Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © Springer-Verlag 1983

The Isoperimetric Inequality for Isotropic Unimodal Lévy Processes

Toshiro Watanabe

Department of Applied Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo, Japan

1. Introduction

Let $(\Omega X_t P_x)$ be a symmetric *n*-dimensional Lévy process. Let $P_t(x, dy)$ be transition function of X_t . Then, there corresponds unique (S, Φ) such that

$$\int e^{i(x,\xi)} P_t(0,dx) = e^{-i\psi(\xi)}$$

$$\psi(\xi) = \frac{1}{2}(S\xi,\xi) + \int_{\mathbb{R}^n} (1 - \cos(\xi, y)) \Phi(dy),$$
(1.1)

where S is a nonnegative symmetric matrix and Φ is a symmetric measure on \mathbb{R}^n with $\Phi(\{0\})=0$ and $\int \frac{|x|^2}{1+|x|^2} \Phi(dx) < \infty$. The associated Dirichlet form $(\varepsilon, \mathscr{F}(\varepsilon))$ related to $L^2(\mathbb{R}^n)$ can be given by

$$\varepsilon(u, u) = \frac{1}{2} D_{S}(u, u) + \frac{1}{2} J_{\Phi}(u, u)$$

$$\mathscr{F} = \mathscr{F}(\varepsilon) = \{ u \in L^{2}(\mathbb{R}^{n}) \colon \varepsilon(u, u) < \infty \},$$
(1.2)

where

$$D_{S}(u, u) = \int \sum S_{ij} \frac{\partial u}{\partial x^{i}} \frac{\partial u}{\partial x^{j}} dx$$

 $(S = (S_{ii}))$ and

$$J_{\Phi}(u,u) = \iint (u(x+y) - u(x))^2 \Phi(dy) \, dx.$$

(See Fukushima [4] p. 29 and Deny [3].)

Let B be any subset of \mathbb{R}^n . Then the α -capacity of B ($\alpha > 0$ in general and $\alpha \ge 0$ if X_t is transient) is given by

$$\operatorname{Cap}_{\alpha}(B) = \inf_{A \in QB \subset A} \operatorname{Cap}_{\alpha}(A)$$
(1.3)

where Q is the family of all open sets in \mathbb{R}^n and for $A \in Q$

$$\operatorname{Cap}_{\alpha}(A) = \begin{cases} \inf_{u \in \mathscr{F}_{A}^{\alpha}} \varepsilon_{\alpha}(u, u) & \text{if } \mathscr{L}_{A}^{\alpha} \neq \phi \\ \infty & \text{if } \mathscr{L}_{A}^{\alpha} \neq \phi \end{cases}$$
(1.4)

where $\varepsilon_{\alpha}(u, u) = \alpha(u, u) + \varepsilon(u, u)$

$$\mathcal{L}_{A}^{\alpha} = \{ u \in \mathcal{F} : u \ge 1 \text{ a.e. on } A \}$$
$$\mathcal{L}_{A}^{0} = \{ u \in \mathcal{F}_{(e)} : u \ge 1 \text{ a.e. on } A \}.$$

 $\mathscr{F}_{(e)}$ is a completion of \mathscr{F} by ε which is well-defined if X_t is transient. (See [4] p. 61.)

Definition 1.1. A measure $\mu(dx)$ on \mathbb{R}^n is *isotropic* if there exists a function $\mu_0(r)$ $(0 < r < \infty)$ such that $\mu(dx) = \mu_0(|x|) dx$ for $x \neq 0$. $\mu(dx)$ is *isotropic unimodal* if $\mu_0(r)$ is nonincreasing. ($\mu(\{0\})$ may be positive).

Definition 1.2. A symmetric Lévy process X_t is isotropic if transition function $p_t(0, dx)$ (t>0) is isotropic and X_t is isotropic unimodal if $p_t(0, dx)$ is isotropic unimodal.

In this paper, we shall show the following results.

Proposition. Let X_t be symmetric Lévy process. Then the followings are equivalent.

- (1) X_t is isotropic unimodal.
- (2) $G_{\alpha}(0, dx)$ is isotropic unimodal for $\alpha > 0$ where $G_{\alpha}(x, dy) = \int_{0}^{\infty} e^{-\alpha t} p_{t}(x, dy)$.

(3) If (S, Φ) is given by (1.1) for X_i , then S = aI where $a \ge 0$ and I is the identify matrix and Φ is isotropic unimodal.

In the following, we shall denote by $B_a(x)$ a closed ball of radius *a* with centre x and by B_a a closed ball of radius *a* if the centre is not specified.

Theorem 1. Let X_i be an isotropic unimodal process. Then for any nonempty Borel set B, it holds that for $\alpha > 0$

$$\operatorname{Cap}_{\alpha}(B) \geq \operatorname{Cap}_{\alpha}(B^*) = F_{\alpha}\left(\left(\frac{m(B)}{C_n}\right)^{\frac{1}{n}}\right)$$

 $(\alpha \ge 0 \text{ if } X_t \text{ is transient})$, where m(dx) is the n-dimensional Lebesgue measure, B^* is a closed ball with

$$m(B) = m(B^*), \quad C_n = m(B_1) = \frac{\pi^{\frac{n}{2}}}{\Gamma\left(1 + \frac{n}{2}\right)} \quad and \quad F_{\alpha}(a) = \operatorname{Cap}_{\alpha}(B_a).$$

We can show the converse of Theorem 1 in the following two cases. Let X_t be isotropic unimodal.

