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1. Introduction 

Let (~XtP~) be a symmetric n-dimensional L6vy process. Let Pt(x, dy) be tran- 
sition function of X t. Then, there corresponds unique (S, ~) such that 

S ei(x' ~) Pt( 0, dx) = e -~0(~) 
(1.1) 

0(~) =�89 ~) + ~ (1 - cos(~, y)) q~(dy), 
IR ~ 

where S is a nonnegative symmetric matrix and �9 is a symmetric measure on 

IR" with r  and q~(dx)<oo. The associated Dirichlet form 

(e, ~(e)) related to L2(IR ") can be given by 

e(u, u) = �89 Ds(U , u) + �89 Je(u, u) 
(1.2) 

Y = Y(e) = {ueL20R"): e(u, u) < oo}, 

where 

(S = (Sij)) and 

S. . •u  Ou Ds(u , u) = ~ Z ,j ~ X  i ~X J dx 

J A u ,  u) = S~ (u(x + y) - u(x)) 2 ~(dy)  dx.  

(See Fukushima [4] p. 29 and Deny [3].) 
Let B be any subset of IR n. Then the a-capacity of B (~ > 0 in general and ~ >= 0 
if X t is transient) is given by 

Cap~(B) = inf Cap~(A) (1.3) 
A e Q B c  A 

where Q is the family of all open sets in lR" and for A e Q  

f inf  e~(u, u) if 5 e ~ ,  r 
Cap~(A) (1.4) 
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where e~(u, u) = c~(u, u) + e(u, u) 

5 ~ = { u e Y :  u > l  a.e. on A} 

~O={uff~(e):  U~ 1 a.e. on A}. 

~e)  is a completion of ~ by e which is well-defined if X t is transient. (See [4] 
p. 61.) 

Definition 1.1. A measure #(dx) on IR n is isotropic if there exists a function #o(r) 
(O<r<oo)  such that #(dx)=l~o(]x[)dx for x#:O. #(dx) is isotropic unimodaI if 
/~0(r) is nonincreasing. (#({0}) may be positive). 

Definition 1.2. A symmetric L6vy process X t is isotropic if transition function 
pt(O, dx) (t >0) is isotropic and X t is isotropic unimodal if pt(O, dx) is isotropic 
unimodal. 

In this paper, we shall show the following results. 

Proposition. Let X t be symmetric Ldvy process. Then the followings are equiva- 
lent. 

(1) X t is isotropic unimodal. 
oo 

(2) G~(0, dx) is isotropic unimodal for c~ > 0 where G~(x, dy) = ~ e-~t pt(x ' dy). 
0 

(3) I f  (S,q~) is given by (1.1)for Xt, then S = a I  where a>=O and 1 is the 
identify matrix and ~b is isotropic unimodal. 

In the following, we shall denote by Ba(x ) a closed ball of radius a with 
centre x and by Ba a closed ball of radius a if the centre is not specified. 

Theorem 1. Let X, be an isotropic unimodal process. Then for any nonempty 
Borel set B, it holds that for ~ > 0 

1 

(m(B)~, 
Cap~(B) > Cap~(B*)= F~(\ C , ]  )" 

(c~ >O if X t is transient), where m(dx) is the n-dimensional Lebesgue measure, B* 
is a closed ball with 

n 

Ts 2 

m(B)=m(B*), C = m ( B  O -  and F~(a)= Cap~(B~). 

We can show the converse of Theorem 1 in the following two cases. Let X t 
be isotropic unimodal. 

(H.1) S = a I  with a>O and q~=O 
(H.2) There exists a strictly decreasing function qS(r) ( 0 < r < o o )  such that 
4~(dx)--O(Ixl)dx. S = a I  with a > 0  or q~(IR")= oo. 

The condition S 4 0  or ~b(lR")= oo is equivalent to pt(0, {0})=0 (t>0). 

Theorem 2. I f  (S, q~) given by (1.1) satisfies (H.1) or (H.2) and consequently X~ is 
an isotropic unimodal process, then for any nonempty compact set K the follow- 
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ings are equivalent. 
1 

[ [m(K) \T~ 
(1) C a p = ( K ) = r ~ [ [ ~ j  ], 

(re(K) t~ (~ > 0 (2) K = B u A  with Cap~(A)=0, where B is a ball with radius \ C,, ] " 
or o: > 0 if X t is transient.) 

