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Summary. Two results concerning the local conditional distributions of a 
stationary measure for a spin flip process with strictly positive and con- 
tinuous rates are obtained: 1) The local conditional distributions and the 
rates of the reversed process determine each other. 2) Either all shift 
invariant stationary measures are Gibbs with the same potential or no shift 
invariant stationary Gibbs measure exist. 

O. Introduction 

Consider a countable set of particles located on the lattice ~gd, each particle 
having a spin which is pointing either up or down. The configuration space of 
this particle system is E = { _ + I , - 1 }  zd. We let the system evolve in time 
according to the following rule: If at time t the configuration of the system is 
~/eE, then during the time interval It, t+dt] the particle at i changes its spin 
with probability ci(rl)dt independently of the other particles. The interaction 
comes in only through the dependence of the flip rate ci(rl) on the values r/j, j 
4:i. The central question is the behaviour of such a process for large times. 
Infinite spin systems are only one possible application of these processes. For  
instance, if we interpret ~h = + 1 ( -  1) as the site i being occupied (empty), they 
have a natural interpretation as birth-death processes and can be used for 
various biological models. However, we stick here to the spin-flip interpre- 
tation because our notations corresponds intuitively to this picture. Introduc- 
tions to these processes are given in Liggett [15] and Durrett  [3], for appli- 
cations see also the papers in Dobrushin et al. [1]. 

In contrast to finite systems there is in general more than one stationary 
measure for these processes even if all rates c~ are bounded away from zero. In 
the known examples, this non-uniqueness is closely related with the phenome- 
non of phase transition for Gibbs measures (see e.g. Preston [17]). To a given 
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interaction potential, one can construct rates c i such that all Gibbs measures 
are stationary for the corresponding process. Since there are examples with 
more than one Gibbs measure, we immediately obtain examples where the 
stationary measure is not unique. A natural question is then if for these 
processes there are other stationary measures than the Gibbs measures. It has 
been proved that this is not the case if the dimension of the lattice is less than 
three (Holley-Stroock [10]) or if we restrict ourselves to shift invariant mea- 
sures (Holley [8]). By the definition of Gibbs measures, this means that the 
local conditional distributions of a single spin given all other spins are the 
same for all stationary measures. 

However, the processes which are constructed from a given interaction 
potential, are of a special type: the Gibbs measures are not only stationary, but 
even reversible. Clearly, there are many processes having no reversible mea- 
sures at all, but we conjecture that a similar statement about the local con- 
ditional distributions of stationary measures holds for general processes with 
strictly positive and smooth flip rates c i. In this paper we give some results 
which indicate why we believe in this conjecture. Our main result is the 
following: If there exists a shift invariant stationary measure which is Gibbs for 
some interaction potential, then any other shift invariant stationary measure is 
necessarily also Gibbs with the same interaction potential (Corollary 4.2). This 
result is obtained from a generalization of the free energy technique of Holley 
[8]. We first derive an equation which is satisfied by the local conditional 
distributions of a stationary measure (Theorem 3.1), and with this equation we 
can show that the derivative of the free energy is negative also in non re- 
versible situations. In Sect. 2 we show that the local conditional distributions of 
a stationary measure and the flip rates of the reversed process determine each 
other. Our conjecture is therefore equivalent to the statement that all sta- 
tionary measures have the same time reversal. 

Compared with the reversible case, our results are weaker in three points: 
First, we do not know if in general all Gibbs measures with the same potential 
are stationary provided one of them is. For  the proof of such a statement we 
need that the mixing coefficients decay quickly for extremal Gibbs measures 
(Theorem 3.3). Second, we could not prove in general the existence of a 
stationary Gibbs measure although this is very likely to hold. In view of 
Sect. 2, a stationary measure which is not Gibbs must have a peculiar time 
reversal, and in Sect. 5 we give at least a formal power series for the interaction 
potential of a stationary Gibbs measure. Finally, we have no result about those 
stationary measures which are not shift invariant, see the comment  at the end 
of Sect. 4. Nevertheless, since it is much more difficult to get a description of 
the non reversible stationary measures, we think that our results are valuable 
for the understanding of the non-ergodicity of Markov processes on infinite 
product spaces. 

1. Notations and Definitions 

Elements of E =  { + 1, - 1 }  zd are denoted by ~ or ~. r/i is the value of 17 at i, and 
Xi: E - ~ { - 1 ,  +1} is the i-th projection r /~ r  h. We introduce the a-fields 8 
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=a(Xi ,  i~Zd), gv=a(Xi, ieV) and dv=a(Xi, ir The symbol V always 
means a finite subset of Z d, including the empty set. We give { + 1 , -  1} the 
discrete topology and E the resulting product topology, gb denotes the set of 
bounded measurable functions on E and cg the set of continuous functions with 
the supremum norm [If[I =sup If(t/)]. The set cg 0 of functions depending only 

t/ 

on finitely many r h is dense in cal. 
The processes described intuitively in the introduction are Markov pro- 

cesses on E whose generator 5O is given for functions fecg 0 by 

5of('l) = ~ qOl) V~ f(~). (1.1) 

Here Vif(rl)=f(irl)-fO1) and it/is obtained from , /by  changing the spin at i. If 
the flip rates cie(g, c~ > 0 satisfy Liggett's condition 

s u p ~  II V~ci[I <oo ,  sup IIc, II < ~ ,  (1.2) 
i k i 

then the closure of (5 ~ (go) is the generator of a Feller semigroup P~, see Liggett 
L15], I.l.2. Since E is compact, the set of stationary measures ~r {#, #t = #  for all 
t} where yfd#t= yPtf 'd# is never empty�9 Moreover # e J  iff .15of.d#=O for 
all f ~ 0 .  

