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Summary. Let {Po:O~O}, 0 an open subset of R k, be a regular parametric 
model for a sample of n independent, identically distributed observations. 
Formulated and solved in this paper is a robust version of the classical 
multi-sided hypothesis testing problem concerning 0, or a subvector of 0. In 
the robust testing problem, the usual parametric null hypothesis and alter- 
natives are both replaced with larger, more realistic, sets of possible distri- 
butions for each observation. These sets, defined in terms of a Hellinger 
metric projection of the actual distribution onto a subspace associated with 
the parametric null hypothesis, are required to shrink as sample size in- 
creases, so as to avoid trivial asymptotics. One construction of an asymp- 
totically minimax test for the robust testing problem is based upon the 
robust estimate of 0 developed in Beran (1979); another construction amounts 
to an adaptively modified C(c 0 test. 

1. Introduction 

Robust testing, in parametric models, of simple or composite hypotheses versus 
composite alternatives is the theme of this paper. Classical procedures for such 
testing problems include generalized likelihood ratio tests, C(e) tests, and tests 
based on quadratic forms in parameter estimates. Large sample optimality 
within the parametric model is the justification for these tests. 

Fundamental goals in robust testing are controlling level under small, 
arbitrary departures from the parametric null hypothesis, and retaining good 
power under small, arbitrary departures from specified parametric alternatives. 
The classical tests need not be robust in this sense. Both the power and, 
contrary to common belief, the level of the one-sample two-sided t-test can be 
severely distorted by small departures from normality. On the other hand, the 
chi-square goodness-of-fit test in a multinomial model is robust, within the 
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framework of this paper, provided the critical value of the test is adjusted to 
control level under small departures from the null hypothesis. Both of these 
assertions are justified in Sect. 4 of this paper. 

The theory of robust testing developed here parallels the asymptotic mi- 
nimax approach to robust estimation taken in Beran (1979). As in earlier work 
in robust testing (such as Huber (1965), Huber-Carol (1970), Huber and 
Strassen (1973), Rieder (1978), Wang (1979)), the customary parametric hy- 
potheses are replaced by larger, more realistic sets of possible distributions for 
each observation. To avoid trivial limiting power, these sets are required to 
shrink as sample size increases. Unlike the authors cited above, we specify the 
sets in terms of a projection of the actual distribution onto a subspace as- 
sociated with the parametric null hypothesis. This formulation proves advan- 
tageous, intuitively and technically, in treating testing problems that involve 
nuisance parameters. Plausible modifications of C(e) tests and of the classical 
estimate-based tests turn out to be asymptotically minimax for the enlarged 
robust testing problem. 

Throughout the paper, distances between probabilities are measured in the 
Hellinger metric and the projection mentioned in the previous paragraph is 
performed in a related Hilbert space. Other choices of Hilbert space might be 
made in formulating and solving the robust testing problem; the answers 
obtained would depend on this choice (cf. Millar (1979), who explores some 
alternative Hilbert spaces for robust estimation). Even for finite sample spaces, 
different metrics on probabilities determine different contamination models. A 
distinctive and attractive consequence of the Hellinger metric formulation: 
least favorable distributions for the enlarged robust testing problem may be 
found within the original parametric family; thus, the asymptotic minimax 
criterion is not too pessimistic. Other issues in the choice of contamination 
model for robustness studies have been discussed by Hampel (1971), Bickel 
(1978), Beran (1981), and Millar (1981). None of the discussions seems de- 
finitive to us. 

Section2 establishes an asymptotic upper bound on the power of every 
level e test in the formal robust testing problem. Attainability of the upper 
bound is demonstrated in Sect. 3 through two constructions of asymptotically 
minimax robust tests. Several examples of robust and non-robust tests in 
familiar models are considered in Sect. 4. 

2. Asymptotic Minimax Bounds 

As in the estimation paper, Beran (1981), let H be the set of elements ~(dP) 1/2, 
where P is a probability on a Euclidean space Y" with Borel sets N, and ~ is a 
random variable in Lz(P ). Suppose ~(dP) 1/2 and rl(dQ) 1/2 a r e  elements of H 
and that # = 2 - 1 ( P +  Q). Define the inner product 

(dp x 2 (dQ ,J2 
(~(dp)l/2, tl(dQ)l/2)=~rl ~fi#] \ ~ ]  d# (2.1) 
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and, for arbitrary real a, b, the linear combination 

[ a~(dP) l/Z +btl(dQ)l/2= 
[a~ \d~] ~d#! ] 

(d~) ~/2. (2.2) 

The corresponding norm I1" I[ on H is given by 

II ~ (d P) 1/2 [I 2 = ( ~ (d p)~/2, ~ (d p)~/2) 

= ~ 2 d p .  (2.3) 

In particular, if (dP) 1/2 denotes the element l(dP) l/z, the Hellinger distance 
between the probabilities P and Q may be defined as II(dQ)l/Z-(dP)I/211. The 
elements ~(dP)l~ 2 and rl(dQ) 1/2 are called equivalent if I[~(dp)a/2-tl(dQ)l/2]l 
=0. The set H of equivalence classes in H forms a Hilbert space with the 
above inner product and norm. 

