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A Note on Deterministic Equivalents
to Stochastic Linear Programming Problems

JITKA ZAEKOVA

Summary. Generalized inverse matrices are used as a tool for a study of two-stage linear program
under uncertainty. For a special choice of M which represents an extension of the so-called complete
problem, a deterministic equivalent is given in the explicite form.

1. We shall deal with the two-stage stochastic linear program (resp. linear
program under uncertainty) in its standard form (see e.g. [2, 4])

minimize f(X)=&{c'x+@(X, A, b)} 1
subject to
A x=b,, x>0, (2)
where @(x, A, b), for fixed x, A, b, denotes the minimal value of
qy (3)
subject to
My=b—Ax, y=0. 4

The elements of matrices A, (my, n), M(m, p), b, (my, 1), q(p, 1) are given constants
whereas the elements of A (m, n) and b(m, 1) are random variables with a known
joint distribution and elements of ¢(n, 1) are random variables with known
finite mean values.

Usually, the problem (1), (2) is investigated under following assumptions:

(i) the set M= {x: x=0, A, x=Db,} is non-empty and bounded,

(i) the set {y: y=0, My=Ax—b} is non-empty for all (finite) realizations
of A, b and for all xeIRk,

(iii) the function ¢@(x, A, b) is defined and finite for all realizations of A, b
and for all xeIk.

Using the generalized inverse M* we can write ¢ (x, A, b) (see Charnes, Cooper,
Thompson [17, Kall [3]) as

¢(x, A,b)=max w M*(Ax—b)+q M*(b—AXx) (5

subject to
(E—M*M)w=(E—-M*M)q, w>0. (6)
The constraints (6) are deterministic and do not involve x; the constrained maxi-
mum of w M*(Ax—b) can be found as the unconstrained lrgagisw; M*(Ax—b),

where w,, s=1, ..., S, are extreme points of the set {w: w>0, (E—M*M)w=
(E—M*M)q}.



A Note on Deterministic Equivalents to Stochastic Linear Programming Problems 265

Further, using the known property of generalized inverses, M* M M* =M*,
and expressing any vector v as v=M* M v+ (E—M* M)y, the problem becomes:
Find

@(x, A, b)=max(M*M w) M*(Ax—b)+(M*M q) M*(b—Ax) @)
subject to
M*Mwz —(E—~M*M)g. (8)

We shall give a sufficient condition for assumption (iii) to hold. (For a necessary
condition see Kall [2], Theorem 5.)

Theorem 1. Let the set {y: y=0, My=1z} be non-empty for all zeE,, and let
(E—M*M)q=0. Then assumption (iii) holds.

Proof. The assumption {y: y=0, M y=z} =0 for all ze E,, implies the existence
of a vector t such that t4=0, t=0, M t=0 (see Kall [2], Theorem 3).

The function ¢’y attains its minimum subject to (4) if q't=0 holds for all
t+0, t=0, satisfying Mt=0. Using the symmetry of M*M, we get for all t
possessing the mentioned properties that

gt=q M*Mt+[{E-M*M)q]' t=[(E-M*M)q]'t=0

according to the assumption (E—M*M)q=0.

Corollary. Under the assumptions of Theorem 1, the set

{w: M*Mw=>—(E—M*M)q}
is non-empty.

2. For a special choice of M, the explicite form ¢(x, A, b) will be given. That
choice of M represents an extension of the so-called complete problem (see
Wets [4]).

Let M=(P: —P), where P is a (m, p) matrix of rank m. In this case, the set
{y: M y=1z, y=0}is non-empty for arbitrary ze E,, if and only if the set {u: Pu=z}
is non-empty for arbitrary zeE,; but the latter assertion is entailed by the
assumption A(P)=m.