A different way of constructing a process with given flip rates goes via the 
martingale problem, see Holley-Stroock [9]�9 In this approach the existence 
becomes easy for continuous rates, but the real problem is uniqueness which 
does not always hold. Gray-Griffeath [6] gave an example where uniqueness 

holds though (so,(g0) is not the generator of a semigroup, but the general 
conditions needed for uniqueness of a solution of the martingale problem also 

assure that (~,(go) generates a Feller semigroup. For this reason and because 
(1.2) is sufficient for our purpose here, we will not use the martingale problem 
except at one place, in Proposition 2�9 

i If # is a probability measure on (E, g), its local conditional distributions p, 
are defined as 

pi, (,7) -- # [ x , - - ' h  143 (,7). (1.3) 

Different #'s can have the same local conditional distributions; then we say 
that phase transition occurs. Usually not # is given, but a family of conditional 
distributions pi, and one looks for those # whose local conditional distributions 
are equal to ft. The set of these probability measures is denoted by N(p). In 
most cases, the pl are of the Gibbsian form 

piO1)/pi(irl ) = e x p ( -  2 ~ Jv Xv(rl)) (1.4) 
V~i 

where 7~v(t/)--I~t/i, and the so-called interaction potential (Jr) satisfies 
ieV 

IJvl < oc. Since pi(tl)+Pi(iq)= 1, (1.4) determines the pi uniquely. If N(p) is not 
v~ i 
empty, the pi must satisfy the following consistency condition 

�9 .p l  pi P'(rl)/pi(irl) Pk(irl)/pk(kitl)=pk(rl)/Pk(krl) (krl)/ (M/), (1.5) 
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see e.g. Preston [17], Sect. 5. Gibbsian condit ional  distributions satisfy (1.5) 
automatically,  and as a converse it can be shown that  consistent condit ional  
distributions are of the Gibbsian type if they are strictly positive and 
log(pi(~l)/pi(itl)) has an absolutely convergent  Four ier  series: 

15 l~ Xv(tl) d2(tl)l < 0% 
V 

where 2 is the Bernoulli  measure with parameter  1/2. With a weaker sum- 
mability condit ion of the potential,  even the continuity of p~(.) is sufficient, see 
Sullivan [20]. So the Gibbsian form of local condit ional  distributions is a 
rather  weak condition, but  it is difficult to check it. # is called a Gibbs measure 
if its local condit ional  distributions are Gibbsian with some interact ion poten- 
tial. Finally, we say in analogy to (1.4) that  flip rates are of the Gibbsian type 
if 

ci(t/) = e x p ( ~  Ai, v Zv(q)) with ~ [A~,vl < 0o. (1.6) 
V V 

This only means that  the c~ are strictly positive and log c~ has an absolutely 
convergent  Four ier  series. 

2. Local Conditional Distributions of Stationary Measures and Time Reversal 

If Pt is a Markov  semigroup with generator  (tiC, cg0), ~ as in (1.1), and if #ed ,  
we can define a Markov  process X(t), - o o  < t <  o% such that  X(t) is distribut- 
ed according to # for all t and E(f(X(t))lX(s)=rl)=Pt_sf(tl) for t>s. It is well 
known that  the reversed process Y ( t ) = X ( - t )  is again a t ime homogeneous  
Markov  process, and with fit f(tl) = g ( f (Y( t  + s))[ Y(s) = ~/) we have 

Pt f(t/) g(t/) d#(~/) = E( f (X( t  + s)) g(X(s))) = 5 fit g(tT) f(r/) d#(t/), (2.1) 

i.e. P~ and fit are the duality with respect to #. However  it is not  clear if one can 
choose fit such that  it becomes a semigroup because the C h a p m a n - K o l m o g o r o v  
condit ion holds only #-a.s. Even if we could solve this, in general we don' t  
know anything about  the domain  of the generator  of fit. Here  we calculate first 
a formal adjoint  s of &o which is also defined on % ,  and after this we discuss 
in which sense ~ describes the reversed process. 

Theorem 2.1. Let 5e be an operator as in (1.1) with continuous and strictly 
positive rates % and let # be such that ~oL# f d#=O ( f ~ o ) .  Then there is an 
operator ~ with the same properties as ~ such that ~ f G, Cgd#= ~g LT~f d# 
(f, geCgo) iff the local conditional distributions P~(~I) are continuous and strictly 
positive. Moreover P~u and ci determine each other by 

i i pu(rl)/pu(~rl) = c~(~rl)/~i(tl) = ~(i~l)/c~(rl). 

Proof. First we assume that  the p~(.) are cont inuous and >0.  Let  i be fixed. By 
�9 �9 �9 - -  i i definition_ Eu[glgi](rl)=g(tl.)p~(rl!+g(itl)Pu(itl) (g~d~b). Hence Eu[g]gi](r/) 

E h g lf h ) g ~ ' Choosin = u[ I i](t/) " (t/ = (i~l)Pu(i~l)/pu(rl). g as g(~/)=f(t/)ci(~/), we obtain 
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S f(rl) q(rl) d#(rl)= ~ f(,rl) ~,(r/) d#(t/) ( f t  gb) (2.2) 

where ~ i c~ (~) = c~ (~) pu (~)/pu (~). 

