The Isoperimetric Inequality for Isotropic Unimodal Lévy Processes

Toshiro Watanabe
Department of Applied Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo, Japan

1. Introduction

Let $\left(\Omega X_{t} P_{x}\right)$ be a symmetric n-dimensional Lévy process. Let $P_{t}(x, d y)$ be transition function of X_{i}. Then, there corresponds unique (S, Φ) such that

$$
\begin{gather*}
\int e^{i(x, \xi)} P_{t}(0, d x)=e^{-\tau \psi(\xi)} \tag{1.1}\\
\psi(\xi)=\frac{1}{2}(S \xi, \xi)+\int_{\mathbb{R}^{n}}(1-\cos (\xi, y)) \Phi(d y),
\end{gather*}
$$

where S is a nonnegative symmetric matrix and Φ is a symmetric measure on \mathbb{R}^{n} with $\Phi(\{0\})=0$ and $\int \frac{|x|^{2}}{1+|x|^{2}} \Phi(d x)<\infty$. The associated Dirichlet form $(\varepsilon, \mathscr{F}(\varepsilon))$ related to $L^{2}\left(\mathbb{R}^{n}\right)$ can be given by

$$
\begin{align*}
\varepsilon(u, u) & =\frac{1}{2} D_{S}(u, u)+\frac{1}{2} J_{\Phi}(u, u) \tag{1.2}\\
\mathscr{F}=\mathscr{F}(\varepsilon) & =\left\{u \in L^{2}\left(\mathbb{R}^{n}\right): \varepsilon(u, u)<\infty\right\},
\end{align*}
$$

where

$$
D_{S}(u, u)=\int \sum S_{i j} \frac{\partial u}{\partial x^{i}} \frac{\partial u}{\partial x^{j}} d x
$$

$\left(S=\left(S_{i j}\right)\right)$ and

$$
J_{\Phi}(u, u)=\iint(u(x+y)-u(x))^{2} \Phi(d y) d x
$$

(See Fukushima [4] p. 29 and Deny [3].)
Let B be any subset of \mathbb{R}^{n}. Then the α-capacity of $B(\alpha>0$ in general and $\alpha \geqq 0$ if X_{t} is transient) is given by

$$
\begin{equation*}
\operatorname{Cap}_{\alpha}(B)=\inf _{A=Q B \subset A} \operatorname{Cap}_{\alpha}(A) \tag{1.3}
\end{equation*}
$$

where Q is the family of all open sets in \mathbb{R}^{n} and for $A \in Q$

$$
\operatorname{Cap}_{\alpha}(A)= \begin{cases}\inf _{u \in \mathscr{F}_{A}^{\alpha}} \varepsilon_{\alpha}(u, u) & \text { if } \mathscr{L}_{A}^{\alpha} \neq \phi \tag{1.4}\\ \infty & \text { if } \mathscr{L}_{A}^{\alpha} \neq \phi\end{cases}
$$

where $\varepsilon_{\alpha}(u, u)=\alpha(u, u)+\varepsilon(u, u)$

$$
\begin{aligned}
\mathscr{L}_{A}^{\alpha} & =\{u \in \mathscr{F}: u \geqq 1 \text { a.e. on } A\} \\
\mathscr{L}_{A}^{0} & =\left\{u \in \mathscr{F}_{(e)}: u \geqq 1 \text { a.e. on } A\right\} .
\end{aligned}
$$

$\mathscr{F}_{(e)}$ is a completion of \mathscr{F} by ε which is well-defined if X_{t} is transient. (See [4] p. 61.)

Definition 1.1. A measure $\mu(d x)$ on \mathbb{R}^{n} is isotropic if there exists a function $\mu_{0}(r)$ $(0<r<\infty)$ such that $\mu(d x)=\mu_{0}(|x|) d x$ for $x \neq 0 . \mu(d x)$ is isotropic unimodal if $\mu_{0}(r)$ is nonincreasing. ($\mu(\{0\})$ may be positive).

Definition 1.2. A symmetric Lévy process X_{t} is isotropic if transition function $p_{t}(0, d x)(t>0)$ is isotropic and X_{t} is isotropic unimodal if $p_{t}(0, d x)$ is isotropic unimodal.

In this paper, we shall show the following results.
Proposition. Let X_{t} be symmetric Lévy process. Then the followings are equivalent.
(1) X_{t} is isotropic unimodal.
(2) $G_{\alpha}(0, d x)$ is isotropic unimodal for $\alpha>0$ where $G_{\alpha}(x, d y)=\int_{0}^{\infty} e^{-\alpha t} p_{t}(x, d y)$.
(3) If (S, Φ) is given by (1.1) for X_{t}, then $S=a I$ where $a \geqq 0$ and I is the identify matrix and Φ is isotropic unimodal.

In the following, we shall denote by $B_{a}(x)$ a closed ball of radius a with centre x and by B_{a} a closed ball of radius a if the centre is not specified.

Theorem 1. Let X_{t} be an isotropic unimodal process. Then for any nonempty Borel set B, it holds that for $\alpha>0$

$$
\operatorname{Cap}_{\alpha}(B) \geqq \operatorname{Cap}_{\alpha}\left(B^{*}\right)=F_{\alpha}\left(\left(\frac{m(B)}{C_{n}}\right)^{\frac{1}{n}}\right)
$$

($\alpha \geqq 0$ if X_{t} is transient), where $m(d x)$ is the n-dimensional Lebesgue measure, B^{*} is a closed ball with

$$
m(B)=m\left(B^{*}\right), \quad C_{n}=m\left(B_{1}\right)=\frac{\pi^{\frac{n}{2}}}{\Gamma\left(1+\frac{n}{2}\right)} \quad \text { and } \quad F_{\alpha}(a)=\operatorname{Cap}_{\alpha}\left(B_{a}\right)
$$

We can show the converse of Theorem 1 in the following two cases. Let X_{t} be isotropic unimodal.
(H.1) $S=a I$ with $a>0$ and $\Phi=0$
(H.2) There exists a strictly decreasing function $\phi(r)(0<r<\infty)$ such that $\Phi(d x)=\phi(|x|) d x . S=a I$ with $a>0$ or $\Phi\left(\mathbb{R}^{n}\right)=\infty$.

