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Most Stringent and Maximin Tests as Solutions 
of Linear Programming Problems 

WILLEM SCHAAFSMA 

Summary. The problem to obtain the most stringent size-c~ test 9 '  is formulated as a linear pro- 
gramming problem of type II (Section 2). If sample space and parameter space are finite, then we 
obtain a discrete linear programming problem (Section 4). The well-known results for this special 
case, and the results of Krafft and Witting for the maximin size-:~ test, point out how to formulate the 
dual problem of type I in the general case and how to develop the corresponding duality theory 
(Sections 5 and 6). It turns out that q)* can be determined completely by the solution of the dual type I 
problem, which solution may be characterized by means of a least favorable pair (I, 9) of probability 
measures over g2 H and f2 K respectively (Section 7). Statistical interpretation shows further that ,co* 
can also be characterized by means of a least favorable distribution ~ over Q~ alone (Section 8). 

1. Introduction 

In [8], Witting characterizes the most powerful (M. P.) size-g test for testing 
problems with a simple alternative as the solution of a linear programming (L. P.) 
problem, the dual of which determines the least favorable a priori distribution 
over f2 n. Krafft and Witting extended these results in [2] by considering the 
maximin size-~ criterion for testing problems with a composite alternative. They 
proved an important weak duality theorem providing conditions under which 
Lehmann's sufficient conditions ([3] Section 8.1) for a maximin size-~ test are 
also necessary. 

In [6] we characterized the most stringent (M. S.) size-~ test for certain testing 
problems with a composite alternative by means of a least favorable a priori 
distribution over the alternative. This result constituted the basis of numerical 
computations providing M.S. size-~ tests for a special class of problems with an 
alternative restricted by a number of linear inequalities. 

In this paper we generalize the results in 1-2] and [6] by applying the L.P. 
method of Krafft and Witting and by defining a criterion "most stringent in a 
class C of tests with respect to a class D of tests"([5] Chapter 2), which can be 
regarded as a generalization, both of the criterion maximin size-~ and of the 
criterion most stringent size-e. 

2. The Most Stringent ( ~ ,  D)-Test ~p* as the Solution 
of a Linear Programming Problem 

Let (3Z, 92, #) be the sample space 3Z with the a-field 92 and the a-finite measure 
# dominating the family {P0; 0~2} of probability measures over the measurable 
space (~, 92). Let Po--- dP0/d# be a measurable determination (p. d. f.) of the Radon- 
Nikodym derivative of P0 with respect to #. 
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The parameter space f2 is subdivided into two non-void mutually exclusive 
subsets f2= f2~r u f2~: (f2 n c~ f2~=0) and we consider the testing problem (H, K) 
where H is true if and only if 0sf2 n and K is true if and only if 0ef2~. The hypo- 
thesis H will correspond with a certain standard situation whereas the alter- 
native K corresponds with deviations from this standard situation. If it simplifies 
the notation, then O n and f2 K will be denoted by H and K respectively. 

Let �9 denote the class of all measurable functions q): 3~ ~ [0, 1] (test functions). 
q) ~ �9 belongs to the class ~b~ of all size-c~ tests for Problem (H, K) if and only if ~0 
satisfies the size-e restriction: Eo(cp)=~Cppod#<e for all Osf2 n. The power 
function fi~o: f 2 ~  G0, lJ of ( p ~  is defined by fl~(O)=Eo(q~). If D is an arbitrary 
class D c 4~ (D + 0) then we define the envelope power fl*: f2~ ~ G0, 1] with respect 
to D by means of fl*(0)=su~fir and the shortcoming 7e, o: f2K~ G- 1,1] of 

q) E ~b with respect to D as 7~o, o = f l ; -  rio" 

Let C denote an arbitrary class C ~ .  (p*~b is said to be most stringent in C 
with respect to O (M. S. (C, D)) if (see [-5] Chapter 2) (i) q)* ~ C and (ii) 

sup 79* D(0)= inf oSUpK 7~o,o(0). (2.1) 

Next we consider some special cases of the criterion M.S. (C, D). 

Case (i). Let C be the class of all tests which are somewhere most powerful 
with respect to D: ~0e C if and only if ~oeD and 7,~,D(0)=0 for some 0el2 K. In this 
case q)* is said to be M.S.S.M.P. (D) (most stringent somewhere most powerful 
with respect to the class D) if and only if ~p* is M.S. (C, D). In [5] we constructed 
M.S.S.M.P. (D) tests for many testing problems from actual practice with f2 K 
restricted by a number of inequalities. By choosing D appropriately as the class 
q~ of all size-c~ tests or as the class of all similar (or unbiased) size-c~ tests, we ob- 
tained easily applicable tests for these problems. 

Case (ii). Take C = D = q ~ .  In this case (p* is said to be most stringent size-c~. 
It is well-known that for many classical hypothesis testing problems the likeli- 
hood-ratio tests are (approximately) uniformly M.P. invariant size-e (see [3]) and 
most stringent size-c~. This does not hold for hypothesis testing problems with a 
restricted alternative. For a very special class of such problems we arrived at the 
most stringent size-~ test by characterizing it with a least favorable distribution 
over the alternative. Thus in G6] we could compare the M.S.S.M.P. and the 
M.S. size-c~ test for these special problems. 

Case (iii). Take C=~b~ and D = ~ .  In this case fl*(0)= 1 for all 0el2 K and (o* 
is M.S. (4~, #) if and only if(i) ~p*e#~ and (ii) 

inf fly, (0) = sup inf fly (0) (2.2) 
K q~ K 

or in other words if and only if qg* is a maximin size-~ test. Such tests have been 
considered by Lehmann (I-3] Chapter 8) a.o. In a beautiful paper I-2], Krafft and 
Witting characterized the maximin size-~ test as the solution of a L.P. problem, 
the dual of which characterizes the least favorable pair of distributions over O n 
and O K respectively. 
20* 
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In this paper we deal with the cases (ii) and (iii) at the same time by considering 
M.S. (~=, D) tests where D is an arbitrary class of tests. For D = q}= we obtain a 
theory for the most stringent size-c~ test and for D = 4, we arrive at the results of 
Krafft and Witting for the maximin size-e test. 