We get
PPP)! P*
* ’ n-1_1 1
M M(MM) 2(_P1(PP/)—-1> 2(__1)*)7
P*(Ax—b)
* _h=1
MHAx—b) 2(—P*(Ax—b))’
* _ P
M*M:%—( P*P P P),
—P*P P*P
P*Pw, —P*Pw w
* —1 1 2 = 1
M Mw_z(—P*Pwl—i—P*sz)’ where w (Wz)’ Wi, WoEE,.

Denoting 7(P*Pw, —P*Pw,)=w, we have M*M w= ( Wo ) and condition
(8) becomes 5 . —Wo
~§1 EWe =4, ©)
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where

q=(E—M*M>q=((il‘l), 4, s <E,.
2

The problem is to find
o (x, A, b)=max(M* M w) M*(Ax—b)+(M*M q) M*(b— A x)
=max wy P*(Ax—b)+q, P*(b—AXx)
subject to (9); here

q=(ql), a5, 0,€E,,
q:

4=}(P*Pg—P*Pq) and M-Mq=( " )
. U

Denote P* the i-th row of P* and z;=P*(A x—b). Now, the announced result is
given by

Theorem 2. Let M = (P : —P), where Pis a(m, p)matrix of rankm, let g, +q,. =0,
i=1,...,p. Then

@(x, A, b)= __Zlqp+i [P*(Ax—b)]" + _Zlqi [B*(Ax—b)]~

(10)

NS

p

+ —_

Gp+iZi + Z q; Z;
i=1

which is a convex separable function in z, ..., z,.

Proof. The condition ¢;+¢,,;=20, i=1,...,p, (resp. q; +¢,=0) is necessary
and sufficient for the set {woeE,: —; SWy=q,} be non-empty. The maximum
of wy P*(A x—b) is attained when the i-th component of the vector w, equals to
gy+i for B*(Ax—b)=0 and equals to —g; for P*(Ax—b)<0, i=1,2, ..., p, what
gives the desired form of ¢(x,A,b). The condition ¢;=¢,,;=0,i=1,..., p, secures
the convexity of ¢ (x, A, b) with respect to x, too.

Especially, for the complete problem with M=(E:—E) (E is the identity
matrix), we have

E
—-E

E —E

M*:L(
2 -E E

A, R

1

where the i-th component of the vector §, equals to $(g;+ ¢,.;) and for arbitrary

veE,,, we have M*Mv=( Yo ) where the i-th component of the vector v,
equals to 3(0;— v, ). —vo

Now, the assumption §=(E—-M*M)q=0 of Theorem 1 is precisely the
familiar assumption g;+g,,4; =0, i=1, ..., m, and it is both necessary and suffi-
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cient for (iii). Further,

06, A, B)=max Y, (=) ( 3 %)

1 j=1

‘%Z (9= qm+1) ( Zlaijx'“’bi)
j=

i=1
subject to
_(qi+qm+i)§wi_wm+i§qi+qm+ia l=1=7m

Using (10}, we get known result

n

m + m n —
o(x,A,b)= qu+i(z aijxj_bi) + Z%(Z aijx'_bi) .
i=1 =1 \{o1

Jj=1

The results remain true for matrices M obtained from (P : — P) by permutation
of columns and by multiplication of columns by possibly different scalars.
Especially, the following assertion holds:

Theorem 3. Let M =(P: —PD) where P is a (m, p) matrix of rank m and D is a

diagonal matrix with positive diagonal elements dy, ..., d,,, let

qi+_q2fi >0, i=1,...,p.

1

Then
006 A D)= Y (L+d) g, i [R(AX—B]* + 3 (1442, [Ri(Ax—b)T",
i=1

i=1

where R;’s are the rows of the matrix R=P'[P(E+D*) P~ 1.
Proof. The proof is similar to that of Theorem 2. Namely

M*M:( RP —RPD>’

—DRP DRPD

and for an arbitrary vector

\S1
e , Vi, V,€E,,
we have

M*Mv=( Yo ) with vo=RP(v,—Dv,):
“DVO

the condition (8) becomes

Wo= —q;(= —q; +qo)
Dw;=q,(=9q,+D q).
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