(H.1) S = aI with a > 0 and $\Phi = 0$

(H.2) There exists a strictly decreasing function $\phi(r)$ ($0 < r < \infty$) such that $\Phi(dx) = \phi(|x|) dx$. S = aI with a > 0 or $\Phi(\mathbb{R}^n) = \infty$.

The condition $S \neq 0$ or $\Phi(\mathbb{R}^n) = \infty$ is equivalent to $p_t(0, \{0\}) = 0$ (t > 0).

Theorem 2. If (S, Φ) given by (1.1) satisfies (H.1) or (H.2) and consequently X_t is an isotropic unimodal process, then for any nonempty compact set K the follow-

ings are equivalent.

(1)
$$\operatorname{Cap}_{\alpha}(K) = F_{\alpha}\left(\left(\frac{m(K)}{C_{n}}\right)^{\frac{1}{n}}\right).$$

(2) $K = B \cup \Delta$ with $\operatorname{Cap}_{\alpha}(\Delta) = 0$, where B is a ball with radius.

 $\left(\frac{m(K)}{C_n}\right)^{\frac{1}{n}}$. $(\alpha > 0)$ or $\alpha \ge 0$ if X_t is transient.)

The (isotropic) stable process of index β satisfies (H.1) if $\beta = 2$ and (H.2) if $0 < \beta < 2$, respectively. Since 0-capacity of transient stable process of index β $(0 < \beta \leq 2, \beta < n)$ is Riesz capacity of index β , Theorem 1 and Theorem 2 hold for Riesz capacity. In this case $F_0(R) = C(\beta, n) R^{n-\beta}$ where $C(\beta, n)$ is a constant which depends on β and *n*.

2. Definition of X_t^* and Proof of Proposition

Definition 2.1. For any nonnegative Lebesque measurable function u(x), we shall define

$$u^{*}(x) = \sup\{t: \mu(t) > C_{n}|x|^{n}\},\$$

where $\mu(t) = m\{x : u(x) > t\}$.

Remark. $u^*(x)$ is a right continuous nonincreasing function of |x| with

$$m\{x: u^*(x) > t\} = m\{x: u(x) > t\}$$

for any t > 0. It also holds that

$$\int |u^*(x)|^p \, dx = \int |u(x)|^p \, dx. \qquad (p > 0).$$

Lemma 2.1. Let f(x) and $\phi(x)$ be nonnegative measurable function on \mathbb{R}^n . If f(x)is a nondecreasing function of |x|, then

$$\int f(x)\phi(x)\,dx \ge \int f(x)\,\phi^*(x)\,dx. \tag{2.1}$$

Proof. Let B be any measurable set and I_B is an indicator of B. Then $I_B^* = I_{B^*}$ and

$$\int f(x) I_{B}(x) dx \ge \int f(x) I_{B^{*}}(x) dx,$$

where B^* is an open ball of centre 0 with $m(B^*) = m(B)$. Set $B(\phi, t)$ $= \{x: \phi(x) > t\}$. Then

$$I_{B(\phi,t)}^* = I_{B(\phi,t)^*} = I_{B(\phi^*,t)},$$

$$\int f(x) \phi(x) dx = \int_0^\infty \left(\int_{\mathbb{R}^n} f(x) I_{B(\phi,t)}(x) dx \right) dt$$

$$\geq \int_0^\infty \left(\int_{\mathbb{R}^n} f(x) I_{B(\phi^*,t)}(x) dx \right) dt$$

$$= \int f(x) \phi^*(x) dx.$$

Let X_t be a symmetric Lévy process which corresponds to a pair (S, Φ) in (1.1). Set

$$S^* = (\det S) I$$

$$\Phi^*(dx) = \phi_0^*(x) dx$$
(2.2)

where $\phi_0(x)$ is a density function of the absolutely continuous part of $\Phi(dx)$. By Lemma 2.1

$$\int \frac{|x|^2}{1+|x|^2} \phi_0^*(x) \, dx \leq \int \frac{|x|^2}{1+|x|^2} \phi_0(x) \, dx \leq \int \frac{|x|^2}{1+|x|^2} \Phi(dx) < \infty.$$

Therefore, there exists a symmetric Lévy process X_t^* corresponding to (S^*, Φ^*) .

Definition 2.2. For symmetric Lévy process corresponding to $(S. \Phi)$, X_t^* is a symmetric Lévy process corresponding to (S^*, Φ^*) given by (2.2).

Note that (3) in Proposition is equivalent to (3)' $X_t = X_t^*$.

Proof of Proposition. The implication $(3) \rightarrow (1)$ is easily proved by Theorem 4 in [6], and Theorem 8.3 and Theorem 8.8 in [9]. The implication $(1) \rightarrow (2)$ is clear, since G_{α} is the Laplace transform of P_t . For any continuous function ψ on $\mathbb{R}^n - \{0\}$ with compact support

$$\lim_{\alpha \to \infty} \alpha^2 \int G_{\alpha}(0, dy) \, \psi(y) = \int \psi(x) \, \Phi(dx).$$