Lemma 2.1. I f  ~b c D c c b  then ~o* is M.S. (~b~, D) if and only if there exists a 
number 7*6[0, 1 - e l  such that ((p*, 7*) is a solution to the L.P. problem of type II 
where the linear form b, which is defined by 

b (~0, Y)= 7, (2.3) 

has to be minimized among the elements (~o, Y) of the class Y that is defined by the 
following restrictions 

q)(x)>O g x 6 ~ ,  (2.4) 

7>0  (2.5) 

- q~ (x)> - 1 'v'x63[, (2.6) 

-Sq)(x)po(x)d#> -c~ V06QH, (2.7) 

7 + ~ ~o (x) Po (x) d U > fl* (0) V 0 6 f2~. (2.8) 

Proof. If (p* is M.S. ( ~ , D )  and 7*=sup ?~,.,D(0), then y*>0;  for q ~ * 6 ~ c D  
r 

implies that 7~o.,D(0)>0 for all 06f2~. Moreover the trivial size-e test ~0~ with 
q), (x) = e for all x 6 �9 satisfies 7~,~, D (0) __< 1 - e for all 0 6 fa r . Hence 7" 6 [0, 1 - e] and 
(q~*, 7*) satisfies the restrictions (2.4) . . . .  , (2.8). Moreover the pair (q), 7) cannot 
satisfy these restrictions unless 7 > 7*. 

If (q~, 7) is a solution to Problem II then q~ 6 ~ ,  on account of (2.4), (2.6) and 
(2.7). Moreover sup 7~,D(0)__<7 on account of (2.8). If q~ is not M.S. (~b,, D) with 

sup T~,.D(0)=7 then there exists ~0 '6~ with 0<supv,p,,D(0)=7'<7 and hence 
r 

a feasible element (q;, 7')6 Y with 7' < 7. 

Remark 1. The condition ~ c D c ~  is not necessary in Lemma 2.1 but is a 
simple sufficient condition in order that sup L,.,D(0)>0 for the M.S. (~b~, D) test 

K 
~o*, which latter condition is necessary and sufficient. 

Up to now/3; in the formulation of Problem II denotes a certain envelope power 
function. In the following theory we regard fl* as an arbitrary function fl*: f2 r --+ 
[0, 1]. Lemma 2.1 shows that for the important simple case of an envelope power 
function fl* with ~ c  D c ~b, the solution (0 ' ,  7*) to Problem II characterizes the 
M.S. (~,, D) test for our testing problem. 

Remark 2. In this paper we restrict the attention to the class ~b, of all size-c~ 
tests. A generalization is obtained when we consider a certain function c~: ~2 H--+ [0,1] 
(instead of the constant function c~(0)=c~) and restrict the attention to the test 
functions ~0 satisfying 

J tp(x)Po(x)d#<c~(O) gO6f2~l. 

It will be possible to generalize the following theory to this ease, thus implying 
a generalization of the Neyman-Pearson fundamental lemma ([3] Section 3.6). 
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Remark 3. The L.P. problem in Lemma 2.1 is called of type II, or briefly 
Problem II, because the linear form b has to be minimized (this is in agreement 
with the notation in the theory for discrete L.P. problems as developed in Karlin 
[-1]). In Section 5 we shall formulate the dual to Problem II where a certain linear 
form c has to be maximized. Of course this dual problem will be called of type I 
or briefly Problem I. 

3. A Weak Compactness Theorem Establishing the Existence 
of a Solution to Problem II 

Lehmann [3] p. 354, N611e and Plachky [4] and Witting [8] showed that {@} 
is weakly sequentially compact and used this result for proving the existence of 
maximin size-e tests, most stringent size-~ tests and so on. Krafft and Witting [-2] 
remarked that also weak covering compactness holds; they used (and we shall use) 
this result for proving a fundamental weak duality theorem. 

Let 7 ~ denote the class of all measurable f :  3s R; 7 ~ is partitioned into equiv- 
alence classes by means of ~ : f~g  if and only i f f = g  a.e. (#). Let {f} denote the 
equivalence class generated by f, {7 j} the class of all {f} and {~} the class of all 
{f}  with fe(b .  Then LI(~, 93, # ) :  {~} denotes the class of all {f} such that 

II (f}lll --  ~ If(x)[ d# < oo 

and L oo (~, 9.1, #) c { 7 j} denotes the class of all {g} s { 7'} with 

II {g} Ii ~ -- ess sup [g (x)[ < oo. 

It is well-known that L: and Loo are Banach spaces. Moreover p was assumed 
to be a-finite and hence L~o can be regarded as the continuous dual E 1 consisting 
of all continuous linear functionals over L1, when {g}GL~ is regarded as the 
functional which is defined by 

{g} ({ f})=  ~f(x)g(x)d# {f}GL1. (3.1) 

Thus (L~, Lo~) constitute a dual pair of vector spaces with respect to the bilinear 
form ( ) : L j  x L~o --+ R where ( { f  }, {g}) = ~ fg d#. Accordingly various topologies 
can be defined over L 1 and Loo respectively. We consider the weak ~(Loo, La)- 
topology over Loo which is sometimes called the weak-star topology over the dual 
Ea = Loo of the Banach space La and which is the coarsest topology over Loo such 
that all functionals {f} GL:, which are defined by {f} ({g})= ({ f} ,  {g}) over L~o, 
are continuous. A basis of (closed) neighbourhoods of the origin is obtained when 
we consider all sets of the form 

U{s;,...,I,}={{g}; {g}~Loo, I<{f3, {g})[_-<l (i=1, ...,n)} (3.2) 

where {fl . . . . .  f,} is an arbitrary finite subset of L 1. 

Next we apply a well-known theorem, stating that the unit ball B={{g};  
{g}eL~o,/l{g}[l~o<l} in the continuous dual /2:--Loo of a normed space L 1 is 
o'(Loo, L1)-compact. But {q~} ={1}+�89 where �89 denotes the constant function 
with l (x)=�89 over ~. 
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Theorem 3.1. {~} is compact in the weak (-star) topology a(Loo, L,). 

Under certain conditions (the initial domain of definition of # consists of a 
finite or countable number of sets as is the case for Lebesgue measure in Rk), 
one can show that the measure # is separable, hence L1(3s 9.I, #) is separable and 
the a(L~, L0-topology has a countable base of neighbourhoods (of the origin) 
(is metrisable). But then compactness implies sequential compactness. Witting [8] 
and N611e and Plachky [4] showed that the above-mentioned conditions are not 
necessary: {(b} is both compact and sequentially compact in the weak (-star) 
topology a(L~, L O, provided that # is a-finite. We shall only apply Theorem 3.1. 

Theorem 3.2. There exists a solution (q)*, 7*) to the L.P. Problem II of Section 2. 

Proof. Let F(7) denote the set of all {q~} e {~b} such that (q), 7) is feasible (satisfies 
(2.4), ..., (2.8)) for some q~e{q~}. If F(0)Je0 then obviously there exists q)*e~0 so 
that (q~*, 0) is a solution to Problem II. Hence suppose F(0) = 0. We have F(1 - e) + 0 
and F(7)cF(7') if 0__<7<7'__<1-e. Consequently there exists 7*el0, 1 - ~ l  such 
that F(7)=0 if 7<7* and F(7)+0 if 7>7*. But F(7*)= N F(7) and each F(7) of 

the chain {F(7); 7 > 7*} is a o-(L~, L0-closed non-empty subset of the a(L~,  L1)- 
compact set {~}. Hence F(7*)*0. If {q)*}eF(7*), then (~o*, 7*) is a solution. 

