A Classification of a Random Walk Defined on a Finite Markov Chain

M. Newbould

1. Introduction

Let Y_1, Y_2, \ldots be independent and identically distributed random variables (i.i.d. random variables). If Y_k is real valued then $S_n = \sum_{k=1}^{n} Y_k$ is a random walk on the real line. It is well known, see Feller [4, p. 395] that such a random walk belongs to exactly one of the following four categories,

- (i) $\lim_{n} S_n = \infty$ a.s.
- (ii) $\lim_{n \to \infty} S_n = -\infty$ a.s.
- (iii) $\lim_{n} \sum_{n=1}^{n} S_{n} = +\infty$, $\lim_{n} S_{n} = -\infty$ a.s. (iv) For all *n*, $S_{n} = 0$ a.s.

To each random walk there is associated a random variable $N = \inf\{n > 0\}$; $S_n > 0$, the hitting time to the positive half-line, and also a random variable N^- , the hitting time to the negative half-line. It is also well known that those random walks which belong to category (i) above are precisely those for which N is a proper random variable and N^- is improper. Similar statements can be made concerning categories (ii), (iii) and (iv). Spitzer [12, p.189] developed a necessary and sufficient condition for N to be a proper random variable, namely, the divergence of the series $\sum_{n=1}^{\infty} n^{-1} P(S_n > 0)$.

The object of this paper is to generalise the above results to the situation where the distribution of the increment Y_k depends on the states X_{k-1} and X_k of an underlying ergodic finite state Markov chain $\{X_n\}$.

This type of random walk has been previously studied by Miller [8, 9] and Keilson and Wishart [5, 6] and [7]. A basic difference in this paper from these references is that we do not assume the existence of means for the increments Y_k . We note that if Z_k is the sum of the increments between the k-th and (k+1)-st occurrence of the state j in the underlying chain, then $\{Z_k: k=1, ...\}$ are i.i.d. random variables. The methods used in this paper rely heavily on this remark.

2. Preliminaries

Before beginning a description of the process under consideration we shall state the following facts for completeness and future reference. $Y_1, Y_2, ...$ are i.i.d. random variables and $S_n = \sum_{k=1}^{n} Y_k$.

Theorem A. The random walk S_n falls into exactly one of the following four categories.

- (i) $\lim_{n} S_n = \infty \ a.s.$
- (ii) $\lim_{n} S_{n} = -\infty \ a.s.$ (iii) $\overline{\lim_{n}} S_{n} = \infty, \lim_{n} S_{n} = -\infty \ a.s.$
- (iv) For all $n, S_n = 0$ a.s.

In the following $N = \inf \{n > 0: S_n > 0\}$ is the hitting time to the positive half-line.

Lemma B. N is a proper random variable if and only if $\overline{\lim} S_n = +\infty$ a.s.

Theorem C. N is a proper random variable if and only if $\sum_{i=1}^{\infty} n^{-1} P(S_n > 0) = \infty$.

The process considered in this paper consists of a discrete Markov chain with finite state space $\{1, 2, \dots, m\}$ called the X-process, taking values $X_0, X_1, \dots, X_n, \dots$ Throughout this paper the Markov chain will be ergodic in the sense of Feller [3]. Alongside the X-process is a real valued process called the Y-process which proceeds $Y_0, Y_1, \dots, Y_n, \dots$ where $Y_0 = 0$, and for $n \ge 1$, the distribution of Y_n depends on X_{n-1} and X_n . It follows that given the random variables $\{X_0, \ldots, X_n\}$, the random variables $\{Y_1, \ldots, Y_n\}$ are conditionally independent. Our main concern

is the study of the S-process which proceeds $S_0, S_1, \ldots, S_n, \ldots$ where $S_n = \sum_{i=0}^{n} Y_k$. The S-process is known as a random walk defined on the Markov chain.

To make this description precise we follow Pyke [10]. Let $Q = (Q_{ij})$ be a matrix valued function on $(-\infty, \infty)$ such that for i=1, ..., m, $\sum_{i=1}^{m} Q_{ij}(\infty) = 1$. The (X, Y)-process is defined to be any two-dimensional stochastic process $\{(X_n, Y_n); n \ge 0\}$ defined on a complete probability space $(\Omega, \mathfrak{I}, P)$ which satisfies

(i) $Y_0 = 0$ a.s.