Now let f gee# o and take V such that f and g depend only on th, i t  V. Then 

f(~) Sg (q )  - g(~) ~ f ( t / )  = ~ cr f(t/) g( ,q)-  ~ ~z(t/) f(r g(q) 
ieV i~V 

+ ~ d,(r/) f01) g(t/) - ~ cr f(q) g(r/). 
iEV i~V 

Integrating with respect to d# and using (2.2) for the second and third sum, we 
get 

f(t/) 5~g(r/) d# (q ) -  5 g(r/) s176 d#01) 

= ~ ~ c,(rl)(f(~rl) g(~rl)-f(tl) g(t/)) d#(t/)= ~ L.W(fg)(rl) d#(tl) = O. 
ieV 

For the converse we assume that 5 f S Y g d # =  S g ~ f d # .  First we show that 
then (2.2) holds. The argument is the same as in Liggett [15], Theorem 4.1.3. 
We choose f (r l )=hv(r l )=[I( t l j+l)  and g(q)=hv(irl) for some itV. Then 

j~V 
f(t/) ~gf g(t/) =f(t/)  ci(rl) 2 fvl and g(t/) L2pf(~) = g(q) ~i(t/) 21vl, so by assumption 

hv(rl) c,(rl) d#(q) = ~ hv(irl) di(rl) dfl(rl) ( i t  V). (2.3) 

Obviously (2.3) also holds with c i and t i exchanged. On the other hand hv(rl) 
+hv(i~7)=2hv\i(rl) which shows that (2.3) is also true for iq~V. Finally we note 
that any f t g  b can be approximated by linear combinations of functions hv, so 
(2.2) follows. 

The rest of the proof is now an application of (2.2). We put pi(r/) 
= ci(irl)/(ci(irl)+ ~i(rl)). Then we have by (2.2) 

f (irl) pi(irl) d #(rl) -= ~ ~i(rl) f (rl)/(ci(ir]) q- ~i(t/)) d#(r/) --- 5 f(r/) (1 - -  pi(rl) ) d fl(rl). 

Hence (,(fO1)p~(rl)+f(~rl)p~(irl))dg(rl)= (.f(rl)d#(rl), i.e. the p~ are the local con- 
ditional distributions of #. 

But then we must have p~(t/) +p~(~t/) = 1 and therefore p~(tl)/P~(irl) = ci(~rl)/~(tl). 
Finally it is clear that the results are the same if we exchange the role of c~ and 
~, at least #-a.s. But since c~ and ~ are assumed to be continuous and # is 
everywhere dense (see Holley-Stroock [10], Lemma 1.16), we even have equali- 
ty everywhere. [] 

It should be noted that for Theorem 2.1 we did not need that (2', cg0) and 

( 2 ,  ego) generate Feller semigroups. If we assume this, it is straightforward that 
the two semigroups are in duality with respect to #. Concerning the principal 
conjecture of this paper, we can therefore formulate the following consequence 
of Theorem 2.1. 

Corollary 2.2. Let flip rates of the Gibbsian type (1.6) be given with 
sup ~ IAi,vl IV [ < 0% and assume that # is stationary for the semigroup generated 

i V 
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by (~,~go). I f  # is Gibbs with potential (Jr) and sup ~lJgllgl<~D, then the 
i V~  i 

reversed process for # is also a spin flip process with rates 

~i(t/) = exp( ~ (2J v -A i , v )  )~v(tl)+ ~ Ai, v Zv(tl)). 
V ~ i  V ~ i  

Moreover any other stationary fi is also Gibbs with the same potential iff the 
reversed provess for ~ is the same as for #. 

Proof. It is straightforward to show that under the above assumptions Liggetts 
condition (1.2) is satisfied for ei and ~i. The corollary follows then immediately 
from Theorem 2.1. [] 

However, because in general the local conditional distributions of a sta- 
tionary measure are unknown, we would like to avoid additional assumptions 
for the ~. We are going to show now that in any case the reversed process 
defines #-a.s. a solution of the martingale problem for the operator s of 
Theorem 2.1. This means that in a weak sense the ci are the flip rates of the 
reversed processes, compare the introduction of Holley-Stroock [91. 

First we prepare a lemma. 

Lemma 2.3. Let ~LP be an operator as in (1.1) with ci~Cg. I f  (Sf, ego) generates a 
semigroup, then f gs@ for any f e D ,  geCg o where @ denotes the domain of the 
Generator. 

Proof. We choose a sequence of functions f ,  eCgo such that I l f , - / Ih-- ,0 and 
]LSf , -YNII- - '0 .  Then f ,  geCgo and IIf, g-fgl l-- 'O.  Moreover, if we take a V 
such that g is dr-measurable, 5 , P ( f , g ) = ( ~ f , ) g + f , ~ g +  ~ c i V i f ,  Vig. Hence 

i e V  

~(f~g)  converges in the supremum norm to ( 5 ~ J ) g + f S f g +  ~c~ VifVig which 
means that f g ~ .  [] ~v 

In order to state our result, we choose a right continuous version of the 
process Y(t) defined at the beginning of this section, and we choose a regular 
conditional probability distribution Q, of Y(t), t>O, with respect to a(Y(O)). 

Proposition-2.4. Assume that (SF, ~o) generates a semigroup and ~ f ~ gd# 
= ~ g s  (f, gsC~o) for some operator s C~o~C6. Then there is a set N e d  
with # ( N ) = 0  such that for all tl~,N Q, is a solution of the martingale problem 
for s 

Proof. Let X(t), - ~  < t < 0% be the process defined at the beginning of this 
section. We are going to show that for all n, 0 = s  o <s  1 < . . .  <s,<t ,  fo .. . .  ,f~C~o 

E fi(X( - st) ) ( f (X(  - t)) - f ( X (  - s,)) - ~ s  - u)) du) = 0. (2.4) 
i ~  0 Sn 

By the Markov property of X(t) and Fubini's theorem, the left hand side of 
(2.4) is equal to 

t 

f(rl) Pt-~, h(tl) d#(rl) - ~ f(tl) h(tl) d#(tl) - ~f s f(tl) P,-~, h(tl) d#(tl) du 
Sn 
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where h=f,P~ _~n_l(f,_lP~,_ 1 . . . . . .  (-.. P~Jo))--.). Since f~@ implies that P t f ~  
for all t, we conclude by a repeated application of Lemma 2.3 that h s ~ .  But it 
is obvious that SfS~gd#= S g ~ f d #  for all f~cg 0, g ~ ,  so the last integral 
above is equal to 