The condition $S \neq 0$ or $\Phi\left(\mathbb{R}^{n}\right)=\infty$ is equivalent to $p_{t}(0,\{0\})=0(t>0)$.
Theorem 2. If (S, Φ) given by (1.1) satisfies (H.1) or (H.2) and consequently X_{t} is an isotropic unimodal process, then for any nonempty compact set K the follow-
ings are equivalent.
(1) $\operatorname{Cap}_{\alpha}(K)=F_{\alpha}\left(\left(\frac{m(K)}{C_{n}}\right)^{\frac{1}{n}}\right)$.
(2) $K=B \cup \Delta$ with $\operatorname{Cap}_{\alpha}(\Delta)=0$, where B is a ball with radius $\left(\frac{m(K)}{C_{n}}\right)^{\frac{1}{n}} \cdot(\alpha>0$
or $\alpha \geqq 0$ if X_{t} is transient.)

The (isotropic) stable process of index β satisfies (H.1) if $\beta=2$ and (H.2) if $0<\beta<2$, respectively. Since 0 -capacity of transient stable process of index β $(0<\beta \leqq 2, \beta<n)$ is Riesz capacity of index β, Theorem 1 and Theorem 2 hold for Riesz capacity. In this case $F_{0}(R)=C(\beta, n) R^{n-\beta}$ where $C(\beta, n)$ is a constant which depends on β and n.

2. Definition of X_{i}^{*} and Proof of Proposition

Definition 2.1. For any nonnegative Lebesque measurable function $u(x)$, we shall define

$$
u^{*}(x)=\sup \left\{t: \mu(t)>C_{n}|x|^{n}\right\}
$$

where $\mu(t)=m\{x: u(x)>t\}$.
Remark. $u^{*}(x)$ is a right continuous nonincreasing function of $|x|$ with

$$
m\left\{x: u^{*}(x)>t\right\}=m\{x: u(x)>t\}
$$

for any $t>0$. It also holds that

$$
\int\left|u^{*}(x)\right|^{p} d x=\int|u(x)|^{p} d x . \quad(p>0)
$$

Lemma 2.1. Let $f(x)$ and $\phi(x)$ be nonnegative measurable function on \mathbb{R}^{n}. If $f(x)$ is a nondecreasing function of $|x|$, then

$$
\begin{equation*}
\int f(x) \phi(x) d x \geqq \int f(x) \phi^{*}(x) d x \tag{2.1}
\end{equation*}
$$

Proof. Let B be any measurable set and I_{B} is an indicator of B. Then $I_{B}^{*}=I_{B^{*}}$ and

$$
\int f(x) I_{B}(x) d x \geqq \int f(x) I_{B^{*}}(x) d x
$$

where B^{*} is an open ball of centre 0 with $m\left(B^{*}\right)=m(B)$. Set $B(\phi, t)$ $=\{x: \phi(x)>t\}$. Then

$$
\begin{aligned}
I_{B(\phi, t)}^{*} & =I_{B(\phi, t)^{*}}=I_{B\left(\phi^{*}, t\right)}, \\
\int f(x) \phi(x) d x & =\int_{0}^{\infty}\left(\iint_{\mathbb{R}^{n}} f(x) I_{B(\phi, t)}(x) d x\right) d t \\
& \geqq \int_{0}^{\infty}\left(\int_{\mathbb{R}^{n}} f(x) I_{B\left(\phi^{*}, t\right)}(x) d x\right) d t \\
& =\int f(x) \phi^{*}(x) d x .
\end{aligned}
$$

Let X_{t} be a symmetric Lévy process which corresponds to a pair (S, Φ) in (1.1). Set

$$
\begin{gather*}
S^{*}=(\operatorname{det} S) I \\
\Phi^{*}(d x)=\phi_{0}^{*}(x) d x \tag{2.2}
\end{gather*}
$$

where $\phi_{0}(x)$ is a density function of the absolutely continuous part of $\Phi(d x)$. By Lemma 2.1

$$
\int \frac{|x|^{2}}{1+|x|^{2}} \phi_{0}^{*}(x) d x \leqq \int \frac{|x|^{2}}{1+|x|^{2}} \phi_{0}(x) d x \leqq \int \frac{|x|^{2}}{1+|x|^{2}} \Phi(d x)<\infty .
$$

Therefore, there exists a symmetric Lévy process X_{t}^{*} corresponding to $\left(S^{*}, \Phi^{*}\right)$.
Definition 2.2. For symmetric Lévy process corresponding to (S. Φ), X_{t}^{*} is a symmetric Lévy process corresponding to (S^{*}, Φ^{*}) given by (2.2).

Note that (3) in Proposition is equivalent to (3)' $X_{t}=X_{t}^{*}$.
Proof of Proposition. The implication (3) \rightarrow (1) is easily proved by Theorem 4 in [6], and Theorem 8.3 and Theorem 8.8 in [9]. The implication (1) $\rightarrow(2)$ is clear, since G_{α} is the Laplace transform of P_{t}. For any continuous function ψ on \mathbb{R}^{n} $-\{0\}$ with compact support

$$
\lim _{\alpha \rightarrow \infty} \alpha^{2} \int G_{\alpha}(0, d y) \psi(y)=\int \psi(x) \Phi(d x)
$$

(See [4] Theorem 2.2.1.) Therefore $\Phi(d x)$ is an isotropic measure. Put for $0<\delta<a$ and $0<\beta$

$$
\tilde{\phi}_{a}^{\delta \beta}(x)= \begin{cases}0 & |x| \leqq a-\delta \\ \frac{|x|-a+\delta}{\delta} & a-\delta<|x| \leqq a \\ 1 & a<|x| \leqq \beta \\ \beta+1-|x| & \beta<|x| \leqq \beta+1 \\ 0 & \beta+1<|x|\end{cases}
$$

and $\phi_{a}^{\delta \beta}(x)=\frac{1}{x^{n-1}} \tilde{\phi}_{a}^{\delta \beta}(x)$. Since $G_{\alpha}(0, d x)$ is isotropic unimodal

$$
\begin{aligned}
\int\left(\phi_{a}^{\delta \beta}\right. & \left.+\phi_{b}^{\delta \beta}-2 \phi_{\frac{a+b}{\delta}}^{\delta \cdot \beta}\right) \\
& =\lim _{\alpha \rightarrow \infty} \alpha^{2} \int(d x) \\
& \left(\phi_{a}^{\delta \beta}+\phi_{b}^{\delta \beta}-2 \phi_{\frac{a+b}{\delta \beta}}^{2}\right) G_{\alpha}(0, d x) \geqq 0 .
\end{aligned}
$$

Tending $\delta \rightarrow 0$ and $\beta \rightarrow \infty$, we can show $\int_{|x| \geqq a} \frac{1}{|x|^{n-1}} \Phi(d x)$ is a convex function in a. Therefore the isotropic measure $\Phi(d x)$ is unimodal.

