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A Classification of a R a n d o m  Walk 
Defined on a Finite Markov Chain 

M. Newbould 

1. Introduction 

Let I11, Y2,-.. be independent and identically distributed random variables 
n 

(i.i.d. random variables). If Yk is real valued then S. = ~ Yk is a random walk on 
1 

the real line. It is well known, see Feller [4, p. 395] that such a random walk 
belongs to exactly one of the following four categories, 

(i) lira S, = oe a.s. 
n 

(ii) lira S, = - oe a.s. 
n 

(iii) lira S. = + 0% lim S. = - oe a.s. 
n 11 

(iv) For  all n, S, = 0 a.s. 

To each random walk there is associated a random variable N = i n f { n > 0 ,  
S, > 0}, the hitting time to the positive half-line, and also a random variable N - ,  
the hitting time to the negative half-line. It is also well known that those random 
walks which belong to category (i) above are precisely those for which N is a 
proper random variable and N -  is improper. Similar statements can be made 
concerning categories (ii), (iii) and (iv). Spitzer 1-12, p. 189] developed a necessary 
and sufficient condition for N to be a proper random variable, namely, the 

~3 

divergence of the series ~ n-  1 P(S, > 0). 
1 

The object of this paper is to generalise the above results to the situation 
where the distribution of the increment Yk depends on the states X k _ 1 and X k of 
an underlying ergodic finite state Markov chain {X,}. 

This type of random walk has been previously studied by Miller [8, 9] and 
Keilson and Wishart [5, 6] and [7]. A basic difference in this paper from these 
references is that we do not assume the existence of means for the increments Yk. 
We note that if Z k is the sum of the increments between the k-th and (k+ 1)-st 
occurrence of the state j in the underlying chain, then {Zk: k =  1, ...} are i.i.d. 
random variables. The methods used in this paper rely heavily on this remark. 

2. Preliminaries 

Before beginning a description of the process under consideration we shall 
state the following facts for completeness and future reference. I11, I12 . . . .  are 

i.i.d, random variables and S, Yk. 
1 
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Theorem A. The random walk S n falls into exactly one of the following four 
categories. 

(i) lim S, = ~ a.s. 

(ii) lira S, = - ~ a.s. 

(iii) lim S, = ~ ,  li__m_m S, = - ~ a.s. 
n n 

(iv) For all n, S, = 0 a.s. 

In the following N = inf {n > 0: S. > 0} is the hitting time to the positive half-line. 

Lemma B. N is a proper random variable if and only if lira S. = + ~ a.s. 
n 
o o  

Theorem C. N is a proper random variable if and only if ~ n- ~ P(S, > O)= ~ .  
1 

The process considered in this paper consists of a discrete Markov chain with 
finite state space {l, 2, ..., m} called the X-process, taking values Xo, X1, ..., X,,  . . . .  
Throughout  this paper the Markov chain will be ergodic in the sense of Feller [33. 
Alongside the X-process is a real valued process called the Y-process which 
proceeds Yo, Y~, .-., Y,, -.. where Yo = 0, and for n > 1, the distribution of Y. depends 
on X,_I  and X,. It follows that given the random variables {Xo, ..., X,}, the 
random variables { Ya,..., Y.} are conditionally independent. Our main concern 

is the Study of the S-process which proceeds So, S t . . . .  , S , , . . .  where S , =  ~, Yk" 
The S-process is known as a random walk defined on the Markov chain, o 

To make this description precise we follow Pyke [10]. Let Q=(Qij) be a 
m 

matrix va lued  function on ( - ~ ,  ~ )  such that for i=1,  ..., m, ~ Q i i ( ~ ) =  1. 
j = l  

The (X, Y)-process is defined to be any two-dimensional stochastic process 
{(X,, Y,); n>0}  defined on a complete probability space (~2, 3, P) which satisfies 

(i) r o = 0  a.s. 

(ii) P { X , = k ,  Yn~xl3n_l}=Qx,,. lk(X) a.s. for n > l  where ,~, denotes the 
a-algebra generated by {X o . . . .  ,X, ,  Y0 . . . . .  Y,}. It should be noted that the 
X-process is a Markov chain with m states and has transition matrix Q(m). As 
mentioned previously we shall also assume that the Markov chain is ergodic. If we 

let S. Yk then the (X, S)-process is a bivariate Markov chain {(X., S.); n>O} 
0 

such that 
P {X ,=k ,  S ,=x}o ,_ l  }=Qx ,_ , k (X-  S._l) 

The (X, S)-process with semi-Markov transition function Q is called the Markov 
additive process with kernel Q. This terminology follows that used by ~inlar [2] 
in the continuous time case. 