, id  yy f(rl) Sf P,_s h(tl)d#(tl)du= Y f(tl) ~-u P,_s.h(tl)dud#(tl) 
Sn 8n 

= y f (~)  (e,_~~ h (~) - h (~)) d#(~), 

and (2.4) is proved. 
Therefore there is a set N e g  with # ( N ) = 0  such that for t/r 

" z ( r ( , i ) ) '  ] [ l-[ (f(Y(O)- f(Y(s,))- ~ ~ f(Y(u))du) =0  Ee, 
L i =  1 s~ 

for all s i rational and f~cg o (note that (go is countable). It is then a straightfor- 
t 

ward approximation argument to show that f(Y(t))-ic2f(Y(u))du is a Q,- 
martingale for t/~N. [] o 

From Theorem 2.1 and the consistency condition (1.5) for the local con- 
ditional distributions we obtain the following relation between the q's and the 
Ci'S : 

~(~)/c~(~). ~(i~)/c~(,~)=~(~)/c~(~). ~(,~)/c,(~7). (2.s) 

(2.5) is most interesting in the reversible case c~=F i because it gives a condition 
for the existence of reversible measures. In fact, (2.5) with c i= ci is nothing else 
than Kolmogorov's [11] condition for the reversibility of a Markov chain: it 
means that the closed path r/~ir/--~ikt/--*kt/~ ~ has the same probability as the 
reversed path t/--*kt/~ikr/--~it/-*~ 7. For  reversible rates of the Gibbsian type, 
(2.5) takes the simple form Ai, v=Ak. r for V~ {i, k}. 

An analogous result to Theorem 2.1 also holds for discrete time Markov 
chains on E (Vasiliyev [22], Kiinsch [14]) and for finite dimensional diffusions 
(Kolmogorov [12], Nagasawa [16]). But in the latter case we can do better 
than simply express the density of the stationary measure with the original and 
the reversed drift because the Fokker-Planck equation gives us additional 
information on this density. In the next section we obtain an equation which 
can be viewed as an analogue to the Fokker-Planck equation (Formula (3.2) 
below). 

3. An Equation for the Local Conditional Distributions 
of a Stationary Measure 

We consider now the problem of how to find the local conditional distri- 
butions of a stationary measure for given flip rates c i. Because of Sect. 2, this is 
equivalent to finding the possible time reversals of a given process. In this 
section we show that the local conditional distributions pl of a stationary 
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measure are determined by the equation 

Vk(Ci--Si)(t/)=O (k~Z d) with ^ i i ci(tl)=ci(it/) p (itl)/p (t/). (3.1) 
i 

Under a weak condition guaranteeing that  (3.1) is well defined, we first show 
that  (3.1) is necessary for the existence of a stationary #eN(p). 

Theorem 3.1. Let continuous flip rates c i be given such that inf infci( t / )>0,  
i 

s u p ~  [IVkCi[[ < oO and ~ IlVkcil[ < o9 (k~Zd). I f  # is stationary for the associated 
i k i 

i semigroup and its local conditional distributions pu are continuous with 
infinfp~(t/)>O, sup~[[VkPi~[[<oO and ~ llVkP~ll<oo (keTZd), then p~ satisfies 

i q i k i 

(3.1). 

Proof We fix kEZ d and put hi(t/)= Vk(ci--~i)(t/). By (2.2) 

hi(t~ ) (~j(t/)-cj(t/)) dr(t~)= ~ cj(t/) Vj hi(t~ ) d#(t/). 

Moreover, applying (2.2) twice, we have 

hi(t~ ) ( c j(kt/) - ~j(krl) ) d #( t/) 

= S hi(t~)(Cj(kt/)- Cj(kt/))/Ck(t/) " Ck(t/) d#(t/) 

= ~ (hi(kt/) 6k(t/)/Ck(kt/) C)(t/)-- hi(kt/) ~k(rl)/Ck(kt/) ~j(t/)) d#(t/) 

= - ~ cj(tl)(hi(jkt/) ~k(jt/)/Ck(jkt/)- hi(kt/) ~k(t/)/Ck(kt/)) d#(t/). 

Therefore with gi(t/) = hi(kt/) ~k(t/)/Ck(kt/) = lh(kt/) pk(kt/)/pk(t/) 

h,(t/) hj(t/) d#(r/) = ~ cj(t/) Vj(h i -g/)(t /)  d#(t/). 

Now because of the conditions on c i and p~, ~ IlV~hill <oo, F, [IVjgill < oo, so 
J J 

~cj(t/)[Vj(hi-gi)(t/) I converges uniformly and h i - g  i is in the domain of the 
J 

generator of the process. Hence by the stationarity of # 

hi(t~ ) (y, hj(t/)) d#(t/) = ~ s176 i -gi)(17) d#(t/) =0 .  
J 

But then 5 ( ~  hi(t/))2d#(t/)=O, and because # is everywhere dense, we conclude 
i 

that ~ hi(t/)= ~ Vk(Ci--~ i) (t/)=0. [] 
i i 

Remarks 3.2. i) Liggett's condition (1.2) says that  the total influence from all 
particles on any fixed particle is finite. In Theorem 3.1 we needed also the dual 
condition that  the influence from any particle on all other particles is finite. In 
the shift invariant case the two conditions are equivalent. 

ii) For  a finite system with E = { + 1, - 1} v, IV[ < 0% a probability measure 
# is stationary iff ~ ci(t/) #(t/) = ~, ci(it/) #(it/), or ~ ci(t/) = ~ ci(it/) #(it/)/#(t/) 

i ~ V  i ~ V  i ~ V  i ~ V  
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= ~ c~(/1)p~(dl)/fu(rl)= ~ d~(r/). For infinite systems this condition does not make 
i e V  i e V  

sense, but (3.1) which follows from it does in many cases. Moreover, for finite 
systems (3.1) is equivalent to the stationarity of #, see Theorem 3.3 below. 