(See [4] Theorem 2.2.1.) Therefore $\Phi(dx)$ is an isotropic measure. Put for $0 < \delta < a$ and $0 < \beta$

$$\tilde{\phi}_{a}^{\delta\beta}(\mathbf{x}) = \begin{cases} 0 & |\mathbf{x}| \leq a - \delta \\ \frac{|\mathbf{x}| - a + \delta}{\delta} & a - \delta < |\mathbf{x}| \leq a \\ 1 & a < |\mathbf{x}| \leq \beta \\ \beta + 1 - |\mathbf{x}| & \beta < |\mathbf{x}| \leq \beta + 1 \\ 0 & \beta + 1 < |\mathbf{x}| \end{cases}$$

and $\phi_a^{\delta\beta}(x) = \frac{1}{x^{n-1}} \tilde{\phi}_a^{\delta\beta}(x)$. Since $G_{\alpha}(0, dx)$ is isotropic unimodal

$$\int (\phi_a^{\delta\beta} + \phi_b^{\delta\beta} - 2\phi_{\underline{a+t}}^{\delta,\beta}) \Phi(dx)$$

= $\lim_{\alpha \to \infty} \alpha^2 \int (\phi_a^{\delta\beta} + \phi_b^{\delta\beta} - 2\phi_{\underline{a+b}}^{\delta\beta}) G_{\alpha}(0, dx) \ge 0.$

Tending $\delta \to 0$ and $\beta \to \infty$, we can show $\int_{|x| \ge a} \frac{1}{|x|^{n-1}} \Phi(dx)$ is a convex function in a. Therefore the isotropic measure $\Phi(dx)$ is unimodal.

3. Proof of Theorem 1'

In this section we shall state and prove Theorem 1', which is a generalization of Theorem 1.

Lemma 3.1 (Hardy-Littlewood-Polya [5] Theorem 379 and Brascamp Lieb and Luttingen [2]). Let u(x), v(x) and h(x) be any nonnegative Lebesgue measurable functions. Then it holds that

$$(u, v, h) \leq (u^*, v^*, h^*)$$

where $(u, v, h) = \iint u(x) v(y) h(x-y) dx dy$.

Lemma 3.2'. Let $u \in \mathscr{F}(\varepsilon)$ and $u \ge 0$, then $u^* \in \mathscr{F}(\varepsilon^*)$ and

$$D_{S}(u,u) \ge D_{S^{*}}(u^{*},u^{*}),$$
 (3.1)

$$J_{\Phi}(u,u) \ge J_{\Phi^*}(u^*,u^*),$$
 (3.2)

$$\varepsilon(u, u) \ge \varepsilon^*(u^*, u^*) \tag{3.3}$$

where ε^* is the form corresponding to (S^*, Φ^*) .

Proof. Let ε_S be the form corresponding to (S, 0). First we shall show if $u \ge 0$ and $u \in \mathscr{F}(\varepsilon_I)$, then

$$D_I(u, u) \ge D_I(u^*, u^*).$$
 (3.4)

Put $P_t(x) = \frac{1}{(2\pi t)^2} e^{-\frac{|x|^2}{2t}}$ and $T_t u(x) = \int P_t(y-x)u(y) dy$. Then by Lemma 3.1 for any t > 0

$$\varepsilon^{(t)}(u, u) = \frac{1}{t} (u - T_t u, u)$$

= $\frac{1}{t} \{(u, u) - (u, u, P_t)\}$
 $\geq \frac{1}{t} \{(u^*, u^*) - (u^*, u^*, P_t)\}$
= $\varepsilon^{(t)}(u^*, u^*).$

By Lemma 1.3.4 in [4], we have $u^* \in \mathscr{F}(\varepsilon_i)$ and

$$D_I(u, u) = \lim_{t \to 0} 2\varepsilon^{(t)}(u, u) \ge \lim_{t \to 0} 2\varepsilon^{(t)}(u^*, u^*) = D_I(u^*, u^*).$$

Next, we shall show if $u \ge 0$ and $u \in \mathscr{F}(\varepsilon_s)$ then

$$D_{S}(u, u) \ge D_{S^{*}}(u^{*}, u^{*}).$$
 (3.5)

If det S = 0, (3.5) is trivially true. If det S > 0, then there exists a matrix σ such that det $\sigma = 1$ and $S = (\det S) \sigma({}^{t}\sigma)$. Put $\hat{u}(x) = u(\sigma x)$, then $\hat{u} \in \mathscr{F}(\varepsilon_{I})$ and $(\hat{u})^{*} = u^{*}$. Therefore by (3.4)

$$D_S(u, u) = \det SD_I(\hat{u}, \hat{u}) \ge \det SD_I(u^*, u^*)$$

= $D_{S^*}(u^*, u^*).$

In general, assume $u \ge 0$ and $u \in \mathscr{F}(\varepsilon)$. Then $u \in \mathscr{F}(\varepsilon_s)$ and (3.1) holds. Let $\Phi_0(dx) = \Phi_0(x) dx$ be the absolutely continuous part of $\Phi(dx)$, and $\Phi_0^N(dx) = (N \land \phi_0(x)) dx$. Then by Lemma 3.1,

$$J_{\Phi_0^N}(u, u) = 2(u, u) \Phi_0^N(\mathbb{R}^n) - 2(u, u, N \land \phi_0)$$

$$\geq 2(u^*, u^*) (\Phi_0^*)^N(\mathbb{R}^n) - 2(u^*, u^*, N \land \phi_0^*)$$

$$= J_{(\Phi_0^*)^N}(u^*, u^*).$$

Tending $N \to \infty$, we have (3.2). By (3.1) and (3.2) $u \in \mathscr{F}(\varepsilon^*)$ and $\varepsilon(u, u) \ge \varepsilon^*(u^*, u^*)$ is proved.