Suppose ~=(~1,~-2,...,~k)' is a random vector whose components lie in 
Lz(P ). Then ~(dP) 1/2 designates the vector (~l(dP) 1/2, ~z(dP) 1/2, ..., ~k(dp)l/2) ' 
and II~(dp)I/zH2 means ~[~[2dp. Similarly, if tl(dQ) 1/z belongs to H, (~(dP) 1/2, 
rl(dQ) 1/2) denotes the column vector of componentwise inner products. 

Let {P0"=P0 x P 0 x . . . x P  0 n-times: 0eO} be the parametric model for a 
sample of size n. The {P0' 0e O} are assumed to satisfy the following regularity 
conditions: The parameter space O is an open subset of R k. The mapping 0 ~ P  0 
has the property that 

(i) for every 0cO, there exists rlo~Lk2(Po) such that 

lira [ t] -~ 11 (dP0 +~)1/2 _ (dPo)l/2 _ t' rlo(dPo) ~/21[ = 0; (2.4) 
t~0 

(ii) for every 0E O, the Fisher information matrix 

I(0) = 4 ~rlorfodP o (2.5) 
is non-singular. 

It is evident that the quadratic mean derivative r/0 is unique, up to equiva- 
lence in Lk2(P0), and that ~rlodPo=O. 

Fix 0oeO. Let M be the subspace of H which is spanned by the com- 
ponents of tloo(dPoo) ~/2 and let ~M be the orthogonal projection which maps t~ 
into M. The subspace M is the tangent space to the parametric model (re- 
garded as the set of elements {(dP0) ~/2" 0~O} at the point (dP0o) ~/2. Suppose the 
column vectors 0 and t/0 are partitioned into two subvectors of dimensions k~ 
and k 2 respectively: 0' = (0'1, 02) and /~0=(/~;,1,~/;,2). Let M 2 be the subspace of 
/7 which is spanned by the components of ~Oo,2(dPoo) ~/2 and let M,  be the 
orthocomplement in M of M 2. 

Consider the following testing problem: The distribution of the sample of 
size is Q" = Q x Q x ... x Q n-times. The null hypothesis regarding Q is 

H,: IlgM,((dQ)l/2-(dPoo)l/2)ll <=n-1/2a, 

II(dQ) ~/2- (dPoo)1/2 II ~ n -a/2 c; (2.6) 
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the alternative is 

g . :  1[Tcm ((dQ31/2-(dPooU2)ll >=n-1/2b, 
II(dQ) 1/2 - (d P0o) 1/2 II ~ n-1/2 c (2.7) 

where 0__< a < b < c < 00. This problem is a robust version of the classical testing 
problem: 01 =00,1 versus 01 +00,1, the subvector 02 being regarded as nuisance 
parameters. If no nuisance parameters exist, M 1 coincides with M. 

The common requirement in H,  and K,, that (dQ) 1/2 lie within a Hellinger 
ball of radius n-1/2c about (dPoo) 1/2 serves two technical purposes: keeping the 
product measures Q" and P# from separating in the Hellinger metric, so as to 0o 
allow non-trivial asymptotic power calculations; and providing sufficient com- 
pactness for minimax considerations. The hypothesis H, further asserts that the 
portion of Q which resembles a member of the parametric family {P0: 0~O} is 
near P0o; distance is measured in the subspace M1, which ignores variations in 
the nuisance parameter 02. The alternative K n asserts that the portion of Q 
which resembles a member of the parametric family is bounded away from P0o, 
distance still being measured in M 1. 

The power of every level e test for H ,  versus K,  is subject to the asymp- 
totic upper bound established in Theorem 1 below. Let d~(k;r) be the upper 
point of the noncentral chi-square distribution with k degrees of freedom and 
noncentrality parameter r. Let fl~(k;r,s) denote the probability that a random 
variable with noncentral chi-square distribution, k degrees of freedom and 
noncentrality parameter s, exceeds d~(k;r). 