3. Proof of Theorem $\mathbf{1}^{\prime}$

In this section we shall state and prove Theorem 1^{\prime}, which is a generalization of Theorem 1.

Lemma 3.1 (Hardy-Littlewood-Polya [5] Theorem 379 and Brascamp Lieb and Luttingen [2]). Let $u(x), v(x)$ and $h(x)$ be any nonnegative Lebesgue measurable functions. Then it holds that

$$
(u, v, h) \leqq\left(u^{*}, v^{*}, h^{*}\right)
$$

where $(u, v, h)=\iint u(x) v(y) h(x-y) d x d y$.
Lemma 3.2'. Let $u \in \mathscr{F}(\varepsilon)$ and $u \geqq 0$, then $u^{*} \in \mathscr{F}\left(\varepsilon^{*}\right)$ and

$$
\begin{align*}
& D_{\mathbf{S}}(u, u) \geqq D_{\Phi^{*}}\left(u^{*}, u^{*}\right), \tag{3.1}\\
& J_{\Phi}(u, u) \geqq J_{\Phi^{*}}\left(u^{*}, u^{*}\right), \tag{3.2}\\
& \varepsilon(u, u) \geqq \varepsilon^{*}\left(u^{*}, u^{*}\right) \tag{3.3}
\end{align*}
$$

where ε^{*} is the form corresponding to $\left(S^{*}, \Phi^{*}\right)$.
Proof. Let ε_{S} be the form corresponding to ($S, 0$). First we shall show if $u \geqq 0$ and $u \in \mathscr{F}\left(\varepsilon_{I}\right)$, then

$$
\begin{equation*}
D_{I}(u, u) \geqq D_{I}\left(u^{*}, u^{*}\right) . \tag{3.4}
\end{equation*}
$$

Put $P_{t}(x)=\frac{1}{n} e^{-\frac{|x|^{2}}{2 t}}$ and $T_{t} u(x)=\int P_{t}(y-x) u(y) d y$. Then by Lemma 3.1 for any $t>0 \quad(2 \pi t)^{\frac{1}{2}}$

$$
\begin{aligned}
\varepsilon^{(t)}(u, u) & =\frac{1}{t}\left(u-T_{t} u, u\right) \\
& =\frac{1}{t}\left\{(u, u)-\left(u, u, P_{t}\right)\right\} \\
& \geqq \frac{1}{t}\left\{\left(u^{*}, u^{*}\right)-\left(u^{*}, u^{*}, P_{t}\right)\right\} \\
& =\varepsilon^{(t)}\left(u^{*}, u^{*}\right) .
\end{aligned}
$$

By Lemma 1.3.4 in [4], we have $u^{*} \in \mathscr{F}\left(\varepsilon_{I}\right)$ and

$$
D_{I}(u, u)=\lim _{t \rightarrow 0} 2 \varepsilon^{(t)}(u, u) \geqq \lim _{t \rightarrow 0} 2 \varepsilon^{(t)}\left(u^{*}, u^{*}\right)=D_{I}\left(u^{*}, u^{*}\right)
$$

Next, we shall show if $u \geqq 0$ and $u \in \mathscr{F}\left(\varepsilon_{\mathrm{S}}\right)$ then

$$
\begin{equation*}
D_{\mathrm{S}}(u, u) \geqq D_{\mathrm{S}^{*}}\left(u^{*}, u^{*}\right) \tag{3.5}
\end{equation*}
$$

If $\operatorname{det} S=0$, (3.5) is trivially true. If $\operatorname{det} S>0$, then there exists a matrix σ such that $\operatorname{det} \sigma=1$ and $S=(\operatorname{det} S) \sigma\left({ }^{t} \sigma\right)$. Put $\hat{u}(x)=u(\sigma x)$, then $\hat{u} \in \mathscr{F}\left(\varepsilon_{I}\right)$ and $(\hat{u})^{*}=u^{*}$. Therefore by (3.4)

$$
\begin{aligned}
D_{S}(u, u)=\operatorname{det} S D_{I}(\hat{u}, \hat{u}) & \geqq \operatorname{det} S D_{I}\left(u^{*}, u^{*}\right) \\
& =D_{S^{*}}\left(u^{*}, u^{*}\right) .
\end{aligned}
$$

In general, assume $u \geqq 0$ and $u \in \mathscr{F}(\varepsilon)$. Then $u \in \mathscr{F}\left(\varepsilon_{S}\right)$ and (3.1) holds. Let $\Phi_{0}(d x)$ $=\Phi_{0}(x) d x$ be the absolutely continuous part of $\Phi(d x)$, and $\Phi_{0}^{N}(d x)$ $=\left(N \wedge \phi_{0}(x)\right) d x$. Then by Lemma 3.1,

$$
\begin{aligned}
J_{\Phi_{0}^{N}}(u, u) & =2(u, u) \Phi_{0}^{N}\left(\mathbb{R}^{n}\right)-2\left(u, u, N \wedge \phi_{0}\right) \\
& \geqq 2\left(u^{*}, u^{*}\right)\left(\Phi_{0}^{*}\right)^{N}\left(\mathbb{R}^{n}\right)-2\left(u^{*}, u^{*}, N \wedge \phi_{0}^{*}\right) \\
& =J_{\left(\Phi_{0}^{*}\right)^{N}}\left(u^{*}, u^{*}\right) .
\end{aligned}
$$

Tending $N \rightarrow \infty$, we have (3.2). By (3.1) aff (3.2) $u \in \mathscr{F}\left(\varepsilon^{*}\right)$ and $\varepsilon(u, u) \geqq \varepsilon^{*}\left(u^{*}, u^{*}\right)$ is proved.