(ii) $P\{X_n = k, Y_n \leq x | \mathfrak{I}_{n-1}\} = Q_{X_{n-1}k}(x)$ a.s. for $n \geq 1$ where \mathfrak{I}_n denotes the σ -algebra generated by $\{X_0, \ldots, X_n, Y_0, \ldots, Y_n\}$. It should be noted that the X-process is a Markov chain with m states and has transition matrix $Q(\infty)$. As mentioned previously we shall also assume that the Markov chain is ergodic. If we let $S_n = \sum_{k=1}^{n} Y_k$ then the (X, S)-process is a bivariate Markov chain $\{(X_n, S_n); n \ge 0\}$

such that

$$P\{X_n = k, S_n \leq x | \mathfrak{I}_{n-1}\} = Q_{X_{n-1}k}(x - S_{n-1}).$$

The (X, S)-process with semi-Markov transition function Q is called the Markov additive process with kernel Q. This terminology follows that used by Cinlar [2] in the continuous time case.

Before stating the first lemma we make a few remarks. In some respects the value of X_0 affects the behaviour of the S-process. This can be illustrated by noting that whether the hitting time to the positive half-line is a proper random variable or not may depend on the value of X_0 . We will return to this later in the paper. The distribution of X_0 remains unspecified and we will deal with probabilities conditional on X_0 . With this in mind, relative to (Ω, \Im, P) , we denote $P\{\cdot|X_0=i\}$ by $P_i\{\cdot\}$. Throughout the paper N and τ with and without subscripts and superscripts will denote stopping times.

In this paper the following lemma plays a crucial role. It is a generalisation of a result of Chung [1, p. 78] which states that if $\{X_n\}$ is a Markov chain and f a function from the state space of the chain to the real line then $\sum_{n=\tau_k+1}^{\tau_{k+1}} f(X_n)$, k>0, are i.i.d. random variables, where τ_k , k>0, are the times of successive occurrences of the state j in the Markov chain.

To simplify the statement of our lemma we introduce the following notation. Let $\{j_1, \ldots, j_r\}$ be a sequence of states of the state space $\{1, \ldots, m\}$. We define inductively the sequence of stopping times $\{\tau_k: k=1, \ldots, r\}$ by

$$\tau_1 = \inf \{ n \ge 0 \colon X_n = j_1 \}, \tau_k = \inf \{ n > \tau_{k-1} \colon X_n = j_k \}, \quad k = 2, \dots, r.$$

Let $Z_k = S_{\tau_{k+1}} - S_{\tau_k}$, k = 1, ..., r-1. With the above notation we have:

Lemma 1. $\{Z_k: k=1, ..., r-1\}$ is a set of independent random variables.

The proof of this is an immediate consequence of the strong Markov property for the bivariate Markov chain $\{(X_n, S_n); n \ge 0\}$. We remark also that if $j_1 = j_2 = \cdots = j_r$ then the random variables are identically distributed. In future we shall often refer to Z_1 as the increment from a (j_1, j_2) -block or simply a j_1 -block if $j_1 = j_2$.

3. Classification of the Random Walk

In our classification of the random walk defined on the chain, category (iv) of Theorem A is replaced by a modification of the idea of degeneracy introduced by Miller [8].

If $Q_{ij}(\infty) > 0$ then we let

$$F_{ij}(x) = \frac{Q_{ij}(x)}{Q_{ij}(\infty)} = P(Y_n \le x | X_{n-1} = i, X_n = j).$$

Definition. The process (X, S) is degenerate if there exists constants $\beta_1 \dots \beta_m$ such that whenever $Q_{ij}(\infty) > 0$ it follows that F_{ij} is the distribution function of a degenerate random variable which takes the value $\beta_j - \beta_i$ a.s. This modification of Miller's definition rules out the possibility of an overall drift of the S-process. It follows that if $X_0 = i$ and $X_n = j$ then $S_n = \beta_j - \beta_i$. We are now in a position to state the analogue of Theorem A for the random walk defined on a Markov chain.