iii) From approximations with finite systems one finds the following heuris- 
tic equations for the evolution of the local conditional distributions under Pt: 

d log(pku~(rl)/pk(krl)) 
dt 

= --ci(tl)--Ci(kitl)pu,(kdl)/pu~(kq)+ci(irl)put(itl)/pu~(tl)). (3.2) 
i 

Clearly, (3.2) would imply Theorem 3.1, but we have no idea how to prove 
(3.2). We even don't know if the class of local conditional distributions for 
which the right hand side of (3.2) makes sense is stationary for Pr 

It is much more difficult to show that (3.1) is also sufficient to conclude 
that f f ( p ) m J + 0  or even f f ( p ) c J .  For a partial result to this question we need 
the mixing coefficients which are defined as usual by 

an(V, n)=sup{[#(Ac~B)-ll(A)#(B)f,  A ~ 8  v, B ~ v . }  (3.3) 

where V n = [ - n , n ]  d. Furthermore we need that the speed of convergence in 
~, Vk Ci and ~ V k ~ is uniform in k. For this we introduce 

i i 

f l(m)=supmax( ~ []VkCir I, ~ IlVkpgl/). (3.4) 
k i ,  ] i - k l  > rn i,  l i - k [  > m 

where li[ =max(Jill . . . . .  Iidl). Then we have 

Theorem 3.3. Assume that we have flip rates c~ and local conditional distributions 
pi such that the conditions of Theorem 3.1 are satisfied, /3(0)<0% fl(m)~O as 
m~oo ,  and (3.1) holds. Then all #eft(p) are stationary for the associated semi- 
group if for all extremal #eft(p) the mixing coefficients satisfy 
~ o:,(V,n)nd -l < oo for any finite V. I f  ~fl (m)<oo,  then o:,(V,n)=o(n -d+l) for 
n m 

any finite V is sufficient. 

Proof Because N(p) is a Choquet simplex (see Preston [17], Sect. 2), it is 
sufficient to show that ~SCf(q)d#(t/)=0 for any extremal #~(r We fix f ~ o  
and take V such that f is gv-measurable. Then we have by (2.2) that 

s d#(t/) = - ~ fir/) ~ (c,(q) - ~(t/)) d#(t/) (3.5) 
i s V n  

for any n with V.~ V. In order to make the notation shorter, we write qo,(t/) for 
(ci(tl)-~i(~)). We note that by (2.2) ~ cGd#=O , so the right-hand side of (3.5) 

iEVn 

is the covariance between f and ~o,. The idea of the proof is then as follows. 
Because of (3.1), ~0,(t/) depends essentially only on those qi with IIi]-nl small. If 
this were exactly true, we could estimate the covariance between f and ~o, by 
cons t .~u(V,n-m)nd- lm with some fixed m and let n go to infinity. For our 
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proof we therefore have to estimate how much p,(r/) differs from a function 
depending only on ~/i, ]Ji]-n] _<m. 

In order to do this, we introduce r,: E ~ E  defined by (r,q)i=r/i if ]i]>n, 
(r.q)i---1 if ri{<n. In particular, r0~/=~ 1. With this we can write q~,(q) 

= ~ (p,(rmq)-cp,(rm+lq))+~o,(1). The m-th summand is ~Zv~._ -measurable, 
m = 0  

and it is well known that 

ISf~ f2 d # -  Sf~ d # ~ f  2 dp] < 4eu(V, m)IILIJ I}f2]l 

for f l  gv -measurable and f2 gv,~ -measurable. Therefore we conclude that 

]~.f(~l) CPn(q)dp(q)l<const. e , (V,m-1)  ~ J}VkCP, l} 
m = 0  N=m 

(we set eu(V, -1 )=1) .  But for [kl=m<n we have by (3.1) 

If Vk O,l[ < Z (N Vkci[I + II Vk ciLI)< c~ fi(n-m), 
ir 

while for [k[ =m >n 

g[Vk q~,[{ < ~ ([I VkCill + [[VkCill)<const.fi(m--n--1) . 
ieVn 

With our conditions on %(V, m) and //(m) it is then straightforward to show 
that ~fq~,d#=o(1) as n tends to infinity. Since n was arbitrary, the theorem is 
proved. [] 

Let us make some comments on the conditions of Theorem 3.3. For any 
extremal #, ~u(V, n) tends to zero as n goes to infinity because ~ z =  ~ gv~ is 

n 

trivial for an extremal #. However, the convergence may be extremely slow as 
the example of the Ising model in two dimensions at the critical temperature 
shows. So for d >  1 neither ~ ~u(V, n) n d-1 < ~ nor ~u(V, n)=o(n -d+l) is satisfied 

n 

in general. The decay of the mixing coefficients has been studied by several 
authors, mainly because of its connection with the central limit theorem, see 
e.g. Dobrushin-Tirozzi [2], Sect. 1.3. We mention here two situations where the 
conditions of Theorem 3.3 have been established. 

The first one is Dobrushin's uniqueness condition s u p ~  IIVkpi[I <1. In this 
i k 

case the mixing coefficients can be estimated, but it is more convenient to 
estimate directly the right hand side of (3.5) with the covariance estimates of 
K~insch [13] and FSllmer [-4]. It then turns out that the Dobrushin condition 
is sufficient for the statement of Theorem 3.3. 

