim | f-wfgn(vl, ...,Un)dvl---dvn—f“-_fhn(vl, s Up) vy dug | = 0.
n—>00 Ry Ran

Applications of this theorem to finding the asymptotic power of tests of it are
discussed.
2. Proof of the theorem

It is easily seen that g, (v1, ..., vp) = Bl fa (V1) fa (w1 + v2) =« fu(vr + -+ + va)

forvi >0 =1,...,n)and v; 4+ - + vy < 1, and is zero otherwise.

Let Qu (21, ..., 2) denote iznl {fal Pt (7)) — ol 1} B2 O,
A standard calculation shows that hy(21,...,24) = 0![@Qn(z1, ..., 24)] 71
ﬁi}‘n [F;Ll <%%>J for z; > 006 =1,...,n) and 23 4 +++ 4 2, < 1, and is zero
otherwise.

Now we investigate log ﬁ%—:%%% over the region V; >0t =1, ..., n)
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and Vi -+ V, < 1. Recalling that Yi= V1 + -4+ Vi fori=1,...,n,

we find that log —g"—gi—:%:% can be written as the sum of the following three
terms: — log fu[F71(1)] (2.1)
(n+ Dlog @u(Vi,..., Va) (2.2)

S log — S0 2.3)

=t f"[ (nj—l)]

By our assumptions about f,, (z), for all sufficiently large n we have F;} (1) = 1,
and from now on we assume that » is large enough to make this so. Since f, (1)
approaches 1 as n increases, the expression (2.1) approaches zero as n increases.

We have

On (Vs vy Va) = ful 1>]+Z{fn[F“(nj )|~ mlr G2 v

n fu|Fa n (2.4)
= i) — ’“1f”}FIEn+1H ng(i,n) e
Sisall,

76,m) = a5, VL0607
0;(n) being some value in (0, 1). By our assumptions about f,(x), r(n) = max
1=isn
|7 (i, n) | approaches zero as » increases. Since | ¥;| < 1 for all ¢, the third term in
(n)
2+ 1)
2

where

(2.4) is less in absolute value than 5 — The second term in (2.4} can be

written 7 (

___l";i Yi— P (5
@ )5{ = P ()
3 f;[F,I‘(n_!_l):F;l( ’ )

n+1/)"°

(2.5)

By an elementary computation similar to that used in proving the lemma in [2],

and using the fact that sup | f, () | approaches zero as n increases, we find that the
0<a<l

second term in (2.5) can be written as
WP .
- jQL[F R e+ 5 @8)

where |s(n)| approaches zero as n increases. Making the change of variable
y = F; () in (2.6), we find that the second term in (2.5) is equal to 1 — f, (1) 4
s(n)

+ ) . Therefore
n falFLt 7
n

n

1
~ e 2 Z r(,n) Y; - :EZ)I .
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;]
In [3]it was shown that for any positive e, max \ Y — Fl (~~L~) | n1/2-¢ converges
1<i<n n+1 \

stochastically to zero as n increases. Since sup - e = D s Tess than__fm sufficiently
O<p<l /7

large n, where K is a finite constant, it follows that

pl/2o—e|

,,"My_p—l : 28
1 zf[ (njrl”{ ‘ ”(n+1)} =8)

converges stochastically to zero as n increases. Then, using (2.7), it follows that
(2.2) can be written as

2 ’}ijﬁ'ﬂ Y, — F!
i=zlf,. [F‘(ﬁi)]{ Z (

where 4, converges stochastically to zero as n increases.
We can write (2.3) as

Sug (Al bl s,

)+ 4n 2.9)

N i . e
B
ACIE

where 0 (i, n) is some value in (0, 1). Expanding this last expression, using the

property of max ! Y;— F;! ( : )‘ stated above, and the fact that
1= <n, ]' i
fa@)] + o) } K
WA e 2L
o e <

where K is a finite constant, for sufficiently large »n, we find that (2.3) can be

written as
nﬂvﬂu+ﬂ}

Fufre )

’ . .
where 4, converges stochastically to zero as » increases.

