A Note on Deterministic Equivalents to Stochastic Linear Programming Problems

Jitka Žáč̌Ková

Abstract

Summary. Generalized inverse matrices are used as a tool for a study of two-stage linear program under uncertainty. For a special choice of \mathbf{M} which represents an extension of the so-called complete problem, a deterministic equivalent is given in the explicite form.

1. We shall deal with the two-stage stochastic linear program (resp. linear program under uncertainty) in its standard form (see e.g. [2, 4])

$$
\begin{equation*}
\operatorname{minimize} f(\mathbf{x})=\mathscr{E}\left\{\mathbf{c}^{\prime} \mathbf{x}+\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})\right\} \tag{1}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1}, \quad \mathbf{x} \geqq 0, \tag{2}
\end{equation*}
$$

where $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$, for fixed $\mathbf{x}, \mathbf{A}, \mathbf{b}$, denotes the minimal value of

$$
\begin{equation*}
\mathbf{q}^{\prime} \mathbf{y} \tag{3}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\mathbf{M} \mathbf{y}=\mathbf{b}-\mathbf{A} \mathbf{x}, \quad \mathbf{y} \geqq 0 . \tag{4}
\end{equation*}
$$

The elements of matrices $\mathbf{A}_{1}\left(m_{1}, n\right), \mathbf{M}(m, p), \mathbf{b}_{\mathbf{1}}\left(m_{1}, 1\right), \mathbf{q}(p, 1)$ are given constants whereas the elements of $\mathbf{A}(m, n)$ and $\mathbf{b}(m, 1)$ are random variables with a known joint distribution and elements of $\mathbf{c}(n, 1)$ are random variables with known finite mean values.

Usually, the problem (1), (2) is investigated under following assumptions:
(i) the set $\mathfrak{M}=\left\{\mathbf{x}: \mathbf{x} \geqq 0, \mathbf{A}_{1} \mathbf{x}=\mathbf{b}_{1}\right\}$ is non-empty and bounded,
(ii) the set $\{\mathbf{y}: \mathbf{y} \geqq 0, \mathbf{M y}=\mathbf{A} \mathbf{x}-\mathbf{b}\}$ is non-empty for all (finite) realizations of \mathbf{A}, \mathbf{b} and for all $\mathbf{x} \in \mathfrak{M}$,
(iii) the function $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$ is defined and finite for all realizations of \mathbf{A}, \mathbf{b} and for all $\mathbf{x} \in \mathfrak{M}$.

Using the generalized inverse \mathbf{M}^{*} we can write $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$ (see Charnes, Cooper, Thompson [1], Kall [3]) as

$$
\begin{equation*}
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})=\max \mathbf{w}^{\prime} \mathbf{M}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})+\mathbf{q}^{\prime} \mathbf{M}^{*}(\mathbf{b}-\mathbf{A} \mathbf{x}) \tag{5}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{w}=\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}, \quad \mathbf{w} \geqq 0 \tag{6}
\end{equation*}
$$

The constraints (6) are deterministic and do not involve \mathbf{x}; the constrained maximum of $\mathbf{w}^{\prime} \mathbf{M}^{*}(\mathbf{A x}-\mathbf{b})$ can be found as the unconstrained $\max _{1 \leqq s \leqq s} \mathbf{w}_{s}^{\prime} \mathbf{M}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})$, where $\mathbf{w}_{s}, s=1, \ldots, S$, are extreme points of the set $\left\{\mathbf{w}: \mathbf{w} \geqq 0,\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{w}=\right.$ $\left.\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}\right\}$.