The second one is the case of Gibbs measures with attractive pair poten- 
tials: Jv=O if IVI4=2, J~i,k~=Ji_k<O. In this case the mixing coefficients for 
extremal Gibbs measures decay exponentially fast if ~ ]Jkl is large enough. This 

k 

is interesting because for ~ IJkl large phase transition can occur. So the con- 
k 



Stationary Measures for Infinite Particle Systems 417 

ditions of Theorem 3.3 include also cases where there is more than one sta- 
tionary measure. 

It seems somehow that the conditions of Theorem 3.3 are too strong be- 
cause we do not need covariance estimates for arbitrary functions, we only 
want to estimate the right-hand side of (3.5) using (3.1). In the next section we 
will show by completely different methods that in the shift invariant case 
( r  is never empty if (3.1) holds. It will also follow that a solution to (3.1) 
is unique among the shift invariant Gibbsian pZ. 

4. Free Energy 

We are going to generalize here the well known results of Holley [-8] on the 
decrease of free energy to the non reversible case. Our arguments follow the 
same lines as in Holley's paper, but at one place an additional term occurs 
which is zero only if c~=3~. With the help of (3.1) we can estimate this term 
and show that it does not contribute in the infinite volume limit. Even if the cf 
have finite range, this is in general not true for the F~; for this reason we have 
to follow the more refined arguments of Higuchi-Shiga [-7]. 

We start with some definitions. Let ~: E ~ E  be the shift operator defined 
by (Z~/)k=~k_ ~. With this we call flip rates shift invariant if c~(~l)=Co(Z_~rl ). A 
probability measure # on E is called shift invariant if #(z iA)=#(A ) (AEE, 
i~7Z,~), and 5 e denotes the set of all shift invariant #'s. Finally a potential (Jr) is 
shift invariant if Jv=Jv_~ for all i and V. 

For  a shift invariant potential (:Iv) we put 

p(n, l l )=exp( -  ~ JwXw(rl)) where V , = [ - 2 " + 1 , 2 " - 1 ]  a. (4.1) 
W E V .  

The free energy in V, of a probability measure v is 

where 

and 

A,(v) = ~ v(n, () log(v(n, 0/p(n, ()) 
~eE~ 

v(n,()=v(S(,~,~)), s (n ,~ )={~ ,~=~ on v;) (4.2) 

E n - - { + l  , - 1 }  V,,. 

The free energy per particle is then 

A(v) = lira sup [ V.[-1A.(v). (4.3) 

It is well known that the free energy is minimal for v c ~ ( J ) ~ Y  (Gibbs 
variational principle). The following theorem is a dynamical version of this. 

Theorem 4.1. Assume that we have shift invariant rates ci~Cg, ci>0, and a shift 
invariant potential (Jr) such that ~, [[Vjco[[<oo , ~ IIVj~o[[<c~ and (3.1) holds 

J J 
where 8i(rl) = ci(i~l) exp (2 ~ Jv Zv(*/)). Then 

V~i 
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i) For any initial distribution v, A(vt) is non increasing in t. 

ii) For any v65~, v~N(p) there exists a weakly open set G, containing v and 
~, 3 > 0 such that if  v' ~ G, and 0 <_ s N ~, then A (v'~) - A (v') < - 6 s. 

Proof. We only prove those points which differ from Holley [-8] and Higuchi- 
Shiga [.-7]. Our notat ion is also similar to what they used. As in Lemmas (2.3) 
-(2.5) of Holley and Lemmas  3.2 and 3.3 of Higuchi-Shiga respectively we 
have 

d ~(n, 0 
dt(A.(v~))[,=o = 2 ~ (  ~ c~(t/)dv(~)- ~ Q(~)dv(tl))logp(n, 

= 2  Z(  i e,(.)d~(.)- S c,(~)dv(.))log ~(n':~) 

+o(IV.I) 
with V , = [ - 2 " + n + l , 2 " - n - 1 ]  d. 

Then we define 

(4.4) 

[ Fo(v(n , i~)/v(n, ~) p(n, ~)/p(n, i~)) v(n, ~) 
I 

F ( v , n , ( , i ) = l O  ~ if v (n , ( )=O,v(n ,  iO>O 
if v(n, ()=v(n,  i ( )=0  

if v (n, () > 0 

(4.5) 

where F 0 (u) = u - u log u - 1 if u > 0, F o (0) = - 1. 
We are going to show that  

d 
dt A"(vt)It= o = ~ E V(v, n, ~, i) cl")(~) p(n, ,~)/p(n, ~) + o (I V,I) 

where 

and 

I v(n,() -1 ~ ci(rl)dv(rl) if v (n , ( )>0  

cl'O(~)=[cz(r,() s(,,o if v (n , ( )=0  

(r,()~=(~ if i6V.,  (r . ( )~=l  if i(~V.. 

(4.6) 

(4.7) 

(4.8) 

The assertion i) of the theorem will follow immediately from (4.6) because F is 
negative. 

F rom (4.4) it follows by a simple calculation that  (4.6) is equivalent to 

2 2 (  ~ Q(tl)dv(rl)-v(n,~)/v(n,S,) ~ ci(tl)P(n, irl)/P(n,q)dv(~l)) 

-= o(] V,[). (4.9) 

With r, defined in (4.8), the left hand side of (4.9) can be decomposed as 11 +12 
+ 13 where 
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I~ = ~ v(n, ~) ~ (ci(r.O-~i(r.~)) 
~eE~ i e ? .  

12-- 2 ~ ~ (ci(~)-c~(r,n))dv(n) 
~eE~ lefT. S(n,O 

13 = ~ v(n, ~) ~ v(n, ,~)-~ ~ (c~(tl)p(n,,q)/p(n, q)-~,(r,(,tl) ) dv(rl). 
{eEn ieVn S(., ~) 

12 and I a are of the order o(IV, I) because each integrand is of the order o(1), 
compare formula (3.11) of Higuchi-Shiga. The term 11 does not appear in the 
reversible case. It can be estimated as follows. First we observe that for ie V~ 

exp(- ~ JwZw(r,~))(c~(r,~)-~(r,O)=O. 
~eE. W c~ V,,=I= 0 

This implies that for (p,(~)= ~ (ci(r ~ ^ �9 ~ ~) - c~O, ~)) sup go,(~) > 0 > infcp,(O. There- 
fore by (3.1) i~v. 