Theorem 1. For a random walk defined on a finite state ergodic Markov chain there are four mutually exclusive possibilities:

- (i) $\lim_{n} S_n = +\infty \ a.s.$
- (ii) $\lim_{n} S_n = -\infty \ a.s.$
- (iii) $\overline{\lim_{n}} S_{n} = +\infty, \underline{\lim_{n}} S_{n} = -\infty \ a.s.$
- (iv) The (X, S)-process is degenerate.

Before giving a proof of the theorem we will state and prove the following lemmas.

Lemma 2. If for some j the increment from a j-block equals zero a.s. then the (X, S)-process is degenerate.

Proof. Let j be as above and fix i. We consider adjacent (i, j) and (j, i)-blocks having increments W_{ij} and W_{ji} respectively. Now W_{ij} and W_{ji} are independent random variables and $P(W_{ji} + W_{ij} = 0) = 1$. It follows that there exists a constant C_{ij} such that $P(W_{ij} = C_{ij}) = R(W_{ij} = C_{ij}) = 1$.

$$P(W_{ij} = C_{ij}) = P(W_{ji} = -C_{ij}) = 1.$$

Similarly there exists constants C_{kj} for k=1, ..., m. If we now consider adjacent (j, k), (k, l) and (l, j) blocks with increments W_{jk} , W_{kl} and W_{lj} respectively where $k, l \neq j$ then we see that

$$P(W_{kl} = -C_{jk} - C_{lj}) = 1$$
 where $C_{jk} = -C_{kj}$.

Let us denote by C_{kl} the value $(-C_{jk} - C_{lj})$. By similarly considering a (l, k)-block we can say that for all l and k the increment from a (l, k)-block is a degenerate random variable taking the value C_{lk} and moreover $C_{lk} = -C_{kl}$.

Let us now suppose that a certain $l \rightarrow k$ transition is possible and denote by Y_{lk} the increment associated with such a transition. Now $l \rightarrow k$ is a particular realisation of an (l, k)-block and therefore $Y_{lk} = C_{lk}$ a.s.

Define β_1, \ldots, β_m as follows:

$$\beta_1 = C$$
 an arbitrary constant,
 $\beta_r = C_{r1} + \beta_1 = C_{r1} + C$ for $r = 2, ..., m$.

It is immediate that

$$C_{1l} + C_{lk} + C_{k1} = C_{11}$$

from which it follows that

$$C_{lk} = C_{11} + C_{l1} - C_{k1} = 0 + (\beta_l - \beta_1) - (\beta_k - \beta_1) = \beta_l - \beta_k.$$

Hence

$$Y_{lk} = \beta_l - \beta_k \qquad \text{a.s.}$$

This completes the proof.

The sequence $\{S_n: n \ge 1\}$ is said to be *dominated* if there exists a finite valued function M such that for all $n: |S_n| \le M$ a.s.

Lemma 3. The process (X, S) is degenerate if and only if the sequence $\{S_n : n \ge 1\}$ is dominated.

Proof. If the process is degenerate then since $\sup_{n} S_n = \max_{i,j} (\beta_i - \beta_j)$ it follows that $\{S_n : n \ge 1\}$ is dominated. Conversely we suppose $\{S_n : n \ge 1\}$ is dominated. Now for a fixed *j* we define the following sequence of stopping times $\{\tau_k : k \ge 0\}$ by

$$\tau_0 = 0, \quad \tau_k = \inf\{n > \tau_{k-1} \colon X_n = j\}, \quad k > 0.$$

If we let $Z_k = S_{\tau_{k+1}} - S_{\tau_k}$, k = 0, 1, ... then $S_{\tau_n} = Z_0 + \sum_{k=1}^{n-1} Z_k$. From Lemma 1 we see that Z_k , k = 1, 2, ... are i.i.d. random variables and since $\{S_{\tau_n}: n \ge 1\}$ is dominated

and Z_0 is finite a.s. it follows from Theorem A that $P(Z_k=0)=1$ for k=1, 2, ...Now Z_k is the increment from a *j*-block therefore by Lemma 2 we see that the (X, S)-process is degenerate, and the Lemma is proved.