Before stating the first lemma we make a few remarks. In some respects the 
value of X o affects the behaviour of the S-process. This can be illustrated by 
noting that whether the hitting time to the positive half-line is a proper random 
variable or not may depend on the value of X 0 . We will return to this later in the 
paper. The distribution of X o remains unspecified and we will deal with proba- 
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bilities conditional on X o . With this in mind, relative to (f2, ,3, P), we denote 
P{.  IX o = i} by P/{. }. Throughout  the paper N and z with and without subscripts 
and superscripts will denote stopping times. 

In this paper the following lemma plays a crucial role. It is a generalisation 
of a result of Chung [1, p. 78] which states that if {X,} is a Markov chain and 

~ k + l  

f a function from the state space of the chain to the real line then ~ f(X,) ,  
n =  t k + l  

k>O, are i.i.d, random variables, where Zk, k>O, are the times of successive 
occurrences of the state j in the Markov chain. 

To simplify the statement of our lemma we introduce the following notation. 
Let {Jl, "",Jr} be a sequence of states of the state space {1, ..., m}. We define 
inductively the sequence of stopping times (Zk: k = 1,... ,  r} by 

z x = inf {n => 0: X, =Jl }, 

Zk=inf{n>Zk_l: X.=jk},  k=2 ,  ..., r. 

Let Z k = S~+ 1 - S ~ ,  k = 1, ..., r - 1 .  With the above notation we have: 

Lemma 1. { Zk : k= 1, ..., r-- 1} is a set of independent random variables. 

The proof of this is an immediate consequence of the strong Markov property for 
the bivariate M arkov chain {(X,, S,); n > 0}. We remark also that if jl = J2 . . . . .  Jr 
then the random variables are identically distributed. In future we shall often refer 
to Z 1 as the increment from a (jl,j2)-block or simply a jl-block if jr =J2. 

3. Classification of the Random Walk 

In our classification of the random walk defined on the chain, category (iv) of 
Theorem A is replaced by a modification of the idea of degeneracy introduced 
by Miller [8]. 

If Qij(c~)> 0 then we let 

Fij(x)= Qij(x) =P(Y,<=xIX,_ 1 =i,X,-=j). Q,j(~) 

Definition. The process (X, S) is degenerate if there exists constants fll...flm 
such that whenever Q i j ( ~ ) >  0 it follows that F~j is the distribution function of a 
degenerate random variable which takes the value f l j - f l i  a.s. This modification 
of Miller's definition rules out the possibility of an overall drift of the S-process. 
It follows that if X o = i and X, = j  then S, = f l j -  fit. We are now in a position to 
state the analogue of Theorem A for the random walk defined on a Markov chain. 

Theorem 1. For a random walk defined on a finite state ergodic Markov chain 
there are four mutually exclusive possibilities: 

(i) lira S, = + ~ a.s. 
n 

(ii) lira S, = - co a.s. 
n 

(iii) lim S, = + ~ ,  lim__m S, = - ~ a.s. 
n n 

(iv) The (X, S)-process is degenerate. 
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Before giving a proof of the theorem we will state and prove the following 
lemmas. 

Lemma 2. I f  for some j the increment from a j-block equals zero a.s. then the 
( X, S)-process is degenerate. 

Proof Let j be as above and fix i. We consider adjacent (i, j)  and (/',/)-blocks 
having increments Wii and VVji respectively. Now W/j and W/i are independent 
random variables and P(Wji+ W~j=0)= 1. It follows that there exists a constant 
C~ such that 

e ( w i j =  Cij)=P(Wji= -- Gift= 1. 

Similarly there exists constants Ckj for k = 1 . . . .  , m. If we now consider adjacent 
(j, k), (k, l) and (l, j) blocks with increments Wjk , Wkl and Wtj respectively where 
k, 1 . j  then we see that 

P(Wkt = - C jg -  C t ) =  1 where Cjk = -- Ckj. 

Let us denote by CkZ the value ( -  C j k -  Cij ). By similarly considering a (l, k)-block 
we can say that for all l and k the increment from a (l, k)-block is a degenerate 
random variable taking the value Clk and moreover Clk = -- Ck~. 

