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Summary.  Given a semigroup T t and an excessive measure v a new semi- 
group ~i" t is constructed in such a way that v is invariant with respect to ~i" t 
and ~ is larger than the original semigroup. A sufficient condit ion for Tt to 
be uniquely determined by T t and v is given. 

1. Introduction 

1.1. Let  D be a body  in a three-dimensional space E and suppose that  this 
body  is heated at each point  x to a certain temperature  h(x). Suppose that  we 
observe the process of dissipation of heat and notice that the temperature 
decreases at each point  x. The question is whether we can impose such 
boundary  condit ions that the original distr ibution of the temperature  h(x) is 
preserved. Physical intuition suggests the following solution. We have to look 
at those points of the boundary  where the heat dissipates into outer space and 
put there reflectors which redistribute the heat over D propor t ional ly  to the 
rate of heat loss. 

We shall show that  the construct ion similar to the one suggested by 
physical intuition can be used in a more  general situation. 

1.2. In the situation described above let f(t, x) stand for the temperature  at the 
point  x at t ime t. It is known that  f(t ,x) can be obtained as a solution of  the 
following systems 

Of -L f ( t ,  "), (1.2.1) 
a t  

Hf(t, . )=0 ,  (1.2.2) 

f (0, x) = h (x). 

Here L is an elliptic differential opera tor  of the second order  in the space D, 
and /-/ is a linear opera tor  in the space of  functions on D (this operator  
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corresponds to the boundary conditions; see [1]). Let N be the spac%of twice 
continuously differentiable functions g on D such that H g = 0  and let Qt be the 
semigroup whose generator coincides with L on N. Then f(t, x)=Qth(x ). The 
inequality f(t, x)<h(x) shows that h(x) is an excessive function with respect to 
Qv This is equivalent to v(dx)=h(x)dx being an excessive measure with 
respect to the conjugate semigroup T t. 

Placing reflectors at the boundary corresponds to changing the operator L 
in (1.2.1) into L + ~ ,  where ~ is an integral operator, and changing boundary 
conditions, that is, replacing H in (1.2.2) by a new operator /q (the explicit 
expressions for ~ and /~ in the one-dimensional case can be found in [5], 
Sects. 18 and 22). Let 0 t  be the new semigroup corresponding to the solution 
of the new system and Tt its conjugate. If under the new boundary conditions 
the temperature h(x) is preserved, then v is an invariant measure with respect 
to ~i" t. It is easy to see that for any measurable function g on D 

T, g (x) > T t g (x). (1.2.3) 

Under mild conditions in a more general situation we shall show that, 
given a semigroup T t and an excessive with respect to T t measure v, one can 
find Tt satisfying (1.2.3) for which v is invariant. 

If two semigroups ~i" t and T t satisfy (1.2.3) then we say that 1"t is larger than 
T,, or ~ is an enhancing of T~. 

We write T,=Tt,  a.e. #, if for each measurable function g Ttg(x)=qs ) for 
#-almost every x. 

In this paper we deal only with preserving positivity contraction normal 
semigroups, that is, semigroups T, satisfying 1.2.A-1.2.C below. 

1.2.A. If g (x)>0  then Ttg(x)>0 for each t>0 .  

1.2.B. For  each x ~ D 

T t l ( x ) < l  and l i m T t l ( x ) = l .  
t$0 

1.2.C. If f ( x o ) = 0  , then Tof(Xo)=O. 

A measurable set D is called Borel if it is isomorphic to a measurable 
subset of a complete separable metric space endowed with a o--field generated 
by all open sets. With some abuse of notions we say that T t is a semigroup on 
a Borel space D instead of saying that T t is a semigroup in the Banach space of 
bounded measurable functions on D. 

The same letter will be used for a measure and an integral with respect to 
this measure; thus, for P being a probability measure and ~ being a random 
variable, P~ (or P{~}) stands for the mathematical expectation of 4. The word 
"function" will always stand for a nonnegative bounded measurable function. 

1.3. Our main tool is the theory developed in [11] where we deal with a 
stationary Markov process (xt, P), t e T = ] - o %  + o o [  with the state space E 
= D w V such that for each t 

O { x ~  V} =0 .  
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Suppose that (xt, P) is conservative, that is P is a probability measure. Let 
/~(t, x; F) be the transition function of (xt, P), Px be the transition probabilities 
and (assuming that the first hitting time of V is measurable) 

v(r)  = P {x, E r }  

p( t ,x;F)=Px{xteF,  xs~ V for all s<t}.  

It is possible to construct a stationary Markov process (w(s), P) in the state 
space D with transition function p and one-dimensional distribution v. The 
process w( ' )  has random times of birth and death and the measure P may be 
infinite. (Note that the measure v is invariant with respect to the transition 
function/5 and is excessive with respect to p). The process (w(s), P) is called a 
subprocess in D of (xt, P) and (x t, P) is a covering process for (w(s), P). 

In [11] the inverse problem was considered. Given a stationary Markov 
process (w(s), P) in the state space D, when is it possible to find a set V and a 
conservative stationary Markov process (xt, P) in the state space D u V in such 
a way that (xt, P) is a covering process for (w(s), P). It is proved (see [11] Th. 1) 
that it is possible to do this iff the one-dimensional distribution of P is a 
probabili ty measure. Moreover, in this case V can be taken as a single-point 
set. 

If  in addition P is an extreme measure in the class of all Markov measures 
with transition function p then the covering process (xt, f~) is unique in the 
sense that the finite-dimensional distributions of P are uniquely determined by 
the measure P. 