In view of the next Lemma, now is an opportune time to elaborate further the importance of the value of X_0 , the initial position of the chain. To do this we define the two stopping times

$$N = \inf\{n > 0; S_n > 0\}, \qquad N^- = \inf\{n > 0; S_n < 0\}.$$

If for all *i* we have $P_i(N < \infty) = 1$ then we say that *N* is *totally proper*. It is important to note that if $P_i(N < \infty) = 1$ for some *i* then it does not necessarily follow that *N* is totally proper. This can be seen in the following example.

Let

$$H_a(x) = \begin{cases} 0 & \text{if } x < a \\ 1 & \text{if } x \ge a \end{cases}$$

and we will consider the (X, S)-process in which the X-process is a 2 state Markov chain and the semi-Markov transition function Q(x) is of the form

$$Q(x) = \begin{pmatrix} p H_0(x) & q H_d(x) \\ r H_b(x) & s H_c(x) \end{pmatrix}$$

where p, q, r, s, d > 0 and b, c < -d. It can be seen that $P_1(N < \infty) = 1$ but $P_2(N < \infty) = 0$.

In some respects however the value of X_0 does not affect the process. For example if $\overline{\lim} S_n = \infty$ a.s. P_i then $\overline{\lim} S_n = \infty$ a.s. P_j for all *j*. We are now able to state the following lemma.

Lemma 4. N is totally proper if and only if $\overline{\lim} S_n = \infty$ a.s.

Proof. If $\overline{\lim_{n}} S_{n} = \infty$ a.s. then it is obvious that N is totally proper. Conversely if N is totally proper then we define the sequence of stopping times $\{\tau_{k}: k \ge 0\}$ inductively by

 $\tau_0 = 0, \quad \tau_k = \inf\{n > \tau_{k-1} : S_n > S_{\tau_{k-1}}\}, \quad k > 0.$

By assumption each τ_k is a proper random variable and moreover $\lim_k S_{\tau_k} = \infty$ a.s. It follows from this that $\overline{\lim} S_n = \infty$ a.s.

Theorem 1 is now an immediate corollary from the following theorem.

Theorem 2. (i) N and N⁻ are both totally proper if and only if $\overline{\lim_{n}} S_{n} = +\infty$ a.s. and $\underline{\lim_{n}} S_{n} = -\infty$ a.s.

(ii) N is totally proper and N^- is not totally proper if and only if $\lim_{n \to \infty} S_n = \infty$ a.s.

(iii) N is not totally proper and N^- is totally proper if and only if $\lim_{n \to \infty} S_n = -\infty$ a.s.

(iv) Neither N nor N⁻ is totally proper if and only if the (X, S)-process is degenerate.

Proof. (i) This is immediate from Lemma 4.

(ii) Assume N is totally proper and N^- is not totally proper. For each j we define the following sequence of stopping times $\{\tau_k^j: k>0\}$ by

$$\tau_1^{j} = \inf\{n: X_n = j\},\$$

$$\tau_k^{j} = \inf\{n > \tau_{k-1}^{j}: X_n = j\},\$$
 $k > 1.$

If we let $Z_k^j = S_{\tau_{k+1}^j} - S_{\tau_k^j}$ then τ_k^j is the time of the k-th occurrence of the state j in the Markov chain and Z_k^j is the increment from the k-th j-block. We further define for each j the stopping time N_j to be

$$N_i = \inf \{k > 1: S_{\tau i} > S_{\tau i}\}.$$

Similarly we define $N_j^- = \inf\{k > 1 : S_{\tau_k^j} < S_{\tau_j^j}\}$.

It follows from Lemma 4 that $\overline{\lim}_n S_n = +\infty$ a.s. If we suppose that N_j^- is proper for some *j* then by Lemma B $\underline{\lim}_k S_{\tau k} = -\infty$ a.s. therefore $\underline{\lim}_n S_n = -\infty$ a.s. and this contradicts, by use of Lemma 4, the fact that N^- is not totally proper. Hence N_j^- is improper for all *j*. If we now assume that N_j is improper for some *j* then by Theorem A $Z_k^j = 0$ a.s. and by application of Lemma 2 we see that the process is degenerate. This is also a contradiction therefore N_j is proper for all *j*. By further application of Lemma B we see that for all *j* $\lim_k S_{\tau k} = \infty$ a.s. whereby it follows that $\lim_k S_n = \infty$ a.s.