Let us now suppose that a certain l ~  k transition is possibl e and denote 
by Y/k the increment associated with such a transition. Now l-~ k is a particular 
realisation of an (l, k)-block and therefore Yzg = CZk a.s. 

Define fll . . . . .  tim as follows: 

fll = C an arbitrary constant, 

f i r=Cri+f l l=Crl+C for r = 2 , . . . , m .  

It is immediate that 
Cll--[-  Clk -J -  C k l  : C l l  

from which it follows that 

c,k = c l l  + c .  - Q1 = o + (Bz - B~) - ( &  - ~ )  = B , -  &. 
Hence 

r ~ = / ~ - &  a.s. 
This completes the proof. 

The sequence {S,: n__> 1} is said to be dominated if there exists a finite valued 
function M such that for all n: ISn]<M a.s. 

Lemma 3. The process (X, S) is degenerate if and only if the sequence {Sn: n >  1} 
is dominated. 

Proof If the process is degenerate then since sup S , = m ~ ( f l i - f i )  it follows 
n t, J 

that {S~: n >  1} is dominated. Conversely we suppose {S~: n>__ 1} is dominated. 
Now for a fixed j we define the following sequence of stopping times {Zk: k > 0} by 

"Co=0, zk=inf{n> zk_l : X,=j} ,  k > 0 .  
n--1 

If we let Z k = S . . . .  - S~, k = 0, 1, ... then S~ = Z o + ~ Z k. From Lemma 1 we see 
k=l  

that Z k, k = 1, 2 . . . .  are i. i. d. random variables and since {S~,: n -> 1 } is dominated 
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and Z o is finite a.s. it follows from Theorem A that P(Zk=O)= 1 for k =  1, 2, .. . .  
Now Z k is the increment from a j-block therefore by Lemma  2 we see that the 
(X, S)-process is degenerate, and the Lemma  is proved. 

In view of the next Lemma,  now is an opportune time to elaborate further the 
importance of the value of Xo, the initial position of the chain. To do this we 
define the two stopping times 

N = i n f { n > 0 ;  S , > 0 } ,  N -  = i n f { n > 0 ;  S , <0} .  

If for all i we have P~(N < oo) = 1 then we say that N is totally proper. It is im- 
por tant  to note that if P~(N< oo)= 1 for some i then it does not necessarily follow 
that N is totally proper. This can be seen in the following example. 

Let 
{~ i f x < a  

/4, (x) = if x => a 

and we will consider the (X, S)-process in which the X-process is a 2 state Markov 
chain and the semi-Markov transition function Q (x) is of the form 

(PHo(x) qHd(x)~ 
0(x)= ~rHb(x) sHe(x)! 

where p,q,r ,s ,d>O and b , c < - d .  It can be seen that P I ( N < m ) = I  but 
P : ( N <  ~ ) = 0 .  

In some respects however the value of X o does not affect the process. For  
example if lira S, = ~ a.s. Pi then lim S, = ~ a.s. Pj for all j. We are now able to 
state the following lemma. 

Lemma 4. N is totally proper if and only if lim S, = ~ a.s. 

Proof If lira S, = ~ a.s. then it is obvious that N is totally proper. Conversely 

if N is totally proper then we define the sequence of stopping times {'Ok: k_-_0} 
inductively by 

"co=O , zk=inf{n>zk_l:  S,>S,k_,}, k>O.  

By assumption each z k is a proper random variable and moreover  lim S,k = oo a.s. 
I t  follows from this that lim S, = oo a.s. 

Theorem 1 is now an immediate corollary from the following theorem. 

Theorem 2. (i) N and N -  are both totally proper if and only if lim S, =- + ~ a.s. 
and lim S, = - oo a.s. 

(ii) N is totally proper and N -  is not totally proper if and only if lim S~ = oo a.s. 
I I  

(iii) N is not totally proper and N -  is totally proper if and only/fl im S~ = - ~ a.s. 
l l  

(iv) Neither N nor N -  is totally proper if and only if the (X, S)-process is 
degenerate. 

Proof (i) This is immediate from Lemma  4. 
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(ii) Assume N is totally proper and N -  is not totally proper. For  each j we 
define the following sequence of stopping times {zi: k > 0} by 

z{ = inf{n: X,, =j} ,  
j �9 j . 

Zk=anf{n>Zk_ 1 . X , = j } ,  k >  1. 