Further, using the known property of generalized inverses, $\mathbf{M}^{*} \mathbf{M} \mathbf{M}^{*}=\mathbf{M}^{*}$, and expressing any vector \mathbf{v} as $\mathbf{v}=\mathbf{M}^{*} \mathbf{M} \mathbf{v}+\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{v}$, the problem becomes: Find

$$
\begin{equation*}
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})=\max \left(\mathbf{M}^{*} \mathbf{M} \mathbf{w}\right)^{\prime} \mathbf{M}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})+\left(\mathbf{M}^{*} \mathbf{M} \mathbf{q}\right)^{\prime} \mathbf{M}^{*}(\mathbf{b}-\mathbf{A} \mathbf{x}) \tag{7}
\end{equation*}
$$

subject to

$$
\begin{equation*}
\mathbf{M}^{*} \mathbf{M} \mathbf{w} \geqq-\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q} . \tag{8}
\end{equation*}
$$

We shall give a sufficient condition for assumption (iii) to hold. (For a necessary condition see Kall [2], Theorem 5.)

Theorem 1. Let the set $\{\mathbf{y}: \mathbf{y} \geqq 0, \mathbf{M y}=\mathbf{z}\}$ be non-empty for all $\mathbf{z} \in E_{m}$ and let $\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q} \geqq 0$. Then assumption (iii) holds.

Proof. The assumption $\{\mathbf{y}: \mathbf{y} \geqq 0, \mathbf{M} \mathbf{y}=\mathbf{z}\} \neq \emptyset$ for all $\mathbf{z} \in E_{m}$ implies the existence of a vector \mathbf{t} such that $\mathbf{t} \neq 0, \mathbf{t} \geqq 0, \mathbf{M} \mathbf{t}=0$ (see Kall [2], Theorem 3).

The function $\mathbf{q}^{\prime} \mathbf{y}$ attains its minimum subject to (4) if $\mathbf{q}^{\prime} \mathbf{t} \geqq 0$ holds for all $\mathbf{t} \neq 0, \mathbf{t} \geqq 0$, satisfying $\mathbf{M t}=0$. Using the symmetry of $\mathbf{M}^{*} \mathbf{M}$, we get for all \mathbf{t} possessing the mentioned properties that

$$
\mathbf{q}^{\prime} \mathbf{t}=\mathbf{q}^{\prime} \mathbf{M}^{*} \mathbf{M} \mathbf{t}+\left[\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}\right]^{\prime} \mathbf{t}=\left[\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}\right]^{\prime} \mathbf{t} \geqq 0
$$

according to the assumption $\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q} \geqq 0$.
Corollary. Under the assumptions of Theorem 1, the set

$$
\left\{\mathbf{w}: \mathbf{M}^{*} \mathbf{M} \mathbf{w} \geqq-\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}\right\}
$$

is non-empty.
2. For a special choice of \mathbf{M}, the explicite form $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$ will be given. That choice of \mathbf{M} represents an extension of the so-called complete problem (see Wets [4]).

Let $\mathbf{M}=(\mathbf{P}$: $-\mathbf{P})$, where \mathbf{P} is a (m, p) matrix of rank m. In this case, the set $\{\mathbf{y}: \mathbf{M} \mathbf{y}=\mathbf{z}, \mathbf{y} \geqq 0\}$ is non-empty for arbitrary $\mathbf{z} \in E_{m}$ if and only if the set $\{\mathbf{u}: \mathbf{P u}=\mathbf{z}\}$ is non-empty for arbitrary $\mathbf{z} \in E_{m}$; but the latter assertion is entailed by the assumption $h(\mathbf{P})=m$.