Conversely we assume $\lim_{n} S_{n} = \infty$ a.s. The conclusion is a direct consequence of Lemma 4.

(iii) This is proved in a similar manner as (ii).

(iv) If N and N⁻ are both not totally proper then we show as in part (ii) that N_i and N_i^- are improper for all j.

Whence it follows that $Z_k^j = 0$ a.s. for all *j*. The fact that (X, S) is degenerate follows by appealing to Lemma 2. If conversely the process (X, S) is degenerate then the fact that N and N^- are both not totally proper is immediate from parts (i), (ii), (iii) and Lemma 3.

4. A Criterion

The aim in this section is to generalize Theorem C to the Markov additive process (X, S). We will prove,

Theorem 3. Let (X, S) be a Markov additive process in which the Markov chain $\{X_n\}$ is ergodic with a finite state space. A necessary and sufficient condition for N to be totally proper is that

$$\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \infty \quad for \ all \ i.$$

Before giving a proof we need the following two lemmas.

Lemma 5. Let $Y, Z_1, Z_2, ...$ be a sequence of independent random variables such that $Z_1, Z_2, ...$ are also identically distributed and let $S_n = \sum_{i=1}^{n} Z_i$. If $\sum_{i=1}^{\infty} n^{-1} P(S_n > 0) = \infty$ then $\sum_{i=1}^{\infty} n^{-1} P(S_n + Y > 0) = \infty$.

Proof. We denote by F(x) the distribution function of Y. Now

$$\sum_{1}^{\infty} n^{-1} P(Y + S_n > 0) = \sum_{1}^{\infty} n^{-1} \int_{-\infty}^{\infty} P(S_n > -x) dF(x)$$
$$= \int_{-\infty}^{\infty} \left(\sum_{1}^{\infty} n^{-1} P(S_n > -x) \right) dF(x) = \int_{-\infty}^{\infty} c(x) dF(x)$$
$$c(x) = \sum_{1}^{\infty} n^{-1} P(S_n > -x)$$

where $c(x) = \sum_{1}^{\infty} n^{-1} P(S_n > -x).$

By application of Theorem 1 of a paper by Rosén [11, p. 324] which states that there is a constant A such that $P\{S_n \in (0, x)\} \leq A n^{-\frac{1}{2}}$, we see that for x > 0

$$\sum_{1}^{\infty} n^{-1} P(S_n \in (0, x)) \leq \sum_{1}^{\infty} n^{-\frac{3}{2}} A < \infty \quad \text{where } A \text{ is a constant.}$$

Since $c(0) = \infty$ it follows that $c(x) = \infty$ for all finite x. Thus the result follows.

We now let τ_k^j be as in Section 3, namely the time of the k-th occurrence of state j. With this notation we have:

Lemma 6. If for some
$$j$$
, $\sum_{k=1}^{\infty} k^{-1} P_i(S_{\tau_k^j} > 0) = \infty$, then $\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \infty$.

Remark. As a consequence of this lemma we see that to prove the divergence of the series $\sum_{1}^{\infty} n^{-1} P_i(S_n > 0)$ it is sufficient to show that for some *j*, the imbedded series, namely the series obtained by considering the process only when the chain is in state *j*, diverges.

Proof. The $\tau_1^j, \tau_2^j - \tau_1^j, \tau_3^j - \tau_2^j, \ldots$ are independent random variables and with the exception of τ_1^j they are also identically distributed. Here we are assuming the initial state *i* is not necessarily equal to *j*. Since the Markov chain is ergodic the above random variables have finite means and variances.

Let

$$c = \max \{E_i(\tau_1^j), E_i(\tau_2^j - \tau_1^j)\} + 1$$

and

$$\sigma^2 = \max\left\{\operatorname{Var}_i(\tau_1^j), \operatorname{Var}_i(\tau_2^j - \tau_1^j)\right\}.$$

Our initial aim is to show

$$\sum_{k=1}^{\infty} (c \, k)^{-1} \sum_{n > c \, k} P_i(S_{\tau_k^j} > 0, \, \tau_k^j = n) < \infty \,. \tag{1}$$