1.4. Processes with independent increments will be often used in the sequel. 
Let Yt be a right-continuous increasing process with independent increments 

and H be a measure on ]0, oe[ and e be a nonnegative constant. We say that 
Yt has Levy's measure H and translation constant ~ (or Yt is (cq//) process) if 

y t - y s = e ( t - s ) +  ~, ( y , - y ,_ )  a.s. Qx, 
u~J,s<u<=t 

Qx{ E f ( y . - y ~ _ ) }  = ( t - s ) H ( f ) .  
u e J ,  s<y<=t 

(Here d = {u: Yu 4= Yu- } and Qx are the transition probabilities of Yt-) For F c T 
and f a function T x T put 

n(x; c)=n(r-x) ,  

Hx(f)  = j f (x ,  y)H(x; dy). 
T 

We shall use the following lemma, the proof of which is well known. 

Lemma 1.4.1. For any function f on T • T 

Vb { Z f (Yt- , Yt)} = J n~( f )  2b(dx ) (1.4.1) 
t e d  

where 
oo 

2b(F)=P b j" lr(yt)dt C c  T (1.4.2) 
0 
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2. Formulation of  Results. Proof  of  Theorem of  Existence 

2.1. The main results of the paper are given by Theorems 1 and 2. 

Theorem 1. Let  T t be a semigroup on a Borel space D such that 

2.1.A. T t 1 (x) is a continuous function of  t for  every x. 

I f  v is a f inite excessive (with respect to Tt) measure on D, then there exists a 
semigroup qs which is larger than Tt and for  which v is invariant. 

Theorem 2. Suppose that T t and v satisfy the conditions of  Theorem 1. I f  in 
addition v is an extreme excessive measure, then q2 t is unique up to the measure v. 

To prove Theorem 1 we consider a Markov  transition function p(t, x; F) 
such that T J ( x ) = p ( t ,  x ; f ) ,  the existence of which is proved in [3], Chap. 2, 
Theorem 2.1. 

Then we consider a stationary Markov  process generated by p and v. We 
apply the main result of [11] and construct a conservative, covering stationary 
Markov  process. We show that the semigroup we are looking for corresponds 
to the transition function of the covering process. 

2.2. We may assume without loss of generality that v is a probabili ty measure 
on D, i.e. 

v (D) = 1. (2.2.1) 

Consider a stationary Markov  process (w(s), P), s e  T = ] -  o% + oo[ with the 
state space D and the one-dimensional distribution v. The existence of such a 
process was proved in [8]. We can take the space W of all paths in D with 
random birth time ~ and death time fi as a sample space of this process. (Note 
that P{W} may be equal to infinity.) The condition (2.2.1) is just the same as 
1.2.A in [11]. By virtue of the main result of [11] there exists a process (xt, P) 
in a state space D u V, V being a singleton, for which (w(s), P) is a subprocess 
in D. To construct the semigroup Tt we have to find the transition function /~ 
of the process (xt, P). 

Consider the entrance law v s (with respect to the transition function p) such 
that 

0 o  

v =  S vsds" 
o 

The existence of this entrance law was proved in [4]. Let Pt* be the Markov  
measure on W with transition function p and the one-dimensional distribution 
at time s equal to vs t (we assume that v~ = 0 for s < 0, therefore P* {e 4= t} = 0). 

Let 

/ I ( t ;  F) = g *  {/~ e C}, l ~ = r ;  H ( F ) = I I ( O ; F ) .  

Consider an increasing process y~ on T with independent increments with the 
translation constant 0 and the Levy measure H. (See [10] for a more detailed 
discussion.) Let Qy, y e  T be the transition probabilities of this process and let 
ae= in f{ t :  y t>~} .  For  F e D ,  x E D ,  t>O put 
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g ( t , x ; F ) = p ( t , x ; C ) +  Px{ f i edy}Q,  P*{w( t )~F}ds  
0 

/5(t, x; V)=0.  (2.2.2) 

Here Px is the transition probability of (w(s); P). 
We shall show that/5 defined by (2.2.2) is a transition function of (x t, P). To 

understand this formula intuitively, assume that x t is a strong Markov  process 
with all kinds of nice properties, so that there exists an exit system at point V 
(see [9]) and using it we can write the so called "last exit decomposit ion" (see 
[6, 7, 9]). Let M =  {t: x t = V} be dosed a.s. P, and the complement of M be a.s. 
a union of countable number of open intervals ]7, 3[. Let z= in f{ t :  x te  V}. We 
can write 

F(t,x; V)=O~{xteF}=['x{xteF,  ~>t}+Px{x teV ,  r < t } .  

The first term in the right-hand side of the above formula is equal to p(t, x; F) 
and the second can be written as 

y 

This can be written as 

where ~t ~ is the local time of x t at the point V and Q* is a Markov  measure 
with transition function p (see [6]). It is known that the inverse of local time at 
a point is a process with independent increments with Levy's measure II(F) 
= Q* {fi ~F}. The initial distribution of this process coincides with the distribu- 
tion of z. It is easy to show that the distribution of z under Px is the same as 
the distribution of fl under Px. In our case Q* is equal to P* (though it is not 
seen directly from the way the process (xt, P) is constructed) and that makes 
(2.2.2) just one of the forms of usual "last exit decomposition". 

Theorem 2.2.1. The kernel f ,  given by (2.2.2), is a conservative transition function 
of  the process (xt, [J). 

