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1. Introduction 

The aim of the present paper is to establish necessary and sufficient condition 
for convergence in variation of the distributions of multivariate point processes 
given by their compensators. 

The main result is the following: if the limiting compensator is finite then 
the convergence in variation holds if and only if the variations of the differ- 
ences between compensators tends to zero "in probability". The precise state- 
ment is given in Theorem 1. It extends Theorems 6 and 7 of [6] where the case 
of counting processes has been considered under assumption that the limiting 
process has a nonrandom compensator, and is therefore a process with inde- 
pendent increments. 

The proof of the part A) of Theorem 1 is based on important inequalities 
which give upper bounds for the variation distance between compensators 
(Theorem 2). The technique used in the proof of Theorem 2 originates from the 
proof of Theorem 2 in [-8] and based heavily on the structure and properties of 
a density process. (It is interesting to note that, in contrast with Theorem 1, 
sufficient conditions for weak convergence of finite-dimensional distributions 
for counting processes in terms of their compensators (see [1,8]) are not 
necessary. There is a counter example communicated to us by E.L. Presman 
and I.M. Sonin.) 

As an example of an application of Theorem 2, we give an estimate of the 
rate of convergence of an empirical distribution function to a Poisson process. 

The structure of the paper is the following. In Sect. 2 we give the statement 
of principle results. The Sects. 3 and 4 contain the proofs of Theorem 2 and 1. 
The Sect. 5 is devoted to some generalizations of Theorems 1 and 2. In Sect. 6 
we give an example. 

2. Main Results 

Let (g2, o~, F=(~)~>=0)be a measurable space with a right-continuous filtration 
F, ~ =  ~/ ~ , ~ = ~ ( F )  be the a-algebra of predictable sets on f2 x R+ .  Let 

t>0  
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(E, g) be a Lusin space (i.e. : E is a Borel subset of compact  metric space), A be 
an extra point, ~ = N |  be a a-algebra on f2 x R+ x E. 

Suppose that a multivariate point process H=(Tk, Xk)k>_a is given on ~2 
([4]). Here (Tk)k>_l is an increasing sequence of strictly positive stopping times 
with respect to F such that Tk<Tk+ 1 on (Tk<Oe), k = l , 2 , . . . .  Random vari- 
ables X k with values in (Eu{A}, g v A) are ~Tk-measurable and Xr~(co)=A if 
and only if Tk(co ) = oo. Put T~ = lim T k. 

k 

Let #=#(co;dt,  dx) be an integer-valued random measure on (R§ 
x E, N ( R + ) |  associated with H. By definition 

#(co; dr, dx)= ~ e(rk(o~),x~(o~))(dt, dx), 
k>=l 

where e a denotes the Dirak measure located at point a. 
Let P be a probabili ty measure on ((2, J ) .  There exists (unique up to a 

modification on a P-null set) random measure v=v(co;dt, dx) called the com- 
pensator (or dual predictable projection) of # such that for a n y / - / ~ ,  H >  0, the 
process H ,  v = (H , vt)t>=o is predictable and E(H , v~) = E(H , #~). Throughout  
the paper  we use the brief notation for Lebesgue integrals, e.g. 

H , v t =  j" H(s,x)v(ds,  dx), l * v t =  ~ v(ds, dx). 
[ 0 , t l x  E [ 0 , t ] x  E 

If E reduces to one point then the multivariate point process is an ordinary 
point process which is completely described by the counting process N and its 
compensator  A where Nt=#([0 ,  t] x E) and At=v([O , t] x E). 

If m=m(dt ,  dx) is a measure on (R+ x E, ~ ( R + ) |  then Varr(m ) is the total 
variation of m restricted to [0, T] x E. 

For  a random measure t/, the measure M,  p on ~ is defined by Mr(H ) 
= E ( H .  t/o~ ) where H e ~ ,  H>__0. 

Denote by ~-(F) the set of all stopping times with respect to F. For  
S c J ( F ) ,  let P s = P [ ~  s (restriction to the a-algebra ~s) and tls=I~o,s~ ~. 

Denote by F p the filtration obtained from F by usual completion with 
respect to P. Put ~t" = a (~ ([0, s] x F), s __< t, F ~ ) ,  F" = ( ~ ) t  >__ 0. 

Let (P"),>__I be a sequence of probabili ty measures on ((2,~),  v" be a 
compensator  of # with respect to P". To formulate our result, we introduce the 
following conditions: 

(a) lim Var (P~ - Pr) = 0; 
n 

(b) l imP"(Varr (v" -v )>e)=O,  V e > 0 ;  
n 

(c) 1 * v r < oo P-a.s. 

