On Asymptotic Sampling Theory for Distributions Approaching the Uniform Distribation*

By

Lionel Weiss

1. Introduction and summary

Suppose X_{1}, \ldots, X_{n} are independent and identically distributed random variables, the common probability density function being $f_{n}(x)$, where $f_{n}(x)=1+\frac{r(x)}{n^{\delta}}$ for $0<x<1$, where $\int_{0}^{1} r(x) d x=0$ and $\left|r^{\prime \prime}(x)\right|<D<\infty$ for $0 \leqq x \leqq 1$, and δ is some positive constant. Strictly speaking, $f_{n}(x)$ is not defined when $x=0$ or \mathbf{l}, but when we write $f_{n}(0)$ we shall mean $1+\frac{r(0)}{n^{\delta}}$, and when we write $f_{n}(1)$ we shall mean $1+\frac{r(1)}{n^{\delta}} \cdot \int_{-\infty}^{x} f_{n}(u)$ du is denoted by $F_{n}(x)$.

Let $Y_{1} \leqq Y_{2} \leqq \cdots \leqq Y_{n}$ denote the ordered values of X_{1}, \ldots, X_{n}, and let Y_{0} denote $0, Y_{n+1}$ denote 1. Define V_{i} as $Y_{i}-Y_{i-1}$ for $i=1, \ldots, n+1$. Let $g_{n}\left(v_{1}, \ldots, v_{n}\right)$ denote the joint probability density function for V_{1}, \ldots, V_{n}.

Let U_{1}, \ldots, U_{n+1} be independent identically distributed random variables, each with probability density function e^{-u} for $u>0$, zero for $u<0$. Define W_{i} as $\frac{U_{i}}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}$ for $i=1, \ldots, n+1, T_{n}^{\prime}$ as $\sum_{i=1}^{n+1} W_{i}$, and Z_{i} as $\frac{W_{i}}{T_{n}^{\prime}}$ for $i=1, \ldots, n+1$. Let $h_{n}\left(z_{1}, \ldots, z_{n}\right)$ denote the joint probability density function for Z_{1}, \ldots, Z_{n}.

For each n, let R_{n} be any measurable set in n-dimensional space. We shall prove the following

Theorem.

$\lim _{n \rightarrow \infty}\left|\int_{R_{n}} \cdots \int g_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}-\int_{R_{n}} \cdots \int h_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}\right|=0$.
Applications of this theorem to finding the asymptotic power of tests of fit are discussed.

2. Proof of the theorem

It is easily seen that $g_{n}\left(v_{1}, \ldots, v_{n}\right)=n!f_{n}\left(v_{1}\right) f_{n}\left(v_{1}+v_{2}\right) \cdots f_{n}\left(v_{1}+\cdots+v_{n}\right)$ for $v_{i}>0(i=1, \ldots, n)$ and $v_{1}+\cdots+v_{n}<1$, and is zero otherwise.

Let $Q_{n}\left(z_{1}, \ldots, z_{n}\right)$ denote $\sum_{i=1}^{n}\left\{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]-f_{n}\left[F_{n}^{-1}(1)\right]\right\} z_{i}+f_{n}\left[F_{n}^{-1}(1)\right]$. A standard calculation shows that $h_{n}\left(z_{1}, \ldots, z_{n}\right)=n!\left[Q_{n}\left(z_{1}, \ldots, z_{n}\right)\right]^{-n-1}$ $\prod_{i=1}^{n+1} f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]$ for $z_{i}>0(i=1, \ldots, n)$ and $z_{1}+\cdots+z_{n}<1$, and is zero otherwise.

Now we investigate $\log \frac{g_{n}\left(V_{1}, \ldots, V_{n}\right)}{h_{n}\left(V_{1}, \ldots, V_{n}\right)}$ over the region $V_{i}>0(i=1, \ldots, n)$

[^0]and $V_{1}+\cdots+V_{n}<1$. Recalling that $Y_{i}=V_{1}+\cdots+V_{i}$ for $i=1, \ldots, n$, we find that $\log \frac{g_{n}\left(V_{1}, \ldots, V_{n}\right)}{h_{n}\left(V_{1}, \ldots, V_{n}\right)}$ can be written as the sum of the following three terms:
\[

$$
\begin{equation*}
-\log f_{n}\left[F_{n}^{-1}(1)\right] \tag{2.1}
\end{equation*}
$$

\]

By our assumptions about $f_{n}(x)$, for all sufficiently large n we have $F_{n}^{-1}(1)=1$, and from now on we assume that n is large enough to make this so. Since $f_{n}(1)$ approaches 1 as n increases, the expression (2.1) approaches zero as n increases.