In order to prove that F(7 ) is o-(L~, Lt)-closed, we show that L~ - F ( 7  ) is open 
or in other words that for each {~0}eL~-F(7) there exists a neighbourhood U 
of the origin, of the form (3.2), in such a way that ({~o} + U) c~C(7)= 0. If {(0}~ {(b} 
then the existence of U follows from the compactness of {(b} (L~ is o'(L~, Lt)- 
separated). Hence suppose {q~}e({cb}- F(7)). Then for ~oe {q~} one of the inequali- 
ties (2.7), (2.8) does not hold. Suppose that for some 0~f2 K we have 7+~ cp Pod#< 
/~;(0)-e. Construct U according to (3.2) where n = l  and fl=poe-1. Then 
({~o}+ u)nr(~)=0. 

4. A Complete Solution to Problem II in the Finite Case 

From the theoretical point of view it may be interesting to consider a theory of 
finite statistical decision problems which are defined by a finite sample space 3s 
a finite parameter space E2 and a finite decision space ~.  Such a theory might 
suggest which results hold in more general situations and the lines along which 
these results can be proved. Especially for Problem II we need such considerations 
in order to find the corresponding dual L.P. Problem I (see Section 5). 

Accordingly we assume in this section 3s {xa, ...,xN}, ~ / =  {0~, ..., OM1 }, 
~?~={OMl+l,...,OMl+M2} while of course 37 consists only of two decisions 

= {d o, da} where d o is formulated as "neither H nor K are rejected nor accepted" 
and d 1 is " H  is rejected and K is accepted". P0m will be characterized by means of 
the probabilities p,,,=P0m({x,}) (n= 1, ..., N) of the elementary events in 3s (/~ is 
the counting measure). 

Problem II of Lemma 2.1 is reduced to the finite L.P. Problem II where a 
vector y = (Yl, ..., YN + 1) with y, --- q) (x,) (n-- 1, ..., N) and YN + 1 = 7 has to be deter- 
mined, minimizing the linear form (y, b), under the restrictions 

y=>0; yA>c  (4.1) 
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defining the set Y of 
A, the (N + 1)-vector 

- - 1  ... 0 

A =  
0 ... - 1  -P iN  ... 

0 . . .  0 0 ... 

c =  - - 1  ... - 1  - ~  ... -c~ 

* - -  * . , .  where/~m -/~o (0m) (m = M 1 + 1, , M 1 + M2). 

all feasible vectors�9 Here the (N + 1) x (N + M t + M2)-matrix 
b and the (N + M 1 + Mz)-vector c are determined by 

; =b  
--PMIN PMI+I,N "'" PM~+Mz,N 

0 1 ... 1 

In addition to Problem II we consider the L.P. Problem I where a vector 
x = (vl, ..., vN; 21 . . . .  ,2M1 ; VD ..., VM2)= (V, 2, V) has to be determined, maximizing 
the linear form (c, x), under the restrictions 

x > 0 ;  A x ~ b  (4.2) 

defining the set X of all feasible vectors. Problem II is said to be the dual of Prob- 
lem I. The following well-known results will provide a guide to the following 
sections. 

Lemma 4.1. I f  x is feasible for Problem I (x~X) and y for Problem II (y~ Y) 
then 

(e, x) < (y A, x) = (y, A x) < (y, b). (4.3) 

Lemma 4.2. I f  x * e X ,  y*e Y and 

(c, x*)=  (y*, b) (4.4) 

then (x*, y*) constitute a pair of (optimal) solutions. 

Lemma 4.3. l f  x* e X and y* e Y then (4.4) holds if and only if 

(Ax*)j<b 2 implies y * = 0 ,  (4.5) 

(y* A)i > c i implies x* = 0. (4.6) 

Proof (4.4) holds if and only if equality holds everywhere in (4.3) or in other 
words (y*, b - A x ) = ( y *  A - c ,  x*)=0.  But the latter conditions are equivalent 
to (4.5) and (4.6). 

The above-described sufficient conditions for the optimality of a pair x*, y* 
are also necessary. This follows from the following fundamental duality theorem 
which applies to general finite L.P. problems just like the above-described lemmas. 

Theorem 4.1. I f  (i) one of the two problems has a solution or (ii) both problems 
have feasible vectors, then both problems have solutions. Each pair x*, y* of solutions 
satisfies (4.4) and on account of Lemma 4.3 the equivalent conditions (4.5) and (4.6). 

For  our special L.P. problems with A, b and c described above, we know that 
there exists a solution y* to Problem II on account of Theorem 3.2. 

Corollary 4.1. There exists a pair of solutions to our special pair of L.P. problems. 
x*, y* with x* e X and y* e Y is a pair of solutions if and only if(4.4) or the equivalent 
conditions (4.5) and (4.6) are satisfied. 
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5. Sufficient Conditions for Optimality 

We generalize the Lemmas 4.1, 4.2 and 4.3 along the lines described in [2] 
and [8]. For that purpose let ~3n(~3K) be a suitable a-field of subsets of Q/~(~2K) 
such that (for a certain determination) the p.d.f, po(x): Y. x ~?n-+ [0, oe) is measur- 
able with respect to the a-field ~I x ~3 H generated by all sets of the form A x B 
where Aeg[ and Be~3n and that Po(X): X x f2 K --* [0, oo) is measurable (9.1 x ~K)' 
Of course/3": QK--' [0, 1] is assumed to be measurable (fSK). 

Our L. P. Problem I will be to determine a 9~-measurable function v: X ~ [0, oe), 
a measure 2 over (QH, ~3n) and a measure v over (f2~, ~ : )  such that (see Problem I 
in Section 4) 

c(v, 2, v)= -- ~ v(x) dp(x)--~2(f2n)+ ~ fl;(O) dv (5.1) 
3r K 

is maximized, under the following feasibility restrictions which define the set X of 
elements (v, 2, v): 

v(x)>=o 

2(B)>O 

v(B)>=O 

- v ( x ) -  ~ Po (x) d2 + ~ Po (x) dv ~ 0 
H K 

v (~?K) < 1. 

a.e. (#), (5.2) 

V B e ~  n, (5.3) 

VB~3K, (5.4) 

a.e. (p), (5.5) 

(5.6) 

Problem I has been formulated in such a manner that it reduces in the finite 
case to Problem I of Section 4. (5.1) and (5.5) contain terms which might be infinite. 
We can restrict X by requiring definiteness, and without changing sup c(v, 2, v) 

X 

or the set of all optimal (v, 2, v)'s: X + 0 for X contains (v, 4, v) with v = 0, 2 = 0, 
v = 0. Hence sup c(v, 4, v)>0. But c(v, 4, v)> c for c arbitrary negative, implies 

X 

v d# < oo and 2 (f2n) < 0% for 0 < ~ fl; dv __< 1 and 0 < ~ (we always assume 0 < ~ < 1). 
This implies ~po(x)d2<oo a.e. (#), for otherwise ~po(x)d2d#=2(g2n)=oo 
(Fubini). Similarly ~ po(x) dv < oe a.e. (#). 