Lemma 3.3. Let X_t be an isotropic Lévy process, and B be a closed ball. Then

$$\operatorname{Cap}_{\alpha} B = \operatorname{Cap}_{\alpha} \dot{B}. \tag{3.6}$$

Moreover, if $P_t(0, \{0\}) = 0$ (t > 0), then

$$B = (\dot{B})^r$$
 and $(B^c) = (B^c)^r$. (3.7)

Proof. If x is in $\partial B = B - \dot{B}$ and $x \notin \dot{B}^r$ (or $x \notin B^c)^r$). Then for any rotation T_x around x, we have $x \notin (T_x \dot{B})^r$ (or $x \notin (T_x B^c)^r$). Therefore $x \notin (\mathbb{R}^n - \{x\})^r$ and $\{x\}$ is a finely open set. If $\dot{B}^r = B$, then (3.6) holds obviously. If there exists a point x in $B - \dot{B}^r$, then x is finely open and ∂B is also finely open, for X_t is isotropic. Since a finely open set with *m*-measure zero has no positive capacity (Lemma 4.2.4 in [4]), $\operatorname{Cap}_{\alpha}(\partial B) = 0$ and (3.6) also holds. If $P_t(0, \{0\}) = 0$ (t > 0), one point set can be finely open. (3.7) follows immediately from the above argument.

Lemma 3.4. Let X_t be isotropic Lévy process. Put

 $F_{\alpha}(a) = \operatorname{Cap}_{\alpha}(B_{\alpha})$ for any $a \ge 0$ and $\alpha > 0$

 $(\alpha \ge 0 \text{ if } X_t \text{ is transient})$. Then $F_{\alpha}(a)$ is strictly increasing and continuous function of a and $\lim_{a \to \infty} F_{\alpha}(a) = \infty$.

Proof. It is clear that $F_{\alpha}(a)$ is strictly increasing and right continuous. The left continuity of $F_{\alpha}(a)$ follows from (3.6) in Lemma 3.3. Next suppose $\lim_{a\to\infty} F_{\alpha}(a) < \infty$. Then $\operatorname{Cap}_{\alpha}(\mathbb{R}^n) < \infty$ and $I_{\mathbb{R}^n} \in \mathscr{F}(I_{\mathbb{R}^n} \in \mathscr{F}(e))$ if $\alpha = 0$ and X_t is transient). This is a contradiction.

Now we shall state and prove Theorem 1'. Notations are the same as in Theorem 1.

Theorem 1'. Let X_t be a symmetric Lévy process and X_t^* be the process given in Definition 2.2 for X_t . Then for any nonempty Borel subset B of \mathbb{R}^n

$$\operatorname{Cap}_{\alpha}^{X_{t}}(B) \geq \operatorname{Cap}_{\alpha}^{X_{t}^{*}}(B^{*}) = F_{\alpha}\left(\left(\frac{m(B)}{C_{n}}\right)^{\overline{n}}\right)$$

for $\alpha > 0$ ($\alpha \ge 0$ if X_t is transient), when $F_{\alpha}(a) = \operatorname{Cap}_{\alpha}^{X_t^*}(B_a)$.

Remark. If X_t is isotropic unimodal, by Proposition $X_t = X_t^*$. Theorem 1 is a corollary of Theorem 1'.

Proof of Theorem 1'. Since $\operatorname{Cap}_{\alpha}(B) = \sup_{K \subset B, K: \operatorname{compact}} \operatorname{Cap}_{\alpha}(K)$, by Lemma 3.4 we have only to prove the theorem when B is compact. Let K be any compact set. Then by problem 3.3.2 in [4]

$$\operatorname{Cap}_{\alpha}(K) = \inf_{u \in \mathscr{D}_{K}(\varepsilon)} \varepsilon_{\alpha}(u, u)$$

where $\mathscr{D}_{K}(\varepsilon) = \{u \in \mathscr{F} \cap C_{0}(\mathbb{R}^{n}) : u \geq 1 \text{ on } K u \geq 0 \text{ on } \mathbb{R}^{n}\}$

and $C_0(\mathbb{R}^n)$ is a set of all continuous functions on \mathbb{R}^n . Let a be the radius of K^* . If $u \in \mathcal{D}_K(\varepsilon)$, then by Lemma 3.2 $u^* \in \mathcal{D}_{B_n(0)}(\varepsilon^*)$ and

$$\inf_{u\in\mathscr{D}_{K}(\varepsilon)}\varepsilon_{\alpha}(u,u) \geq \inf_{u\in\mathscr{D}_{K}(\varepsilon)}\varepsilon_{\alpha}^{*}(u^{*},u^{*})$$
$$\geq \inf_{v\in\mathscr{D}_{B_{\alpha}(0)}(\varepsilon^{*})}\varepsilon_{\alpha}^{*}(v,v) = \operatorname{Cap}_{\alpha}^{X_{\varepsilon}^{*}}(B_{\alpha}(0)) = \operatorname{Cap}_{\alpha}^{X_{\varepsilon}^{*}}(K^{*}).$$

Therefore Theorem 1' is proved for compact set K.

By Lemma 3.4 and Lemma 3.1.5 in [4], we immediately have the following Corollary.