We have

$$
\begin{array}{r}
Q_{n}\left(V_{1}, \ldots, V_{n}\right)=f_{n}\left[F_{n}^{-1}(1)\right]+\sum_{i=1}^{n}\left\{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]-f_{n}\left[F_{n}^{-1}\left(\frac{i+1}{n+1}\right)\right]\right\} Y_{i} \\
\quad=f_{n}(1)-\frac{1}{n+1} \sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]} Y_{i}-\frac{1}{2(n+1)^{2}} \sum_{i=1}^{n} r(i, n) Y_{i} \tag{2.4}
\end{array}
$$

where

$$
r(i, n)=\frac{1}{f_{n}^{2}\left[\theta_{i}(n)\right]}\left\{f_{n}^{\prime \prime}\left[\theta_{i}(n)\right]-\frac{f_{n}^{\prime}\left[\theta_{i}(n)\right]}{f_{n}\left[\theta_{i}(n)\right]}\right\},
$$

$\theta_{i}(n)$ being some value in (0,1). By our assumptions about $f_{n}(x), r(n)=\max _{1 \leq i \leq n}$ $|r(i, n)|$ approaches zero as n increases. Since $\left|Y_{i}\right| \leqq \mathbf{1}$ for all i, the third term in (2.4) is less in absolute value than $\frac{r(n)}{2(n+1)}$. The second term in (2.4) can be written

$$
\begin{align*}
& -\frac{1}{n+1} \sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right\}- \\
& -\frac{1}{n+1} \sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]} F_{n}^{-1}\left(\frac{i}{n+1}\right) . \tag{2.5}
\end{align*}
$$

By an elementary computation similar to that used in proving the lemma in [2], and using the fact that $\sup _{0<x<1}\left|f_{n}^{\prime}(x)\right|$ approaches zero as n increases, we find that the second term in (2.5) can be written as

$$
\begin{equation*}
-\int_{0}^{1} \frac{f_{n}^{\prime}\left[F_{n}^{-1}(x)\right]}{f_{n}\left[\bar{F}_{n}^{-1}(x)\right]} F_{n}^{-1}(x) d x+\frac{s(n)}{n+1} \tag{2.6}
\end{equation*}
$$

where $|s(n)|$ approaches zero as n increases. Making the change of variable $y=F_{n}^{-1}(x)$ in (2.6), we find that the second term in (2.5) is equal to $1-f_{n}(1)+$ $+\frac{s(n)}{(n+\overline{1})}$. Therefore

$$
\begin{align*}
& Q_{n}\left(V_{1}, \ldots, V_{n}\right)=1-\frac{1}{n+1} \sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right\}- \tag{2.7}\\
& -\frac{1}{2(n+1)^{2}} \sum_{i=1}^{n} r(i, n) Y_{i}+\frac{s(n)}{n+1} .
\end{align*}
$$

In [3] it was shown that for any positive $\varepsilon, \max _{1 \leqq i \leqq n}\left|Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right| n^{1 / 2-\varepsilon}$ converges stochastically to zero as n increases. Since $\underset{0<x<1}{ } \frac{\left|f_{n}^{\prime}(x)\right|}{f_{n}(x)}$ is less than $\frac{K}{n^{\delta}}$ for sufficiently large n, where K is a finite constant, it follows that

$$
\begin{equation*}
n^{1 / 2+\delta-\varepsilon}\left|\frac{1}{n+1} \sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left\{F_{n}^{-1}\left(\frac{i}{n+1}\right)\right.}\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+\mathbf{1}}\right)\right\}\right| \tag{2.8}
\end{equation*}
$$

converges stochastically to zero as n increases. Then, using (2.7), it follows that (2.2) can be written as

$$
\begin{equation*}
-\sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right\}+\Delta_{n} \tag{2.9}
\end{equation*}
$$

where A_{n} converges stochastically to zero as n increases.
We can write (2.3) as
$\sum_{i=1}^{n} \log \left\{\frac{f_{n}\left\{F_{n}^{-1}\left(\frac{i}{n+1}\right)+\left[Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]\right\}}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\right\}=\sum_{i=1}^{n} \log \times$
$\times\left\{\frac{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]+f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right\}+\frac{1}{2} f_{n}^{\prime \prime}[\theta(i, n)]\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right\}^{2}}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\right\}$
where $\theta(i, n)$ is some value in (0,1). Expanding this last expression, using the property of $\max _{1 \leqq i \leqq n}\left|Y_{i}-F_{n}^{-1}\left(\frac{i}{n+1}\right)\right|$ stated above, and the fact that

$$
\sup _{0<x<1}\left\{\frac{\left|f_{n}^{\prime}(x)\right|+\left|f_{n}^{\prime \prime}(x)\right|}{f_{n}(x)}\right\}<\frac{K_{1}}{n^{\delta}},
$$

where K_{1} is a finite constant, for sufficiently large n, we find that (2.3) can be written as