Theorem 1. I f  {r n>__ 1} is any sequence of tests such that 

lim sup sup EO. [r < c~ (2.8) 
n Q ~ H .  

then 
lira sup inf Ee, [~,n(x)] < fl,(k I ; 4a 2, 4b2). (2.9) 

n QsKn 

To prove Theorem 1, consider first the following simpler parametric testing 
problem. The distribution of the sample of size n is P# where hffR k. O0+n- 1/2h~ 

The null hypothesis regarding h is 

H*: 4 II~M, (h' rloo(dPoo)l/2)ll 2 <r, 

4 Iln~h(h'rloo(dPoo)l/2)ll 2 =u;  (2.10) 

the alternative is 

K*: 4 [[rcM, (h' tloo(dPoo)x/2)H 2 =s, 

4 [[TCMz(h'tloo(dPoo)l/2)H 2 =u (2.11) 

where 0 _< r < s < oo and u __> 0. The following asymptotic minimax bound is well- 
known for the special case M I = M  (c.f. H~jek and Sidfik (1967), LeCam 
(1972)). 



Efficient Robust Tests in Parametric Models 77 

Propos i t ion  1. I f  {~,; n=> 1} is any sequence of  tests such that 

lira sup sup EQ. [0~(x)] < c~ 
n QEH* 

then 

(2.12) 

lim sup inf Ee, [0 ,  (x)] < fl~(k 1 ; r, s). (2.13) 

Proof. Suppose not. Then, there exists a test sequence {0n} and ~ > 0  such that 

lira sup sup EQ~ [0,(x)] < 
n Q~H* 

lim sup inf EOn [0,(x)] = fl~(k 1 ; r, s) + 2 e. (2.14) 
. Q~K* 

By going to a subsequence, we may assume without loss of generality that 

lim sup sup Ee, [0,(x)] < c~ 
. O~u*. 

inf Eo, [0 .  (x)] = fi~(k 1 ;r, s)+ e (2.15) 

for every n => 1. 
For j =  1, 2, choose pj so that the components of p3(dPoo) 1/2 are orthonor- 

real and span the subspace M~. Then, there exists a k;dimensional column 
vector t 2 such that rcuj (h' rlo ~ (d Poo) 1/2) = 2-1 t} P i(d P0o) 1/2 ; thus the length of this 
projection is 2-1[tjI. Let P=(P'I,P2)', t=(t'~,t'2) and write 0, for Oo+n 1/2h. 
The log-likelihood ratio of Po". relative to P'"0o is defined, up to a Po"o-null set, by 

[dPoo,c ] 
L"(On' 0~ ~ log k dP0 o (x,) , (2.16) 

where P0,,~ denotes the part of P0n which is absolutely continuous with respect 
p,, to P0o. Under { 0o}, the following expansion holds for L,(O,, 0o) because of 

assumption (2.4) on the parametric model (see LeCam (1969)): 

L,(O., Oo)= 2n -1/2 ~, h' tloo(Xi)- 2Nh' rloo(dPoo)l/2[12-t-Op(1) 
i = 1  

= t ' Z  - 2 -1 Itl2 +op(1), (2.17) 

where Z , = n  1/2 ~ p(xi). 
i = 1  

It is evident that the sequence {(0,, Z,); n>  1} is tight under {P0~o}. By going 
to a subsequence, we can assume that {(0,, Z,)} converges weakly to (0, Z), 
where Z has a standard normal distribution on R k and 0 has range I-0, 1]. For 
every h ~ K*, 

1--fi~(kl;r , s)--e_>_ lim infEo~ [1 --0hi 
n 

__> lim infEoo [(1 - 0,) exp (L,)] 

>Eo, z [ ( 1 - 0 )  exp( t ' Z - 2 - 1  It12)] 
= E z [(1 - 0o (Z)) exp (t' Z -  2 - 1 I tl 2)1 
= 1 - E 1-0 o ( Z  + t ) ] ,  ( 2 .18 )  
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where tpo(Z)=E[OlZ ] is also a test. A similar argument shows that, for every 
hell*, 

c~ > lira sup Eo, [tb,(x)] 
t l  

> lira infE0, [O,(x)] 
n 

> Ez [~o (Z) exp (t' Z - 2-1 [t[2)] 

= E [~'o (Z + t)]. (2.19) 

The inequalities (2.18) and (2.19) imply the following conclusion: there 
exists a test ~'o such that E[Oo(Z+t)]<e for every tE{t: lh l2<r ,  ltzlZ=u} and 
E[Oo(Z+t)]~=(k,;r  , s)+e for every re{t: )112=s, It212=u}. But this is false, 
because the infimum power of every level c~ test tbr this problem cannot exceed 
~(k~;r,s). (This fact is a consequence of the Hunt-Stein theorem. A closely 
related example appears on p. 338 of Lehmann (1959)). The contradiction 
completes the proof of Proposition 1. 