The (isotropic) stable process of index fl satisfies (H.1) if f i=2  and (H.2) if 
0 < f i < 2 ,  respectively. Since 0-capacity of transient stable process of index fl 
(0 < fl < 2, fl < n) is Riesz capacity of index fl, Theorem 1 and Theorem 2 hold 
for Riesz capacity. In this case Fo(R)= C(fl, n)R n-~ where C(fl, n) is a constant 
which depends on fl and n. 

2. Definition of X* and Proof of Proposition 

Definition 2.1. For any nonnegative Lebesque measurable function u(x), we 
shall define 

u*(x) =sup{t:  #(t)> C.Ixl"}, 

where #(t) = re{x: u(x) > t}. 

Remark. u*(x) is a right continuous nonincreasing function of ix[ with 

re{x: u*(x)> t} =re{x: u(x)>t} 

for any t > O. It also holds that 

ylu*(x)Vdx=Jlu(x)l'dx. (p>0). 

Lemma 2.1. Let f ( x )  and (9(x) be nonnegative measurable function on N". I f  f (x) 
is a nondecreasing fu.nction of  ]xl, then 

j f (x) r dx >= ~ f (x) r dx. (2.1) 

Proof. Let B be any measurable set and I B is an indicator of B. Then I* = I , ,  
and 

U (x) ~ .(~) dx >__ ~f(x) I.,(~) dx, 

where B* is an open ball of centre 0 with m(B*)=m(B). Set B((~,t) 
= {x: ~b(x) > t}. Then 

I.(ee, t) -- 113(4,, t)* = re(4,*, t), 

f f ( x )  O(X)dx = ~ ~ f ( x )  I8(r dx) dt 
0 N.  ~ 

o9 

>= ~ ( ~ f ( x )  113(4,. ,t)(x) dx) dt 
0 lR ~ 

= 5f(x)  (o*(x) dx. 
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Let X t be a symmetric L6vy process which corresponds to a pair (S, ~b) in 
(1.1). Set 

S* = (det S) I 

~*(dx) = qS* (x) dx (2.2) 

where So(X) is a density function of the absolutely continuous part of ~b(dx). By 
Lemma 2.1 

]X]2 , , , , ,  < f  IX]2 < [  ]X;.,~ I~)(dx) 
~ q O o t X ~ a x = ~  1 + Ixl 20o(x)dx =~ 1 + ixl~ < o9. 

Therefore, there exists a symmetric L6vy process X* corresponding to (S*, ~*). 

Definition 2.2. For symmetric L6vy process corresponding to (S. ~b), X* is a 
symmetric L6vy process corresponding to (S*, ~*) given by (2.2). 

Note that (3) in Proposition is equivalent to (3)' X t = X*. 

Proof of Proposition. The implication (3)--,(1) is easily proved by Theorem 4 in 
I-6], and Theorem 8.3 and Theorem 8.8 in I-9]. The implication (1)-+(2) is clear, 
since G~ is the Laplace transform of P,. For any continuous function ~ on IR" 
- { 0 }  with compact support 

l im  0{ 2 ~ G=(0, dy) ~p(y)=5 tp(x) e(dx). 
0~ ~ o 0  

~b(dx) is an isotropic measure. Put for (See [-4] Theorem2.2.1.) Therefore 
0<cS<a and 0<f i  

"0 Ixl __<a-• 

Ix[-a+6 
a-a<lxl<=a 

6 

1 a<lxl</~ 

6 + l - l x [  /3<lxl</~+ 1 

0 /3+ l< lx l  

a ~ 1 -op 
and Ca"(X)=x~ZT_l qS~ (x). Since G~(0,dx) is isotropic unimodal 

24a+,:) ~(dx) 
2 

= lim 0{2 ~ (qS~ + qS~P - 2~ba+~ b ) G~(0, dx) > O. 
~ co ~ -  

1 
Tending 6-+0 a n d / 3 ~  0% we can show Ix~'J-alx~ a7 ~)(dx) is a convex function in 

a. Therefore the isotropic measure r is unimodal. 
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3. P roo f  of  Theorem 1' 

In  this section we shall state and prove  T h e o r e m  1', which is a general izat ion 
of T h e o r e m  1. 