Lemma 53. If(v, 2, v) is feasible for Problem I ((v, 2, v)~X) and (q~, ?)for Prob- 
lem II (((p, ?)e Y), then 

c(v, 2, v)<b(cp, ?). (5.7) 

Proof. We generalize the inequalities (4.3) and apply Fubini. 

c(v, 2, v) <= - ~ q) v d # -  ~ q) Po d# d2+~ {Y+I (P Po d#} dv 

=~ q~ { - v - ~  Po d2+~ Po dr} d# + 7 v(~?~) (5.8) 

=<7=b(~o,7). 

Consequently proofs in finite statistics may indeed provide a guide to much 
more general situations. 
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Lemma 5.2. If(v*, 2", v*)eX, (~o*, 7")~ Y and 

c(v*, ~o*, v*)= b(q~*, 7") (5.9) 

then (v*, 2", v*) is a solution to Problem I and ((p*, 7*) to Problem II. 

Lemma 5.3. If(v*, 2*, v*)~X and ((p*, 7*)e Y then (5.9) holds if and only if 

(p* (x)= 1 for almost (#) all x with v* (x)> 0, (5.10) 

~o* Po d# = c~ for almost (2") all 0 ~ O n, (5.11) 

f i ;(0)=?* + S (p* Po d# for almost (v*) all OeOK, (5.12) 

~0*(X)=0 for almost (p) all x with v*(x)> - ~  po(x)d2* + ~ po(x)dv*, (5.13) 

V*(OK)= 1 if 7*>0,  (5.14) 

v*(x)=max{0,-~Po(X)d2*+~Po(X)dv*} a.e. (#). (5.15) 

Proof (5.9) holds if and only if equality holds everywhere in (5.8) or in other 
words if and only if (5.10), ..., (5.14) hold. Hence (5.9) will certainly hold if(5.10), ..., 
(5.15) are true. On the other hand if (5.9) holds then (v*, 2", v*) is a solution to 
Problem I and it follows easily from (5.1) . . . .  , (5.6) that this implies (5.15). 

Formula (5.15) shows that we can reduce Problem I to the following reduced 
Problem I where a measure 2 over (f2~, ~3u) and a measure v over (OK, ~3K) have 
to be determined such that 

f(2, v)= - ~ max {0, - S Po(x) d 2 +  ~ Po(X) dv} dp-c~ 2(~2H)+ ~ fi;(O) dv (5.16) 
H K K 

is maximized under the restrictions 

Of course we have 

2(B)>0 VB~fI3n, (5.17) 

v(B)>O V B ~ ,  (5.18) 

v(OK)< 1. (5.19) 

sup f(2, v) = sup c (v, 2, v) > 0. (5.20) 
).v X 

Moreover the following Lemmas can be proved easily. 

Lemma 5.4. (2", v*) is a solution to the reduced Problem I, if and only if(v*, 2", v*) 
is a solution to Problem I when v* is determined by (5.15). 

Lemma 5.5. I f  (2", v*) is a solution to the reduced Problem I with 2*(f2H)>0 
(and c~>0) then v*(Ot~)>0. If(2*, v*) is a solution to the reduced Problem I and 
f(2*, v*)>0 then 2*(f2u)>0 and v*(Or)= 1. The supremum of(5.16) under the re- 
strictions (5.17), (5.18) and (5.19) is equal to the supremun under the restrictions 
(5.17), (5.18) and v*(~2K)= 1. 
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6. A Duality Theorem Showing that the Sufficient Conditions 
of Lemma 5.3 are Necessary for Optimality 

Lemma 5.3 provides necessary and sufficient conditions for the equality (5.9) 
which implies that (v*, 2*, v*), (~0", 7*) is a pair of (optimal) solutions. We shall 
prove a fundamental (weak) Duality Theorem 6.2, which generalizes Theorem 4.1 
and Corollary 4.1 to some extent, and which states that 

0<  sup c(v,)L,v)= min b((P, 7 )=7*< l - c~ .  (6.1) 
(v,)o,v)~X (~p,~)eg 

Hence if there exists a solution (v*, 2", v*) to Problem I and (~0", 7*) is one of 
the solutions of Problem II, then (5.9) holds. 

Theorem 6.1, (v*, 2", v*), ((p*, 7*) constitute a pair of solutions to our pair of 
L.P. problems if and only if the conditions (5.2), ..., (5.6)((v*, 2", v*)eX), (2.4), ..., 
(2.8) ((q)*, 7*)e Y) and (5.10), ..., (5.15) are satisfied (we assume 0 < e <  1). 

We shall prove Theorem 6.2 by generalizing the elegant considerations of 
Krafft and Witting in [2] Section 3. First we prove strong duality in the case of a 
finite parameter space O (strong duality means that both L.P. problems admit 
solutions). Next we use this result for showing weak duality (6.1) in the case of 
an arbitrary O. The latter proof uses the compactness of {~} and is based on the 
fundamental result that a subset A of a topological space is compact, if and only 
if for each family { ~ ; j e  J} of closed non-empty subsets of A with the finite inter- 
section property holds that ~ ~#=0. 

j s J  

Lemma 6.1 (Strong duality if f~ is finite). I f  e>O, t?H={0 a . . . .  ,0M~}, t2K= 
{OM1 + 1, "", OM~ +M2} and fl*: O K ~ [0, 1] is an arbitrary function, then there exists 
a solution (v*, 2*, v*) to Problem I, and (5.9) holds for each pair of solutions (v*, 2*, v*), 
(~o*, 7*) to our L.P. problems. 

Proof Define Q= {q(~o); ~oe(b}cR MI+M2 where 

qi(q))=Eo~(q))=~q)dPoi (i=1, ..., Mj) 

and ql (~o) = fl; (0i)- E0i (~0) (i = M 1 + 1, ..., M1 + M2). Q is convex, for qh, q'2 e 4~ and 
0 < p <  1 implies that p ~o 1 + ( l - p )  ~o2e~ and hence that p q (qh)+(1-p)  q(~o2)= 
q{p qo 1 + ( l - p )  ~o2}e Q. Moreover Q is a compact subset of R MI+M~ on account 
of the weak compactness of {~b} (the weak-star a(L~,  L0-topology makes each 
qi: Lo~ ~ R with qi({q~ q~(qo) continuous; accordingly q: L~ ~ R ~h +M~ is 
a(L~,  L0-continuous; the continuous image q({~b})=Q of the compact set {4~} 
is compact). 