I1~o.11==_ Y I1~o.11= < Y Y(Jl~c, ll+llV~411) 
keV~ keV.  idg~. 

With V,, m = [ -  2" + n + m + 1, 2" - n - m - 1] ~ we therefore conclude by the shift 
invariance of c~ and ~ that 

Illl <=lg,,ml ~ (ll Vo ci]l + II Vo cill))+lr,\v~,mi ~ (][Vocill + II Vo ciH). 
Iil->m i 

Hence for any m l i m s u p l E l - l l l l l <  y~ (llFoCgll+llFo611), and therefore, by 
I/I >_-m 

letting m tend to infinity, 11 = o(I V,I). 
The assertion ii) is proved by showing that for v~5 f 

lim IV,[ -1 ~ ~ F(v, n, ~, i)cl')(i~)p(n, ,O/p(n, ~) 
~ E n  ielTn 

exists, is upper semicontinuous in v, <0  and =0 iff v~fq(p). The arguments are 
the same as in Higuchi-Shiga; all estimates in their paper which use the 
Gibbsian form of c i can be replaced by estimates using II Vj c o/I and II Vj ~o/I. [] 

In the next corollaries we use the notation ~2 for the class of shift invariant 
potentials (Jv) with ~ I vI I&l < oo. If the pi are Gibbs with potential (Jv), we 

V~0 
write fg(J) instead of fr and we assume that rates c~ satisfying the conditions 
of Theorem 4.1 are given. 

Corollary 4.2. Either f# (J )c~J=0  for all ( J v ) ~  2 or ~r c~Se ~_ fq(J~ for some 
( J ~  2. 

Corollary 4.3. I f  ~ ( J ) n J q = O  for some ( Jv )~2 ,  then v, converges weakly to 
f#(J)chSf for all initial distributions v65~. In particular, if the Gibbs measure to 
this potential is unique, the process is ergodic for all shift invariant initial 
distributions. 
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Corollary 4.4. I f  (3.1) has a Gibbsian solution pi with potential (Jv)e~2, then 
J c~A'~ c N ( J ) ~ .  In particular, (~(J)c~J:t:O. 

From Theorem 4.1, i) and Gibbs variational principle it is clear that 
v t ~ ( J ) c ~  for all t if v~N(J)c~Ae and (3.1) holds. With a little additional 
argument we can also show that v t is an extremal point in N(J)c~b ~ for all t if 
v is so. Then we obtain 

Proposition 4.5. Under the conditions of Theorem 4.1 we have N ( J ) c ~ = J c ~  
provided the set of extremal points in N ( J ) c ~  is totally disconnected in the 
weak topology. 

Proof. It is well known that v~fq(J)c~b ~ is an extremal point iff v is ergodic. By 
Corollary 2 of Sullivan [21] v t is ergodic for all t if v is so. Therefore v t stays in 
the set of extremal points, and on the other hand v t varies continuously in t, so 
vt=v for all t. [] 

I have the feeling that the above condition on the extremal points of 
fq(J)c~A ~ has more chances to be satisfied than the mixing conditions of 
Theorem 3.3. The extremal points of N(J)c~b ~ have been studied by Slawny 
[18, 19] for ferromagnetic potentials - f l J v ,  Jv >0 for all V, fi>0. He has 
shown that for large fl there are at most two extremal points if we have a 
connected two-body potential or if J(o,ed>0 for i=1, . . . ,d where e~ is the i-th 
basic vector in 7/. d. However he has an example of a four-body potential where 
there are continuously many extremal points, so Proposition 4.5 does not cover 
all cases. 

For  d = 1 the Gibbs measure is unique for all shift invariant potentials with 
IJvl diam(V)< oe. So if we could show the existence of a stationary Gibbs 

V~0 

measure with such a potential, then by Corollary 4.4 g c~ 50 would have only 
one element. This would then give a proof of the positive rates conjecture (see 
Gray [5]) for attractive interactions. 

Holley-Stroock [10] have used the free energy in order to show that in the 
time reversible case J c N ( J )  at least in dimensions less than three. However, 
this application cannot be extended to the non reversible case because the 
basic expression for the derivative of the free energy (Lemma 1.10 in [10]) is 
specific for the situation c~= ~. Even for finite systems it is easy to see that the 
formula 

2 d A(#~)I,: o -- - ~ ~ (ck(r/) #(~/)- ~k(~r/)/~(k~)) l~ #0/)/3k(kr/) #(kq)), 
k E V  tl 

which would be the obvious generalization of formula (1.11) of [10], is not true 
in general. 

5. Stationary Gibbs Measures 

Clearly, the stationary measure is Gibbs for finite systems. But if we change the 
flip rate at some point i0, we don't have an efficient way to estimate how much 
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the local conditional distribution p~ of the stationary measure changes for 
points i far away from i 0. For this reason an approximation by finite systems 
doesn't give us a proof for the existence of a stationary Gibbs measure. A 
different way is to look for a Gibbsian solution of (3.1). We give here at least a 
formal solution for shift invariant rates % If we can represent c o and ~o as a 
Fourier series 

Co (rl) = ~, Fv Zv(rl), Co(rl) = ~ Fv Zv(rl), 
V V 

then the Eq. (3.1) is easy to solve. Namely, by the shift invariance of c i and 61, 
it is equivalent to 

~ F v _ ~ = ~ P v _  ~ for all V*0  (5.1) 
i i 

where V - i =  { j~Z d, j + i ~  V}. Of course, there are many Fv satisfying (5.1), but 
the ~o we are looking for must be of the form 

Co (rl) = Co (orl) exp (2 ~ Jv Xv(rl)) (5.2) 
V~0 

with some shift invariant potential (,Iv). We therefore have to express Fv in 
terms of the unknown potential (Jr) and then to determine (Jr) from (5.1). In 
order to do this, it is convenient to assume that c o is of the Gibbsian type (1.6) 
with an additional parameter of interaction/? 