For  the proof  of the theorem we have to verify the following relations. 

2.2.A. For  any F, A c D  

~'{xseV, x~e~}= S v ( d x ) N t - s ,  x, 4). (2.2.3) 
F 

2.2.B. For  each x e D and each t > 0 

p(t, x; D) = 1. (2.2.4) 

2.2.C. For  each t ,s>O and F c D  

~ ~(s, x; cl y) g( t, y; v )=p(s  + t, x; V). (2.2.5) 
D 
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The formula (2.2.3) is equivalent to the formula (5.7.3) of [11], which was 
proved in the case of an extreme measure v. However, similar computations 
show that (5.7.3) of [11] is true for the covering process (x~, P) constructed in 
Sect. 3 of [11], with which we deal now (see also [12] Lemma 3.2.7, where the 
proof of 2.2.A is given in a more general situation). 

To prove 2.2.B, we need 

Lemma 2.2.2. Put 
~ t  

~o(z)=Qz~P*{w(t)eD}ds, zeT.  
0 

Then q~(z) is equal to 1 for all ze  T except for a countable number of points. 

For intuitive understanding of this lemma let us assume again that the last 
exit decomposition is true. In this case q~ (z) is nothing but p( t - z ,  V; D) and the 
assertion that (p(z)=l for all z, except a countable number of points, is 
equivalent to p(u, V; V) being equal to zero for all u, except a countable 
number of points. 

Proof of Lemma 2.2.2. Let Ta =]a, o9[. Compute 

ry e er e 

p(z)=Q~ ~ P*{/~> t} ds=Qz ~ H(ys; Tt)as 
0 0 

err  z 

=Qo  ~ 17(ys;Tt-~) ds. (2.2.6) 
0 

Put Y(u)=yer,, Y(u-)=yeru_. Let 2 b be defined by formula (1.4.2). Put u =  t - z .  
By virtue of Lemma 1.4.1 the right side of (2.2.6) is equal to 

qo{Y(u-)<u, Y(u)>u}. 

Since Y(u - )  < u and Y(u) > u, then 

1 -cp(z)<_Qo{Y(u-)=u } +Qo{Y(u)=u}. 

Let A 1 be the (countable) set of atoms of the measure 2o; and A 2 be the 
(countable) set of atoms of the measure / / .  Put A = A  1 + A  2. By Lemma 1.4.1 

u 

Qo { Y (u) = u} = ~ II (x ; {u}) 2 o (dx) 
0 

u 

=~H{u-x}2o (dx )=  ~ )~o{x}H{u-x}.  (2.2.7) 
0 x ~ A 1  

The right side of (2.2.7) differs from zero only for u~A, therefore, for a 
countable number of u. Similarly 

Qo { Y ( u - )  = u} = 2 o {u} H {T~ (2.2.8) 

The right side of (2.2.8) differs from zero only for u tAh .  The lemma is proved. 
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Now show 2.2.B. By (2.1.A) for each u > 0  

Px {fl = u} = lim T~ 1 (x) -  I", 1 (x) = 0. 
s'[u 

Therefore, Px {(P (fl) # 1 } = 0, and by (2.2.2) 

F(t, x, D)= Px{fl> t} + Px {lp<,~0(fi)} 

=Px{fl> t} + Px{fl < t)= l. 

The following lemma is essential for the proof that fi satisfies the Chapman- 
Kolmogorov equation. 

Lemma 2.2.3. For any F c D and any r < u < v 

Q~ S dsSP*{w(u)~dz } ~ P~{fl~dd}Q~ dmP* (w(v-u)~F} 
k O  D 0 

o- v 

=Qr ~ ds P* {w(v)~F}. (2.2.9) 
~ u  

For heuristic interpretation of (2.2.9) we must again refer to the "last exit 
decomposition". Assume for simplicity that r = 0. Then the right side of (2.2.9) 
is equal to 

Pv{xv~F, xs~ V for some u<s<v}.  

The left side of (2.2.9) equals 

v - - u  

5Pv{X. edz} ~ ~'z{~edd}Pv{X . . . .  eeF}. 
D 0 

Applying the strong Markov property, we see that the right side of (2.2.9) 
equals the left side. 

The rigorous proof certainly cannot exploit these arguments because in 
general the process (xt, P) is not strong Markov and does not have any 
regularity properties that would ensure the existence of an "exit system". 

Proof of Lemma 2.2.3. Put 

~9t(d)=Q~ { ?tP* {w(t)~ F} ds}. 

Since P* is a Markov measure with the transition probabilities P~, then 

y P* {w(u) e dz} Pz {~,,-,(fl), le . . . .  } = P* {~,~-,,(fl - u) 1,< ~ < ~} 
D 

=P*{~,~(fi)lu<~<,,}=P*{~'(fl)} (2.2.10) 

where g/(x)=~,,(x)lu<x<,~. Taking into account the definition of the kernel 
Fi(x; - )  and applying (2.2.10), we can rewrite the left side of (2.2.9) as 
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Q~ {iUds! II(y~,dE)tP~(~)}=Q~ {i=dslI(Ys; t)') ds} 
u 

= ~ 2~(dxl lI (x ; t)') 
r 

= ~ 2~(dx)l~<.H(x;~'). 
- o o  

(2.2.11) 

By Lemma 1.4.1, (2.2.11) is equal to 

Qr{ ~ lyt <,0 ' (yt)}=Qr{ ~ 1, . . . .  1,<,t<vO~(Y~)} 
Yt < Yt Yt - < Yt 

= Q~ {tp'(Y(u))}. (2.2.12) 