Theorem 1. Assume F = F u. Then for any TeJ-(F)  we have 

A) (b) ~ (a), 

B) (a), (c) ~ (b). 

The next theorem gives estimates of the rate of convergence and will be 
used to prove part  A) of Theorem 1. 
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Let t5 be a probabil i ty  measure on (f2, ~ )  and ~7 be the compensa tor  of/~ 
corresponding to (F, /5). We shall denote  b y / ~  the expectat ion with respect to 
P. 

Theorem 2. Let F =F" and T ~ - ( F ) .  Then 

Var (Pr - Pr) < 2(E Var r  (v - ~)/~/~ Varr(V -- ~7)), (1) 

V a r ( P r -  Pr) < 3 e + 2 ( P ( V a r r ( v - ~ ) > e  ) A P(Varr(V -- ,7) > e)) (2) 

for any ~ > O. 

Remark 1. The assertion of Theorem 2 is still true if F = F  ~'Q with 

Q=(1/2)(P + P). 

Remark 2. The inequality (1) has been proven independently by J. M6min for 
the case of counting processes with bounded  compensators  (see [9]). 

3. Proof  of  Theorem 2 

1 ~ We start from some auxiliary results. 

L e m m a  1. Let ( 0 , ~ )  be a measurable space with right-continuous filtration F 
and two probability measures P and P, ~ =  V ~ .  Let (Sn),,>=l be an increasing 

t > o  

sequence of F-stopping times. Suppose that one of the following conditions holds: 

(i) S~Too P-a.s. (or lP-a.s.) 
(ii) F = F "  and Sn~T ~ P-a.s. (or P-a.s.). 

Then 

lira Var (Ps, - ~ . )  = Var(P  - P). (3) 
n 

Proof. Put  Q=(1/2)(P+P).  In accordance with w of [7] there exists right- 
cont inuous (F ~ Q)-martingales z and Z such that  for any SEgr(F ~ 

Zs=dPs/dQs , Zs=dPs/dQs, Z > O , Z > O ,  Z + Z = 2  Q-a.s. 

The definition of variat ion implies that  

Var (Ps~ - ~ , )  = E a [Zs. - Zsnl, (4) 

where EQ denotes expectat ion with respect to Q. 
Put  S = lim Sn, F = n (sn < s), t /=  lira Zsn, 

n n n 

P(S = oo) = 1. We prove that 

V a r ( P - P ) = E a l Z o ~ - 2 ~ I  

= lira Zs, .  Assume (i), 
n 

i.e. 

t / = Z o ~ = 0  on (S<oo)  Q a.s., (5) 

F /=2oo=2  on (S<oo)  Q a.s. (6) 
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Let ~ '  = ~ / ~ s , ,  P', P', Q' be the restrictions of P,/3, Q to o~'. Then  17 = dP'/dQ', 

O=dP'/dQ' and Fc~(S< oo), F ~ ( S <  ~ ) e ~ ' .  F r o m  (i) we have 

E e tllrn(s < ~)=P(Fc~(S< oo)) = 0. 

Thus, t / = Z s _ = 0  on Fc~(S<oo)  Q-a.s. Analogously  t / = Z s = 0  on f c ~ ( S < o o )  
Q-a.s. The  well known proper ty  of non-negat ive martingales implies 

(Z(s ̂  r ) -  = 0) _~ (Z s ̂  r = 0) __q (Z r = 0) Q-a.s. 

Hence,  (5) holds. But (6) is a consequence of (5) in virtue of the identity Z + 2? = 2 
Q-a.s. 

Evidently, (3) follows from (4)-(6). 
To prove (3) under  (ii) we remark  that  ZT~_ =ZT~ , Z r= = Z ,  2~T=_ =ZT=,  

Z r = = 2  Q-a.s. The  same considerat ions as above show that  r / = Z r  = 0  , 0 
= ZT| = 2 on (S < T~) Q-a.s. Thus, (3) is valid under  (ii) also. 

L e m m a  2. Assume F =F u. Let v be the compensator of # with respect to (F, Q), 
#s = leo, s~ #, S ~ (F). 

Then 

(i) ~u~ = ~sU , 
(ii) v s is the compensator of #s with respect to (F ~, Ps). 