Proof of Theorem 1. Choose e > 0  small enough that e<min(4aZ, 2c2-2b2). 
Set r=4a2-e ,  s = 4 b Z + e  and u = 4 c a - 4 b 2 - 2 e .  The quadratic mean differen- 
tiability assumption (2.4) implies that, for every compact set C in R k, 

lim sup ntl rc m ((d P0,Y/2 _ (d P0o)~/2)il 2 
n--*Oo h e C  

= sup II ~zMj (h' r]oo (d Poo) ~/2) II 2. (2.20) 
h e C  

Thus, there exists no(e) such that for every n>no(E ), {P0,: h e H * } c H ,  and 
{P0,: h c K * } c K , .  

Every sequence of tests {0,} which satisfies (2.8) necessarily satisfies (2.12) 
as well. By Proposition 1, 

lira sup inf EQ, [0,(x)] < lim sup inf EQ, [0,(x)] 
n Q e K n  n Q ~ K *  

<fi~(kl; 4a2-e,  4b2 +~). (2.21) 

Letting e tend to zero completes the argument. 

3. Constructing Asymptotic Minimax Tests 

It is not immediately clear, from the proof of Theorem 1, whether the asymp- 
totic bound on infimum power is actually attained by some test sequences. 
Under slightly stronger assumptions on the parametric model, the answer is 
affirmative. 

Theorem2. In addition to the assumptions for Theorem I, suppose that the 
mapping O~P o is one-to-one. Then, for every c~e(0, 1) and every 0o~0, there 
exists a sequence of robust tests {q)~; n >  1} such that 

lim sup Ee, Ecpn(x)]=c~ (3.1) 
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and 
lira inf EQ.[q~.(x)] =fi~(k~; 4a e, 4b2). (3.2) 
n ~ c ~  Q e K n  

Theorem 2 will be proved by giving two possible constructions for the 
asymptotically minimax robust tests {~o.}. To be avoided here are the trivial 
non-robust tests which satisfy (3.1) and (3.2) by confounding sample size with 
the distance between Q~K,  and P0o. A similar phenomenon in robust esti- 
mation has been discussed in Beran (1981). 

Suppose {Q,; n_>l} is any sequence of probabilities on (SF, M) such that 
{n 1/2 ((dQn) 1/2- (dP0)l/2); n ~ 1} converges weakly to an element in H. Under the 
assumptions of Theorem 2, there exist estimates {0"; n>  1} such that, for every 
0E O, the distributions of {nl/2(0"-0); n > l }  under {Q~} are tight. A discre- 
tized version ft, of 0* is defined as follows: Let d be an arbitrary positive 
constant. Cover the parameter space O c R  ~ with disjoint semi-closed hyper- 
cubes of side length n-1/2d. Set 0~ equal to the center of the hypercube which 
contains 0". Evidently, {nl/2(On--0); n > l }  is also tight under {Q~} for every 
0 e O. For a general construction of 0* with the desired properties, see LeCam 
(1969), pp. 104-107. 

Separability, of O and quadratic mean continuity of P0 as a function of 0 
ensure the existence of a probability # on (Sf, B) such that P0~# for every 
0e  O. Let Po be the density of P0 with respect to #. Let {eg; l__<i<k} be the 
usual orthonormal basis for Rk; ea is a k-dimensional column vector whose j th  
component is 1 and whose other components are 0. For x e 5F and 0 e O, define 

[ ~ n I/~(p;~/2(x)p~._.~`,(x)- 1) ej 
,,~ o)= { ;  =~ 

If the model {P0: 0c  O} is such that 

if Po(X) > 0 
(3.3) 

if po(x)=O 

it is possible, in what follows, to use ~/0 rather than r/,(-, 0) (c.f. Beran (1981)). 
c*' * is a function of Let { , ,  n >  1} be positive, real-valued statistics such that c, 

the sample (x l , x z , . . . , x , )  and {nl/4-ac*,} is tight under {Q,"} for some 
c5 ~ (0, 1/4). One possible nontrivial choice is 

c~ = ~ [sup I Po(x)-  &(x)I]  1/2 -2~, (3.5) 
x 

where 2>0 ,  /V is the empirical c.d.f, of the sample, and F 0 is the c.d.f, of Po- 
Discretize c, as follows. Let v be an arbitrary positive constant. Starting with 
the origin as an endpoint, cover the positive real axis with disjoint, semiclosed 
intervals of length n-~/4+av. Set ~, equal to the center of the interval which 
contains c*. Tightness of 1/4-a , {n c,} under {Q~,} implies tightness of {nl/4-Q,}. 
Note that ~,>=2-1n-t/4+~v. 