Let S~ denote the open negative orthant, shifted so that the origin is at q~, ~ = 
(~, ..., c~; 7, ..., 7). Hence 

S 7 = {q; ql < e (i = 1, ..., M~), q~ < ? (i = M a + 1, ..., M~ + M2) } 

and [S~] will denote the closure of S~. The family {[S~] ~ Q; [S~] c~ Qr is a 
chain of closed non-empty subsets of the compact set Q. Hence the intersection 
is non-empty and there exists a number ?* such that [S~] c~Q= 0 for 7<7* and 
[S~] c~ Q + ~ for 7 > 7*. We distinguish two cases: (i) 7* < 0 and (ii) 0 < 7* N 1 - c~ 
(the trivial test q~ with q~(x)= c~ a.e. (#) satisfies q(qo~)e [S l_~] c~ Q and hence 
7* = 1 -e ) .  
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Case (i). There exists q)e ~ with q (q~)e [So] ~ Q. Hence ((p, 0) satisfies (2.4), ..., 
(2.8). On account of (2.5) we obtain minb(cp, 7)--0. By applying (5.7) and 

r 
sup c(v, 2, v)>0=c(0,  0, 0) we obtain (6.1) with 7* =0, while (0, 0, 0) is a solution 

X 

to Problem I. 

Case (ii). We have S~, c~ Q = 0 for 7* is the smallest number with [S~,] c~ Q ~ 0. 
But S~, is open convex and Q is compact convex. Hence there exists a hyperplane 
separating S~, and Q. It can be shown (Karlin [1] p. 25) that this hyperplane con- 
tains q~. r, while the direction coefficients of a normal are all non-negative. Hence 
there exist)~*... 2 "  ; v 1.... VM~* all _> 0 such that some of these coefficients are > 0 a n d  

M1 Me. MJ. M2 

2" q~((o)+ ~,, v* qu,+,(~O)>, ~ 2* +7* ~ v* (6.2) 
i = l  i=1  i=1  i=1  

holds for all q) e ~, while equality holds in (6.2) for all (p ~ {q); q (q0) e [S~,] n Q (~  0)}, 
or in other words for all ~o* such that (~0", 7*) is a solution to Problem II. 

M2 M2 MI 

We remark that ~ v* > 0, for suppose ~ v* = 0 then (6.2) implies 2 2* qi(~~ > 
Mi i = 1  i = l  M1 i=1  

~ 2* for all 9 e @ and in particular for 9 = 0. Hence 0 > c~ ~ 2* and c~ > 0 implies 
i=i  i=i 

that all coefficients 2* and v* are equal to zero. Thus we obtain a contradiction. 
M2 

We can normalize the coefficients A'i, v*/in such a way that ~, v* = I. In that 
i=1 

case the vector v* can be regarded as a probability measure over f2~r while 2* 
may be considered to be a measure over f2 n. Next we define the 9,i-measurable 
function v*: ~ --+ R according to 

{ MI Me. } 
v*(x)=max 0 , -  Y~;.*po,(x)+ Y~ * i=l i=lvi poM<, (x) (6.3) 

where Po~ is the (measurable) Radon-Nikodym derivative dP0]d p. 

Then (v*, 2*, v*) satisfies the feasibility restrictions (5.2) . . . .  , (5.6) and if I 
denotes the indicator function of {x, x e 3s v* (x)> 0}, then 

- ~  2*po~(X)+ ~ V*poM~§ d# c(v*,X*, v*)= l(x) - i  i=~ 

-c~ 2" ((2u)+ 5 fl;(O) dv* 
K 

M1 M2 M1 

= ~ ~'~ Eoi(i)~- 2 IJ~ {fl;(Oi)--EOMl+ i (I)} -c~ ~, 2*. 
i=1 i=1 i=1 

But IeO~ and we can apply (6.2), thus obtaining 

M2 

e(v*, ;~*, v*)>=7* ~ v* =7* = b(~o*, 7*). 
i = i  

By applying Lemma 5.1 we obtain (5.9). 
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Theorem 6.2 (Weak duality for arbitrary 0 ) .  I f  ee(0, 1), po(X) is measurable 
(fB H x 92) over O H x 3s and measurable (f~r x 92) over f2 K x 3s while fl*: f2 K --, [0, 1] 
is arbitrary but measurable (f~t~), then (6.1) holds. 

Proof. Lemma 5.1 shows that 

c* =sup c(v, 2, v)__< rain b(cp, 7)=7*. 
X Y 

Moreover if q0,(x)= c~ for all x e ~  then ((p~, 1 - e )  satisfies (2.4) . . . . .  (2.8) and hence 
7*< 1 -  c~. Further v = 0, 2 = 0, v = 0 satisfies (5.2) . . . . .  (5.6) and hence c*> 0. Thus 
it is sufficient to show that c* > 7* or in other words that the subset { T} of {~} c L~o 
is non-empty when 

T =  {q0; ~oeq~; Eo(q))<e(OeOH); fl*(O)--Eo((P)<c*(Oef2K) }. (6.4) 

It is straightforward to write 

~= (~ ~(01 . . . .  , Oral; 0M1-1-1 . . . . .  Oral-I-m2) (6.5) 

where the intersection is taken over all pairs of a finite subset {01,..., 0M1 } of O H 
and {0M1+1 . . . .  ,0MI+M2} c O  K, while 7~(01, ..., 0M~; 0~h+l, ..., 0M~+M2) denotes 
the following subset of ~b 

{q~; q ~ b ;  E0~(q~)<c~ (i=1 . . . .  ,Ma); 

fl~(Oi)-Eo,(~o)<e* ( i = M  1 + 1, . . . ,  M 1 +M2)).  
(6.6) 

We shall show that the subset of {q~} c Lo~, corresponding with (6.6) is (i) 
non-empty and (ii) ~(L~, L0-closed. The family consisting of all such subsets 
has the finite intersection property, for the intersection of a finite number of sets 
of the form (6.6) is again a set of the form (6.6). But {4~} is a(Lo~, L0-compact 
(Theorem 3.1). Hence {7~}~) and ~g+0, so that the proof is complete when we 
have dealt with (i) and (ii). 