Proof. (i) Obviously, ~,~u~_c~ s. F r o m  the other  hand, (3.40) of [-4] implies that  
the family of sets ((Tk, Xk)eF ) c~ (7", < S <= T,+ 1), k ~ n (0(2), ((Tk, X k ) f f r  ) o ( %  ~_~ S), 
k< 0% F ~ ( R + ) |  generates ~s  u. It is easily seen that  any set of this family 
belongs to y u  . Thus, ffs u = Y  u~. 

(ii) It is sufficient to prove the implication 

X e ~ ( F  u) ~ xsE~(FU~). 

Let  X s ~ ( F  u) be left-continuous. For  any t Xs~ , is ~s~t-measurable.  But in 
virtue of (i) ~ s ~ t =  Y u ~ ^ ' =  ~ u~. Hence,  xs~(FU~) .  The general case follows by 
mono tone  class arguments.  

L e m m a  3. Let P and ff be probability measures defined on a measurable space (f2, ~ )  
with ~ =  ~/ ~ .  Let v and ~ be the FU-compensators of # with respect to P 

t>O 
and P, S~J-(FU). Suppose vS=~ s P-a.s. Then Ps=ffs. 

Proof. The  assertion is a corollary of the uniqueness Theorem 3.4 of [4] 
applied to #s and of L e m m a  2. 

2 ~ Proof of Theorem 2. At first we remark  that it is sufficient to prove (1) for 
the case T =  oo. Indeed, let P '  and P' be the probabi l i ty  measures on (f2, ~,~) 
corresponding to the compensators  v ' - v  T and ~,_~T, T~Y-(F). By virtue of 
L e m m a  3 we have PT = PT a n d / ~  =/~T' Hence,  with obvious notations,  

Var (PT -- Pr) < Var  (P' - P'), 

E' Varo~ (v' - ~') = E Va r r  (v - ~7) 
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and 

/~' Varoo (v' - V) =/~ Vat r (v - ~). 

These relations together with inequality (1) for P', P'  and T =  oo imply that  (1) 
holds for P, /5  and TeY-(F). 

F r o m  now on we suppose that T =  oo. 
Let  us show that  it is sufficient to varify the validity of inequality 

Var (P  - /5 )  __< 2(E Var~(v - ~)/x/~ Varoo (v - ~)) (7) 

under  assumption 

1 �9 #oo + 1 �9 voo + 1 * ~oo < c =  const. (8) 

In fact, assume that (7) is true under  (8). Let  consider the probabil i ty 
measures pn and /5" corresponding to the compensators  v " - v  sn and ~,_~sn 
where S n = inf(t: 1 �9 v t + 1 �9 gt > n)/x 7",. By assumption (8) we have 

Var(W -/5")  < 2(E n Varoo (v ~ - ~")/x/~" Varoo (v" - ~")) (9) 

where E",/~" denote  the expectations with respect to P",/5". F r o m  this and 
L e m m a  3 we easily obtain that  

Var (Ps, -/Ss,) < 2 (E Varoo (v - ~7)/x/~ Varoo (v - ~)) (10) 

If P(S= T ~ ) = I  o r / 5 ( S =  Too)= 1 where S=Soo then (10) implies (7) by virtue of 
L e m m a  1. But if 

P(S=TOO)<I and P(S=TOO)<I (11) 

then (7) is trivial because the r ight-hand side of (7) is equal to + oo in this case. 
Indeed, it follows from the definition of the compensa tor  that inf(t: 1 �9 vt= oo) 
=Too P-a.s. and inf(t: 1 *g t=  oo)= Too P-a.s. Hence,  1 , V s < ~  and 1 * g s =  oo on 
(S< Too) P-a.s. and the first inequality of (11) implies that 

EVar~(v -~ )>E[1  *Vs-1  , ~ s ] =  + oo. 

Analogously,  the second inequality of (11) implies that 

/~ Varoo (v - ~) = + c~. 

So, from now on we shall suppose (8). Under  the assumption / 5 ~ P  we 
prove the inequality 

V a r ( P - / 5 )  < 2/~ Varoo (v - ~7). (12) 

By the theorem on absolute continuity of measures for mult ivariate point  
processes ([4], Th. 4.1, [7], Th. 21) there is ~ -measurab le  non-negative finite 
function Y= Y(t ,X)  such that  ~ = Y v  /5-a.s. Moreover ,  /5(3 t: v({t} x E )  
=1  4> 7({t} x E ) = l ) = 0 .  
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Let  Z=(Z~)t> - o be a cadlag version of (P, F)-mart ingale E(dP/dPI ~). Then 

Z , =  1 + Z  ( Y -  1 +(1 -a)*(C/-a))* (# -  v)t (13) 

where at=v({t } xE) ,  ~ = ~  Y(t,x)v({t},dx), b~  -~ if b , 0  and b * = 0  if b = 0 .  
E 

By virtue of the assumpt ion /5  ~ P we have 

V a r ( P - P ) = E I 1  - Z ~ I .  ' (14) 

Put  F 1 = ((o), t): a~(co) = 0), F 2 ((co, t): 0 < a~ (co) < 1), ~ = I(, _ 1) * (# - v)oo. Evidently 
~<0 ,  E ~ = 0 .  Hence  ~ = 0  P-a.s. 