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{f_{n}^{\prime}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]}\left\{Y_{i}-F_{n}^{-1}\left(\frac{i}{n+\mathbf{1}}\right)\right\}+\Delta_{n}^{\prime} \tag{2.10}
\end{equation*}
$$

where A_{n}^{\prime} converges stochastically to zero as n increases.
Collecting the information we have developed about the expressions (2.1), (2.2), and (2.3), we see that we have proved that $\log \frac{g_{n}\left(V_{1}, \ldots, V_{n}\right)}{h_{n}\left(V_{1}, \ldots, V_{n}\right)}$ converges stochastically to zero as n increases, or equivalently, that $\frac{g_{n}\left(V_{1}, \ldots, V_{n}\right)}{h_{n}\left(V_{1}, \ldots, \bar{V}_{n}\right)}$ converges stochastically to unity. If we define $S_{n}\left(V_{1}, \ldots, V_{n}\right)$ by the equation

$$
\frac{g_{n}\left(V_{1}, \ldots, V_{n}\right)}{h_{n}\left(V_{1}, \ldots, V_{n}\right)}=\mathbf{1}+S_{n}\left(V_{1}, \ldots, V_{n}\right)
$$

then $S_{n}\left(V_{1}, \ldots, V_{n}\right)$ converges stochastically to zero as n increases. This means
that there are two sequences of positive values, $\left\{\varepsilon_{n}\right\},\left\{\delta_{n}\right\}$, such that $\lim \varepsilon_{n}$ $=\lim _{n \rightarrow \infty} \delta_{n}=0$, and

$$
\begin{align*}
& \int \cdots \int g_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}>1-\delta_{n} \tag{2.11}\\
& \left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n}
\end{align*}
$$

Now we have

$$
\begin{aligned}
& \left|\begin{array}{ll}
\int \cdots \int g_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}-\int \cdots \int h_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n} \\
\left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n} & \left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n}
\end{array}\right| \\
& \quad \leqq \int \cdots \int h_{n}\left(v_{1}, \ldots, v_{n}\right)\left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right| d v_{1} \cdots d v_{n}<\varepsilon_{n} \\
& \left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n} \quad \text { and } \quad h_{n}\left(v_{1}, \ldots, v_{n}\right)>0
\end{aligned}
$$

and using (2.11), we find that

$$
\begin{align*}
& \int \cdots \int h_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}>1-\delta_{n}-\varepsilon_{n} . \tag{2.12}\\
& \left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n}
\end{align*}
$$

Now, for each n let $b_{n}\left(v_{1}, \ldots, v_{n}\right)$ be a measurable function of v_{1}, \ldots, v_{n}, satisfying $\left|b_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<B<\infty$ for all v_{1}, \ldots, v_{n}. We have

$$
\left.\begin{array}{c}
\left\lvert\, \begin{array}{c}
\int \cdots \int b_{n}\left(v_{1}, \ldots, v_{n}\right) g_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n}- \\
\mid g_{n}\left(v_{1}, \ldots, v_{n}\right)>0
\end{array}\right. \\
-\int \cdots \int b_{n}\left(v_{1}, \ldots, v_{n}\right) h_{n}\left(v_{1}, \ldots, v_{n}\right) d v_{1} \cdots d v_{n} \\
h_{n}\left(v_{1}, \ldots, v_{n}\right)>0
\end{array}\right\} \begin{gathered}
\\
\leqq B \int \cdots \int h_{n}\left(v_{1}, \ldots, v_{n}\right)\left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right| d v_{1} \cdots d v_{n}+B \delta_{n}+B\left(\delta_{n}+\varepsilon_{n}\right) \\
\left|S_{n}\left(v_{1}, \ldots, v_{n}\right)\right|<\varepsilon_{n} \text { and } h_{n}\left(v_{1}, \ldots, v_{n}\right)>0 \\
\leqq B \varepsilon_{n}+B \delta_{n}+B\left(\delta_{n}+\varepsilon_{n}\right),
\end{gathered}
$$

using (2.11) and (2.12). The theorem now follows by defining $b_{n}\left(v_{1}, \ldots, v_{n}\right)$ to be unity if $\left(v_{1}, \ldots, v_{n}\right)$ is in R_{n}, and zero otherwise.