We get

$$
\begin{aligned}
\mathbf{M}^{*}=\mathbf{M}^{\prime}\left(\mathbf{M} \mathbf{M}^{\prime}\right)^{-1} & =\frac{1}{2}\binom{\mathbf{P}^{\prime}\left(\mathbf{P} \mathbf{P}^{\prime}\right)^{-1}}{-\mathbf{P}^{\prime}\left(\mathbf{P} \mathbf{P}^{\prime}\right)^{-1}}=\frac{1}{2}\binom{\mathbf{P}^{*}}{-\mathbf{P}^{*}}, \\
\mathbf{M}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b}) & =\frac{1}{2}\binom{\mathbf{P}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})}{-\mathbf{P}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})}, \\
\mathbf{M}^{*} \mathbf{M} & =\frac{1}{2}\left(\begin{array}{cc}
\mathbf{P}^{*} \mathbf{P} & -\mathbf{P}^{*} \mathbf{P} \\
-\mathbf{P}^{*} \mathbf{P} & \mathbf{P}^{*} \mathbf{P}
\end{array}\right),
\end{aligned}
$$

$$
\mathbf{M}^{*} \mathbf{M} \mathbf{w}=\frac{1}{2}\binom{\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{1}-\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{2}}{-\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{1}+\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{2}}, \quad \text { where } \mathbf{w}=\binom{\mathbf{w}_{1}}{\mathbf{w}_{2}}, \mathbf{w}_{1}, \mathbf{w}_{2} \in E_{p} .
$$

Denoting $\frac{1}{2}\left(\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{1}-\mathbf{P}^{*} \mathbf{P} \mathbf{w}_{2}\right)=\mathbf{w}_{0}$ we have $\mathbf{M}^{*} \mathbf{M} \mathbf{w}=\binom{\mathbf{w}_{0}}{-\mathbf{w}_{0}}$ and condition (8) becomes

$$
\begin{equation*}
-\tilde{\mathbf{q}}_{1} \leqq \mathbf{w}_{0} \leqq \tilde{\mathbf{q}}_{2} \tag{9}
\end{equation*}
$$

where

$$
\tilde{\mathbf{q}}=\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}=\binom{\tilde{\mathbf{q}}_{1}}{\tilde{\mathbf{q}}_{2}}, \quad \tilde{\mathbf{q}}_{1}, \tilde{\mathbf{q}}_{2} \in E_{p} .
$$

The problem is to find

$$
\begin{aligned}
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b}) & =\max \left(\mathbf{M}^{*} \mathbf{M} \mathbf{w}\right)^{\prime} \mathbf{M}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})+\left(\mathbf{M}^{*} \mathbf{M} \mathbf{q}\right)^{\prime} \mathbf{M}^{*}(\mathbf{b}-\mathbf{A} \mathbf{x}) \\
& =\max \mathbf{w}_{0}^{\prime} \mathbf{P}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})+\mathbf{q}_{0}^{\prime} \mathbf{P}^{*}(\mathbf{b}-\mathbf{A} \mathbf{x})
\end{aligned}
$$

subject to (9); here

$$
\begin{gathered}
\mathbf{q}=\binom{\mathbf{q}_{1}}{\mathbf{q}_{2}}, \quad \mathbf{q}_{1}, \mathbf{q}_{2} \in E_{p}, \\
\mathbf{q}_{0}=\frac{1}{2}\left(\mathbf{P} * \mathbf{P} \mathbf{q}_{1}-\mathbf{P}^{*} \mathbf{P} \mathbf{q}_{2}\right) \quad \text { and } \quad \mathbf{M} * \mathbf{M} \mathbf{q}=\binom{\mathbf{q}_{0}}{-\mathbf{q}_{0}} .
\end{gathered}
$$

Denote \mathbf{P}_{i}^{*} the i-th row of \mathbf{P}^{*} and $z_{i}=\mathbf{P}_{i}^{*}(\mathbf{A x}-\mathbf{b})$. Now, the announced result is given by