Using again Lemma 1.4.1 and the strong Markov property of y,, we get that 
(2.2.12) is equal to 

Qr {1r(u)<v {QY(u, {i~P* {w(v)~ F} ds}}}=Q~ {!i P* {w(v)~ F} ds} , 

and the lemma is proved. 
Now we are able to verify 2.2.C. Consider 

~(t, x; dy)F(s, y; F)= ~ p(t, x; dy)p(s, y; F) 
D D 

+Sp(t,x;dy)SP,{fiedu}Q. drP~{w(s)er} 
D 0 

+SP~{fiedy}Qy drSP*{w(t)edz}p(s,z;r) 
0 l . O  D 

+~P~{fiedyiQy dr~P*{w(t)~dz} P~{fied~} 
0 k O  D 0 

By virtue of the Chapman-Kolmogorov equation for p the first term in the 
right side of (2.2.13) is equal to p(s+t,x;F). Since P,.*{w(s)eF}= 
P~*t {w(t + s)eF}, then 

Q~ {i~P* {w(s)e F} dr}=Q,+, {~?+~P* {w(t + s)e F} dr}. 

Together with the Markov property of (w('), P) this relation yields that the 
second term in the right side of (2.2.13) is equal to 

P~{fiEdy}Q, {w(t+s)eF}dr . (2.2.14) 
t 
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Since P* is a Markov measure with the transition function p, then the third 
term in the right side of (2.2.13) is equal to 

i Px{fl ~dy} Qy {i~P* {w(t + s)~ F} dr}. (2.2.15) 

By Lemma  2.2.3 the fourth term in the right side of (2.2.13) is equal to 

i Px {fi ~ d y} Qy {~!itP* {w(t + s)~ F} dr}. (2.2.16) 

Adding (2.2.14), (2.2.15) and (2.2.16) we get that (2.2.13) reduces to 

p(s+t,x;C)+ ~ Px{fi~dy}Q, P;*{w(s+t)er}dr =p(s+t,x;r), 
0 

and that completes the proof  of Theorem 2.2.1. 

2.3. Put 

Ttf(x)  = S p(t, x; d y) f (y). 
D 

By Theorem 2.2.1 /7 satisfies 2.2.A-2.2.C; therefore, l't is a contraction semi- 
group such that Tt 1 = 1. It is obvious that Tt is an enhancing of T t. Inasmuch 
as /7 is the transition function of a stationary Markov process with the one- 
dimensional distribution v, then v is an invariant measure with respect to ~.  

Remark. Although the state space of the covering process (xt, [J)is larger than 
D, we were able to exclude the additional point V from the formulation of the 
final result. To this end we proved that the transition function of (xt, P) 
restricted to D remains a transition function. That  was possible due to the 
condition 2.1.A: In a general situation, when 2.1.A is not satisfied, one can 
prove a weaker analogue of Theorem 1 in which T, is not a semigroup on the 
same space D but on a larger space E D D. 

3.1. Theorem of Uniqueness 

3.1. Suppose Tt is constructed and we want to prove that ~i" t is unique up to the 
measure v. As always, consider transition functions p and p such that 

Ttf(x ) =p(t, x; f), 
Ttf(x)=F(t, x; f). 

If we knew that the only way to obtain a larger semigroup is to construct a 
covering process then theorem of uniqueness would be an immediate con- 
sequence of Theorem 2 of [11]. We would have a process (xt, P) with the state 
space D+V (such that v(V)=0) and with subprocess in D equal to (w(s),P). 
The p-excessive measure v is extreme iff P is extreme in the class of all Markov  
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measures with the transition function p. The uniqueness of the two-dimensional 
distributions of P would immediately imply that if(t, x; F) is given by (2.2.2) for 
v -  a .e .x.  

Therefore, Theorem 2 of the present paper  will follow from 

Theorem 3.1.1. Suppose that if and p are two transition functions on D such that 
~(t, x;  F )>p( t ,  x; F) for  all F c D ,  x ~ D  and t > 0 .  I f  v is an invariant measure 
with respect to F then there exists a stationary Markov  process (x*, Q) with the 
state space E = D u V such that 

3.1.A. For each t > s  and F c D  

Q {x* e V} = O, 

Q{x* E r } = v ( r ) ,  

Q{x* e r l x * }  = i f ( t - s ,  x; F). 

3.1.B. The set M = { t :  x * ~ V }  is closed a.s. Q. 

N* 3.1.C. The subprocess in D o f  ( t ,  Q) is a stationary Markov  process with the 
one-dimensional distribution v and transition function p. 

The general outline of the proof  of Theorem 3.3.1 is the following. First we 
construct a stationary Markov process (xt, P) with the state space D with the 
one-dimensional distribution v and the transition function /5. Applying Theo- 
rem 9.3 of [4] to the transition functions p and if, we obtain a multiplicative 
functional a t such that p(s, x;  F)=Px{ l r (xs )as} ,  Px being the transition proba- 
bilities of x t. If a t took on only 0 and 1 values that would be almost the end of 
the construction. In this case we would consider a family of stopping times a s 
= s + i n f { t :  0sc~t_s=0 } (0 s is a shift operator  in the sample space of xt). The 
family G~ would have the same properties as the family of hitting times of a set 
in the state space. We would then put x* ~ V if a s_ = t for some s <  t and x* 
= x  t otherwise. Doing so, we would alter x t on the set of P-measure zero for 
each fixed t; thus, x t and x* would have the same finite-dimensional distri- 
butions. Since by such a construction p(s, x; F ) = P x { x s ~ F ;  x t ~ D  for all t < s } ,  
we would get that the subprocess in D of x* ( t ,  Q) has transition function p (it is 
known a priori that the one-dimensional distribution of the subprocess is equal 
to v). That  would imply Theorem 3.3.1. 