Collecting the information we have developed about the expressions (2.1), (2.2),
gn(Vl’ ceey Vn)

{YL P (nil)}Jﬂ'r’L (2.10)

and (2.3), we see that we have proved that log TV, . V) COTVOTEES stocha-
a(Viseoes Va
stically to zero as n increases, or equivalently, that H converges
stochastically to unity. If we define S, (V1, ..., Vy) by the equation
gutit Il 1 8y(Va, o, V)
then 8,(V1, ..., Vy) converges stochastically to zero as n increases. This means
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that there are two sequences of positive values, {ey}, {05}, such that lim &,
= lim d, = 0, and 00
n—>o0
J."'J'gn(vly~--,Un)d'01'“dvn>1“677.- (2.11)
]Sn(vl,---,?}n)l < &p
Now we have
[ [ fgnor,...,vn)dvr - dog — [+ (ha(or, ...,vn)dvlu-dvnj
ElSn (1, ..., 00)| < én |Sn(v1, .., vn)| <en |
= f . fhn(vl, eees Ug) |Sn(vl, s Un) | dvy - dog < g
[Su(vi,...,vn)| <é&n and hy(v1,...,04) >0
and using (2.11), we find that

[ (a1, ..., vn)dvr -+ dvg >1— 6y — &n- (2.12)
lSn('Ul, ...,’Un)[ < &pn
Now, for each n let b, (v1, ..., vy) be a measurable function of vy, ..., vy, satis-

fying | ba(v1, ..., va)| < B < coforallvy, ..., vy. We have

” j'bnvl,.. VY gn (V1 oeos Up)dv1 - Aoy —

Hgn V1,005 Vg) >0
— [ [ a1, s va) a1, ... vn) Ay dvg
hn(”ls~-~»”n)>0 ]

gBf---jhn(vl,...,vn)]Sn(vl,...,vn)]dvl---dvn—\—Bén+B(6n+8n)
[Sn(v1,...,vn)| <e&n and hg(vr,...,va) >0

gBEn+Bén+B(6n+3n)>

using (2.11) and (2.12). The theorem now follows by defining by (v1, ..., vs) to be
unity if (¥1, ..., vp) isin By, and zero otherwise.

3. Applications

A common problem is that of testing the hypothesis that the common unknown
distribution of the independent random variables Xi,..., X, is the uniform
distribution over (0, 1). For a given test of this hypothesis, it would be of interest
to know its asymptotic power against a sequence of alternatives {f(z)}, where

ful@) =1 T(w)
studying functmns of independent exponentially distributed variables. ¢
As an example, we discuss the test which rejects the hypothesis when Z Viis

=1

. The theorem proved above enables us to study this power by

greater than % + 2k (a)n~3'2, where k(a) satisfies the equation
———_1_ we‘l’“2 dt =a.

V27 piay
This test is discussed in [4], where it is shown that its asymptotic level of signifi-
cance is .. Here we want to discuss its power against alternatives with probability
density function f (%)
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n+1

n+1 " -
Let A, denote z W2, and let ¢, (b) denote Z{ " {F;l (——z——ﬂ} b. A straight-

. . n—+1
i=1 =1
forward calculation shows that for positive integral b,

e (b)

K (b)
n+1 =1 +

f ) dy + i
where | K, (b)| < K(b) < oo. Let An denote
AL —2¢,(2) Tp—~c,(1)
————="="and T, denote
V20 ¢ (4) e T @
The central limit theorem shows that asymptotically 4, and 7', have a joint

normal distribution with zero means, unit variances, and covariance 7: The test
A 2 . ’
TE > W + 2k(x)n-32, Expressing 4, and T,
in terms of 4, and 7',, and using the expressions for ¢, (b) given above, we find
that the test rejects when

pzo

being considered rejects when

Ap — 2T, > k(o) — nli2- zohz Ydy - An

where A4, converges stochastically to zero as n increases. From the asymptotic

joint distribution of 4, and 7', given above, it follows thatKZ&An — 27T, has
asymptotically a standard normal distribution. Then, letting @(v) denote

o0
T/;: [' e~128%(d}, we find that the asymptotic power of the test against f, (z) is
7Ty

Dk (x) - nl/z-20 _f172 (¥) dy1.-

0

4. Relation to earlier work

In [1], RexyI studied the distribution of the ordered observations from a
population with distribution function F(z) in terms of the distribution of func-
tions of independent exponential variables. Since F(z) is not approaching the
uniform distribution as # increases, the Theorem of the present paper does not
hold for all sequences { R} of measurable sets in n-dimensional space.
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