Corollary. Under the same assumption as in Theorem 1'

$$F_{\alpha}\left(\left(\frac{m(\{x:|u(x)|>t\})}{c_n}\right)^{\frac{1}{n}}\right) \leq \frac{1}{t^2}\varepsilon_{\alpha}(u,u)$$
(3.8)

for $u \in \mathscr{F}$ ($u \in \mathscr{F}_{(e)}$ if $\alpha = 0$ and X_t is transient) and $0 \leq t < \sup_{x \in \mathbb{R}^n} |u(x)|$.

4. Proof of Theorem 2

Lemma 4.1. Let X_t be an isotropic unimodal Lévy process and $P_t(0, \{0\}) = 0$. Then for any $\alpha > 0$, $\frac{G_{\alpha}(0, dx)}{dx}$ is continuous at $x \neq 0$.¹

Proof. Since X_t is isotropic unimodal, there exists a nonincreasing function g(r) $(0 < r < \infty)$ such that $G_{\alpha}(0, dx) = g(|x|) dx$. Assume g(r) is not continuous at r_0 . On the other hand, we can take α -excessive density function $\tilde{g}(x)$ with $g(x) = \tilde{g}(x)$ a.e. ([1] VI). Since $\tilde{g}(x) = \lim_{t \downarrow 0} \int p_t(x, dy) \tilde{g}(y) = \lim_{t \to 0} \int p_t(x, dy) g(y)$ and X_t is right continuous,

and

$$\tilde{g}(x) \ge g(r_0 -) \quad \text{if } |x| < r_0$$

$$\tilde{g}(x) \leq g(r_0 +) \quad \text{if } |x| > r_0.$$

By Lemma 3.3, we know

$$\{|x| < r_0\}^r = \{|x| \le r_0\}$$
 and $\{|x| > r_0\}^r = \{|x| \ge r_0\}.$

¹ If X_t is transient, Lemma 4.1 also holds for $\alpha \ge 0$

Therefore by Proposition 2.10 in [1], if $|x_0| = r_0$

$$\tilde{g}(x_0) \ge \inf_{|x| < r_0} \tilde{g}(x) \ge g(r_0 -)$$
$$\tilde{g}(x_0) \le \sup \tilde{g}(x) \le g(r_0 +)$$

and

$$\tilde{g}(x_0) \leq \sup_{|x| > r_0} \tilde{g}(x) \leq g(r_0 +$$

which is a contradiction.

Lemma 4.2. Let X_t be an isotropic unimodal Lévy process and transient. If $u \in \mathscr{F}_{(e)}, u \ge 0 \text{ and } \sup u(x) < \infty, \text{ then } u^* \in \mathscr{F}_{(e)} \text{ and } \varepsilon(u, u) \ge \varepsilon(u^*, u^*).$ *Proof.* For any t > 0, put $u_t = u - u \wedge t$. Then by Lemma 3.4 and (3.8), we have $m\{x: u_t(x) > 0\} < \infty$, so u_t is in $L^p(R)$ for any $p \ge 1$. Since u_t is a normal con-

traction of u, u_t is in $\mathscr{F}_{(e)} \cap L^2 = \mathscr{F}$. So by Lemma 3.2 $(u_t)^* = (u^*)_t \in \mathscr{F}$ and

 $\varepsilon(u_t, u_t) \geq \varepsilon((u^*)_t, (u^*)_t).$

In the same way as in proof of Theorem 1.4.2 in [4], we can show

$$u_t \rightarrow u$$
 and $(u^*)_t \rightarrow u^* (t \rightarrow 0)$

strongly in $(\varepsilon, \mathscr{F}_{(e)})$. The Lemma is proved.

Lemma 4.3. Let X_t be isotropical unimodal. Let $u \ge 0$ and $u \in \mathscr{F}$, (or $u \ge 0, u \in \mathscr{F}_{(e)}$) and u be bounded if X_t is transient). Suppose

then

$$\varepsilon(u, u) = \varepsilon(u^*, u^*),$$
$$\varepsilon(u_t, u_t) = \varepsilon((u^*)_t, (u^*)_t),$$

$$\varepsilon(u^t, u^t) = \varepsilon((u^*)^t, (u^*)^t)$$

where $u_t = u - u \wedge t$ and $u^t = u \wedge t$.

Proof. Since $u = u_r + u^t$, we have

$$\varepsilon(u, u) = \varepsilon(u_t, u_t) + 2\varepsilon(u_t, u^t) + \varepsilon(u^t, u^t)$$

= $\varepsilon(u^*, u^*) = \varepsilon(u^*_t, u^*_t) + 2\varepsilon(u^*_t, u^{t*}) + \varepsilon(u^{t*}, u^{t*}).$ (4.1)

By Lemma 3.2 and Lemma 4.2,

$$\begin{aligned} \varepsilon(u_t, u_t) &\geq \varepsilon((u^*)_t, (u^*)_t) \\ \varepsilon(u^t, u^t) &\geq \varepsilon((u^*)^t, (u^*)^t). \end{aligned} \tag{4.2}$$