Let m be an absolutely continuous function mapping R + into [0, 1] such 
that m(0)= 1, sup [xm(x)] < oo and the derivative rn' is bounded. For instance, 

x 

lira tlrlo+t(dPo+t)l/2-~lo(dPo)l/2il =0 ,  (3.4) 
t~O 
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re(x) = min { 1, x 1 }; or re(x) = x -  1 sin (x); or m(x) = max ((1 - x2), 0). Define the 
random window w. by 

w.(x ; x, , x2, ..., x.)=m(~n[tln(x , O.) D. (3.6) 

For brevity, we will write wn(x), suppressing the dependence upon the sample. 
Let ~n(', fin) be a weighted and recentered version of t/n(', ft.), defined as 
follows: 

~.(x, On)= {t/,,(x, ~ ) - [ ~ w . ( t ) d P j - s  ftl.(t ' On)wn(t)deO. } wn(x). (3.7) 

Partition k-vectors and k x k matrices according to the dimensions kt, k 2 
of the subspaces Ms, M 2. In particular, 0=(0],  0~)', where O~ is k i x 1, and 
I(0) = {Iis(O)}, where l~s(O ) is k i x k s. Let 

I~ 1,2 (0) = 111 (0) - 112 (0) I ~-1 (0) I 21 (0) (3.8) 
and let 

t/0,1.2 = t/0, s - 112 (0) 12 -1 (0) t/0 ' 2. (3.9) 

Estimates Test. Suppose {Q,; n_>__l} is any sequence of probabilities on (So, N) 
such that {nl/2((dQ)l/Z-(dPoo)1/2)} converges weakly to an element ~(dR) 1/2 in 
H. There exist asymptotically minimax estimates {Tn} such that the limiting 
distribution of {ns/a(T,-Oo); n>=l} under {Q~} is normal with mean 
41-1(Oo)(tloo(dPoo) s/z, ~(dR) 1/2) and covariance matrix I-S(Oo), for every possi- 
ble choice of ~(dR) 1/2 in H. One construction of such {T,} is 

Tn=O~.+2n-lI;S(O".) ~ r ~),  (3.10) 
i = l  

where I.(6.)= f ~.(x, 0\)~'n(x, g.)de0. (Proposition 1 in Beran (1981)). Define (Pn 
as the test which rejects H.  if 

n(T.,,-Oo,1)'I.,ll.2(~n)(T.,1-Oo,1)>d~(kl" 4a2). (3.11) 

Here In,~l.2(g.) is defined by analogy with (3.8) and .T.,1 is the first k 1 com- 
ponents in Tn. 

Scores Test. Let 0. be the random vector obtained by replacing the first k 1 
components of g. with the first k s components of 0 o. Let 

Z.(On)=2n -~/2 ~ ~n(xi, On) 
i = S  

and let 
z . , I . e ( O . ) = z . ,  - - - 1  - 0 s (O.)-- In, 12(O.) l . , :2(O.)  Zn , : (  .). (3.12) 

Define (Pn as the test which rejects H n if 

! - - 1  Zn, 1.2(0,)I,,i s.z(0n)Zn, 1.2(0,) > d~(k~ ; 4a2). (3.13) 

These two tests are robust modifications of, respectively, the usual estimates 
test and Neyman's (1959) C(~)-test. As is proved below, both tests satisfy (3.1) 
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and (3.2) under the assumptions of Theorem 2. In place of I,(O,) or In(0n) , it is 

possible to use Jn(0"n)=n-~ ~ ~n(Xi, Gn)~',(X~,6n) or the analogously defined 
i = 1  

J,(On). If I(O) is continuous in 0, both I(0",) or I(On) will also serve. The local 
asymptotic analysis carried out in this paper is unable to discriminate among 
these matrix estimates. 