3. Applications

A common problem is that of testing the hypothesis that the common unknown distribution of the independent random variables X_{1}, \ldots, X_{n} is the uniform distribution over $(0,1)$. For a given test of this hypothesis, it would be of interest to know its asymptotic power against a sequence of alternatives $\left\{f_{n}(x)\right\}$, where $f_{n}(x)=1+\frac{r(x)}{n^{\delta}}$. The theorem proved above enables us to study this power by
studying functions of independent exponentially distributed variables.
As an example, we discuss the test which rejects the hypothesis when $\sum_{i=1}^{n+1} V_{i}^{2}$ is greater than $\frac{2}{n}+2 k(\alpha) n^{-3 / 2}$, where $k(\alpha)$ satisfies the equation

$$
\frac{1}{\sqrt{2 \pi}} \int_{k(\alpha)}^{\infty} e^{-1 / 2 t^{2}} d t=\alpha .
$$

This test is discussed in [4], where it is shown that its asymptotic level of significance is α. Here we want to discuss its power against alternatives with probability density function $f_{n}(x)$.

Let A_{n}^{\prime} denote $\sum_{i=1}^{n+1} W_{i}^{2}$, and let $c_{n}(b)$ denote $\sum_{i=1}^{n+1}\left\{f_{n}\left[F_{n}^{-1}\left(\frac{i}{n+1}\right)\right]\right\}^{-b}$. A straightforward calculation shows that for positive integral b,

$$
\frac{c_{n}(b)}{n+1}=1+\frac{b(b-1)}{2 n^{2 \sigma}} \int_{0}^{1} r^{2}(y) d y+\frac{K_{n}(b)}{n^{1+\sigma}}
$$

where $\left|K_{n}(b)\right|<K(b)<\infty$. Let A_{n} denote

$$
\frac{A_{n}^{\prime}-2 c_{n}(2)}{\sqrt{20 c_{n}(4)}} \text { and } T_{n} \text { denote } \frac{T_{n}^{\prime}-c_{n}(1)}{\sqrt{c_{n}(2)}}
$$

The central limit theorem shows that asymptotically A_{n} and T_{n} have a joint normal distribution with zero means, unit variances, and covariance $\frac{4}{\sqrt{20}}$. The test being considered rejects when $\frac{A_{n}^{\prime}}{\left(T_{n}^{\prime}\right)^{2}}>\frac{2}{n}+2 k(\alpha) n^{-3 / 2}$. Expressing A_{n}^{\prime} and T_{n}^{\prime} in terms of A_{n} and T_{n}, and using the expressions for $c_{n}(b)$ given above, we find that the test rejects when

$$
\frac{\sqrt{20}}{2} A_{n}-2 T_{n}>k(\alpha)-n^{1 / 2-2 \delta} \int_{0}^{1} r^{2}(y) d y+\Delta_{n}
$$

where Δ_{n} converges stochastically to zero as n increases. From the asymptotic joint distribution of A_{n} and T_{n} given above, it follows that $\frac{\sqrt{20}}{2} A_{n}-2 T_{n}$ has asymptotically a standard normal distribution. Then, letting $\Phi(v)$ denote $\frac{1}{\sqrt{2 \pi}} \int_{v}^{\infty} e^{-1 / 2 t^{2}} d t$, we find that the asymptotic power of the test against $f_{n}(x)$ is

$$
\Phi\left[k(\alpha)--n^{1 / 2-2 \delta} \int_{0}^{1} r^{2}(y) d y\right] .
$$

4. Relation to earlier work

In [1], Renyi studied the distribution of the ordered observations from a population with distribution function $F(x)$ in terms of the distribution of functions of independent exponential variables. Since $F(x)$ is not approaching the uniform distribution as n increases, the Theorem of the present paper does not hold for all sequences $\left\{R_{n}\right\}$ of measurable sets in n-dimensional space.

References

[1] Renyi, A.: On the theory of order statistics. Acta math. Acad. Sci. Hungar. 4, 191-227 (1953).
[2] Weiss, Lionel: On the asymptotic distribution of an estimate of a scale parameter. Naval Res. Logist. Quart. 10, 1-9 (1963).
[3] - Tests of fit in the presence of nuisance location and scale parameters. Ann. math. Statistics 28, 1016-1020 (1957).
[4] - The asymptotic power of certain tests of fit based on sample spacings. Ann. math. Statistics 28, 783-786 (1957).

Department of Industrial Engineering and Administration Cornell University
Ithaca, N. Y. (USA)
(Received September 1, 1964)

[^0]: * Research supported by National Science Foundation Grant No. NSF-G22585.