It follows that  (P-a.s.) 

II-Zool<J1+J2 
where 

J,=lZ I r , (V- l§  i = 1 , 2 .  

It easy to see that  

EJI <=E(Z_Ir~IY--I[,(#+v)~)=2E(Z I r~ lY- l [ ,v~) .  (15) 

Let  us show that  analogous inequali ty holds for EJ 2 as well: 

EJ 2 < 2E(Z_ Ir~ I Y -  I I * v~). (16) 

On F 2 we have 

S (Y(s, x) - 1-4- (1 - as)- 1(~  _ as)) v ({s}, dx) 
E 

= L-as  +(1-as)- l(L-a~)as, 
thus 

J2 = [ ~ Zs- Ir2(S)(~ (Y(s, x ) -  1) #(s, dx) 
s > O  E 

--(1 - a~)- 1 (L--a~)(1 --#({s} x E))I. 

This representat ion implies that  

EJ2 <=E(Z_Ir2[Y-1I*#~)+E(~ Zs Ir2(s)l~-a~[). 
s > 0  

To finish the proof  of (16) note  that  

I L -  as] = I~ (V(s, x) - 1) v({s}, dx)l =< ~ [ V(s, x) - 11 v({s}, dx). 
E E 

Hence 
g ~  Zs Ir2(s) l~-a , l<E(Z Ir~lY-l[*%o). 

s>o 

It follows from (15) and (16) that  

El1 - / ~ I _ - < 2 E ( / I g - l l  * v~). (17) 
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By virtue of IV-T-47, V-T-27 ([3]) (see, also, Th. 1.47 of [4]) 

E(Z IY- l [*voo)=EZo~([Y-11*vo~)=E([Y-11*v~)=EVar(v - -~) .  

The desirable inequality (12) follows from this and from (14), (17). 
Let us show that (12) is valid without assumption P ~ P .  Put v~=e~+(1 

-e)v.  Let P~ be the probability measure on (f2, Y) such that v~ is the com- 
pensator of # with respect to (F, U). Existence of P~ follows from (3.6) in [5]. 
Under (8) P and t5 are absolute continuous with respect to U by Th. 21 of [7]. 
As we proved 

Var (P - P~) __< 2E Varo~ (v - v~), 

Var (t5_ p~) =< 2/~ Varo~ (v - v~). 

Since Varo~(v-v~)=eVaroo(v-~),  Var~(~-v~)=(1-e )Varoo(v -~ ) ,  we obtain 
(12) letting e~0 .  

At last, the inequality (7) holds by virtue of symmetry between P and/~. 
To prove (2) assume at first that T is bounded. Let Q=(1/2)(P+P),  S 

= inf(t: Var t (v-7)>  e). Accordingly to VI-T-16 of [3] S is predictable stopping 
time with respect to F e and so there exists a sequence (Sn) .> 1 of stopping times 
with respect to F Q such that SnTS Q-a.s. and S~<S on-(S>0). Choose the 
sequence (Sn)n> 1 to  satisfy the inequality P(S < S - n  -1, S ,<  T ) < n  -~, n > l .  
Put Rn= TA S,. It follows from (1) that 

Var (PR~ - P R n )  ~ 2E VarR. (v -- ~7) ~ 2 e. 

Note that Ac~(S,> T ) ~  if A ~  T. 
Thus 

Var (PT -- fir) < Var (PR. -- fiR.) + P(S. < T) + P(S. < T) 

<(3 /2 )Var (PR . -PR . )+2P(S .<T)<(3 /2 )e+2P(S .<T) .  (18) 
But 

P ( S , < T ) = P ( S . < T , S . < = S - n  ~ ) + P ( S . < T , S . > S - n - ~ ) < = n - ~ + p ( S < T + n - ~ ) .  