(i) The set (6.6) is non-empty. This will be proved by applying Lemma 6.1 to 
the testing problem (H', K') when f2 n, = {01 . . . . .  0~tl} and O K, = {0M, + D.. . ,  OMI+M2}" 
Let I' and II' denote the corresponding L.P. problems and X' and Y' the corre- 
sponding sets of feasible elements. Each pair of measures over O H, and O K, 
respectively can be identified with a pair of measures over (f2 H, ~3H) and (O~:, ~3r). 
Hence on account of Lemma 6.1 and the fact that X' may be regarded as a subset 
of X, 

e* =sup c(v, )~, v)> max c(v', 2, v') = rain b (~0', 7') = ~', 
X X' Y' 

so that there exists a solution ((p', 7') to Problem II' where qo' belongs to the set 
(6.6). 

(ii) The set (6.6) is ~(Lo~, LO'closed. This can be shown along the same lines 
as the ~(Lo~, L0-closedness of F(7 ) at the end of Section 3. 
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7. Characterizing the Solution (r 7") to Problem II by Means 
of the Solution (~*, v*) to the Reduced Problem I 

Theorem 6.1 provides necessary and sufficient conditions for the optimality 
of a pair (v*, 2", v*), (cp*, 7"). We can give various modifications of the formulation 
of this theorem. 

Theorem 7.1. Sufficient for the optimality of (cp*, 7*) with cp* e 4) as a solution to 
Problem II is that there exists a pair ~,, ~ of probability measures over (~o, ~n)  and 
( ~ ,  ~ )  respectively and a number k such that 

~o* (x) = 1 

~o*(x)=0 

sup E 0 (~o*) = c~, 
i t  

E0(~o*)= ~ for almost (2) all O~f2H, 

sup 7~*,D (0) = sup {13; (0)-- E 0 (cp*)} = 7" > 0, 
K K 

?~o.,D(0)=?* for almost (~) all O~f2 K. 

for almost (I ~) all x with S Po(X) d~ > k S Po(X ) d~, 
K H 

for almost ~)  all x with ~ Po (x) d ~ < k ~ Po (x) d i ,  
K H 

(7.1) 

(7.2) 

(7.3) 

(7.4) 

(7.5) 

(7.6) 

I f  there exists a solution (2*,v*) to the reduced Problem I with 2*(f2u)>0 
(and consequently V*(f2K)>0 ) then each solution (~o*,7") to Problem II (such 
solutions exist on account of Theorem 3.2) satisfies ~o*~ ~ and (7.1) . . . . .  (7.6); where 
i = 2*/2* (fin); ~ = v*/v* (f2K) and k = 2" (f2n)/v* (f2K). 

Proof (i) Sufficiency of the conditions. Define 2* = k ;  and v* = ~. Then (v*, 2*, v*) 
is feasible for Problem I when v* is determined according to (5.15). Moreover 
(q~*, 7") is feasible for Problem II on account of q~*s~, (7.3) and (7.5). But (7.1)-> 
(5.10), (7.4)-->(5.11), (7.6)--+(5.12), (7.2)--+(5.13) and Lemma5.3 together with 
Lemma 5.2 show that (~o*, 7*) is a solution to Problem II (and that (2*, v*) is a 
solution to the reduced Problem I: if Problem I does not admit a solution then it 
is not possible to find 2, ~ such that the conditions are satisfied). 

(ii) Necessity of the conditions. If (2*, v*) is a solution to the reduced Problem I 
then (v*, 2*, v*) is a solution to Problem I when v* is determined according to 
(5.15). But if (v*, 2*, v*), (~o*, 7") is a pair of solutions then on account of Theorem 
6.1 the conditions (5.10), ..., (5.15) hold together with the feasibility of (q~*, 7*) 
and 7"=f (2" ,  v*)>0. This implies q ~ * ~  and (7.1) . . . .  , (7.6). 

By applying Theorem 7.1 to the special case D =  ~, corresponding with the 
construction of a maximin size-c~ test, and applying Lemma 2.1 we obtain the 
following result. 

Corollary 7.1. Sufficient in order that cp* is a maximin size-~ test for Problem 
(H, K), is that there exists a pair 2, ~ of probability measures over (f2n, ~n)  and 
(~?K, ~ )  respectively and a number k such that q ) * s ~ ,  (7.1), (7.2) and (7.4) are 
satisfied together with 

E0(q~*)=inf E0(~o*) for almost (~) all O~g? K. (7.7) 
K 
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I f  there exists a solution 2", v* to the reduced Problem I with 2*(Y~H)>O 
(and consequently v* (~2K) > 0) then these conditions are also necessary for optimality 
of q~* /f i = 2*/2* (~2n) ; ~ = v* /v* (f2~) and k = 2" (f2H)/v* ((2K). 

Corollary 7.1 corresponds with Satz 7 in Krafft und Witting [2] and with 
Theorem 1 in Lehmann [3]. Dealing with the maximin size-e test, these authors 
characterize (,~, ~) as a least favorable pair of probability measures. We must try 
to generalize this notion to our general pair of L.P. problems. But for that purpose 
we need a formulation of the Neyman-Pearson fundamental lemma which will 
be obtained by applying Corollary 7.1 to the case of a simple hypothesis H: 0 = 0 o 
and a simple alternative K: 0= 01 (see Lehmann [3] p. 65). 

Corollary 7.2. Sufficient in order that 9* ~ q~ is M.P. size-c~ for testing H: O= 0 o 
against K: 0 = 01 is that there exists a number k such that 

(p* (x) = 1 for almost ~ )  all x with Po~ (x) > k Poo (x), (7.8) 

(p*(x)=O for almost (g) all x with po~ (x)<k poo(X), (7.9) 

Eoo((p*) = e. (7.10) 

These conditions are also necessary provided that there does not exist a test r 
with E0o(9' ) < ~ and E0~(~o' ) = 1. 

Proof We must show that there exists a number 2 >0  such that (see Corol- 
lary 7.1) 

f(2, 1) = - ~ max {0, - 2 Poo (x) + Po, (x)} d/~ - a 2 + 1 >= 0 
t 

(for then there exists a solution (2*, 1) to the reduced Problem I with 2* > 0 - the 
existence of a solution follows from Lemma 6.1), unless there exists a test ~o' with 
E0o (9') < c~ and E01 (qo') = 1. 

First suppose that there exists 2 > 0 such that Eoo(Ia)> e where 14 is the indi- 
cator function of {x; Pol (x) > 2 Poo (x)}. Then 

f(2, 1) = 2 {Eoo (14)- e} + { 1 - Eol (Iv) } > 0. 

Next suppose that for each 2 > 0  we have E0o(Iz)<~ and f(2, 1)<0. Let 1 
denote the indicator function of {x; Po~ (x)> 0}. Then 

2 {E0o (14)- c~} + { 1 - E0, (I)} <f(2 ,  1) =< 0 

and 2--*0 shows that E01(I)= 1 and Eoo(I)<c~ (14 is nonnegative and Ia(x ) is 
nondecreasing for 2 --+ 0 and lim Iz(x)= I(x); hence the Lebesque monotone con- 

2 ~ 0  

vergence theorem shows that E0o(I ) = {ira ~ E0o (14)). 