Lemma 3.3. Let X_{i} be an isotropic Lévy process, and B be a closed ball. Then

$$
\begin{equation*}
\operatorname{Cap}_{\alpha} B=\operatorname{Cap}_{\alpha} \dot{B} . \tag{3.6}
\end{equation*}
$$

Moreover, if $P_{t}(0,\{0\})=0(t>0)$, then

$$
\begin{equation*}
B=(\dot{B})^{r} \quad \text { and } \quad\left(\overline{B^{c}}\right)=\left(B^{c}\right)^{r} . \tag{3.7}
\end{equation*}
$$

Proof. If x is in $\partial B=B-\dot{B}$ and $x \notin \dot{B}^{r}$ (or $\left.x \notin B^{c}\right)^{r}$). Then for any rotation T_{x} around x, we have $x \notin\left(T_{x} B\right)^{r}$ (or $\left.x \notin\left(T_{x} B^{c}\right)^{r}\right)$. Therefore $x \notin\left(\mathbb{R}^{n}-\{x\}\right)^{r}$ and $\{x\}$ is a finely open set. If $\dot{B}^{r}=B$, then (3.6) holds obviously. If there exists a point x in $B-\dot{B}^{r}$, then x is finely open and ∂B is also finely open, for X_{t} is isotropic. Since a finely open set with m-measure zero has no positive capacity (Lemma 4.2.4 in [4]), $\operatorname{Cap}_{z}(\partial B)=0$ and (3.6) also holds. If $P_{t}(0,\{0\})=0(t>0)$, one point set can be finely open. (3.7) follows immediately from the above argument.

Lemma 3.4. Let X_{t} be isotropic Lévy process. Put

$$
F_{\alpha}(a)=\operatorname{Cap}_{\alpha}\left(B_{a}\right) \quad \text { for any } a \geqq 0 \text { and } \alpha>0
$$

$\left(\alpha \geqq 0\right.$ if X_{t} is transient). Then $F_{\alpha}(a)$ is strictly increasing and continuous function of a and $\lim _{a \rightarrow \infty} F_{\alpha}(a)=\infty$.

Proof. It is clear that $F_{\alpha}(a)$ is strictly increasing and right continuous. The left continuity of $F_{\alpha}(a)$ follows from (3.6) in Lemma 3.3. Next suppose $\lim _{a \rightarrow \infty} F_{\alpha}(a)<\infty$. Then $\operatorname{Cap}_{\alpha}\left(\mathbb{R}^{n}\right)<\infty$ and $I_{\mathbb{R}^{n}} \in \mathscr{F} \quad\left(I_{\mathbb{R}^{n}} \in \mathscr{F}(e)\right.$ if $\alpha=0$ and X_{t} is $a \rightarrow \infty$
transient). This is a contradiction.

Now we shall state and prove Theorem 1'. Notations are the same as in Theorem 1.

Theorem 1'. Let X_{t} be a symmetric Lévy process and X_{t}^{*} be the process given in Definition 2.2 for X_{i}. Then for any nonempty Borel subset B of \mathbb{R}^{n}

$$
\operatorname{Cap}_{\alpha}^{X_{t}}(B) \geqq \operatorname{Cap}_{\alpha}^{X_{t}^{*}}\left(B^{*}\right)=F_{\alpha}\left(\left(\frac{m(B)}{C_{n}}\right)^{\frac{1}{n}}\right)
$$

for $\alpha>0\left(\alpha \geqq 0\right.$ if X_{t} is transient $)$, when $F_{\alpha}(a)=\operatorname{Cap}_{\alpha}^{X_{\tau}^{*}}\left(B_{a}\right)$.

Remark. If X_{t} is isotropic unimodal, by Proposition $X_{t}=X_{i}^{*}$. Theorem 1 is a corollary of Theorem 1^{\prime}.
Proof of Theorem 1'. Since $\operatorname{Cap}_{\alpha}(B)=\sup _{K=B, K: \text { compact }} \operatorname{Cap}_{\alpha}(K)$, by Lemma 3.4 we have only to prove the theorem when B is compact. Let K be any compact set. Then by problem 3.3.2 in [4]

$$
\operatorname{Cap}_{\alpha}(K)=\inf _{u \in \mathscr{R}_{K}(\varepsilon)} \varepsilon_{\alpha}(u, u)
$$

where $\mathscr{D}_{K}(\varepsilon)=\left\{u \in \mathscr{F} \cap C_{0}\left(\mathbb{R}^{n}\right): u \geqq 1\right.$ on $K u \geqq 0$ on $\left.\mathbb{R}^{n}\right\}$
and $C_{0}\left(\mathbb{R}^{n}\right)$ is a set of all continuous functions on \mathbb{R}^{n}. Let a be the radius of K^{*}. If $u \in \mathscr{D}_{K}(\varepsilon)$, then by Lemma $3.2 u^{*} \in \mathscr{D}_{B_{a}(0)}\left(\varepsilon^{*}\right)$ and

$$
\begin{aligned}
\inf _{u \in \mathscr{\mathscr { O }}_{K}(\varepsilon)} \varepsilon_{\alpha}(u, u) & \geqq \inf _{u \in \mathscr{\mathscr { R }}_{K}(\varepsilon)} \varepsilon_{\alpha}^{*}\left(u^{*}, u^{*}\right) \\
& \geqq \inf _{v \in \mathscr{\mathscr { O }} B_{\alpha}(0)\left(\varepsilon^{*}\right)} \varepsilon_{\alpha}^{*}(v, v)=\operatorname{Cap}_{\alpha}^{X_{t}^{*}}\left(B_{a}(0)\right)=\operatorname{Cap}_{\alpha}^{X_{t}^{*}}\left(K^{*}\right) .
\end{aligned}
$$

Therefore Theorem 1^{\prime} is proved for compact set K.
By Lemma 3.4 and Lemma 3.1.5 in [4], we immediately have the following Corollary.

Corollary. Under the same assumption as in Theorem 1'

$$
\begin{equation*}
F_{\alpha}\left(\left(\frac{m(\{x:|u(x)|>t\})}{c_{n}}\right)^{\frac{1}{n}}\right) \leqq \frac{1}{t^{2}} \varepsilon_{\alpha}(u, u) \tag{3.8}
\end{equation*}
$$

for $u \in \mathscr{F}\left(u \in \mathscr{F}_{(e)}\right.$ if $\alpha=0$ and X_{t} is transient) and $0 \leqq t<\sup _{x \in \mathbb{R}^{n}}|u(x)|$.