Hence 

lim P(S. < T) < P(S < T)= P(VarT(v -- ~) > e) (19) 
tt 

and (2) follows from (18), (19). 
We obtain general case (unbounded T) applying (2) for TAn and letting 

n ----~ G o .  

4. Proof  of  Theorem 1 

A) It is an immediate corollary of (2). 
B) We need the following general statement. 

Lemma 4. Let (f2, ~ ,  F, P) be a probability space with right-continuous filtration 
F, r/=t/1-r/2 where rll, tl 2 are predictable random measures on (R+xE,  
~ (R + ) |  ~ such that the measures M~ on ~ are a-finite. 
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Then there exists a ~-measurable  function H such that I g ] =  1 and Vary(t / )  
= H . t / ~ .  

The  p roof  is obvious.  

Le t  H n E ~ , I H n [ = I  and V a r ~ ( v - v n ) = H " * ( v - v " ) ~  W-a.s. 

Put  Sm--- inf(t:  1 �9 v t >= m), R m = S m/x T m/x T. The  Chebyshev  inequali ty and de- 
finition H ~ imply that  

P (Varnm (v ~ -- v) >__ 5) =< (i/e) E n H"  �9 (v - v~)~m 

= (1/e)(E" H" * VRm -- EH" * VR~.) + (1/~)(EH" * VRm -- E n H" * v"~m). (20) 

Since H" * vR~ is Yr -measu rab l e  and  [H" * vRm[ < m +  1 then 

[E" H" �9 vR - EH" * yam[ < ( m +  1) Var  (P~.-- PT). (2l) 

The  r a n d o m  variable  H " * # R  ~ is ~-T-measurable as well and [H"*#Rml<m.  
Thus  

] E H " , V R m - - E " H " , v ~ I = I E H " , # R ,  - - E n H " , # R ~ I < m V a r ( P T - - P ~ .  ). (22) 

We have 

P" (Var T (v" - v) => e) _< P" (VarR~ (v" -- v) >_ 5) 

+ W (R m < T) < W (VarR~ (v" - v) __> 5) + IW(R,, < T ) -  P(R~ < T) I 

+ P (R,, < T) < P" (VarRm (v ~ -- v) > 5) 

+(1/2)  Var  ( P ~ -  PT) + P(S ~ A Tin< T). (23) 

It  follows f rom (19)-(22) that  

W(VarT(v ,  v)>=e)<=( ~- 1 ( 2 m +  1)+ 1/2) V a r ( P ~ - P r ) +  P(S  m/x Tin< T). 

But (c) implies that  l i m P ( S m A T m < T ) = O .  Lett ing at first n ~ o o  and later 
m 

m-*  oc we obta in  (b). 

Remark.  The following example  shows that  the impl ica t ion ( a ) ~ ( b )  fails in 
general. 

Let  T =  oo, P" and P be the dis t r ibut ions of the Poisson processes with 
mean  value functions A~=t+arc tg ( t / n ) ,  A t = t ,  t_>O. Then  obviously  Var~(v  n 
- v) = Varco (A ~ - A) = re/2, bu t  l im (P" - P) = O. 

n 

To prove  this put  2 t = dA~/dA t = 1 + n -  1 (1 + (t/n) 2)- 1. Then  

%=_ ~ ] 2 ~ - l l Z d t - * O ,  n--+c~ 
[o, col 

and P " ~ P  (see [7]). Put  Z " = d P " / d P .  Easy calculat ion shows tha t  E(Z") 2 
-~ exp (%) ~ 1. Hence  

V a r ( P " - p ) = E I 1 - Z " [ < ( E ( 1 - Z ~ ) 2 ) I / a = ( E ( Z " ) 2 - 1 ) I / 2  ~O,  n ~ o v .  
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5. Supplement to Theorems 1 and 2 

Suppose  that  on (O, ~ )  we are given the following objects:  
1 ~ A mul t ivar ia te  point  process H with associated integer-valued r a n d o m  

measure  #. 
2 ~ A r ight-cont inuous fi l tration G = (fft)~>_ o such tha t  ~ " _ ~  fgt-~ o~ for every 

t > 0 .  
3 ~ Probabi l i ty  measures /3 , /5 .  Fo r  S ~ J ( f r  put  Ps=PlNs, for S c Y ( F  ~) put  

P s = P l Y s  " and P = P I ~ .  Corresponding  nota t ions  will be used for expec- 
tations. 

Deno te  by ~, ~, v the compensa tors  of  # with respect  to (G, P), (F ",/5), 
(F ", P). Ana logous  meanings  will have nota t ions  G n, Pn, ~" and so on. 

