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A Note on Deterministic Equivalents 
to Stochastic Linear Programming Problems 

JITKA ZA~KOVA 

Summary. Generalized inverse matrices are used as a tool for a study of two-stage linear program 
under uncertainty. For a special choice of M which represents an extension of the so-called complete 
problem, a deterministic equivalent is given in the explicite form. 

1. We shall deal with the two-stage stochastic linear program (resp. linear 
program under uncertainty) in its standard form (see e.g. [2, 4]) 

minimize f ( x ) =  g{c 'x  + q~(x, A, b)} (1) 
subject to 

A1 x = bl, x > 0, (2) 

where q~ (x, A, b), for fixed x, A, b, denotes the minimal value of 

q 'y (3) 
subject to 

M y = b - A x ,  y>__0. (4) 

The elements of matrices Aa(ml, n), M(m, p), bl(m 1, 1), q(p, 1) are given constants 
whereas the elements of A(m, n) and b(m, 1) are random variables with a known 
joint distribution and elements of c(n, 1) are random variables with known 
finite mean values. 

Usually, the problem (1), (2) is investigated under following assumptions: 

(i) the set 9J~= {x: x > 0 ,  A1 x = b l }  is non-empty and bounded, 

(ii) the set {y: y_>0, M y = A x - b }  is non-empty for all (finite) realizations 
of A, b and for all x e 9J~, 

(iii) the function ~o(x, A, b) is defined and finite for all realizations of A, b 
and for all x~OJ~. 

Using the generalized inverse M* we can write q~ (x, A, b) (see Charnes, Cooper, 
Thompson [1], Kall [-3]) as 

~p (x, A, b) = max w' M* (A x - b) + q' M* (b - A x) (5) 
subject to 

( E - M *  M ) w = ( E - M *  M)q, w > 0 .  (6) 

The constraints (6) are deterministic and do not involve x; the constrained maxi- 
mum of w' M* (A x -  b) can be found as the unconstrained max w's M* (A x -  b), 

l<s~S 
where ws, s =  1, ..., S, are extreme points of the set {w: w>0,  ( E - M *  M ) w =  
(E-M* M)q}. 
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Further, using the known property of generalized inverses, M* M M* = M*, 
and expressing any vector v as v = M* M v + ( E - M *  M)v, the problem becomes: 
Find 

~p (x, A, b) = max (M* M w)' M* (A x -  b) + (M* M q)' M* ( b -  A x) (7) 

subject to 
M* M w > - (E- M* M) q. (8) 

We shall give a sufficient condition for assumption (iii) to hold. (For a necessary 
condition see Kall [2], Theorem 5.) 

Theorem 1. Let the set {y: y>0 ,  M y = z }  be non-empty for all zeEm and let 
( E -  M* M) q > 0. Then assumption (iii) holds. 

Proof. The assumption {y: y > 0, M y = z} # ~ for all z e Em implies the existence 
of a vector t such that t # 0, t > 0, M t = 0 (see Kall [2], Theorem 3). 

The function q 'y attains its minimum subject to (4) if q ' t > 0  holds for all 
t # 0, t > 0, satisfying n t = 0. Using the symmetry of M* M, we get for all t 
possessing the mentioned properties that 

q' t = q' M* M t + [ ( E -  M* M) q]' t = [ ( E -  M* M) q]' t > 0 

according to the assumption ( E -  M* M) q > 0. 

Corollary. Under the assumptions of Theorem 1, the set 

{w: M* M w>= -(E-M*M)q} 
is non-empty. 

2. For a special choice of M, the explicite form ~o(x, A, h) will be given. That 
choice of M represents an extension of the so-called complete problem (see 
Wets [4]). 

Let M = (P ! - P), where P is a (m, p) matrix of rank m. In this case, the set 
{y: M y = z, y > 0} is non-empty for arbitrary z e Em if and only if the set {u: P u = z} 
is non-empty for arbitrary ZeEm; but the latter assertion is entailed by the 
assumption h (P) = m. 

We get 
_ •  p , ( p p , ) - i  ~ _ l  [ ~ P* 

M * = M ' ( M  M,) -1 --2 ~ _ p , ( p  p , ) - l ]  - ~  ~ _ p , ] ,  

M * ( A x - b ) = � 8 9  / P * ( A x - b )  
\ - P* (A x -  h)/ '  

M ' M = � 8 9  P*P - P * P ~  
-p*p p * p  ] '  

M*Mw=�89 P*Pwl-P* Pw2 
- P * P w l + P * P w z ] '  where w=(Wlt,\w2/ Wl, W2~Ep. 