L e m m a  3.1 (Hardy-L i t t l ewood-Po lya  [5] T h e o r e m  379 and Brascamp Lieb and 
Lut t ingen [-2]). Let  u(x), v(x) and h(x) be any nonnegative Lebesgue measurable 
functions. Then it holds that 

(u, v, h) <(u*, v*, h*) 

where (u, v, h) = ~ u(x) v(y) h(x - y) dx  dy. 

L e m m a  3.2'. Let  u ~ ( e )  and u>O, then u*~o~(e*) and 

Ds(u , u) > Ds.(U* , u*), (3.1) 

Je(u, u) > J,~,(u*, u*), (3.2) 

e(u, u) > e* (u*, u*) (3.3) 

where ~* is the form corresponding to (S*, ~b*). 

Proof  Let e s be the form corresponding to (S,0). First  we shall show if u > 0  
and u ~ ( e i )  , then 

Di(u , u) > Di(u* , u*). (3.4) 

1 Ixl2 
Put Pt(x)= , e 2t and T t u ( x ) = y P t ( y - x ) u ( y ) d y .  Then by L e m m a  3.1 for 
a n y t > 0  (2rot) g 

e(')(u, u) =l t (u  - T t u, u) 

1 

=7 {(u, u)- (u, u, e,)} 
1 

>--7 {(u*, u*)- (u*, u*, e,)} 
= e(')(u *, u*). 

By L e m m a  1.3.4 in [-4], we have u*eo~(ei) and 

O1(u , u) = l im 2 e(t)(u, u) > l im 2 e(t)(u *, u*) = O i(u* , u*). 
t ~ O  t ~ O  

Next,  we shall show if u > 0  and u e ~ ( e s )  then 

Ds(u, u) > Ds.(U* , u*). (3.5) 

If d e t S = 0 ,  (3.5) is trivially true. If  d e t S > 0 ,  then there exists a matr ix  a such 
that  det a =  1 and S=(de tS )~ ( t a ) .  Put  2(x )=u(ax) ,  then 2e~(~,) and (2)* =u* .  
Therefore  by (3.4) 

Ds(u , u) = det SDI(2, 2) > det SD,(u* , u*) 

= Ds,(U*,  u*). 
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In general, assume u > 0  and ue~(e) .  Then  u ~ ( S s )  and (3.1) holds. Let  ~bo(dx ) 
=~o(x )dx  be the absolutely cont inuous par t  of ~(dx), and cbUo(dx) 
= ( N / x  4o(x))dx. Then by L e m m a  3.1, 

deg(u, u) = 2(u, u) g%N(~t.~) - 2(u, u, N/x  ~bo) 

__> 2(u*, u*)(~*)~(~.")- 2(u*, u*, S A q~) 

= J~;~(u*, u*). 

Tending N--+oo, we have (3.2). By (3.1) arid (3.2) ue~(e*)  and e(u,u)>e*(u*,u*) 
is proved. 

L e m m a  3.3. Let X t be an isotropic L & y  process, and B be a closed ball. Then 

Caps B = Caps/3. (3.6) 

Moreover, / f  Pt(0, {0}) = 0 (t > 0), then 

B=(/3)  ~ and (BC)=(BC) r. (3.7) 

Proof If x is in OB=B- -B  and xr r (or xr Then for any rota t ion T x 
a round  x, we have x(~(TxB) ~ (or x~(TxBT).  Therefore  xq!( lR"-{x}) ~ and {x} is 
a finely open set. I f /}~=B,  then (3.6) holds obviously. If there exists a point  x 
in B-/3~,  then x is finely open and 0B is also finely open, for X, is isotropic. 
Since a finely open set with m-measure zero has no positive capacity (Lem- 
ma 4.2.4 in [4]), Cap=(aB)=0  and (3.6) also holds. If Pt(0, {0})=0 ( t>0) ,  one 
point  set can be finely open. (3.7) follows immediately from the abo.ve argu- 
ment. 