Proposition 1. Let T c J  (F"). Then 

Var (Pr - Pr) < 2/~ Var  r (~ - ~). (24) 

Proof By virtue of  (1) it is sufficient to show that  

E Var  r (v - ~) </~ Var  r (~ - ~). (25) 

Evidently,  we need to consider the case /~  V a r r ( ~ - ~ ) <  oo only. If  

1 * v r__< const. (26) 

then for Hs~(F") such that  IH] _-< 1 and V a r ( v - ~ ) = H ,  (v-W) P-a.s., we have 

E V a r r  (v - ~)= EH * ~ - ~)r = / ~ H  * (# - ~)r = / ~ H  * (~ - ~)r 

_-</~ V a r r  (~ - ~) (27) 

p rov ing  (24). 
To  prove  (24) wi thout  (26) we define Sk=inf ( t :  1 ,v t>k  ) and S = l i m S  k. 

Since Sk~J-(F ~) and 1 �9 Vr^sk<=k+ 1, we have k 

E Vat  r ^ sk (v - ~)__</~ Var  r A s~ (v - v) </~ V a r r  (v - ~7). (28) 

I t  follows f rom /~ Var  r (~ - ~) < oo and (28) that  E l im Var  r A s, (v - ~) < oo. Since 
k 

l i m l * v r A s = O O  on ( S < T )  P-a.s. then the previous inequali ty implies 
k 

l im 1 * gr  ^ s~ = oo on (S < T) P-a.s. 
k 

Thus, 

l im V a r r  ^ s~(V- ~) = V a r r ( V -  ~ ) P-a.s. 
k 

and (25) follows f rom (28). 

Proposition 2. Let T~J(F") and l * ~ r < O O  P-a.s. Suppose that the following 
condition is satisfied 

(l~)limP~(Varr(~"-~)>e)=O, Ve>O.  
n 
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Then 
l im Var  (P~ - fiT) = 0. (29) 

/1 

Proof.  Put  B ~ = V a r , ( ~ " - 0 .  Suppose  that  c = s u p / ~ " ( B } ) 2 <  oo. Then  f rom (24) 
we have n 

V a r  (P~. -- fiT) < 2e + 2E" B~r I(B~ > ~) < Ze + 2ca/21~"(B"r> e) 

and (29) is obvious.  
In  general  case we define R ~ =  TAT, , /x  inf(t:  1 *g,t>m).  It is easy to see that  

~ n 2 E (BRm) </~"(1 * ~ + 1 * ~Rm) 2 =< 2(2m 2 + (m + 1)2). 

By assumpt ion  lira/5(R,,  < T ) =  0 and it remains  to note  that  
n 

Var (P~ - / ~ T )  ~ (3/2) Var  " " " ( n ~ -  Pnm)+ 2P(Rm < T). 

6. Example 

Let I t ,  - . . ,  4, be independent  uniformly dis t r ibuted on [0, 1] r a n d o m  variables,  
_N~= ~ I (~k<  t ) ( t he  empirical  dis t r ibut ion funct ion mult ipl ied by n), N~"=Nt%. 

k<_n 

It  is well known (see, e.g., [8]) that  f ini te-dimensional  distr ibutions of N ~ 
=(Nt"),>__ 0 converge to f ini te-dimensional  dis tr ibut ions of a Poisson process 
with unit  rate (and the compensa to r  A t = t). 

We show that, in fact, there is a convergence of the distr ibutions in 
var ia t ion  on any finite interval [0, T-] and  

Var  (P~. - PT) < 2 TZ /n (30) 

where P~ and PT are the dis tr ibut ions N" and the Poisson process on [0, T].  
~ -  " of  N" with respect  to the fi l tration genera ted The  compensa to r  A - (A t)t >_ o 

by N" has the following form (see [8])" 

and so 

t i m  A t - - ~ In (1 - ~ ~k A ( t /n) )  
k<_n 

dA~/d t  = n -1  ~ I(~ k > t/n)(1 - t /n) -  1. 
k<_n 

Easy calculat ion shows that  

Thus,  
E ldA~/dt  - 11= E l i  (41 > t/n)(1 - t /n ) -1  __ 1[~--- 2 t/n. 

T 

E VarT (An - A ) = E  ~ ] d A ~ / d t -  11 d r =  T2/n  
0 

and es t imate  (30) follows obviously  f rom T h e o r e m  2. 

The authors are grateful to the referee who pointed out the article [2]. 
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