Co(rl ) = exp(fi ~ A v Zv(rl)). 
V 

We then look for a potential Jv=Jv(fi) which is analytic in fi: 

Jv(fi) = ~ Jv,,fi" (Jv, o=0  is obvious). 
n = l  

From (5.3) 

(5.3) 

On 

0fi n Co(rl)[t~=o=e(rl) n with a(rl)=~Av)~v(rl) , 
V 

while from (5.2) we obtain 

op. ~0(rl)l~=o =n! ( 5~ c~il(rl)...~i~(rl))/k! 
k = l  i l + . . . i k = n  

i j~  l 

with ~l(rl)=2 ~ (Jr, 1-Av)Zv(rl)+~ ~(rl)=2 ~ Jv,,Xv(rl) (n>l) .  Using this, 
v~o V~O 

we can express the derivatives of the Fourier coefficients Fv(fi) and ffv(fl) at fi 
=0. Moreover, by the shift invariance of (Jr) and (5.1), we obtain the following 
recursive equations for Jv,, 

Jr, 1 = [V1-1 ~ Av_i, 
i~V 

Jv,, = (2 I gl)-I 2 ((A *... ,A)v_]n  ! 
i 

- ~ ( 2 (A~, *... *A,~)v_~)/k!) (n > 1) (5.4) 
k = 2  i l + . . . + i k = n  

i j>l 
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where .dv, l=2JV, l -Av  (V~O), Av, i=Av (V~O), ,4V, n=2JV, n (V~O), Av, n=0 (V 
~0), and the convolution of two sets of Fourier coefficients (By) and (Cv) is 
defined as 

(B. C)v=~BwCvA w with VAW=(Vc~W~)u(V~nW). 
W 

So for shift invariant flip rates as in (5.3) we have a formal expression for 
the potential of a stationary Gibbs measure. Unfortunately, because of the 
complexity of the recursion formula (5.4), we were unable to prove a result on 

the convergence of ~ fin ~ Jv,, )~v(tl) �9 The rough estimate 
n = l  V ~ O  

I1.~.11 ~ IIA II"/n! + ~ ( ~ IId**l] ... IIA,~ll)/k ! 
k = 2  i l+ . . .+ ik=n  ij_>l 

with HBll = ~  [Bvl is useless. On the other hand we know that for finite systems 
i 

Jv(fl) is analytic in a neighborhood of {Im(fl)=0}, so ~Jv, , f l  n has a non zero 
n 

convergence radius. In the following two examples we even have Jr,, = 0 for all 
n > l .  

Example 5.1. d--1,  CoO/) = exp(fl a(tl)) where 

~(~) = tl0 + al t/1 tlo + a2 t l-1 tlo + a3 ( t l -  1 + ill) + a4 tl-1 ill. 

Then by (5.4) ~1(~)= ~(0tl) where (0tl)i=tl_i. Moreover  ( A * . . . * A ) v = 0  except 
for V~  { -  1, 0, 1}, and for such V we have - V =  V - i  for some i. Therefore 

y~ ((A , . . .  * A ) v _ , - ( A 1  * ...  * 3 1 ) v _ i ) )  = 0 
i 

for all n > 1 whence by (5.4) Jr, n = 0 for all n > 1. This means that 

J{i}(fl)=fl, J{i,i+l}(fl)=fi(al +a2)/2, 

Jv(fi)=O otherwise, and the unique shift invariant stationary measure is a 
Markov chain on { - 1, 1}. Note that even in this simple case the ergodicity of 
the process has not yet been proved for all values of al, a2, a3, a4, see Gray  [5] 
and the references there. In order to treat the general case of flip rates with 
range one, we would have to replace the term a3(tl I +t l -1)  by a 3 ill + a s  tl-1 and 
to include an additional term a60_10otl 1. But then the simplicity is lost 
completely, in fact it can be shown that a solution to (3.1) must have infinite 
range in this case. From the recursion formula (5.4) we also see that in general 
(J,) has range 2"r if c o has range r. 

Example 5.2. d=2 ,  c0(tl)=exp(fi~(tl)) with cz(o)=alrloqe~+aztlotl~z where e 1 
=(1,0), e2=(0,1 ). With the same argument as in Example 5.1 we can show 
that the Gibbs measures with potential Jt~,i+e,}=fial, J{i,i+e2}=fla2, Jv=O 
otherwise, are stationary. It is well known that for this potential there is phase 
transition if [ill is large and ala2+O. Moreover, it has been proved at least for 
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a l = a  2 that N(J)c~5 ~ has one or two extremal points and N(J)c~Y=~q(J). 
Therefore our results imply then that Jc~5~=N(J) ;  in particular we have an 
example with infinitely many stationary, but no reversible measure. 

Finally let us close with the following trivial example of a stationary 
measure which is not Gibbs. Let d = l  and c~(r/)=l-/3t/0r/i. It is easy to show 
that this process has the following stationary measure: Given ~/0, the other 
spins are Bernoulli with parameter (1 +/?qo)/2, and r/o is equal to one with 
probability 1/2. This measure is not Gibbs because p~ depends on the tail 
field and is therefore not continuous. But in this example we have ~ [ll70c~l I 

--0o, so the condition of Theorem 3.1 is violated and I have the feeling that 
this is the reason why there is a stationary measure which is not Gibbs. 
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