L e m m a  3.4. Let X t be isotropic L & y  process. Put 

F~(a)=Cap~(B~) for any a>O and ~>0 

(~ >0 if X t is transient). Then F~(a) is strictly increasing and continuous function 
of a and lim F~(a)= oo. 

a ~  oo 

Proof It is clear that  F~(a) is strictly increasing and right continuous.  The left 
cont inui ty of F~(a) follows from (3.6) in Lemma3.3 .  Next  suppose 
l imF~(a)<oo.  Then  Cap~(lR")<oo and Imea-f ( I m ~ ( e )  if e = 0  and X t is 

transient). This is a contradict ion.  

Now we shall state and prove Theorem 1'. Nota t ions  are the same as in 
Theo rem 1. 

Theorem 1'. Let X t be a symmetric L~vy process and X* be the process given in 
Definition 2.2for X t. Then for any nonempty Borel subset B oflR" 

1 

x~ , re(B) 

X *  for c~>0 (c~>O if X t is transient), when F~(a)=Cap~t(B~). 
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Remark. If X t is isotropic unimodal, by Proposition X , = X * .  Theorem 1 is a 
corollary of Theorem 1'. 

Proof of Theorem E Since Cap~(B)= sup Cap~(K), by Lemma 3.4 we 
K c B, K: compact 

have only to prove the theorem when B is compact. Let K be any compact  set. 
Then by problem 3.3.2 in [4] 

Cap~(K) = inf e~(u, u) 
u~NK(e) 

where ~K(e)= {u~-c~Co(R")"  u>=l on Ku>=O on N"} 

and Co(]R ~) is a set of all continuous functions on IR ". Let a be the radius of 
K*. If u ~ K ( e ) ,  then by Lemma 3.2 u*~ao(0)(e*) and 

inf e~(u,u)_> inf e~(u,u*)  

* X* X* > inf e~ (v, v) = Cap~ ~ (Ba(0)) = Cap~ *(K*). 
V~B~(0)(~*) 

Therefore Theorem 1' is proved for compact  set K. 
By Lemma 3.4 and Lemma 3.1.5 in [4], we immediately have the following 

Corollary. 

Corollary. Under the same assumption as in Theorem 1' 

1 

C n 

for u e ~  ( U ~ e )  if c~=0 and X t is transient) and 0 < t< sup lu(x)l. 

4. Proof of Theorem 2 

Lemma  4.1. Let X t be an isotropic unimodal LOvy process and Pt(0, {0})=0. 

Then for any ~ > O, G~(O, dx) is continuous at x =t= O. 1 
dx 

Proof Since X t is isotropic unimodal, there exists a nonincreasing function g(r) 
( 0 < r <  o9) such that G~(O, dx)=g([x])dx. Assume g(r) is not continuous at r o. 
On the other hand, we can take c~-excessive density function ~(x) with g(x) 
=~,(x) a.e. ([1] VI). Since ~(x)=lim~pt(x, dy)~,(y)=lim~pt(x, dy)g(y ) and X t is 
right continuous, t ~ o t~ o 

and 

By Lemma 3.3, we know 

g(x)> g(r o ) if Ix[ < ro 

g(x)<g(ro+ ) if [xl>r  o. 

{Ixl<roIr={lxl<ro} and 

If x~ is transient, Lemma 4.1 also holds for c~>0 

{Ixl > ro}~= {Ixl ~ ro}. 
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Therefore by Proposition 2.10 in [1], if ]Xo] = r  o 

~(Xo)> inf ~,(x)>g(ro- ) 
Ixl<ro 

and 
~(Xo)< sup ~(x )<g( ro+)  

I:,l > ro 
which is a contradiction. 