If we let Z~ = S,~ § - S,~ then z~ is the time of the k-th occurrence of the state j in 
the Markov chain and Z~ is the increment from the k-thj-block. We further define 
for each j the stopping time N i to be 

Nj = inf {k > 1 : S~ > S~i}. 

Similarly we define N 7 = inf {k > 1 : S~ < S~i }. 

It follows from Lemma 4 that lim S, = + oe a.s. If we suppose that N 7 is 

proper for some j then by Lemma B lim $4 = - o0 a.s. therefore li.__m_m S n = - oe a.s. 
k n 

and this contradicts, by use of Lemma 4, the fact that N -  is not totally proper. 
Hence N F is improper for all j. If we now assume that Nj is improper for some j 
then by Theorem A Z~ = 0 a.s. and by application of Lemma 2 we see that the 
process is degenerate. This is also a contradiction therefore Nj is proper for all j. 
By further application of Lemma B we see that for all j lim S~ = oe a.s. whereby 
it follows that lim Sn = oe a.s. 

n 

Conversely we assume lim S, = oe a.s. The conclusion is a direct consequence 
of Lemma 4. 

(iii) This is proved in a similar manner as (ii). 

(iv) If N and N -  are both not totally proper then we show as in part (ii) 
that Nj and N~- are improper for all j. 

Whence it follows that Z~ = 0 a.s. for all j. The fact that (X, S) is degenerate 
follows by appealing to Lemma 2. If conversely the process (X, S) is degenerate 
then the fact that N and N -  are both not totally proper i's immediate from parts (i), 
(ii), (iii) and Lemma 3. 

4. A Criterion 

The aim in this section is to generalize Theorem C to the Markov additive 
process (X, S). We will prove, 

Theorem 3. Let  (X,  S) be a Markov  additive process in which the Markov chain 
{Xn} is ergodic with a finite state space. A necessary and sufficient condition for  N 
to be totally proper is that 

oo 

~ n-lP/(S, ,>O)= ~ f o ra l l  i. 
1 

Before giving a proof  we need the following two lemmas. 
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Lemma 5. Let Y, Zt  , Z 2 . . . .  be a sequence of independent random variables such 
n co  

that Z~, Z2, ... are also identically distributed and let S~ = y' Z~. I f ~ n-  ~ P( S, > O) = oo 
oo 1 1 

then ~ n-I  P(S,  + Y > 0 ) =  oo. 
1 

Proof. We denote by F(x) the distribution function of Y. Now 

~ n - I p ( Y + S . > O ) = ~ n  -1 ~ P ( S . > - x ) d F ( x )  
1 1 - 0 o  

- - ( x )  - - c O  

or) 

where c (x) = ~ n-  1P(S, > - x). 
1 

By application of Theorem 1 of a paper by Ros6n [11, p. 324] which states 
that there is a constant A such that P { S , e ( O , x ) } < A n  , we see that for x > 0  

a o  oo  

E n-1 P(S,e(0, x))<- E n-~ A < oo where A is a constant. 
1 1 

Since c(0)= oo it follows that c (x)=  oo for all finite x. Thus the result follows. 

We now let z~ be as in Section 3, namely the time of the k-th occurrence of 
state j. With this notation we have: 

Lemma 6. I f  for some j, k-I  P~(S~>0)= o% then ~ n-1P/ (S ,>0)=  oo. 
k ~ l  1 

Remark. As a consequence of this lemma we see that to prove the divergence 

of the series ~ n-1P~(S,> 0) it is sufficient to show that for some j, the imbedded 
Of 5 

1 

series, namely the series obtained by considering the process only when the chain 
is in state j, diverges. 

Proof. The z{, z 2 ~ - h j , z3J - z2 ~ , ... are independent random variables and with 
the exception of z{ they are also identically distributed. Here we are assuming 
the initial state i is not necessarily equal to j. Since the Markov chain is ergodic 
the above random variables have finite means and variances. 