Proof of Theorem 2. Consider first the scores test. Let {Q,; n > l }  be any 
sequence of probabilities on (&r,N) such that {nl/2((dQ,)l/Z-(dPoo)1/2); n > l }  
converges weakly to an element ((dR) 1/2 in H. By the argument for Proposi- 
tion 1 in Beran (1981), the limiting distribution of {Zn(On)+I(Oo)nl/2(O,-Oo); 
n > l }  under {Q,~} is N(4(rloo(dPoo) 1/2, ((dR)l/2), I(0o) ). Moreover, the matrix 
In(O,) and its surrogates all converge in Q~-probability to I(0o). Thus, the 
limiting distribution of {Z,,1.2(0,); n > l }  is N(4(rlOo, l.z(dPoo) 1/2, ((dR)l/2), 
Ii1.2(0o)). It follows that the limiting distribution under {Q~} of the test statistic 
in (3.13) is noncentral chi-square with k s degrees of freedom and noncentrality 
parameter 

72 = 4 II rCM~ (((dR) 1/2) II 2. (3.14) 

To verify (3.14), recall that the subspace M z is spanned by the components of 
r]oo, z(dPoo)l/2; hence, the components of tlOo, l.2(dPoo) 1/2 form a basis for the 
subspace M~. 

Let Sn(c)= {Q: [[(dQ)l/2-(dPoo)l/2[[ ~n-1/2c}. We will show that 

lim sup ]EQ.[cG(x)] 
n ~ o o  O ES~(c)  

-[3~(kl; 4a 2, 4nll~Ml((dQ) 1/2 -(dP0o)l/2)]l 2)[ =0.  
(3.15) 

Suppose (3.15) is false. Then there exists a sequence of probabilities {Q,~S,(c); 
n>  1} such that the absolute difference on the left side of (3.15) stays bounded 
away from zero. By considering subsequences, we may assume without loss of 
generality that {nl/2((dQ,)l/Z-(dPoo)l/2)} converges weakly to an element 
((dR) 1/2 in H. Then, by the result of the preceding paragraph, 

lim EQ. [-qo.(x)] = fi~(k 1 ; 4a 2, 72) 
n ~ o o  

= lira fl~(kl;4a 2, 4nl[rcM~((dQ,)l/2-(dPoo)l/2)ll2). 
n ~ o o  

(3.16) 

The contradiction proves (3.15). 
Both {QsH,}  and {Q~K,} are subsets of S,(c). Moreover, fin is continuous, 

strictly monotone increasing in its third argument and 

lira sup n II ~M~ ((d Q)~/2 _ (dP0o)l/2)112 = a 2 ' (3.17) 
n ~ o o  Q ~ H n  

It follows, therefore, from (3.15) that 

lira sup EQ,[qgn(x)]=fl~(kl;4a 2, 4a 2) 
n ~ o o  Q e H n  

=c~. (3.18) 
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The verification of (3.2) is analogous. This completes the proof of Theorem 2 
by way of the scores test. 

Consider now the estimates test. Let {Q,; n > l }  be any sequence of proba- 
bilities on (~5,~) such that {nl/2((dQn)l/2-(dPoo)l/2); n > l }  converges weakly 
to an element {(dR) 1/2 in H. By assumption, the limiting distribution of 
{nl/Z(T,-Oo); n > l }  under {Q~} is normal with mean 4I-a(Oo)Q1oo(dPoo) 1/2, 
~(dR) 1/2) and covariance matrix I-1(0o). Hence, the limiting distribution of 
the test statistic in (3.11) is noncentral chi-square with k s degrees of freedom 
and noncentrality parameter 72, defined in (3.14). The rest of the argument 
is as before. 

4. Examples 

The four examples worked in this section illustrate the application of Theo- 
rems 1 and 2 to the normal location-scale model, the multinomial model, and 
the canonical exponential model. 

4.1 Testing Location in the Normal Model 

Suppose O is R x R  +, 0=(/~,az), and P0 is N(kt, cr2). The quadratic mean 
differentiability assumption (2.4) is satisfied with 

/ (2ry2)-l(x-/~ ) 
rl~ = \ (4 o-2) -1 [--  1 + o--2(x-- #)23] " (4.1) 

The Fisher information matrix is 

/ 2 

I(0) = I~O . (4.2) 2_1~ 

Let (Xn, S2) be the usual unbiased estimates of (/~, o-z). The two-sided t-test 
for the classical hypothesis # = 0  rejects if nl/Zs2 ~ IGI is too large. A robust 
version of this classical testing problem is given by (2.6) and (2.7), with 
0o=(0, 1), say. In this case, M 1 is the subspace spanned by 2-~x(dPoo) 1/2 while 
M 2 is the subspace spanned by 4-1(-l+xZ)(dPoo) 1/2. We will show that 0, ,  
the two-sided t-test of level e, is nonrobust in both level and power because 

lim lim inf sup Ee,[0 , (x)]  = 1 
. . . .  e~H. (4.3) 

lira l imsup inf Ea,[O,(x)]<c~. 
c ~ o o  n Q E K n  

To prove the first limit in (4.3), consider the sequence of probabil i t ies  
{Q,; n>  1} defined by 