Unfortunately at(co ) may take on any values between zero and one, and it is 
necessary to use a coupling technique to overcome this difficulty. We consider 
a new sample space f ~ = O x ( T )  ~176 and a probabili ty measure Q on ~ with 
marginal distribution on f2 equal to P. A family of random variables z~(cS) is 
constructed in such a way that the conditional probabili ty of "c s being greater 
than t given co is equal to at_s(O~co). The family z~ has all the properties that a s 
has, except z~ is not measurable with respect to the a-field generated by x r 
Nevertheless, it is possible to construct x* acting in the same way as if z~ was 
the first hitting time after s of a set in the state space. In this case x* has the 
same finite dimensional distributions as x, and the subprocess of x* is equal to 
(w (s), P). 
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3.2. In this Section we shall prove Theorem 3.1.1. Let  (J be the space of all 
paths co(t) in D, - oo < t < + oo. Let  p(t, x; F) be a transit ion function such that  
q s  By the Ko lmogorov  Theorem there exists a s tat ionary Mar-  
kov measure P on s with the one-dimensional  distr ibution v and the transit ion 
function p. Let  0 t be a shift opera tor  in the space s that  is Otco(s)=co(s+t ). 
Put xt(co)-= co(t) and put  ~ t  = ~(x S, s < t), ~ t =  o(xs, s > t). Let Px be the transit ion 
probabili t ies of (xs,P), that  is fix is a measure on ~ o  such that  

P~{xt~ e d x l ,  .. . ,  xt, ~ d x , }  

= f ( t l ,  x; d x l ) g ( t 2 - t l ,  x l ;  d x 2 ) . . . F ( t , - t , _ i ;  x ,_  1 dx , ) ,  

0 < t l < t 2 < . . . < t  n. 

By Theorem 9.3 of [3] there exists an almost homogenous ,  almost  multipli- 
cative functional  ( A H A M F )  gt(co) such that  

p(x, t: F ) =  Px {at(co) lr(xt)  }. (3.2.1) 

By propert ies of A H A M F  the r andom variable gt is o-(x S, 0 < s <  t)-measurable. 
Fo rmula  (9.13) in [3] shows that for any t and for all x e D  

~,==_1 a.s. Px. 

L e m m a  3.2.1. There exists A H A M F  a t such that for  all x ~D a.s. Px: 

3.2.a. For any t at=~t.  

3.2./3. a t is a right-continuous function of  t, t > O, and a o + = 1. 

Proof. Since 4__<1 a.s. 15, then ~t__<~s a.s. Px for s < t .  Let R - l i r a  stand for the 
limit taken over rat ional points and put  

at(co ) = R - l imsup ~r (co). 
r,Lt 

Inasmuch as gr, r-rational, is a decreasing function of r a.s. Px, then a t is right- 
continuous.  It is obvious that 

a ,<g ,  a.s. Px- (3.2.2) 

By 1.2.B and the Chapman-Ko lmogorov  equat ion for p we get 

p(t, x; O)'[p(s, x; O) as t,Ls. (3.2.3) 

By the mono tone  convergence theorem we have 

R - l i r a  P~ {~r (co)} = Px (~t (co)} �9 (3.2.4) 
rSt 

Combining (3.2.1), (3.2.2), (3.2.3) and (3.2.4) we get that a t = ~  t a.s. P~. By 1.2.B 

limp(s, x; D)=  1, 
s$0 

therefore, lim as= 1 a.s. Px and the lemma is proved. 
s.~0 
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Note  that  because v is an extreme excessive measure then it has to be null- 
excessive (see [4]), and that  implies for v a.e. x 

p ( s , x ; D ) ~ O  as s ~ o o .  

(We exclude the trivial case in which v is an invariant  measure.) Therefore, for 
v a . e . x  

lim at(co ) = 0 a.s. 0 x. (3.2.5) 
t - *  C<3 

Put 

~;(co) = ~,_ s(O~ co) 

and let aS(dylco) stand for the measure on T with the distribution function F ( - )  
equal to 1-as(co).  Inasmuch  as (3.2.5) holds, 1-as(co)  is a proper  distr ibution 
function for P-a lmos t  all co. 

Let  f2 be a p roduc t  of  f2 and (T) ~ and the measurable  structure d in f} 
generated by the p roduc t  of  the corresponding measurable structures. We 
denote  by the same letter ~-  the a-field in f2 generated by the sets of the type 
A x (T) ~~ where A ~ - ~ .  

The following theorem is most  impor tan t  in carrying out  the construct ion 
of  the process x*. 

Theorem 3.2.2. There exists  a probability measure Q on Q and a fami ly  o f  
random variables G(cS) such that 

3.2.A. For each A ~ 

Q{A x (T) ~} = P { A } .  

3.2.B. For each s E T and F ~ T 

3.2.C. The fol lowing relations hold simultaneously a.s. Q for  all s <  t: 

~'s ~ S, 

G < z t ,  and G = r t  on the set { G > t } .  

3.2.D. I f  s < u < t  < r  then the events {zs<u  } and {z t> r  } are conditionally inde- 
pendent given ~ .  