Now

$$\begin{split} \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{n > ck} P_i(S_{\tau_k^j} > 0, \tau_k^j = n) &\leq \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{n > ck} P_i(\tau_k^j = n) \\ &= \sum_{k=1}^{\infty} (c \ k)^{-1} P_i(\tau_k^j > c \ k) \\ &= \sum_{k=1}^{\infty} (c \ k)^{-1} P_i\{\tau_k^j - E_i(\tau_k^j) > c \ k - E_i(\tau_k^j)\} \\ &\leq \sum_{k=1}^{\infty} (c \ k)^{-1} P_i(\tau_k^j - E_i(\tau_k^j) > k) \\ &\qquad \text{this follows by definition of } c \\ &\leq \sum_{k=1}^{\infty} (c \ k)^{-1} \sigma^2 \ k^{-1} < \infty \,. \end{split}$$

The last step follows by application of Čebyšev's inequality. This proves (1). Now

$$\begin{split} \sum_{1}^{\infty} n^{-1} P_{i}(S_{n} > 0) &= \sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{l=1}^{m} n^{-1} P_{i}(S_{n} > 0, \tau_{k}^{l} = n) \\ &\geq \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} n^{-1} P_{i}(S_{\tau_{k}^{l}} > 0, \tau_{k}^{j} = n) \\ &\geq \sum_{k=1}^{\infty} \sum_{ck \ge n \ge k} n^{-1} P_{i}(S_{\tau_{k}^{l}} > 0, \tau_{k}^{j} = n) \\ &\geq \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{ck \ge n \ge k} P_{i}(S_{\tau_{k}^{l}} > 0, \tau_{k}^{j} = n) \\ &= \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{n=k}^{\infty} P_{i}(S_{\tau_{k}^{j}} > 0, \tau_{k}^{j} = n) - \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{n>ck} P_{i}(S_{\tau_{k}^{j}} > 0, \tau_{k}^{j} = n) \\ &= \frac{1}{c} \sum_{k=1}^{\infty} k^{-1} P_{i}(S_{\tau_{k}^{j}} > 0) - \sum_{k=1}^{\infty} (c \ k)^{-1} \sum_{n>ck} P_{i}(S_{\tau_{k}^{j}} > 0, \tau_{k}^{j} = n). \end{split}$$

It follows from (1) and the assumption of the lemma that $\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \infty$. We are now in a position to prove the theorem.

Proof of Theorem 3. Assume N is totally proper. Let $X_0 = i$ be fixed and N_j be as in Theorem 2 namely

$$N_{j} = \inf\{k > 1: S_{\tau_{k}^{j}} > S_{\tau_{j}^{j}}\}.$$

By the argument used in Theorem 2 it follows that N_j is proper for some *j*. An application of Theorem C yields the fact that $\sum_{k=1}^{\infty} k^{-1} P_i(S_{\tau k} - S_{\tau l} > 0) = \infty$ for that particular *j*. From Lemma 5 we obtain

$$\sum_{k=1}^{\infty} k^{-1} P_i(S_{\tau_k^j} > 0) = \infty.$$

The conclusion that $\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \infty$ is now an immediate consequence of Lemma 6.

Conversely assume that $\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \infty$ for all *i*. Let *i* be arbitrary but fixed. Then

$$\sum_{1}^{\infty} n^{-1} P_i(S_n > 0) = \sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{j=1}^{m} n^{-1} P_i(S_n > 0, n = \tau_k^j)$$
$$= \sum_{j=1}^{m} \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} n^{-1} P_i(S_{\tau_k^j} > 0, \tau_k^j = n)$$
$$\leq \sum_{j=1}^{m} \sum_{k=1}^{\infty} k^{-1} P_i(S_{\tau_k^j} > 0).$$

It follows that at least one of the series $\sum_{k=1}^{\infty} k^{-1} P_i(S_{\tau_k} > 0) j = 1, ..., m$ diverges. We will denote by $\theta(i)$ the least j for which this is so. Similarly we define $\theta(l)$ for l=1,...,m.

Define the sequence $\{\theta^k(i): k \ge 1\}$ inductively by $\theta(i)$ as above, $\theta^k(i) = \theta(\theta^{k-1}(i))$ for k > 1.