4. Proof of Theorem 2

Lemma 4.1. Let X_{t} be an isotropic unimodal Lévy process and $P_{t}(0,\{0\})=0$. Then for any $\alpha>0, \frac{G_{\alpha}(0, d x)}{d x}$ is continuous at $x \neq 0 .{ }^{1}$

Proof. Since X_{t} is isotropic unimodal, there exists a nonincreasing function $g(r)$ $(0<r<\infty)$ such that $G_{\alpha}(0, d x)=g(|x|) d x$. Assume $g(r)$ is not continuous at r_{0}. On the other hand, we can take α-excessive density function $\tilde{g}(x)$ with $g(x)$ $=\tilde{g}(x)$ a.e. ([1] VI). Since $\tilde{g}(x)=\lim _{t \downarrow 0} \int p_{t}(x, d y) \tilde{g}(y)=\lim _{t \rightarrow 0} \int p_{t}(x, d y) g(y)$ and X_{t} is right continuous,

$$
\tilde{g}(x) \geqq g\left(r_{0}-\right) \quad \text { if }|x|<r_{0}
$$

and

$$
\tilde{g}(x) \leqq g\left(r_{0}+\right) \quad \text { if }|x|>r_{0} .
$$

By Lemma 3.3, we know

$$
\left\{|x|<r_{0}\right\}^{r}=\left\{|x| \leqq r_{0}\right\} \quad \text { and } \quad\left\{|x|>r_{0}\right\}^{r}=\left\{|x| \geqq r_{0}\right\} .
$$

[^0]Therefore by Proposition 2.10 in [1], if $\left|x_{0}\right|=r_{0}$

$$
\tilde{g}\left(x_{0}\right) \geqq \inf _{|x|<r_{0}} \tilde{g}(x) \geqq g\left(r_{0}-\right)
$$

and

$$
\tilde{g}\left(x_{0}\right) \leqq \sup _{|x|>r_{0}} \tilde{g}(x) \leqq g\left(r_{0}+\right)
$$

which is a contradiction.
Lemma 4.2. Let X_{t} be an isotropic unimodal Lévy process and transient. If $u \in \mathscr{F}_{(e)}, u \geqq 0$ and $\sup u(x)<\infty$, then $u^{*} \in \mathscr{F}_{(e)}$ and $\varepsilon(u, u) \geqq \varepsilon\left(u^{*}, u^{*}\right)$.
Proof. For any $t>0$, put $u_{t}=u-u \wedge t$. Then by Lemma 3.4 and (3.8), we have $m\left\{x: u_{t}(x)>0\right\}<\infty$, so u_{t} is in $L^{p}(R)$ for any $p \geqq 1$. Since u_{t} is a normal contraction of u, u_{t} is in $\mathscr{F}_{(e)} \cap L^{2}=\mathscr{F}$. So by Lemma $3.2\left(u_{t}\right)^{*}=\left(u^{*}\right)_{t} \in \mathscr{F}$ and

$$
\varepsilon\left(u_{t}, u_{t}\right) \geqq \varepsilon\left(\left(u^{*}\right)_{t},\left(u^{*}\right)_{t}\right)
$$

In the same way as in proof of Theorem 1.4.2 in [4], we can show

$$
u_{t} \rightarrow u \quad \text { and } \quad\left(u^{*}\right)_{t} \rightarrow u^{*}(t \rightarrow 0)
$$

strongly in $\left(\varepsilon, \mathscr{F}_{(e)}\right)$. The Lemma is proved.
Lemma 4.3. Let X_{t} be isotropical unimodal. Let $u \geqq 0$ and $u \in \mathscr{F}$, (or $u \geqq 0, u \in \mathscr{F}_{\text {(e) }}$ and u be bounded if X_{t} is transient). Suppose

$$
\varepsilon(u, u)=\varepsilon\left(u^{*}, u^{*}\right)
$$

then

$$
\begin{gathered}
\varepsilon\left(u_{t}, u_{t}\right)=\varepsilon\left(\left(u^{*}\right)_{t},\left(u^{*}\right)_{t}\right), \\
\varepsilon\left(u^{t}, u^{t}\right)=\varepsilon\left(\left(u^{*}\right)^{t},\left(u^{*}\right)^{t}\right)
\end{gathered}
$$

where $u_{t}=u-u \wedge t$ and $u^{t}=u \wedge t$.
Proof. Since $u=u_{t}+u^{t}$, we have

$$
\begin{align*}
\varepsilon(u, u) & =\varepsilon\left(u_{t}, u_{t}\right)+2 \varepsilon\left(u_{t}, u^{t}\right)+\varepsilon\left(u^{t}, u^{t}\right) \\
& =\varepsilon\left(u^{*}, u^{*}\right)=\varepsilon\left(u_{t}^{*}, u_{t}^{*}\right)+2 \varepsilon\left(u_{t}^{*}, u^{* *}\right)+\varepsilon\left(u^{*}, u^{* *}\right) . \tag{4.1}
\end{align*}
$$

By Lemma 3.2 and Lemma 4.2,

$$
\begin{align*}
& \varepsilon\left(u_{t}, u_{t}\right) \geqq \varepsilon\left(\left(u^{*}\right)_{t},\left(u^{*}\right)_{t}\right) \tag{4.2}\\
& \varepsilon\left(u^{t}, u^{t}\right) \geqq \varepsilon\left(\left(u^{*}\right)^{t},\left(u^{*}\right)^{t}\right) .
\end{align*}
$$

Since $u^{t}(x)=t$ if $u_{t}(x)>0$, we have

$$
\left(u_{t}, u^{t}\right)=t\left\|u_{t}\right\|_{L^{1}}=t\left\|\left(u^{*}\right)_{t}\right\|_{L^{1}}=\left(\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right) .
$$

Since $G_{\alpha}(0, d x)$ is isotropic unimodal by Proposition, $\left(G_{\alpha} u_{t}, u^{t}\right) \leqq\left(G_{\alpha}\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right)$ by Lemma 3.1. where $G_{\alpha} v(x)=\int G_{\alpha}(x, d y) f(y)$. Therefore

$$
\begin{aligned}
\varepsilon^{(\alpha)}\left(u_{t}, u^{t}\right) & =\alpha\left(u_{t}-\alpha G_{\alpha} u_{t}, u^{t}\right) \\
& \geqq \alpha\left(\left(u^{*}\right)_{t}-\alpha G_{\alpha}\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right. \\
& =\varepsilon^{(\alpha)}\left(\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right)
\end{aligned}
$$

and

$$
\begin{align*}
\varepsilon\left(u_{t}, u^{t}\right) & =\lim _{\alpha \rightarrow \infty} \varepsilon^{(\alpha)}\left(u_{t}, u^{t}\right) \\
& \geqq \lim _{\alpha \rightarrow \infty} \varepsilon^{(\alpha)}\left(\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right)=\varepsilon\left(\left(u^{*}\right)_{t},\left(u^{*}\right)^{t}\right) . \tag{4.3}
\end{align*}
$$