Proof. 1 ~ Put  f2~ Ok+l=f~k x T. The set f]k consists of all k + l - t u p l e s  
(co, t ~ t 2 , . . . , t k )  , where meg?, t k~T.  To construct  the measure Q on Q it is 
enough to construct  a sequence of probabi l i ty  kernels nl,  n2, ..., n k . . . .  where 
G is a kernel f rom f]k-1 into T and then put 

Q{dco x dt  I x dt  2 x ... x dtm x T x T x ...} 

=P{dco}nl (co;d t l )n2(co ,  t l ;dt2) . . .nm(co,  t l , t  2 . . . . .  t m _ l ; d G ) .  (3.2.6) 

Let r 1, r 2 . . . . .  G, --- be a sequence of all rat ional  numbers.  For  typographi-  
cal purposes we write r k and r(k) interchangeably.  The last coordinate  in (5 k 
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corresponds to the value of Z~(k), i.e., z~(k)(cS)=t k. We shall construct  n k by 
induct ion in such a way that 3.2.B-3.2.C will hold for the family {zr(a), zr(2); ..., 
Z~(k) } if these properties are satisfied for the family {L(1), ..., Zr(k- ~)}" (Note that  
due to (3.2.6) the proper ty  3.2.A will hold automatically.)  

2 ~ By the properties of A H A M F  and definitions of a~(co) 

s t s a t a ~ -  % a.s. P (3.2.7) 

for any fixed s < t < u .  Therefore,  (3.2.7) is true for all rat ional s,t ,  and u 
simultaneously. Since at, is r ight-continuous in u (3.2.7) is true a.s. 15 for any 
rat ional  s and t and all u. Put  hi(CO ; F)=a~(1)(F]co) and put  ~(1)((5)=tl .  The 
properties 3.2.B-3.2.D are satisfied trivially for the family consisting of a single 
element z~(~). 

Suppose that the kernels n~,n 2 . . . . .  nk_ ~ are constructed in such a way 
that the family of r andom variables (r,(~)=t~, L(2)=t2,  ..., Z~(k_~)=tk_~) 
satisfies 3.2.B-3.2.D. Let  A, ,={rz ,  r 2 . . . .  ,r,,} and b = m i n A k _ l c ~ [ r k , + o O [ ,  
a = m a x A k _ l C ~ J - -  oe, rk]. Suppose that a >  - oe and b <  + oo; consequently 
there exist i__< n -  1 and j < n -  1 such that  a = r~, b = rj. Put  

lq, k (O  , t l ,  t 2 ,  . . . ,  tk;  F)=nk(CO, ti, tj; F) 

=~l t , (F) ,  if t i>rk;  
[ar(k)(r'lco)+a';(~)l~(r"), if ti <=r k. (3.2.8) 

Here F ' = F c ~ [ r k ,  b], F " = F c ~ ] b ,  oo[. 

3 ~ We have to check that the properties 3.2.B-3.2.D hold for the new 
family {Zr(l) . . . .  , Zr(k_l), Zr(k) }. The proper ty  3.2.C is trivially satisfied by the 
construct ion of the kernel (3.2.8). 

To check 3.2.B we may consider only sets F lying on the ray Irk, o9[. (In 
the following formulae Q ~  means condit ioning with respect to @; and all 
equat ions are satisfied a .s .Q.)  

Q ~  {t k ~ F} = Qo~ {tk ~ F, t i > rk} + Q ~  {t k E F, t i < rk} 

= Q j  {tis F} + Q~ {tk ~ Flti <rk} Q~ {ti <r k} 

= a a ( r )  + (1 - a~"(j  (a '(k~ ( r ' )  + a~ (k~ c~ b ( r " ) ) .  (3.2.9) 

The last equality in (3.2.9) is due to the condit ional  independence of za= t i and 
z b = t  j given ~ on the set {t i<b} (property 3.2.D). By (3.2.7) 

a ~ (F) = a~(k) a ~(k) (F) (3.2.10) 

and 
at (k) ab(F '') = a~(k)(F"). (3.2.11) 

Compar ing  (3.2.10) and (3.2.11) with the right side of (3.2.9), we get that  (3.2.9) 
is equal to ar(k)(F). 
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4 ~ . N o w  prove 3.2.D. Consider  the case t=r (k) ,  s=r ( i )=a  and u < t < r .  
Suppose r < b. Then 

Q ~ { t i < u ,  tk>r} 

= Q ~ { t i < u ,  r <tk < b } + Q ~ { t i < u ,  tk>b} 

= Q ~  {t i < u} (o:",. (k) - a~b (k)) + Q~  {t i < u} a; (k) 

= Q ~  {ti <u } a;(k)=Q~ {ti < u} Q ~  {tk> r}. 

All the other  cases are considered similarly. 

5 ~ We have constructed a measure Q on s and a family zs((5 ) (s-rational) 
which satisfy 3.2.A-3.2.D. Show that  G is a.s. Q r ight-cont inuous in s. Since s 
takes on only a countable  number  of  values it is sufficient to show that  for any 
fixed r %$% a.s. Q when uSr. Owing to the fact that  {zr 4= r,} c {% _-< u} a.s. Q, 
we get 

Q{r  - z r > u - r } < Q { G , i = z r } = Q { G < u } = P { 1 - a ~ } .  (3.2.12) 

Since a~,(co)=%_,(0rco) then 

lira a~ = lim a~(0~co) = 1 a.s. P,  (3.2.13) 
u~r e$O 

(see 3.2.fi). Therefore the limit in the right side of (3.2.12) is equal to zero 
whenever u ~r. For  irrational u put  

G((5) = R - l imsup %((5). (3.2.14) 
sSu 

Since a.s. Q z s is a nondecreasing r ight-cont inuous function of  s for rat ional  s, 
then the right side of (3.2.14) has a finite limit for all u a . s .Q .  Therefore, (all 
equalities below are true a .s .Q.)  