Since $u^t(x) = t$ if $u_t(x) > 0$, we have

$$(u_t, u^t) = t ||u_t||_{L^1} = t ||(u^*)_t||_{L^1} = ((u^*)_t, (u^*)^t).$$

Since $G_{\alpha}(0, dx)$ is isotropic unimodal by Proposition, $(G_{\alpha}u_{i}, u^{i}) \leq (G_{\alpha}(u^{*})_{i}, (u^{*})^{i})$ by Lemma 3.1. where $G_{\alpha}v(x) = \int G_{\alpha}(x, dy) f(y)$. Therefore

$$\varepsilon^{(\alpha)}(u_t, u^t) = \alpha(u_t - \alpha G_{\alpha} u_t, u^t)$$

$$\geq \alpha((u^*)_t - \alpha G_{\alpha}(u^*)_t, (u^*)^t$$

$$= \varepsilon^{(\alpha)}((u^*)_t, (u^*)^t)$$

494

and

$$\varepsilon(u_t, u^t) = \lim_{\alpha \to \infty} \varepsilon^{(\alpha)}(u_t, u^t)$$

$$\geq \lim_{\alpha \to \infty} \varepsilon^{(\alpha)}((u^*)_t, (u^*)^t) = \varepsilon((u^*)_t, (u^*)^t).$$
(4.3)

By (4.1), (4.2) and (4.3), Lemma 4.3 is proved.

Lemma 4.4. Let $u, \phi \ge 0$, $u, \phi \in L^1(\mathbb{R}^n)$, u be bounded and ϕ be a strictly decreasing function of |x|. Suppose

$$(u, u, \phi) = (u^*, u^*, \phi) < \infty \tag{4.4}$$

holds, then

$$(u, u, h) = (u^*, u^*, h)$$

where $h \ge 0$, $h \in L^1(\mathbb{R}^n)$ and h is a nonincreasing function of |x|.

Proof. By (4.4)

$$\int_{0}^{\infty} \{(u, u, I_{B(\phi, t)}) - (u^*, u^*, I_{B(\phi, t)})\} dt = 0$$

where $B(\phi, t) = \{x : \phi(x) \ge t\}$. So by Lemma 3.1

$$(u, u, I_{B(\phi, t)}) = (u^*, u^*, I_{B(\phi, t)})$$

for a.e. t > 0. Since ϕ is strictly decreasing in |x|

$$(u, u, I_{B_a(0)}) = (u^*, u^*, I_{B_a(0)})$$

except countably many a (a>0). Since both sides of the above equality are left continuous in a,

$$(u, u, I_{B(f,t)}) = (u^*, u^*, I_{B(h,t)})$$

and (4.3) holds.

Lemma 4.5. Let f and g be nonnegative bounded functions in $L^1(\mathbb{R}^n)$ with $g=g^*$. Then there exists a function h such that

$$(f^*, g) = (f, h)$$
 and $g = h^*$.

Proof. Set $B(\phi, t) = \{x : \phi(x) \ge t\}$ for any function ϕ on \mathbb{R}^n . We can choose sets B(s) $(s \ge 0)$ such that

- (i) B(s) is decreasing in s
- (ii) $B(0) = B(g, 0) = \mathbb{R}^n, m(B(s)) = m(B(g, s)).$
- (iii) For s with $B(f^*, t+) \subset B(g, s) \subset B(f^*, t)$,

$$B(f,t+) \subset B(s) \subset B(f,t).$$

Then for any s and t

$$m(B(s) \cap B(f, t)) = m(B(s)) \wedge m(B(f, t))$$
$$= m(B(g, s) \cap B(f^*, t)).$$

Set

496

$$h(x) = \sup\{s: x \in B(s)\},\$$

then

$$B(h, s+) \subset B(s) \subset B(h, s).$$

Noting $m\{B(h, s+)\} = m(B(s)) = m(B(h, s))$ except countably many s, we have

 $g = h^*$

and

$$(f,h) = \int_{0}^{\infty} \int_{0}^{\infty} ds \, dt (\int_{\mathbb{R}^n} I_{B(f,t)} I_{B(h,s)} dx)$$
$$= \int_{0}^{\infty} \int_{0}^{\infty} ds \, dt (\int_{\mathbb{R}^n} I_{B(f^*,t)} I_{B(g,s)} dx)$$
$$= (f^*,g).$$

Lemma 4.6. Let ρ be a smooth nonnegative function with compact support and $\rho = \rho^*$. Let u and ϕ be functions given in Lemma 4.4. Suppose

$$(u, u, \phi) = (u^*, u^*, \phi) < \infty$$
$$(\rho * u, \rho * u, \phi) = ((\rho * u)^*, (\rho * u)^*, \phi).$$
(4.6)

then

Proof. By Lemma 4.4, we have

$$(\rho * u, \rho * u, \phi) = (u, u, \rho * \rho * \phi) = (\rho * u^*, \rho * u^*, \phi).$$
(4.7)

For any nonnegative bounded functions v and w with $v, w \in L^1(\mathbb{R}^n)$ and $w = w^*$, take h in Lemma 4.5 for $f = \rho * v$ and $g = w * \phi$, then by Lemma 3.1

$$\begin{aligned} ((\rho * v)^*, w, \phi) &= ((\rho * v)^*, w * \phi) \\ &= (\rho * v, h) = (v, h, \rho) \\ &\leq (v^*, h^*, \rho) = (v^*, w * \phi, \rho) \\ &= (\rho * v^*, w, \phi). \end{aligned}$$
(4.8)

Set v = u and $w = (\rho * u)^*$ in (4.8), then

$$((\rho * u)^*, (\rho * u)^*, \phi) \leq (\rho * u^*, (\rho * u)^*, \phi).$$

Set v = u and $w = \rho * u^*$ in (4.8) again,

$$(\rho * u, (\rho * u)^*, \phi) \leq (\rho * u^*, \rho * u^*, \phi).$$

Therefore

$$(\rho * u, \rho * u, \phi) \leq ((\rho * u)^*, (\rho * u)^*, \phi) \\\leq (\rho * u^*, \rho * u^*, \phi).$$
(4.9)

By (4.7) and (4.9), we have proved (4.6).