Q =(1-(nu) - l  h)Poo +(nu)-l hA(nl/2u), (4.4) 



Efficient Robust Tests in Parametric Models 83 

where h, u are positive constants and A(0 is the unit probability supported by 
the point t. Since, 

(d Q.)1/2 = (1 - (n u ) -  1 h)1/2 (d e0o)~/2 
+ (n u) -  l /2 h l /2 (dA (nl/Z u)) 1/2 (4.5) 

by mutual singularity of A and P0o, it follows that 

~zM1 (dQ,) 1/2 = 7zu~ (dP0o)1/2 = 0 

and 

lira n [[(d Q J  /2 - (d Poo)a/21[Z= h u -1. (4.6) 
n~oo  

Thus, Q, e H,  for all sufficiently large n, provided c 2 exceeds hu-1.  
Let B be any Borel set whose boundary is a Lebesgue null-set. A standard 

weak convergence argument establishes 

lim lim Q~ [n ~/2 x ,  ~ B] = P [Z + h ~ B],  (4.7) 
U ~ 0  n~OO 

where Z is a N(0, 1) random variable. Applying Chebyshev's inequality to 
n-1 ~ x 2 and drawing on (4.7) yields 

lira lira Q'~[Is 2 -11  >El =0  (4.8) 
t t ~ 0  n~o<3 

for every e > 0. It follows from (4.7) and (4.8) that 

lira lira Q " , [ n l / 2 s ~ I f , ~ B ] = P [ Z + h ~ B ] .  (4.9) 
U ~ 0  rl~OO 

The first part of (4.3) holds because h > 0 is arbitrary in the argument above. 
The reasoning for the second part of (4.3) is based on the sequence of 

probabilities 

Qn = (1 - (nu) -1 h) Po" + (n u)-  1 hA(na/2 u), (4.10) 

where h, u are positive constants and O n = ( - n - i / Z h ,  1). In this case, 

lim n IF Trot1 ((d Q n )  1 / z  - -  (d P0o) 1/2) [12 = 4 - 1 h 2 
n~oo  

lira n [](d Q,) ~/2 - (d P0o) ~/2 [[ 2 = hu - ~ + 4-1  h. (4.11) 
n~oo  

Thus, Q , ~ K ,  for all sufficiently large n, provided c 2 exceeds hu -a + 4 - a h  and 
b 2 is less than 4-~h 2. Essentially the same argument as in the previous 
paragraph yields the result 

lim lim Q~ [-~/1/2 Sn- 1 Xn E B ]  = P [Z E B], (4.12) 
u~O tl~OO 

which implies the second part of (4.3). 
Let (/~,, ^2 a,) be a discretized robust initial estimate of (#, a 2) which has the 

tightness property required in the test constructions of Sect. 3. Many M- 
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estimates with bounded score function will serve. Note that t/0 for the normal 
model satisfies (3.4). Thus, an asymptotically minimax estimates test for lo- 
cation in the normal model is to reject H n if 

where 

n 8 -2. 77-2n, 1 >d~(l', 4a2), (4.13) 

Tn, z=fin+n -1 ~ (Xi--fin) Wn(X~). (4.14) 
i = 1  

If the function m which enters into the definition of the window w n happens to 
be m(x)=min {1, x - l } ,  or m(x)=max {(1-x2),  0}, or m(x)=x -~ sin(x), the cor- 
responding location estimates T,,. ~ are adaptive versions of estimates associated 
with the names Huber, Tukey, Andrews, respectively. 

4.2 Testing Scale in the Normal Model 

The statistical model {P0: 0~ O} is the same as in subsection 4.1. The two-sided 
2 is too large or too chi-square test for the classical hypothesis ~2= 1 rejects if s n 

small. A robust version of the problem is given by (2.6) and (2.7) with 
00=(0, 1), say. M 1 is now the subspace spanned by 4 - 1 ( - 1  +x2)(dPoo) 1/2 while 

2 M 2 is the subspace spanned by 2-1x(dPoo) 1/2. The two-sided test based on s n 
has both of the nonrobustness properties in (4.3), for the appropriately defined 
H n and K n. To prove the first limit, consider the sequence of probabilities 

Qn=(1-(nu)-lh)Poo+(2nu)-i h[A(nl/4ul/2)+A(-nl/4ul/2)]; (4.15) 

for the second limit, use the similar sequence obtained by replacing 0 o with 
0 n = ( 0 ,  1 - n - 1 / 2 h ) .  