Lemma 4.2. Let  Xt  be an isotropic unimodal L & y  process and transient. I f  
Ue~e) ,  u>=O and supu(x)< 0% then u * E ~ e  ~ and e(u,u)>=e(u*,u*). 

x 

Proof  For any t>0 ,  put u t = u - u / x  t. Then by Lemma 3.4 and (3.8), we have 
m { x ' u t ( x ) > O } < o o ,  so u~ is in LP(R) for any p > l .  Since u, is a normal con- 
traction of u,u t is in ~e)mL2 = ~ .  So by Lemma 3.2 (ut)*=(u*)te~, ~ and 

e(u,, u,) > e((u*)t, (u*)3. 

In the same way as in proof of Theorem 1.4.2 in [4], we can show 

ut--+u and (u*)<-+u* ( t~O) 

strongly in (e, ~e)). The Lemma is proved. 

Lemma 4.3. Let  X ,  be isotropical unimodal. Le t  u>=O and u E ~ ,  (or u>=O, u e ~ e )  
and u be bounded i f  X t is transient). Suppose 

e(u, u) = ~(u*, u*), 
then 

~(u,, u,) = s ( (u*) .  (u*)3, 

~(u', u ~) = ~((u*)', (u*)') 

where u t = u -  u/x t and u t = u A t. 

Proo f  Since u = u, + u t, we have 

e(u, u) = e(ut, ut) + 2e(ut, u t) + e(u t , u t) 

= e(u*, u*) = e(u*, u*) + 2 e(u*, u t*) + e(u'*, u'*). (4.1) 

By Lemma 3.2 and Lemma 4.2, 

e(u,, ut) > e((u*),, (u*)t) (4.2) 
~(u', u') > ~((u*) ~, (u*)'). 

Since u'(x) = t if u,(x) > 0, we have 

(u, ,  u ') = t Llu, IIL, = t [l(u*),[] L, = ( ( u % ,  (u*)t). 

Since Go~(O, dx  ) is isotropic unimodal by Proposition, (G= ut, ut)<(G~,(u*)t, (u*) ') 
by Lemma 3.1. where G= v(x) =5 G~(x, dy) f (y) .  Therefore 

e ~ ( u , ,  u t) = ~ ( u , -  ~O~ u.  u') 
>~((u*) ( ) ( ) = t-o:G~ u* t, u* t 

= g(~)((U*)t, (U'y) 
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and 

e(u,, u ') = l im e(=)(u~, u') 
~ c o  

=> lim e{~)((u*),, (u*) t) = e((u*)t, (u*)t). 
r  

(4.3) 

Then for any s and t 

holds, then 
(u, u, ~) = (u*, u*, ~) < oo 

(u, u, h) = (u*, u*, h) 

where h >=O, h~LI(IR ") and h is a nonincreasing function of Ix]. 

Proof By (4.4) 

7{(u, u, IB(4~,t)) - (u*, u*, IB(4,,t))} dt= 0 
0 

where B((a,t)={x: ~b(x)>t}. So by Lemma 3.1 

(u, u, I~(o, ,)) = (u*, u*, IB(,~ ' 0) 

for a.e. t > 0. Since ~b is strictly decreasing in Ix] 

(u, u, IBa(o)) = (u*, u*, IBo(o)) 

except countably many a (a > 0). Since both sides of the above equality are left 
continuous in a, 

(u,u, IB.- c)=(u*,u*,I-.. ) ( j ,  ) ~(n, t) 

and (4.3) holds. 

Lemma 4.5. Let f and g be nonnegative bounded functions in LI(IR ") with g=g*. 
Then there exists a function h such that 

( f * , g ) = ( f h )  and g=h* .  

Proof Set B(O,t)={x: qS(x)>t} for any function q5 on IR". We can choose sets 
B(s) (s > 0) such that  

(i) B(s) is decreasing in s 
(ii) B(0) = B(g, O) = IR", m(B(s) ) = m(B(g, s)). 
(iii) For  s with B(f*,  t +) ~B(g, s) c B(f*,  t), 

B(f, t + ) ~B(s) ~B(f ,  t). 

m(B(s)nB(f  t))= m(B(s)) /x m(B(f  t)) 

= m(B(g, s)mB(f*, t)). 

(4.4) 

By (4.1), (4.2) and (4.3), Lemma 4.3 is proved. 