Q { % > t l ~ - } = a - l i m Q { G > t ] ~ }  
s$u 

= R - l i m ( Q { G  > t[ ~-f} + Q { % = t ] ~ } )  
s$u 

-- R - lim (a t + (a t_ - at) ). 
sSu 

By virtue of  2.1.A at=a t_ a.s. P for each fixed t. Consequently,  a t _ = a  ~ a.s. 
and 

Q {G > t[ ~ }  = R - l ima  t = R - lim (a~/as") = a~. (3.2.15) 
s,Lu s~u 

The last equality in (3.2.15) is due to (3.2.13). Applying r ight-continuity of a~' in 
t, we get 

Q { G > t ] o ~ } -  " " --at-u ~ t "  

Therefore, 3.2.B holds for all real s. To verify 3.2.C and 3.2.D one has to pass 
to the limit in the corresponding relations for rat ional  s and t. 
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Lemma 3.2.3. Let ~ t be the a-field in 0 generated by all random variables of the 
form g(zs) , where s <t  and g is a measurable function with support on I - o  e, t]. 
Then for each t the random variable z~ and the a-field cg t v ~tt are conditionally 
independent given x t. 

Proof. Let ~ be ~-measurable  and s 1 <s  2 < ... <Sk= t. Let gi(x)= l~ui,,,~, where 
si<=ui<vi<si+l, i=1,  2, ..., k (we assume Sk+ 1 = oe). By 3.2.B and 3.2.D 

Q {~ g~ (-c~,) g2 (~).--gk ('c~) I xr 

= Q {Q {~gl ('Csl)... gk('Ct)[ y }  ]Xt} 
= Q { ~ (c~ *, - c~).. .  (7',~ - 7'~)I x,}. (3.2.16) 

Because ~,,~* - %,~' is ~ -measurab le  and ~',~-~t~ is ~t-measurable, then by 
the Markov property for (x,, P) the right side of (3.2.16) is equal to 

2," ;', x , ;  O{Tt,,-~tv,~lxt} 

=Q ~ g~('c~)lx, Q{gk(~)lx,}. (3.2.17) 

Standard arguments show that (3.2.17) holds for all functions g~,ga, ..-,gk-~ 
with support on ] -  o% t[ and all functions gk with support on It, oo[. 

3.3. Let M'(co)={u: U=rs(e5 ) for some s} and M(co) be a closure of M'((5). 
Note that M' is closed from the right and M \ M '  consists of no more than a 
countable number of points a.s.Q. It is obvious that 

"Cs(CS)=inf{t: t>s,  teM(cS)}, a . s .Q .  (3.3.1) 

Let V be a replica of D and x' be the image in V of the point x in D. Put 

x ,  (o5)= ~x:!co! if t~M(c5) 
~xAco ) if t eM(&) .  

Lemma 3.3.1. Let G* be the universal completion of G. For  each fixed t x* is 
G*-measurable, 

Q { x , . x * } = 0  

and the finite dimensional distributions of x* ( t ,  Q) are equal to those of (xt, P). 

Proof. 1 ~ It is easy to see that z s is a stopping time with respect to the 
filtration cg~+. The set M={ t ,  cS: teM((5)} is the closure of U [ ~ z r ~ ,  where 

k 
[[Zs]] stands for the graph of z~ in Txs  By T4, Chap. 6 of [2] M is a 
measurable set in T x f2. Therefore, its t-section is a measurable set and its 
projection on f] is universal measurable (see T32, Chap. 1 of [2]). 

The third statement of the lemma is a trivial consequence of the second 
one. To prove the second one it is enough to show that for any fixed t 

Q { t a M } = O .  
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Fix t e T. If  t ~ M'  then either vt = t or % = t for some ra t ional  s < t. Due  to the 
condi t ion 2.1.A for each fixed t 

0 = T t_ 1 (x) - T t 1 (x) 

= l i m  P ~ { x ~  D} - P ~ { x t ~ D  } 
sSt  

= V x  {O;t_  - -  ~zt} . 

Consequent ly ,  P~ {Tt- - c~t} = 0 and 

Q { % = s +  t} = Q {Q {lt+~(%)[~}} = P {P~,{~,_ - ~,}}. 

Similarly, applying 3.2./~, we get 

Q { z t =  t } = P {iim c~t~ =# 1}=0 .  
uSt  

Therefore,  Q {t ~ M'} = O. 

2 ~ If t ~ M \ M '  then r ~ < t  a.s. Q for each ra t ional  s < t  and vice versa. By 
3.2.B 

Q { z s < t  } = P { 1  - c~7}. 

Therefore,  

Q {% < t for each ra t ional  s < t} < P {R - lim ~ 4:1}. (3.3.2) 
s"C t 

un-t" _ u Since P is a s ta t ionary  measure  and  %§ then the right side of 
(3.3.2) does not  depend on t. Apply ing  the Fubini  theorem,  we get 

1 {i } Q { t E M \ M ' } = ~ Q { s ~ M \ M ' } d s = Q  l s ( M \ M ' ) d s  = 0 .  
o 

L e m m a  3.3.2. The subprocess in D of  the process * (xt ,  Q) is equal to (w(s), P). 