By (4.1), (4.2) and (4.3), Lemma 4.3 is proved.
Lemma 4.4. Let $u, \phi \geqq 0, u, \phi \in L^{1}\left(\mathbb{R}^{n}\right)$, u be bounded and ϕ be a strictly decreasing function of $|x|$. Suppose

$$
\begin{equation*}
(u, u, \phi)=\left(u^{*}, u^{*}, \phi\right)<\infty \tag{4.4}
\end{equation*}
$$

holds, then

$$
(u, u, h)=\left(u^{*}, u^{*}, h\right)
$$

where $h \geqq 0, h \in L^{1}\left(\mathbb{R}^{n}\right)$ and h is a nonincreasing function of $|x|$.
Proof. By (4.4)

$$
\int_{0}^{\infty}\left\{\left(u, u, I_{B(\phi, t)}\right)-\left(u^{*}, u^{*}, I_{B(\phi, t)}\right)\right\} d t=0
$$

where $B(\phi, t)=\{x: \phi(x) \geqq t\}$. So by Lemma 3.1

$$
\left(u, u, I_{B(\phi, t)}\right)=\left(u^{*}, u^{*}, I_{B(\phi, t)}\right)
$$

for a.e. $t>0$. Since ϕ is strictly decreasing in $|x|$

$$
\left(u, u, I_{B_{a}(0)}\right)=\left(u^{*}, u^{*}, I_{B_{a}(0)}\right)
$$

except countably many $a(a>0)$. Since both sides of the above equality are left continuous in a,

$$
\left(u, u, I_{B(f, t)}\right)=\left(u^{*}, u^{*}, I_{B(h, t)}\right)
$$

and (4.3) holds.
Lemma 4.5. Let f and g be nonnegative bounded functions in $L^{1}\left(\mathbb{R}^{n}\right)$ with $g=g^{*}$. Then there exists a function h such that

$$
\left(f^{*}, g\right)=(f, h) \quad \text { and } \quad g=h^{*}
$$

Proof. Set $B(\phi, t)=\{x: \phi(x) \geqq t\}$ for any function ϕ on \mathbb{R}^{n}. We can choose sets $B(s)(s \geqq 0)$ such that
(i) $B(s)$ is decreasing in s
(ii) $B(0)=B(g, 0)=\mathbb{R}^{n}, m(B(s))=m(B(g, s))$.
(iii) For s with $B\left(f^{*}, t+\right) \subset B(g, s) \subset B\left(f^{*}, t\right)$,

$$
B(f, t+) \subset B(s) \subset B(f, t) .
$$

Then for any s and t

$$
\begin{aligned}
m(B(s) \cap B(f, t)) & =m(B(s)) \wedge m(B(f, t)) \\
& =m\left(B(g, s) \cap B\left(f^{*}, t\right)\right)
\end{aligned}
$$

Set

$$
h(x)=\sup \{s: x \in B(s)\}
$$

then

$$
B(h, s+) \subset B(s) \subset B(h, s) .
$$

Noting $m\{B(h, s+)\}=m(B(s))=m(B(h, s))$ except countably many s, we have

$$
g=h^{*}
$$

and

$$
\begin{aligned}
(f, h) & =\int_{0}^{\infty} \int_{0}^{\infty} d s d t\left(\int_{\mathbb{R}^{n}} I_{B(f, t)} I_{B(h, s)} d x\right) \\
& =\int_{0}^{\infty} \int_{0}^{\infty} d s d t\left(\int_{\mathbb{R}^{n}} I_{B\left(f^{*}, t\right)} I_{B(g, s)} d x\right) \\
& =\left(f^{*}, g\right) .
\end{aligned}
$$

Lemma 4.6. Let ρ be a smooth nonnegative function with compact support and ρ $=\rho^{*}$. Let u and ϕ be functions given in Lemma 4.4. Suppose

$$
(u, u, \phi)=\left(u^{*}, u^{*}, \phi\right)<\infty
$$

then

$$
\begin{equation*}
(\rho * u, \rho * u, \phi)=\left((\rho * u)^{*},(\rho * u)^{*}, \phi\right) \tag{4.6}
\end{equation*}
$$

Proof. By Lemma 4.4, we have

$$
\begin{align*}
(\rho * u, \rho * u, \phi) & =(u, u, \rho * \rho * \phi) \\
& =\left(u^{*}, u^{*}, \rho * \rho * \phi\right)=\left(\rho * u^{*}, \rho * u^{*}, \phi\right) . \tag{4.7}
\end{align*}
$$

For any nonnegative bounded functions v and w with $v, w \in L^{1}\left(\mathbb{R}^{n}\right)$ and $w=w^{*}$, take h in Lemma 4.5 for $f=\rho * v$ and $g=w * \phi$, then by Lemma 3.1

$$
\begin{align*}
\left((\rho * v)^{*}, w, \phi\right) & =\left((\rho * v)^{*}, w * \phi\right) \\
& =(\rho * v, h)=(v, h, \rho) \\
& \leqq\left(v^{*}, h^{*}, \rho\right)=\left(v^{*}, w * \phi, \rho\right) \\
& =\left(\rho * v^{*}, w, \phi\right) . \tag{4.8}
\end{align*}
$$

Set $v=u$ and $w=(\rho * u)^{*}$ in (4.8), then

$$
\left((\rho * u)^{*},(\rho * u)^{*}, \phi\right) \leqq\left(\rho * u^{*},(\rho * u)^{*}, \phi\right)
$$

Set $v=u$ and $w=\rho * u^{*}$ in (4.8) again,

$$
\left(\rho * u,(\rho * u)^{*}, \phi\right) \leqq\left(\rho * u^{*}, \rho * u^{*}, \phi\right) .
$$

Therefore

$$
\begin{align*}
(\rho * u, \rho * u, \phi) & \leqq\left((\rho * u)^{*},(\rho * u)^{*}, \phi\right) \\
& \leqq\left(\rho * u^{*}, \rho * u^{*}, \phi\right) \tag{4.9}
\end{align*}
$$

By (4.7) and (4.9), we have proved (4.6).