L e m m a  4.4. Let u,~p>O, u, q~LI(IR"), u be bounded and 4) be a strictly decreas- 
ing function of Ixl. Suppose 
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Set 

then 
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h(x) = sup {s: x~B(s)}, 

B(h, s +) c B(s) c B(h, s). 

Not ing  m{B(h, s +)} = m(B(s)) = m(B(h, s)) except countably many  s, we have 

g = h *  
and 

oo 

(f, h) = ~ ~ ds dt( ~ IB(f,t)IB(h, s)dx) 
0 0 IR ~ 

oo 

= ~ ~ dsdt(~ Imf.,OIBtg, s)dx) 
0 0 N n 

= ( f * , g ) .  

L e m m a  4.6. Let p be a smooth no,negative function with compact support and p 
=p*.  Let u and 05 be functions given in Lemma 4.4. Suppose 

(u, u, ~) = (u*, u*, ~) < o~ 
then 

(p * u, p * u, 05) = ((p * u)*, (p * u)*, 05)i (4.6) 

Proof. By L e m m a  4.4, we have 

( p , u , p , u ,  05)=(u,u,p, p,05) 
=(u*,u*,p ,p ,05)=(p*u*,p*u*,  05). (4.7) 

For  any nonnegat ive  bounded  functions v and w with v, weLl(lR ") and w=w*,  
take h in L e m m a  4.5 for f = p , v  and g=w,05 ,  then by L emma  3.1 

( (p .  v)*, w, qs) = ((p* ~)*, w .  05) 

=(p,v ,h)=(v ,h ,p)  

< (v*, h*, p) = (v*, w * 05, p) 

= (p * v*, w, 05). (4.8) 

Set v=u  and w=(p ,u)*  in (4.8), then 

((p * u)*, (p * u)*, 05) =< (p * u*, (p * u)*, 05). 

Set v=u  and w = p , u *  in (4.8) again, 

(p �9 u, (p �9 u)*, 05)_-< (p �9 u*, p �9 u*, 05). 
Therefore  

( p , u , p , u ,  05) <=((p,u)*,(p,u)*, 05) 

< (p �9 u*, p �9 u*, 05). (4.9) 

By (4.7) and (4.9), we have proved (4.6). 
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L e m m a  4.7 (Talenti [10]). Put ~ o  = {u: u is Lipschitz continuous and o f  compact 
support}. Suppose u ~  o and u>O. Then 

D i (u  , u) ~-- D I(u* , u* ) 

i f  and only if  

(i) {x: u(x )> t }  is a closed ball a.e. t>O 
(ii) ]gradient u] is constant on {x: u(x )=t}  a.e. t >O. 

Proof  of  Theorem 2. To prove Theorem 2, it is sufficient to show that if a 
nonempty  compact  set K satisfies Cap~(K)=Cap~(B~) and m(K)=m(B~)  for 
some a > 0, then (2) in Theorem 2 holds. 

Put  
E~(e ) if e > 0 

eK(x) = (P~(a K < oo) if ~ = 0 

where aK is the hitting time to K. Then C_ap~(K)= G(eK, %). Since m(B~)= re(K) 

= m ( K O < m ( e r > l ) = m ( e * > l ) ,  e K*>I= on /~a(0) a.e. and by L e m m a  3.2 and 
L e m m a  4.2 

Caps(K ) = G(eK, %) > G(e}, e*) > Cap~(Ba(0)). 

Therefore by assumption 

~c,t(eK~ e K) - -  C,o:(CK~ CK) 
(4.1o) 

e~  = eao(o ) a .e .  

Case I When (H.1) Holds. In  this case, X t is the Brownian motion.  Put u = e  K. 
Since u is lower semicontinuous,  we can choose s and t such that  
0 < s < t <  inf u(x). 2 Then by L e m m a  4.3 

x E K  

t t - -  t ~ t ~ 
~(us ,  u s ) -  ~((us)  , ( U s ) )  

t and u s ~ o ,  for u is a-harmonic  outside K. Therefore by L e m m a  4.7 we can 
choose r such that s < r < t and 

{u __> r} = {ut~ _>_ r -  s} = Bc(xO) 

for some closed ball Bc(xo). On the other hand  by (4.10) 

m{eBo(xo~ >= r} = m{eBo(O)> r} = m {u* __> r} = m {u > r}, 

u = e~,(xo) = r on OB~(xo), B~(xo) ~ K 

and u=eB~(~o) outside Bc(xo). Let U be the outer  connected componen t  of  
{Ba(xo)uK} ~, then by principle of  coincidence of c~-harmonic function 

% = u = %o(~o) in  U.  