Let 

c = max {Ei(z{), Ei(~ ~ - z{)} + 1 

and 

= m a x  ( V a r ,  Var, - 

Our initial aim is to show 

Z(ck)-' E 
k = l  n > c k  

(1) 
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N o w  

oo oo 

~ (ck)-' ~ P~(S~>O,~=n)_-  < ~ (ck) -~ ~ P~(~{=n) 
k = l  n>ck  k = l  n>ck 

oo 

= ~ (ck)-lPi('dk>Ck) 
k = l  

oo 

= ~ (c k) -1P~{~J-E,(T~)>c k- E~(z~)} 
k=l 

co 

_-< ~ (c k) -~ P~ (-c~ - E, (z{) > k) 

k=l this follows by definition of c 
oo 

= < ~(ck)-la2k-l<oe. 
k = l  

The last step follows by application of Ceby~ev's inequality. This proves (1). Now 

1 n = l  k = l  1=1 

k = l  n=k  

--> Z Z =n) 
k = l  ck>-n>_k 

->-- ~(ck) -x Z Pi(S~>0,~ =n) 
k = l  ck>-n>-k 

k = l  n=k  k = l  n>ck  

= Z k-ip~(s4>0)- (ck) -1 • PdS4>0, z~=n). 
k ~ l  k = l  n>ck  

oo 

It follows from (1) and the assumption of the lemma that ~ n- lP~(S.>0)=oe.  
We are now in a position to prove the theorem. 1 

Proof of Theorem 3. Assume N is totally proper. Let X o = i be fixed and N~ 
be as in Theorem 2 namely 

N~ = inf{k > 1 : S~ > S~t}. 

By the argument used in Theorem 2 it follows that N~ is proper for some j. An 

application of Theorem C yields the fact that ~ k -1 PalS4-S~! > 0)= o~ for that 
particular j. From Lemma 5 we obtain k=l 

~ k - l p d S 4 > 0 ) =  o~. 
k = l  

The conclusion that ~ n - ' P ~ ( S . > 0 ) = o o  is now an immediate consequence of 
Lemma 6. 1 
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Conversely assume that ~ n-lpdS,>O)= oo for all i. Let i be arbitrary but 
fixed. Then 

1 n = l  k = l  j = l  

oo 

j = l  k = l  n = k  

<___ Z 
j = l  k = l  

It follows that at least one of the series ~ k -~ P~(S4> 0 ) j =  1 . . . .  , m diverges. We 

will denote by O(i) the least j for which this is so. Similarly we define O(1) for 
l = l , . . . , m .  

Define the sequence {0 k (i): k > 1} inductively by 0 (i) as above, 0 k (i) = 0 (0 k- ~ (i)) 
for k > l .  

The sequence of stopping times {2k: k > 0} are defined inductively as follows: 

20=0 ,  2k=inf{n>2k_l  : X , =  0k(i)}, k > 0 .  

If we let Uk=S~k.~-Sa~ for k > 0  then the elements of the sequence {Uk: k>0} 
are the increments from adjacent (O k, (i), ok+l(i)) blocks. Let z be the stopping 
time defined by z = inf {2 k: U k _<_ 0}. 

We consider separately the two possibilities that Pd r<  or )=  1 or otherwise. 
Firstly we suppose Pi(z< oo)= 1. We define the sequence of stopping times 

{Zk: k>0} inductively by 

h = inf {n > ~: X, = 0 (X~)}, 

zk=inf{n> Zk_X : X,=O(X~)}, k > l .  

oo 

From these definitions and that of 0 we see that ~ k -1Pi(S~k-S~> 0)= oe. Using 
1 

the definition of z which implies that S~1- S~ < 0 we deduce that 

~ k -1P~(S~ -S~ > 0 ) =  ~ .  
1 

o~ 

It is easy to see that ~ k -1P~(S,k+I -S~1 > 0 ) =  oe. 
1 

Noting that (S~.-S,~) is the sum of k i.i.d, random variables we can use 
Theorem C and Lemma B to deduce that lim S,k = oo a.s. Hence lim S, = o0 a.s. 

k n 
and by Lemma 4 it follows that N is totally proper. 

Secondly suppose that P d r < o e ) < l  from which it follows that Pi{Uk>0; 
k--0, 1 . . . .  }>0.  Since the Markov chain has only m states we know that least 
from k = m onwards the sequence {O k (i): k = 1, ... } will be of a cyclic nature. Hence 
the distribution functions of the U k will also be so and since the U k are independent 
8 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 26 
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r a n d o m  variables it follows that  at least for k > m, P ( U  k > 0) = 1. Hence lim Sa~ = oo 
k 

a.s. P~ therefore lim S, = oo a.s. P~ and therefore by L e m m a  4 we can say that  N is 
totally proper.  

Finally I would like to express my thanks to Dr. T.P. Speed for many helpful suggestions. 
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