Lemma 4.7 (Talenti [10]). Put $\mathscr{D}_{0}=\{u: u$ is Lipschitz continuous and of compact support $\}$. Suppose $u \in \mathscr{D}_{0}$ and $u \geqq 0$. Then

$$
D_{I}(u, u)=D_{I}\left(u^{*}, u^{*}\right)
$$

if and only if
(i) $\{x: u(x) \geqq t\}$ is a closed ball a.e. $t \geqq 0$
(ii) \mid gradient $u \mid$ is constant on $\{x: u(x)=t\}$ a.e. $t \geqq 0$.

Proof of Theorem 2. To prove Theorem 2, it is sufficient to show that if a nonempty compact set K satisfies $\operatorname{Cap}_{\alpha}(\mathrm{K})=\operatorname{Cap}_{\alpha}\left(B_{a}\right)$ and $m(K)=m\left(B_{a}\right)$ for some $a>0$, then (2) in Theorem 2 holds.

Put

$$
e_{K}(x)= \begin{cases}E_{x}\left(e^{-\alpha \sigma_{K}}\right) & \text { if } \alpha>0 \\ P_{x}\left(\sigma_{K}<\infty\right) & \text { if } \alpha=0\end{cases}
$$

where σ_{K} is the hitting time to K. Then $\operatorname{Cap}_{\alpha}(K)=\varepsilon_{\alpha}\left(e_{K}, e_{K}\right)$. Since $m\left(B_{a}\right)=m(K)$ $=m\left(K^{r}\right) \leqq m\left(e_{K} \geqq 1\right)=m\left(e_{K}^{*} \geqq 1\right), e_{K}^{*} \geqq 1$ on $\dot{B}_{a}(0)$ a.e. and by Lemma 3.2 and Lemma 4.2

$$
\operatorname{Cap}_{\alpha}(K)=\varepsilon_{\alpha}\left(e_{K}, e_{K}\right) \geqq \varepsilon_{\alpha}\left(e_{K}^{*}, e_{K}^{*}\right) \geqq \operatorname{Cap}_{\alpha}\left(B_{a}(0)\right) .
$$

Therefore by assumption

$$
\begin{gather*}
\varepsilon_{\alpha}\left(e_{K}, e_{K}\right)=\varepsilon_{\alpha}\left(e_{K}^{*}, e_{K}^{*}\right) \\
e_{K}^{*}=e_{B_{a}(0)} \quad \text { a.e. } \tag{4.10}
\end{gather*}
$$

Case I When (H.1) Holds. In this case, X_{t} is the Brownian motion. Put $u=e_{K}$. Since u is lower semicontinuous, we can choose s and t such that $0<s<t<\inf _{x \in K} u(x) .^{2}$ Then by Lemma 4.3

$$
\varepsilon_{\alpha}\left(u_{s}^{t}, u_{s}^{t}\right)=\varepsilon_{\alpha}\left(\left(u_{\mathrm{s}}^{t}\right)^{*},\left(u_{s}^{t}\right)^{*}\right)
$$

and $u_{\mathrm{s}}^{t} \in \mathscr{D}_{0}$, for u is α-harmonic outside K. Therefore by Lemma 4.7 we can choose r such that $s<r<t$ and

$$
\{u \geqq r\}=\left\{u_{s}^{t} \geqq r-s\right\}=B_{c}\left(x_{0}\right)
$$

for some closed ball $B_{c}\left(x_{0}\right)$. On the other hand by (4.10)

$$
\begin{gathered}
m\left\{e_{B_{a}\left(x_{0}\right)} \geqq r\right\}=m\left\{e_{B_{a}(0)} \geqq r\right\}=m\left\{u^{*} \geqq r\right\}=m\{u \geqq r\}, \\
u=e_{B_{a}\left(x_{0}\right)}=r \quad \text { on } \partial B_{c}\left(x_{0}\right), \quad B_{c}\left(x_{0}\right) \supset K
\end{gathered}
$$

and $u=e_{B_{a}\left(x_{0}\right)}$ outside $B_{c}\left(x_{0}\right)$. Let U be the outer connected component of $\left\{B_{a}\left(x_{0}\right) \cup K\right\}^{c}$, then by principle of coincidence of α-harmonic function

$$
e_{K}=u=e_{B_{a}\left(x_{0}\right)} \quad \text { in } U
$$

[^1]Assume $K^{r} \nleftarrow B_{a}\left(x_{0}\right)$, and put

$$
A=\left\{X_{\sigma_{K}} \in K^{r}, \sigma_{K}<\sigma_{B_{a}\left(x_{0}\right)}\right\}
$$

then $P_{x}(A)>0$ for $x \in U .^{3}$ Take a sample w in A, then $\lim _{t \uparrow \sigma_{K}} e_{K}\left(X_{t}(w)=1\right.$, $\lim _{i \nmid \sigma_{K}} e_{B_{a}\left(x_{0}\right)}\left(X_{t}(w)\right)<1$ and $X_{t}(w) \in U$ for $0<t<\sigma_{K}$, which is a contradiction. ${ }_{\text {Therefore }}^{i \uparrow \sigma_{K}} K^{r} \subset B_{a}\left(x_{0}\right)$ and

$$
\begin{equation*}
\operatorname{Cap}_{\alpha}\left(K-B_{a}\left(x_{0}\right)\right)=0 . \tag{4.11}
\end{equation*}
$$

Hence $m\left(K-B_{a}\left(x_{0}\right)\right)=0$ and then

$$
m\left(K \cap B_{a}\left(x_{0}\right)\right)=m(K)=m\left(B_{a}\left(x_{0}\right)\right)
$$

Since K is compact, we can see $B_{a}\left(x_{0}\right) \subset K$. (2) in Theorem 2 is derived.
Case II When (H.2) Holds. Put $u=e_{K}$ again, then by (4.10) and Lemma 4.3 $\varepsilon_{\alpha}\left(u_{t}, u_{t}\right)=\varepsilon_{\alpha}\left(u_{t}^{*}, u_{t}^{*}\right)$ for any $t>0$. By (H.2), we can decompose Φ in such way that

$$
\Phi=\Phi_{1}+\Phi_{2}
$$

where $\Phi_{i}(i=1,2)$ are isotropic unimodal and $\phi_{1}(x)=\frac{\Phi_{1}(d x)}{d x}(x \neq 0)$ is strictly decreasing and in $L^{1}\left(\mathbb{R}^{n}\right)$. Then by (4.10)

$$
J_{\Phi_{1}}\left(u_{t}, u_{t}\right)=J_{\Phi_{1}}\left(u_{t}^{*}, u_{t}^{*}\right)^{4} \quad \text { or } \quad\left(u_{t}, u_{t}, \phi_{1}\right)=\left(u_{t}^{*}, u_{t}^{*}, \phi_{1}\right) .
$$