2 Since u is not identically zero, it is positive everywhere 
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Assume K r C Ba(xo), and put 

A = {X,~:~K ~, ~r K < aB~ } 

then Px(A)>0 for x~U. 3 Take a sample w in A, then l imeK(Xt(w)=l,  
t ~ cr K 

lim e~o(xo)(Xt(w))<l and Xt(w)~U for 0 < t < a ~ ,  which is a contradiction. 
tTcrK 
Therefore K ~ c B ,(xo) and 

Cap~(K - Ba(xo) ) = 0. (4.11) 

Hence m(l(-Ba(xo))=O and then 

m( K c~B a(xo) ) = re(K) = m( B ~(xo) ). 

Since K is compact,  we can see B~(xo) c K .  (2) in Theorem 2 is derived. 

Case II  When (H.2) Holds. Put u=e  r again, then by (4.10) and Lemma 4.3 
~(u ,  u~)=e~(u*,u*) for any t>0 .  By (H.2), we can decompose �9 in such way 
that 

. , ,  ~l (dx) 
where ~ ( i=1 ,2)  are isotropic unimodal and q~ltx)= dx - (x:~0) is strictly 
decreasing and in D(IR~). Then by (4.10) 

J,~,(u~,u,~)=a~,(u~*,u,*) 4 or (u.u~,4~O=(u*,,,~,*,4~l). 

Let p be a s m o o t h  function on R"  such that 

p=p*, ~ p(x) dx= 1, p>O, O(0) > 0 (4.12) 

and support  p cB~(0) for some 6>0 .  Then by Lemma 4.4 and Lemma 4.6 

(p �9 ~ ,  p �9 u,, h3  = ((p * u3*, (p * u3*, hs) 

1 I~l~ 
where h~(x)= ~ e G-~ . Since in general 

(2~s)~ 

DI(v , v)= lira ~{(v, v ) -  (v, v, h~)} 
s.~0 

for v with O~(v, v) < 0% we can see 

D~(p �9 u,, p �9 u3 =OA(p * u)*, (p �9 u3*), 

and p �9 u t ~  o. Therefore by Lemma  4.7 

{p �9 u, > r} is a closed ball for a.e. r > 0. 

3 Since P~(A)= 1 if x ~ K  ~'- Ba(xo) , it is positive on  R"-B~(xo)  
4 By the similar way as the p roof  of (3.2) in L e m m a  3.2, we can show 

J~,(u,,~,)>J~,(u,*,u*) (i= 1,2) 
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Therefore Bp.t={p * u t > 0 }  is a closed ball. Set B =  0 Bp, t, where p ranges over 
p, t  

smooth  functions satisfying (4.12) and 0 < t < 1. B is a closed ball. Since S 4:0 or 

q~(IR")=~,  P t{0 ,{0}}=0 and by L e m m a 4 . 1  G~(O, dx) dx is cont inuous at x + 0 .  

Therefore u is lower semicontinuous in IR" and cont inuous in I R " - K .  Set K o 
= {x" u (x) = 1 } then K r c Ko, Cap~ K o __< e, (u, u) = Cap~ K = Cap~ K r and Cap~ K 
= C a p ~ K  o. If  xsKo, then limu(y)=l=u(x) and xEB. If  x(~K~Ko, then 

y ~ X  

limu(y)=u(x)<l and x(~B. Therefore KocBcKuKocKou(K-Kr ) .  Since 

C a p ~ ( K - K r ) - - 0 ,  Cap, B=Cap~Ko=Cap~K=Cap~B a. So, the radius of B is a 
and m(K)=m(B). Therefore K=KruAocB~Ao with Cap~Ao=0 .  Since K is 
compact ,  B c K ~ B  w A o which proves the theorem. 
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