The sequence of stopping times $\{\lambda_k: k \ge 0\}$ are defined inductively as follows:

$$\lambda_0 = 0, \quad \lambda_k = \inf\{n > \lambda_{k-1} : X_n = \theta^k(i)\}, \quad k > 0.$$

If we let $U_k = S_{\lambda_{k+1}} - S_{\lambda_k}$ for $k \ge 0$ then the elements of the sequence $\{U_k : k \ge 0\}$ are the increments from adjacent $(\theta^k, (i), \theta^{k+1}(i))$ blocks. Let τ be the stopping time defined by $\tau = \inf \{\lambda_k : U_k \le 0\}$.

We consider separately the two possibilities that $P_i(\tau < \infty) = 1$ or otherwise. Firstly we suppose $P_i(\tau < \infty) = 1$. We define the sequence of stopping times $\{\tau_k : k > 0\}$ inductively by

$$\begin{split} &\tau_1 = \inf\{n > \tau \colon X_n = \theta(X_\tau)\}, \\ &\tau_k = \inf\{n > \tau_{k-1} \colon X_n = \theta(X_\tau)\}, \quad k > 1. \end{split}$$

From these definitions and that of θ we see that $\sum_{1}^{\infty} k^{-1} P_i(S_{\tau_k} - S_{\tau} > 0) = \infty$. Using the definition of τ which implies that $S_{\tau_1} - S_{\tau} \leq 0$ we deduce that

$$\sum_{1}^{\infty} k^{-1} P_i(S_{\tau_k} - S_{\tau_1} > 0) = \infty.$$

It is easy to see that $\sum_{1}^{\infty} k^{-1} P_i(S_{\tau_{k+1}} - S_{\tau_1} > 0) = \infty$.

Noting that $(S_{\tau_{k+1}} - S_{\tau_1})$ is the sum of k i.i.d. random variables we can use Theorem C and Lemma B to deduce that $\overline{\lim_k} S_{\tau_k} = \infty$ a.s. Hence $\overline{\lim_n} S_n = \infty$ a.s. and by Lemma 4 it follows that N is totally proper.

Secondly suppose that $P_i(\tau < \infty) < 1$ from which it follows that $P_i\{U_k > 0; k=0, 1, \ldots\} > 0$. Since the Markov chain has only *m* states we know that least from k = m onwards the sequence $\{\theta^k(i): k=1, \ldots\}$ will be of a cyclic nature. Hence the distribution functions of the U_k will also be so and since the U_k are independent

8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26

random variables it follows that at least for k > m, $P(U_k > 0) = 1$. Hence $\lim_k S_{\lambda_k} = \infty$ a.s. P_i therefore $\lim_k S_n = \infty$ a.s. P_i and therefore by Lemma 4 we can say that N is totally proper.

Finally I would like to express my thanks to Dr. T. P. Speed for many helpful suggestions.

References

- 1. Chung, K.L.: Markov chains with stationary probabilities (2nd ed.). Berlin-Heidelberg-New York: Springer 1967.
- 2. Çinlar, E.: Markov additive processes. Preprint.
- 3. Feller, W.: An introduction to probability theory and its applications, Vol. I (3rd ed.). New York: Wiley 1968.
- Feller, W.: An introduction to probability theory and its applications, Vol. II (2nd ed.). New York: Wiley 1971.
- Keilson, J., Wishart, D. M.G.: A central limit theory for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60, 547-567 (1964).
- Keilson, J., Wishart, D.M.G.: Boundary problems for additive processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 61, 173-190 (1965).
- Keilson, J., Wishart, D. M. G.: Addenda to processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 63, 187-193 (1967).
- Miller, H. D.: A matrix factorization problem in the theory of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58, 268-285 (1962).
- 9. Miller, H. D.: Absorption probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58, 286-298 (1962).
- Pyke, R.: Markov renewal process: definitions and preliminary properties. Ann. Math. Statist 32, 1231-1242 (1961).
- 11. Rosén, B.: On asymptotic distribution of sums of independent identically distributed random variables. Ark. Mat. 4, 323-332 (1963).
- 12. Spitzer, F.: Principles of random walk. Princeton: Van Nostrand 1964.

Martin Newbould Department of Probability and Statistics University of Sheffield Sheffield S3 7RH England

(Received October 4, 1972)