Lemma 4.7 (Talenti [10]). Put $\mathcal{D}_0 = \{u: u \text{ is Lipschitz continuous and of compact support}\}$. Suppose $u \in \mathcal{D}_0$ and $u \ge 0$. Then

$$D_{I}(u, u) = D_{I}(u^{*}, u^{*})$$

if and only if

- (i) $\{x: u(x) \ge t\}$ is a closed ball a.e. $t \ge 0$
- (ii) |gradient u| is constant on $\{x: u(x)=t\}$ a.e. $t \ge 0$.

Proof of Theorem 2. To prove Theorem 2, it is sufficient to show that if a nonempty compact set K satisfies $\operatorname{Cap}_{\alpha}(K) = \operatorname{Cap}_{\alpha}(B_{a})$ and $m(K) = m(B_{a})$ for some a > 0, then (2) in Theorem 2 holds.

Put

$$e_{\mathbf{K}}(\mathbf{x}) = \begin{cases} E_{\mathbf{x}}(e^{-\alpha\sigma_{\mathbf{K}}}) & \text{if } \alpha > 0\\ P_{\mathbf{x}}(\sigma_{\mathbf{K}} < \infty) & \text{if } \alpha = 0 \end{cases}$$

where σ_K is the hitting time to K. Then $\operatorname{Cap}_{\alpha}(K) = \varepsilon_{\alpha}(e_K, e_K)$. Since $m(B_a) = m(K) = m(K^r) \le m(e_K \ge 1) = m(e_K^* \ge 1)$, $e_K^* \ge 1$ on $\dot{B}_a(0)$ a.e. and by Lemma 3.2 and Lemma 4.2

$$\operatorname{Cap}_{\alpha}(K) = \varepsilon_{\alpha}(e_{K}, e_{K}) \geq \varepsilon_{\alpha}(e_{K}^{*}, e_{K}^{*}) \geq \operatorname{Cap}_{\alpha}(B_{a}(0)).$$

Therefore by assumption

$$\varepsilon_{\alpha}(e_{K}, e_{K}) = \varepsilon_{\alpha}(e_{K}^{*}, e_{K}^{*})$$

$$e_{K}^{*} = e_{B_{\alpha}(0)} \quad \text{a.e.}$$

$$(4.10)$$

Case I When (H.1) Holds. In this case, X_t is the Brownian motion. Put $u = e_K$. Since u is lower semicontinuous, we can choose s and t such that $0 < s < t < \inf_{x \in K} u(x)$.² Then by Lemma 4.3

ĸ

$$\varepsilon_{\alpha}(u_{s}^{t}, u_{s}^{t}) = \varepsilon_{\alpha}((u_{s}^{t})^{*}, (u_{s}^{t})^{*})$$

and $u_s^t \in \mathcal{D}_0$, for *u* is α -harmonic outside *K*. Therefore by Lemma 4.7 we can choose *r* such that s < r < t and

$$\{u \ge r\} = \{u_s^t \ge r - s\} = B_c(x_0)$$

for some closed ball $B_c(x_0)$. On the other hand by (4.10)

$$m\{e_{B_{a}(x_{0})} \ge r\} = m\{e_{B_{a}(0)} \ge r\} = m\{u^{*} \ge r\} = m\{u \ge r\},$$

$$u = e_{B_{a}(x_{0})} = r \quad \text{on} \quad \partial B_{c}(x_{0}), \qquad B_{c}(x_{0}) \supset K$$

and $u = e_{B_a(x_0)}$ outside $B_c(x_0)$. Let U be the outer connected component of $\{B_a(x_0) \cup K\}^c$, then by principle of coincidence of α -harmonic function

$$e_K = u = e_{B_a(x_0)}$$
 in U.

² Since u is not identically zero, it is positive everywhere

Assume $K^r \notin B_a(x_0)$, and put

$$A = \{X_{\sigma_K} \in K^r, \sigma_K < \sigma_{B_a(x_0)}\}$$

then $P_x(A) > 0$ for $x \in U$.³ Take a sample w in A, then $\lim_{t \uparrow \sigma_K} e_K(X_t(w) = 1, \lim_{t \uparrow \sigma_K} e_{B_a(x_0)}(X_t(w)) < 1$ and $X_t(w) \in U$ for $0 < t < \sigma_K$, which is a contradiction. Therefore $K^r \subset B_a(x_0)$ and

$$\operatorname{Cap}_{\alpha}(K - B_{\alpha}(x_0)) = 0.$$
 (4.11)

Hence $m(K - B_a(x_0)) = 0$ and then

$$m(K \cap B_a(x_0)) = m(K) = m(B_a(x_0)).$$

Since K is compact, we can see $B_a(x_0) \subset K$. (2) in Theorem 2 is derived.