Hence the conditions (7.8), (7.9) and (7.10) are necessary unless E01 (I)= 1 and 
E0o (I) < c~. It can be shown easily that the conditions are also necessary if E0, (I) = 1 
and Eoo(I)= c~. If E01 (I)= 1 and Eoo(I)< c~ then the conditions are not necessary, 
for (p' = ! is a test with Eo, (q/) = 1 but which does not satisfy (7.10). 
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Suppose that (~o*, 7*) with ~0"~4~ is such that there exists a pair 2, ,7 of prob- 
ability measures and a number k such that (7.1) . . . .  , (7.6) are satisfied. Then on 
account of Corollary 7.2 test (p* is a M.P. size-e test for testing the simple hypo- 
thesis H~ that the p. d. f. is given by px(x)= ~ Po (x) d2 against the simple alternative 

H 

K~ that the p.d.f, is given by p~(x)= ~po(X)d~,. 
K 

Definition. (2, ~) is said to be a least favorable pair of probability measures over 
(~ / ,  ~3~t ) and ((~,  ~ r )  respectively, if for each other pair (2', v') we have 

?o, D(0) d r ' <  ~ ?0,D(0) d~ (7.11) 
K K 

where q5 is an arbitrary M.P. size-c~ test for Problem (Hi, K~) and q / i s  a M.P. 
size-e test for (Hz,, K,,). 

Theorem 7.2. I f  (2*,v*) with 2*(QH)>0 (and consequently v*(~?K)>0 ) is a 
solution to the reduced Problem I and ~.=2*/2*(Qn), ~=v*/v*(~2K) then (2, ~) is a 
least favorable pair of  prabability measures. 

Proof. Let ((p*, ?*) be one of the solutions to Problem II (Theorem 3.2). Then 
(p* ~ ~b satisfies (7.1) . . . .  , (7.6) (Theorem 7.1) and hence q~* is M.P, size-e for Problem 
(Hi, K~) (Corollary 7.2). Moreover 

?o, D(0) d ~ = y * >  ~ ?~,,D(0) dv' (7.12) 
K K 

on account of (7.5) and (7.6), when v' is an arbitrary probability measure over 
(~2K, ~3K). Next suppose that (p' is M.P. size-c~ for (H~,, K~,) where (2', v') is an 
arbitrary pair of probability measures. Test cp* is also of size-c~ for testing Hx, on 
account of (7.3). Hence 

E0 (cp') dr'__> ~ E0(cp* ) dv' 
K K 

and by applying (7.12) we obtain (7.11) (where ~o* plays the part of q3). 

If there exists a least favorable pair (~, ~) then we can construct a number 
and a M.P. size-e test (/5 for Problem (Hi, K~) such that (7.8), (7.9) and (7.10) are 
satisfied (see Corollary 7.2; if there exists a test (p' with size < ~ and power 1, then 
take fc=0, (~(x)= 1 for all x with p~(x)>0, and ~ ( x ) = g  if p~(x)=0, with g such 
that (7.10) holds). 

Theorem 7.3. I f  (2, ~) is a least favorable pair then (k 2, ~) is a solution to the 
reduced Problem I. 

Pro@ Let (2, v) be an arbitrary pair of measures satisfying (5.17), (5.18) and 
(5.19). We have to show that f ( k  2, ~)>f(2,  v). We shall prove this inequality under 
the condition that )+ (f2n) > 0 and v (f2K) > 0. (If 2 (~?n) = 0 or v (f2~;) = 0 then it follows 
easily from (5.16),...,(5.19) that f()~, v)<0. But on account of (6.1) we have 
sup f(2,  v) > 0 and thus f(~: 2, ~) >f(2,  v) holds for all (2, v).) 

Hence suppose 2(~?r~ ) > 0 and v (~2~)> 0. Let (2', v') denote the corresponding 
pair of probability measures: 2 '=  2/2 (~H), v '= v/v (~2~) and let q)' be a M.P. size-c~ 



304 W.  S c h a a ~ m a :  

test for Problem (Hz,, K~,). Then (7.11) holds and thus we obtain 

f(lc 2, ~)= - ~ (o (x) { -  ~ Po(X) k d2 + ~ Po (x) d~} d # - a  k + ~ fl* (0) d~ 
3C H K K 

= k { ~ (o (x) ~ Po (x) d~. d # -  ~} + ~ 7(o,D (0) d~ 
H K 

= ~ 70,.(0) d'~: > .[ ?~o,,u(0) dv'=> ~ 7~, D(0) dv 
K K K 

>=). (OH) { ~ q~' (X) ~ PO (X) d2' d # -  ~} + ~ 7~',D (0) dv 
H K 

= - ~ q~'(x) { -  ~ Po(X)d2+ ~po(X)dv} d # - a  2(s ~ fi;(O)dv 
3E H K K 

>=f(2, v). 

The Theorems 7.1, 7.2 and 7.3 may be regarded as generalizations of results of 
Lehmann ([-3] p. 327) and Krafft und Witting ([2] Satz 7 and Satz 12) concerning 
the maximin size-a criterion. Their results are obtained by taking D = q~ so that 
B*(O)= 1 for all 0 ~  K. In this case the pair (,~, ~) is a least favorable pair if for each 
other pair (Z, v') of probability measures over (~2u, ~n)  and (~2K, ~ )  the following 
inequality holds 

E0(~o' ) d r ' >  ~ E0(q5 ) d~ (7.13) 
K K 

where (p' is M.P. size-c~ for Problem (Ha,, K~,) and q5 is M.P. size-a for Problem 
(Hi, K~); (,~, ~) is least favorable because the power in K~ for the corresponding 
M.P. size-c~ test 0 is a small as possible. 

8. Characterizing the Solution (~p*, 7*) to Problem II by Means 
of a Least Favorable Probability Measure P over (I2K, ~ )  

If (2", v*) with 2"((2n)>0 (and consequently V*(g2K)>0 ) is a solution to the 
reduced Problem I then (,~, ~) with 2 =2*/2* (OH) and ~ = v*/v* (OK) constitute a 
least favorable pair of probability measures (Theorem 7.2) and each solution 
(9", 7") to Problem II satisfies (p*e~ and (7.1), ..., (7.6) (Theorem 7.1). Hence 
each q~* is M.P. size-a for Problem (Hi, K~) (Corollary 7.2), but on account of 
(7.3) ~0" is also M.P. size-~ for Problem (H, K~) and ~. is the least favorable a priori 
distribution over (f2n, ~3n) for testing the composite hypothesis H against the 
simple alternative K~. In Theorem 8.1 we weaken the conditions of Theorem 7.1; 
it is not necessary that there exists a least favorable ,~. 