An asymptotically minimax estimates test for scale in the normal model is 
to reject H n if 

2-1 n(T,, 2 - 1) 2 >d,(1 ; 4a2), (4.16) 

where 

and 

T.,2=a#+n -~ ~ [(x~-~n)2-a#-An]wn(x~) 
i = 1  

(4.17) 

An=[~w.(t)  dPon]-i ~ ^ 2 ^2 [(t  - # . )  - a n ] w~ (t) dPo. (4 .18)  

for 6 n = (/~., 8~). The estimate T~, 2 is an adaptive one-step M-estimate of a 2. 

4.3 Testing Goodness-of-fit in the MultinomiaI Model 

Suppose P0 is a discrete distribution supported on k +  1 points with probabili- 
k 

ties {01; l_<i_<k+l};  thus 0 k + l = l -  ~ 01 . Let 0=(01,02 . . . .  ,Ok)' and let the 
j = l  
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parameter space be the interior of the k-dimensional unit simplex. If x = ( x  (1~, 
x (21 . . . .  , x (k+~)) denotes a typical observation, then one of the components 
equals one and all the others are zero. The quadratic mean differentiability 
requirement (2.4) is fulfilled with t/0(x) = (/~(1)(x),/~(0 2) (x) ,  . . . ,  ~(0 k) (X)f and 

.~0 j~(x) = 071 x(J~ - A-1 ..(k + ~ Vk+ 1 ~ (4.19) 

The Fisher information is the matrix 

I(O)=diag {071; l <__j<k} + Ok+-11 ee', (4.20) 

where e is the k x i vector whose components all equal 1. 
For the robust testing problem induced by the classical simple hypothesis 

0 = 0o, the subspace M 1 coincides with M, which is spanned by the components 
of t/0o(dP0o) 1/2. Note that I(Oo) can be used as the matrix in the robust test 
statistic (3.11) and that the maximum likelihood estimate of 0 can serve as T,. 
Thus, T,=(T,,1, Tn, 2 ,  . . . ,  Tn, k)' with 

T,,j=n -I ~ xl j). (4.21) 
i=1  

That this choice of T, has the asymptotic behavior required in the proof of 
Theorem 2 can be verified directly in this case, because the estimate is boun- 

k 

ded. Define T,, k + 1 = 1 - ~ T,, j. The asymptotically minimax estimates test (3.11) 
1 

reduces, in the present situation, to the following procedure: reject H,  if 

k + l  

n ~ Og,}(T,,j-Ood)2>d~(k; 4a2). (4.22) 
j = l  

Only the choice of the critical value distinguishes this robust test from the 
usual chi-square goodness-of-fit test. The purpose of the larger critical value is 
to control level under small departures from the classical null hypothesis. 

4.4 Testing in the Canonical Exponential Family 

Let # be a a-finite measure on (X,N) and let h(x)=(hl(x), h;(x), ..., hk(X))' be a 
Borel measurable function mapping ~r into R k. Let r(x)=(hl(x), hi(x), ..., 
hk(X), 1)' and suppose the functions {hj} are such that S(a'r(x))2d#>O for every 
nonzero column vector a~R k. The canonical exponential family {P0: 0~O} 
generated by # and h has densities 

de0 
d ~  ( x ) =  exp [O'h (x)- c(O)], (4.23) 

where 0 is a column vector in R k, c(O) is the density normalizing constant, and 
O =in t  {0 ~ Rk: exp(c(0))< oo}. This parametric model satisfies (2.4) with ~o(X) 
=2-1[h(x) -Eoh(x)]  and information matrix l(O)=Covoh(x ). The mapping 
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0 ~ P  0 is one-to one (c.f. Berk (1972)). Thus, asymptotically minimax robust tests 
for simple and composite classical hypotheses regarding 0 can be constructed 
as in Theorem 2. Some simplifications occur because t/0 satisfies (3.4) and I(0) 
is continuous on O. If the exponential family basis h(x) is bounded over ~r, the 
maximum likelihood estimate of 0 will serve as T, or as 0* in the two test 
constructions. When h(x) is not bounded, there exist robust modifications of 
the maximum likelihood estimate which can be used as 0". For justification of 
the last two assertions, see Sect. 4 of Beran (1981). 
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