Theorem 2. Let $\mathbf{M}=(\mathbf{P}:-\mathbf{P})$, where \mathbf{P} is a (m, p) matrix of rank m, let $q_{i}+q_{p+i} \geqq 0$, $i=1, \ldots, p$. Then

$$
\begin{align*}
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b}) & =\sum_{i=1}^{p} q_{p+i}\left[\mathbf{P}_{i}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})\right]^{+}+\sum_{i=1}^{p} q_{i}\left[\mathbf{P}_{i}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})\right]^{-} \tag{10}\\
& =\sum_{i=1}^{p} q_{p+i} z_{i}^{+}+\sum_{i=1}^{p} q_{i} z_{i}^{-}
\end{align*}
$$

which is a convex separable function in z_{1}, \ldots, z_{p}.
Proof. The condition $q_{i}+q_{p+i} \geqq 0, i=1, \ldots, p$, (resp. $\mathbf{q}_{1}+\mathbf{q}_{2} \geqq 0$) is necessary and sufficient for the set $\left\{\mathbf{w}_{0} \in E_{p}:-\tilde{\mathbf{q}}_{1} \leqq \mathbf{w}_{0} \leqq \tilde{\mathbf{q}}_{2}\right\}$ be non-empty. The maximum of $\mathbf{w}_{0}^{\prime} \mathbf{P}^{*}(\mathbf{A} \mathbf{x}-\mathbf{b})$ is attained when the i-th component of the vector \mathbf{w}_{0} equals to \tilde{q}_{p+i} for $\mathbf{P}_{i}^{*}(\mathbf{A x}-\mathbf{b}) \geqq 0$ and equals to $-\tilde{q}_{i}$ for $\mathbf{P}_{i}^{*}(\mathbf{A x}-\mathbf{b}) \leqq 0, i=1,2, \ldots, p$, what gives the desired form of $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$. The condition $q_{i}=q_{p+i} \geqq 0, i=1, \ldots, p$, secures the convexity of $\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})$ with respect to \mathbf{x}, too.

Especially, for the complete problem with $\mathbf{M}=(\mathbf{E}:-\mathbf{E})(\mathbf{E}$ is the identity matrix), we have

$$
\mathbf{M}^{*}=\frac{1}{2}\binom{\mathbf{E}}{-\mathbf{E}}, \quad \mathbf{M}^{*} \mathbf{M}=\frac{1}{2}\left(\begin{array}{cc}
\mathbf{E} & -\mathbf{E} \\
-\mathbf{E} & \mathbf{E}
\end{array}\right), \quad\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q}=\binom{\tilde{\mathbf{q}}_{1}}{\tilde{\mathbf{q}}_{1}}
$$

where the i-th component of the vector $\tilde{\mathbf{q}}_{1}$ equals to $\frac{1}{2}\left(q_{i}+q_{m+i}\right)$ and for arbitrary $\mathbf{v} \in E_{2 m}$ we have $\mathbf{M}^{*} \mathbf{M} \mathbf{v}=\binom{\mathbf{v}_{0}}{-\mathbf{v}_{0}}$ where the i-th component of the vector \mathbf{v}_{0} equals to $\frac{1}{2}\left(v_{i}-v_{m+i}\right)$.

Now, the assumption $\tilde{\mathbf{q}}=\left(\mathbf{E}-\mathbf{M}^{*} \mathbf{M}\right) \mathbf{q} \geqq 0$ of Theorem 1 is precisely the familiar assumption $q_{i}+q_{m+i} \geqq 0, i=1, \ldots, m$, and it is both necessary and suffi-
cient for (iii). Further,

$$
\begin{aligned}
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})= & \max \frac{1}{2} \sum_{i=1}^{m}\left(w_{i}-w_{m+i}\right)\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right) \\
& -\frac{1}{2} \sum_{i=1}^{m}\left(q_{i}-q_{m+i}\right)\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)
\end{aligned}
$$

subject to

$$
-\left(q_{i}+q_{m+i}\right) \leqq w_{i}-w_{m+i} \leqq q_{i}+q_{m+i}, \quad i=1, \ldots, m
$$

Using (10), we get known result

$$
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})=\sum_{i=1}^{m} q_{m+i}\left(\sum_{j=1}^{n} a_{i j} x_{j}-b_{i}\right)^{+}+\sum_{i=1}^{m} q_{i}\left(\sum_{i=1}^{n} a_{i j} x_{j}-b_{i}\right)^{-} .
$$