Case II When (H.2) Holds. Put $u=e_{K}$ again, then by (4.10) and Lemma 4.3 $\varepsilon_{\alpha}(u_{t}, u_{t})=\varepsilon_{\alpha}(u_{t}^{*}, u_{t}^{*})$ for any t>0. By (H.2), we can decompose Φ in such way that

$$\Phi = \Phi_1 + \Phi_2$$

where Φ_i (i=1,2) are isotropic unimodal and $\phi_1(x) = \frac{\Phi_1(dx)}{dx}$ $(x \neq 0)$ is strictly decreasing and in $L^1(\mathbb{R}^n)$. Then by (4.10)

$$J_{\Phi_1}(u_t, u_t) = J_{\Phi_1}(u_t^*, u_t^*)^4 \quad \text{or} \quad (u_t, u_t, \phi_1) = (u_t^*, u_t^*, \phi_1).$$

Let ρ be a smooth function on \mathbb{R}^n such that

$$\rho = \rho^*, \int \rho(x) \, dx = 1, \, \rho \ge 0, \, \rho(0) > 0 \tag{4.12}$$

and support $\rho \subset B_{\delta}(0)$ for some $\delta > 0$. Then by Lemma 4.4 and Lemma 4.6

$$(\rho * u_t, \rho * u_t, h_s) = ((\rho * u_t)^*, (\rho * u_t)^*, h_s)$$

where $h_s(x) = \frac{1}{(2\pi s)^2} e^{\frac{|x|^2}{2s}}$. Since in general

$$D_{I}(v,v) = \lim_{s \downarrow 0} \frac{1}{s} \{(v,v) - (v,v,h_{s})\}$$

for v with $D_1(v, v) < \infty$, we can see

$$D_{I}(\rho * u_{t}, \rho * u_{t}) = D_{I}((\rho * u_{t})^{*}, (\rho * u_{t})^{*}),$$

and $\rho * u_t \in \mathcal{D}_0$. Therefore by Lemma 4.7

 $\{\rho * u_t \ge r\}$ is a closed ball for a.e. r > 0.

⁴ By the similar way as the proof of (3.2) in Lemma 3.2, we can show

$$J_{\phi_i}(u_t, u_t) \ge J_{\phi_i}(u_t^*, u_t^*)$$
 (*i*=1,2)

³ Since $P_x(A) = 1$ if $x \in K^r - B_a(x_0)$, it is positive on $R^n - B_a(x_0)$

Therefore $B_{\rho,t} = \overline{\{\rho * u_t > 0\}}$ is a closed ball. Set $B = \bigcap_{\rho,t} B_{\rho,t}$, where ρ ranges over smooth functions satisfying (4.12) and 0 < t < 1. *B* is a closed ball. Since $S \neq 0$ or $\Phi(\mathbb{R}^n) = \infty$, $P_t\{0, \{0\}\} = 0$ and by Lemma 4.1 $\frac{G_{\alpha}(0, dx)}{dx}$ is continuous at $x \neq 0$. Therefore *u* is lower semicontinuous in \mathbb{R}^n and continuous in $\mathbb{R}^n - K$. Set K_0 $= \{x: u(x) = 1\}$ then $K^r \subset K_0$, $\operatorname{Cap}_{\alpha} K_0 \leq \varepsilon_{\alpha}(u, u) = \operatorname{Cap}_{\alpha} K = \operatorname{Cap}_{\alpha} K^r$ and $\operatorname{Cap}_{\alpha} K$ $= \operatorname{Cap}_{\alpha} K_0$. If $x \in K_0$, then $\lim_{y \to x} u(y) = 1 = u(x)$ and $x \in B$. If $x \notin K \cup K_0$, then $\lim_{y \to x} u(y) = u(x) < 1$ and $x \notin B$. Therefore $K_0 \subset B \subset K \cup K_0 \subset K_0 \cup (K - K^r)$. Since $\operatorname{Cap}_{\alpha}(K - K^r) = 0$, $\operatorname{Cap}_{\alpha} B = \operatorname{Cap}_{\alpha} K_0 = \operatorname{Cap}_{\alpha} K = \operatorname{Cap}_{\alpha} B_a$. So, the radius of *B* is *a* and m(K) = m(B). Therefore $K = K^r \cup \Delta_0 \subset B \cup \Delta_0$ with $\operatorname{Cap}_{\alpha} \Delta_0 = 0$. Since *K* is compact, $B \subset K \subset B \cup \Delta_0$ which proves the theorem.

References

- 1. Blumenthal, R.M., Getoor, R.K.: Markov process and potential theory. New York and London: Academic Press 1968
- 2. Brascamp, H.T., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. of Funct. Anal 17, 227-237 (1974)
- 3. Deny, J.: Methodes Hilbertienes et theorie du potentiel. Potential theory C.I.M.E. (1970)
- 4. Fukushima, M.: Dirichlet forms and Markov process. Kodansha: North-Holland 1980
- Hardy, G.H., Littlewood, G.H., Pólya, G.: Inequalities. London and New York: Cambridge University Press 1952
- Kanter, M.: Unimodality and dominance for symmetric random vectors. Trans. Amer. Math. Soc. 229, 65-85 (1977)
- 7. Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182-1238 (1978)
- 8. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Ann. Math. Studies, No. 27, Princeton, N.J. (1951)
- 9. Sato, K.: Infinitely divisible distribution, in Japanese. Seminar on Probability. vol. 52 (1981)
- 10. Talenti, G.: Best constant in Sobolev inequalities. Anali. di Math. 110, 353-372 (1976)
- Wolfe, S.J.: On the unimodality of infinitely divisible distribution functions. Z. Wahrscheinlichkeitstheorie u. Verw. Gebiete 45, 329-335 (1978)

Received October 18, 1982