( - )  and condition Denoting �89 P wl - P* P w2) = wo we have M* M w = - wo 
(8) becomes 

--/11 =< WO ~ q2 (9) 
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where 

( 4 1 t ,  
~ I = ( E - M *  M ) q =  \42/ 

The problem is to find 

41' q2 ~ Ep. 

q~ (x, A, b) = max (M* M w)' M* (A x -  b) + (M* M q)' M* ( b -  A x) 

=max w~ P* (A x -  b)+q~ P*(b-A x) 

subject to (9); here 

' )  ql, q2~Ep, 
q=  q 2 '  

). qo =�89 P qa - P *  Pq2) 

Denote P~* the i-th row of P* and zi = P~* (A x -b ) .  Now, the announced result is 
given by 

Theorem 2. Let  M = (P" - P), where P is a (m, p) matrix o f  rank m, let qi + qp + i >-- O, 
i=  1, . . . ,  p. Then 

P P 
(p (x, A, b) = ~ qp+i [P~* (A x -  b)] + + ~ q, [P~* (A x -  b)]- 

i=1 i=1 

P P 

= Z q p + i z + +  2 q i z C  
i=1 i=1 

(lo) 

which is a convex separable function in z I . . . .  , Zp. 

Proo f  The condition qi+qp+~>O, i=1  . . . . .  p, (resp. q l + q 2 > 0 )  is necessary 
and sufficient for the set {% e Ep: - 41 < Wo < 42 } be non-empty. The maximum 
of w; P* (A x -  b) is attained when the i-th component of the vector Wo equals to 
~p+i for P/* (A x -  b) > 0 and equals to - ~ for Pi* (A x - b) < 0, i = 1, 2 . . . .  , p, what 
gives the desired form of (p (x, A, b). The condition ql = qp+i > 0, i = ! . . . . .  p, secures 
the convexity of ~o (x, A, b) with respect to x, too. 

Especially, for the complete problem with M = ( E i - E )  (E is the identity 
matrix), we have 

where the i-th component of the vector 41 equals to �89 + q,. + i) and for arbitrary 

( v~ I where the i-th component of the vector v~E2m we have M ' M y =  \ - %  u ! 
equals to �89  Vm+i). 

NOW, the assumption 4 = ( E - M * M ) q > 0  of Theorem l is precisely the 
familiar assumption qz+q,.+~>O, i= 1 . . . .  , m, and it is both necessary and suffi- 
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cient for (iii). Further, 

subject to 

)(i ) 9 (x, A, b) = max �89 ~ (wi -Wm + i aij xj - -  b i 
i=1 \ j = l  

- � 8 9  (qi--qm+i) aijxj--bi 
i=1 '= 

--(qi+qm+i)~Wi--W,,+i~qi+qm+i, i=1,  ..., m. 

Using (10), we get known result 

t t (P(x,A,b)==~aqm+i 2 ai jx j -b i  + qi aux j -b i  �9 
"= \ j = l  / "= i= 

The results remain true for matrices M Obtained from (P i - P) by permutation 
of columns and by multiplication of columns by possibly different scalars. 
Especially, the following assertion holds: 

Theorem 3. Let M = (P i - PD) where P is a (m, p) matrix of rank m and D is a 
diagonal matrix with positive diagonal elements dl . . . .  ,dp, let 

Then 

q _  qp+i-~_c~ i=1  . . . .  p. 
i •  d~--~-v, 

P P 
(p(x, A, b)= ~ (l +d2)qp+i[R,(Ax-b)]  + + ~ (l +dZ)q , [R , (Ax-b)]  -, 

i = i  i= i  

where Ri's are the rows of  the matrix R = P' [P (E +D2)p ' ] -  i 

Proof The proof is similar to that of Theorem 2. Namely 

/ RP 
= ~ - D R P  - R P D  

\ 
M *  M 

D R P D / '  

and for an arbitrary vector 

V =  ( u  Vl, v 2 ~ E p ,  
\v2/ 

we have 

the condition (8) becomes 

with v o = R P ( v  1 - D  v2); 

Wo > - q~ ( =  - qx + q o )  

D Wo<ft2(=q2 + D  qo). 
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