The results remain true for matrices \mathbf{M} obtained from $(\mathbf{P}:-\mathbf{P})$ by permutation of columns and by multiplication of columns by possibly different scalars. Especially, the following assertion holds:

Theorem 3. Let $\mathbf{M}=(\mathbf{P}$:- $\mathbf{P D})$ where \mathbf{P} is a (m, p) matrix of rank m and \mathbf{D} is a diagonal matrix with positive diagonal elements d_{1}, \ldots, d_{p}, let

$$
q_{i}+\frac{q_{p+i}}{d_{i}} \geqq 0, \quad i=1, \ldots, p
$$

Then

$$
\varphi(\mathbf{x}, \mathbf{A}, \mathbf{b})=\sum_{i=1}^{p}\left(1+d_{i}^{2}\right) q_{p+i}\left[\mathbf{R}_{i}(\mathbf{A} \mathbf{x}-\mathbf{b})\right]^{+}+\sum_{i=1}^{p}\left(1+d_{i}^{2}\right) q_{i}\left[\mathbf{R}_{i}(\mathbf{A} \mathbf{x}-\mathbf{b})\right]^{-},
$$

where \mathbf{R}_{i} 's are the rows of the matrix $\mathbf{R}=\mathbf{P}^{\prime}\left[\mathbf{P}\left(\mathbf{E}+\mathbf{D}^{2}\right) \mathbf{P}^{\prime}\right]^{-1}$.
Proof. The proof is similar to that of Theorem 2. Namely

$$
\mathbf{M}^{*} \mathbf{M}=\left(\begin{array}{cc}
\mathbf{R P} & -\mathbf{R P D} \\
-\mathbf{D R P} & \mathbf{D R P D}
\end{array}\right)
$$

and for an arbitrary vector

$$
\mathbf{v}=\binom{\mathbf{v}_{1}}{\mathbf{v}_{2}}, \quad \mathbf{v}_{1}, \mathbf{v}_{2} \in E_{p}
$$

we have

$$
\mathbf{M}^{*} \mathbf{M} \mathbf{v}=\binom{\mathbf{v}_{0}}{-\mathbf{D} \mathbf{v}_{0}} \quad \text { with } \mathbf{v}_{0}=\mathbf{R} \mathbf{P}\left(\mathbf{v}_{1}-\mathbf{D} \mathbf{v}_{2}\right)
$$

the condition (8) becomes

$$
\begin{gathered}
\mathbf{w}_{0} \geqq-\tilde{\mathbf{q}}_{1}\left(=-\mathbf{q}_{1}+\mathbf{q}_{0}\right) \\
\mathbf{D} \mathbf{w}_{0} \leqq \tilde{\mathbf{q}}_{2}\left(=\mathbf{q}_{2}+\mathbf{D} \mathbf{q}_{0}\right) .
\end{gathered}
$$

References

1. Charnes, A., W.W. Cooper, and G. L.Thompson: Constrained generalized medians and hypermedians as deterministic equivalents for two-stage programs under uncertainty. Management Sci. 12, 83-112 (1965).
2. Kall, P.: Qualitative Aussagen zu einigen Problemen der stochastischen Programmierung. Z. Wahrscheinlichkeitstheorie verw. Geb. 6, 246-272 (1966).
3. - Das zweistufige Problem der stochastischen linearen Programmierung. Z. Wahrscheinlichkeitstheorie verw. Geb. 8, 101-112 (1967).
4. Wets, R.: Programming under uncertainty: The complete problem. Z. Wahrscheinlichkeitstheorie verw. Geb. 4, 316-339 (1966).

Mrs. Dr. Jitka Žáčková
Department of Mathematical Statistics
Charles University
Sokolovská 83
Prague 8, Czechoslovakia
(Received August 8, 1968)