Let ρ be a smooth function on \mathbb{R}^{n} such that

$$
\begin{equation*}
\rho=\rho^{*}, \int \rho(x) d x=1, \rho \geqq 0, \rho(0)>0 \tag{4.12}
\end{equation*}
$$

and support $\rho \subset B_{\delta}(0)$ for some $\delta>0$. Then by Lemma 4.4 and Lemma 4.6

$$
\left(\rho * u_{t}, \rho * u_{t}, h_{s}\right)=\left(\left(\rho * u_{t}\right)^{*},\left(\rho * u_{t}\right)^{*}, h_{s}\right)
$$

where $h_{s}(x)=\frac{1}{(2 \pi s)^{\frac{n}{2}}} e^{\frac{|x|^{2}}{2 s}}$. Since in general

$$
D_{I}(v, v)=\lim _{s \nmid 0} \frac{1}{s}\left\{(v, v)-\left(v, v, h_{s}\right)\right\}
$$

for v with $D_{I}(v, v)<\infty$, we can see

$$
D_{I}\left(\rho * u_{t}, \rho * u_{t}\right)=D_{I}\left(\left(\rho * u_{t}\right)^{*},\left(\rho * u_{t}\right)^{*}\right)
$$

and $\rho * u_{t} \in \mathscr{D}_{0}$. Therefore by Lemma 4.7

$$
\left\{\rho * u_{t} \geqq r\right\} \text { is a closed ball for a.e. } r>0
$$

[^2]$$
J_{\phi_{i}}\left(u_{t}, u_{t}\right) \geqq J_{\phi_{i}}\left(u_{t}^{*}, u_{t}^{*}\right) \quad(i=1,2)
$$

Therefore $B_{\rho, t}=\overline{\left\{\rho * u_{t}>0\right\}}$ is a closed ball. Set $B=\bigcap_{\rho, t} B_{\rho, t}$, where ρ ranges over smooth functions satisfying (4.12) and $0<t<1 . B$ is a closed ball. Since $S \neq 0$ or $\Phi\left(\mathbb{R}^{n}\right)=\infty, P_{t}\{0,\{0\}\}=0$ and by Lemma $4.1 \frac{G_{\alpha}(0, d x)}{d x}$ is continuous at $x \neq 0$. Therefore u is lower semicontinuous in \mathbb{R}^{n} and continuous in $\mathbb{R}^{n}-K$. Set K_{0} $=\{x: u(x)=1\}$ then $K^{r} \subset K_{0}, \operatorname{Cap}_{\alpha} K_{0} \leqq \varepsilon_{\alpha}(u, u)=\operatorname{Cap}_{\alpha} K=\operatorname{Cap}_{\alpha} K^{r}$ and $\operatorname{Cap}_{\alpha} K$ $=\operatorname{Cap}_{\alpha} K_{0}$. If $x \in K_{0}$, then $\lim _{y \rightarrow x} u(y)=1=u(x)$ and $x \in B$. If $x \notin K \cup K_{0}$, then $\lim u(y)=u(x)<1$ and $x \notin B$. Therefore $K_{0} \subset B \subset K \cup K_{0} \subset K_{0} \cup\left(K-K^{r}\right)$. Since $\stackrel{y \rightarrow x}{ }_{\operatorname{Cap}_{\alpha}}\left(K-K^{r}\right)=0, \operatorname{Cap}_{\alpha} B=\operatorname{Cap}_{\alpha} K_{0}=\operatorname{Cap}_{\alpha} K=\operatorname{Cap}_{\alpha} B_{a}$. So, the radius of B is a and $m(K)=m(B)$. Therefore $K=K^{r} \cup \Delta_{0} \subset B \cup \Delta_{0}$ with $\operatorname{Cap}_{\alpha} \Delta_{0}=0$. Since K is compact, $B \subset K \subset B \cup \Delta_{0}$ which proves the theorem.

References

1. Blumenthal, R.M., Getoor, R.K.: Markov process and potential theory. New York and London: Academic Press 1968
2. Brascamp, H.T., Lieb, E.H., Luttinger, J.M.: A general rearrangement inequality for multiple integrals. J. of Funct. Anal 17, 227-237 (1974)
3. Deny, J.: Methodes Hilbertienes et theorie du potentiel. Potential theory C.I.M.E. (1970)
4. Fukushima, M.: Dirichlet forms and Markov process. Kodansha: North-Holland 1980
5. Hardy, G.H., Littlewood, G.H., Pólya, G.: Inequalities. London and New York: Cambridge University Press 1952
6. Kanter, M.: Unimodality and dominance for symmetric random vectors. Trans. Amer. Math. Soc. 229, 65-85 (1977)
7. Osserman, R.: The isoperimetric inequality. Bull. Amer. Math. Soc. 84, 1182-1238 (1978)
8. Pólya, G., Szegö, G.: Isoperimetric inequalities in mathematical physics. Ann. Math. Studies, No. 27, Princeton, N.J. (1951)
9. Sato, K.: Infinitely divisible distribution, in Japanese. Seminar on Probability. vol. 52 (1981)
10. Talenti, G.: Best constant in Sobolev inequalities. Anali. di Math. 110, 353-372 (1976)
11. Wolfe, S.J.: On the unimodality of infinitely divisible distribution functions. Z. Wahrscheinlichkeitstheorie u. Verw. Gebiete 45, 329-335 (1978)

[^0]: ${ }^{1}$ If X_{t} is transient, Lemma 4.1 also holds for $\alpha \geqq 0$

[^1]: ${ }^{2}$ Since u is not identically zero, it is positive everywhere

[^2]: 3 Since $P_{x}(A)=1$ if $x \in K^{r}-B_{a}\left(x_{0}\right)$, it is positive on $R^{n}-B_{a}\left(x_{0}\right)$
 4 By the similar way as the proof of (3.2) in Lemma 3.2, we can show