Proof. It  is enough to consider the f ini te-dimensional  dis t r ibut ion of the sub- 
process, that  is the expressions 

Q{x~  E F  1, x*2e F 2, ..., x* e r, ,  It1, t,] ~ M = O } ,  

t l < t 2 < . . . < t , ;  F1,F 2 . . . . .  F, c D .  (3.3.3) 

Put  A i =  {xt, eFi}, i= 1, 2, ..., n. By (3.3.1) the expression (3.3.3) equals 

Q { A 1 A 2 . . . A  ., z t l > t , } = Q { Q { A I . . . A  ., v,, > t . l g } } .  (3.3.4) 

By 3.2.B the expression (3.3.4) equals 

Q{la~...A cdtl} =P{1A~ ,~ t2 , ,-  . 0 5 t 2 1 A 2 0 ~ t 3 . . .  1A,~ l ~ t ,  t IA,} (3.3.5) 

We know that  ~, is ~-~/x ~ - m e a s u r a b l e .  Therefore,  we may  apply  the M a r k o v  
p roper ty  to the right side of  (3.3.5). Doing  so, we get 

Q {A 1 . . . . .  A,, ~,~ > t,} = {P {1A1 cdt~ ... 1A. ~ (p(X~._)}, 
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where 

(p(x) =P,{lr~(xt~ ) et~-t~ ~} =p(t, - t , _ l ,  x; F,), 

Repeating this argument ( n - 1 )  times, we get 

Q { A 1 ,  A 2 . . . .  , A,, ztl >t~} 

-- ~ v (dXl )P( t2-q ,x l ;dx2)  ~ P(t3-t2,  x2;dx3)... ~ P(t,-t ,-1,x,-1;F~,),  
Ft F2 Fn 1 

and that is the finite dimensional distribution of (w(s), P). 
Lemma 3.3.2 completes the proof of Theorem 3.3.1. 

3.4. Suppose that Tt and ~', are two semigroups which are enhancing of T t. Let 
/7 and/3 be the transition functions of these semigroups. By virtue of Theorem 
3.3.1 it is possible to construct Markov processes (y,, 0 )  and (fit, 0 )  in D + V in 
such a way that the one-dimensional distribution of (Yt, 0 )  (of (Yt, 0)) is 
concentrated on D and is equal to v and the transition function of (Yt, 0 )  (of 
@t, 0)) is equal to/5 (to p); and both (Yt, 0 )  and (33,, 1)) are covering processes 
for (w(s), P). 

By Theorem 2 of [11] the finite-dimensional distributions of (Yt, 0 )  coincide 
with those of 0~,, Q). Therefore, for F1, F 2 c D and t e r 

Consequently 

j" u(dx)p(t, x; r:)= j ~(dx)p(t, x; v~). 
F1 F1 

(3.4.1) 

p(t, x; F2)=/~(t, x; F2) for v-a.e.x. (3.4.2) 

Standard arguments show that (3.4.2) is true for all F e D  and for all t e  T a.s. 
V. 

It is necessary to mention that in our situation not all the conditions of 
Theorem 2 of [11] hold. The set M does not satisfy 5.1.A of [11], i.e., it is not 
progressive measurable with respect to the filtrations generated by the process 
X* ( , ,  Q). Nevertheless, if we replace 5.1.A of [11] by the condition 3.4.A below 

all the proofs remain the same without any changes. 

3.4.A. For  any g-measurable  random variable {, any k, and any functions 
f l , f 2  . . . . .  fk on T with support on ] - 0 %  t[ and any s l < s l < . . . < s  k the ran- 
dom variable {fl('Cs,)fe(%2)...fk(rsk) and the random variable zt are con- 
ditionally independent, given x*. 

In our situation 3.4.A is an immediate consequence of Lemma 3.2.3 and 
Lemma 3.3.1. 

The following example shows that we can not prove that Tt in Theorem 2 is 
unique everywhere (not up to the measure v). 

Let D 1 be a Borel space and T~ 1) be a semigroup such that there exist at 
least two semigroups Rt ~ and R~, R ~. + R .  2 and both semigroups are enhancing 
of T, ~ (The example of such semigroup T (1) was  given in Sect. 1.3 of paper 
[11].) Let D 2 be another Borel space and T} 2) be a semigroup on D 2. Put D 
=Da wD 2 and consider a semigroup T t on D defined 

T J ( x )  = 1D, (x) T}I)(f l D1) (x) + 1D2(x) T}2)(f l D~) (X). 
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W e  wr i te  Tt=T}I)AvT} 2). It is easy to see tha t  if  7 is a m e a s u r e  on  D 2 which  is 

excess ive  wi th  respec t  to T} 2) t h e n  the  m e a s u r e  v o n  D de f ined  

v(r)  = v ( r  n D2) 

is excess ive  wi th  r e spec t  to T t. M o r e o v e r ,  if  7 is ex t r eme ,  t h e n  so is v. L e t  R t be  
a s e m i g r o u p  o n  D 2 w h i c h  e n h a n c e s  ~(2) a n d  p rese rves  ~. P u t  ~ '  T~ = Re + R~ and  

~i't"= Rt 2 + R r T h e n  b o t h  1"~ a n d  ~i'~' a re  e n h a n c i n g  of  T~ a n d  v is an  i n v a r i a n t  

m e a s u r e  wi th  r e spec t  to  b o t h  ~l',' a n d  ~'~". 
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