Theorem 8.1. Sufficient for the optimality of  (q~*, 7") with <p*Eq~ as a solution to 
Problem II, is that there exists a probability measure ~ over (OK, ~BK) such that q~* 
is M.P. size-e for Problem (H, K~) and such that the conditions (7.5) and (7.6) are 
satisfied. 

I f  there exists a solution (2", v*) to the reduced Problem I with 2"((2n)>0 
(and consequently v* (OK) > O) then for each solution (q~*, 7") to Problem II the above- 
described sufficient conditions are satisfied when ~ = v*/v* (OK). 

Proof The second part of the theorem follows from the considerations above. 
In Theorem 8.3 we shall weaken the conditions used in this second part. 
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In order to prove the sufficiency of the conditions in the first part we show that 
7>7* holds for each ((p, 7) satisfying the feasibility conditions (2.4), ...,(2.8). 
(p is of size-~ for testing H and q~* is M.P. size-c~ for Problem (H, K~). Hence 

Eo( O*) S Eo( o) 
K K 

But by applying (7.6) we obtain 

7*= j7e, D(O)d~< S 7~0,D(0) d E 
K K 

and consequently 7o, D(0)> y* for some 0~g2 K. By applying (2.8) we obtain 7>7*. 

Definition. ~ is said to be a least favorable probability measure over ((2 K, ~3K) 
if for each other probability measure v' Formula (7.11) holds when ~o' is a M.P. 
size-~ test for Problem (H, K~,) and 0 is a M.P. size-c~ test for Problem (H, K~). 

Theorem 8.2. I f  there exists a probability measure ~ over (f2K, ~K) such that 
for a M.P, size-~ test q)* for Problem (H, K~) the conditions (7.5) and (7.6) are satis- 
fied, then E is a least favorable probability measure over (Y2K , ~K)" 

Proof Let v' be an arbitrary distribution over (f2K, ~3K) and let (p' be a M.P. 
size-e test for Problem (H, K~,). By using (7.6), (7.5) and that q/ is  M.P. for (H, K~,) 
respectively, we obtain 

7"=  S 7:,D(0) dE~ .~ 7~.,D(0) dv'=> ~ 7~,,D(0) dv' 
K K K 

and hence ~ is least favorable. 

Theorem 8.3. / f~ is least favorable over (E2K, ~BK) then for each solution (~p*, 7*) 
to Problem II we have that q~* is M.P. size-a for Problem (H, K~) and that the con- 
ditions (7.5) and (7.6) are satisfied. 

Proof Let v' be an arbitrary probability measure over (O K, ~3K). We shall show 
in Lemma 8.1 that it follows from the Weak Duality Theorem 6.2 that 

sup f(2,  v')= ~ 7~,,D(0) dv' (8.1) 
2 K 

holds for each of the M.P. size-~ tests q / for  Problem (H, K~,). But ~ is least favor- 
able and hence on account of (7.11) and the Weak Duality Theorem 6.2 

7" = sup f(2, v) = max sup f(2,  v) 
2, v v 3. 

= sup f(2, E) = ~ 70,D (0) dE 
2 K 

holds for each M.P. size-e test 0 for Problem (/-/, K~). 

Hence (p* is M.P. size-e for Problem (H, K~) for otherwise 

~ 7~o.,D(0) dE> 7" 
K 

and 7: ,D(0)>7" for some OeQ K with as a result that (~0", 7*) is not feasible for 
Problem II. Hence 

7 0 . , D  (0 )  dE = 7*. 
K 

21 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 14 
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This together with the feasibility of (~0", 7*) shows that (7.5) and (7.6) are 
satisfied. 

Lemma 8.1. l f  q/ is M.P. size-a for testing H against the simple alternative that 
the p.d.f, is given by Pol, then 

- E01(qr sup [ -  Smax {0, - ~ po(x) d2+pol(X)} d # - ~  2(f2u) ] . (8.2) 
;t ~ H 

Hence if qr is M.P. size-e for Problem (H, Kv, ) then (8.1) holds. 

Proof. One can apply Witting [8] p. 72 together with the Weak Duality Theo- 
rem 6.2. We shall apply the theory of the preceding sections. ~o' is a maximin size-a 
test for testing against {01 }. If 7' = 1 - E01 (q~') then (q)', 7') is a solution to the cor- 
responding Problem II where D=(b and fi~(01)=1. For the corresponding 

reduced Problem I we may restrict the attention to v (OK)= 1 in which case v is the 
singular probability measure taking {01} with probability 1. By applying Theorem 
6.2 we obtain 

sup [ -  S max {0, - ~ Po (x)d2 + Pol (x)} d /~-~ )o (f2u) ] + 1 = 7' 
;t :E H 

and we obtain (8.2) as a result. The second part of Lemma 8.1 is a simple conse- 
quence which is obtained when Po~ (x)= ~ po(X)dr' so that 

K 

sup f(2, v ' ) = 7 ' -  1 + ~ fl*(0) dv '=  ~ 7~,,D(0) dr'. 
.~ K K 

We have seen that if (,~, ,7) is a least favorable pair of probability measures in 
the sense of Section 7, then ,7 is least favorable in the sense of Section 8. Accordingly 
the results of this section can be applied to more problems. We can weaken the 
conditions of Lemma 6.1 for example. 

Theorem 8.4. I f  f2 K is finite then there exists a least favorable probability measure 
over (~2 K, ~ ) .  

This is a new formulation of Characterization Theorem 2 in [-6]. 

Remark. The criterion most stringent size-c~ was introduced by Wald. In 
"Tests of statistical hypotheses concerning several parameters when the number 
of observations is large" (1943) (see [7]), he constructed most stringent size-a 
tests for problems with linear hypotheses concerning the mean vector of a multi- 
variate normal distribution with known covariance matrix. He showed that for 
certain problems the likelihood-ratio test is "asymptotically" most stringent 
size-e. Theorem 8.1 provides an abstract formulation of the arguments applied 
by Wald and in [6] Section 3. Similar arguments were applied by van Zwet and 
Oosterhoff [9]. The testing problems with restricted alternative of [6] and [9] 
are interesting because different criterions provide different optimum solutions. 
One can compare the most stringent size-c~, the M.S.S.M.P. size-a and the like- 
lihood-ratio size-a tests for such problems (see [6] and [9]). 

It will be clear from the preceding sections that the results obtained in these 
sections have been made possible by the Krafft-Witting paper [2] which applies 
the linear programming method to the construction of maximin tests and indi- 
cates the lines along which the Weak Duality Theorem can be proved. 
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