A Classification of a Random Walk Defined on a Finite Markov Chain

M. Newbould

1. Introduction

Let Y_{1}, Y_{2}, \ldots be independent and identically distributed random variables (i.i.d. random variables). If Y_{k} is real valued then $S_{n}=\sum_{1}^{n} Y_{k}$ is a random walk on the real line. It is well known, see Feller [4, p.395] that such a random walk belongs to exactly one of the following four categories,
(i) $\lim _{n} S_{n}=\infty$ a.s.
(ii) $\lim S_{n}=-\infty$ a.s.
(iii) $\frac{n}{\lim _{n}} S_{n}=+\infty, \underline{\lim } S_{n}=-\infty$ a.s.
(iv) For all $n, S_{n}=0$ a.s.

To each random walk there is associated a random variable $N=\inf \{n>0$; $\left.S_{n}>0\right\}$, the hitting time to the positive half-line, and also a random variable N^{-}, the hitting time to the negative half-line. It is also well known that those random walks which belong to category (i) above are precisely those for which N is a proper random variable and N^{-}is improper. Similar statements can be made concerning categories (ii), (iii) and (iv). Spitzer [12, p.189] developed a necessary and sufficient condition for N to be a proper random variable, namely, the divergence of the series $\sum_{1}^{\infty} n^{-1} P\left(S_{n}>0\right)$.

The object of this paper is to generalise the above results to the situation where the distribution of the increment Y_{k} depends on the states X_{k-1} and X_{k} of an underlying ergodic finite state Markov chain $\left\{X_{n}\right\}$.

This type of random walk has been previously studied by Miller [8, 9] and Keilson and Wishart [5, 6] and [7]. A basic difference in this paper from these references is that we do not assume the existence of means for the increments Y_{k}. We note that if Z_{k} is the sum of the increments between the k-th and $(k+1)$-st occurrence of the state j in the underlying chain, then $\left\{Z_{k}: k=1, \ldots\right\}$ are i.i.d. random variables. The methods used in this paper rely heavily on this remark.

2. Preliminaries

Before beginning a description of the process under consideration we shall state the following facts for completeness and future reference. Y_{1}, Y_{2}, \ldots are i.i.d. random variables and $S_{n}=\sum_{1}^{n} Y_{k}$.

Theorem A. The random walk S_{n} falls into exactly one of the following four categories.
(i) $\lim _{n} S_{n}=\infty$ a.s.
(ii) $\lim _{n} S_{n}=-\infty$ a.s.
(iii) $\varlimsup_{n} S_{n}=\infty, \underline{\lim }_{n} S_{n}=-\infty$ a.s.
(iv) For all $n, S_{n}=0$ a.s.

In the following $N=\inf \left\{n>0: S_{n}>0\right\}$ is the hitting time to the positive half-line.
Lemma B. N is a proper random variable if and only if $\varlimsup S_{n}=+\infty$ a.s.
Theorem C. N is a proper random variable if and only if $\sum_{1}^{\infty} n^{-1} P\left(S_{n}>0\right)=\infty$.
The process considered in this paper consists of a discrete Markov chain with finite state space $\{1,2, \ldots, m\}$ called the X-process, taking values $X_{0}, X_{1}, \ldots, X_{n}, \ldots$. Throughout this paper the Markov chain will be ergodic in the sense of Feller [3]. Alongside the X-process is a real valued process called the Y-process which proceeds $Y_{0}, Y_{1}, \ldots, Y_{n}, \ldots$ where $Y_{0}=0$, and for $n \geqq 1$, the distribution of Y_{n} depends on X_{n-1} and X_{n}. It follows that given the random variables $\left\{X_{0}, \ldots, X_{n}\right\}$, the random variables $\left\{Y_{1}, \ldots, Y_{n}\right\}$ are conditionally independent. Our main concern is the study of the S-process which proceeds $S_{0}, S_{1}, \ldots, S_{n}, \ldots$ where $S_{n}=\sum_{0}^{n} Y_{k}$. The S-process is known as a random walk defined on the Markov chain.

To make this description precise we follow Pyke [10]. Let $Q=\left(Q_{i j}\right)$ be a matrix valued function on $(-\infty, \infty)$ such that for $i=1, \ldots, m, \sum_{j=1}^{m} Q_{i j}(\infty)=1$. The (X, Y)-process is defined to be any two-dimensional stochastic process $\left\{\left(X_{n}, Y_{n}\right) ; n \geqq 0\right\}$ defined on a complete probability space $(\Omega, \mathfrak{J}, P)$ which satisfies
(i) $Y_{0}=0$ a.s.
(ii) $P\left\{X_{n}=k, Y_{n} \leqq x \mid \Im_{n-1}\right\}=Q_{X_{n-1} k}(x)$ a.s. for $n \geqq 1$ where $\mathfrak{\Im}_{n}$ denotes the σ-algebra generated by $\left\{X_{0}, \ldots, X_{n}, Y_{0}, \ldots, Y_{n}\right\}$. It should be noted that the X-process is a Markov chain with m states and has transition matrix $Q(\infty)$. As mentioned previously we shall also assume that the Markov chain is ergodic. If we let $S_{n}=\sum_{0}^{n} Y_{k}$ then the (X, S)-process is a bivariate Markov chain $\left\{\left(X_{n}, S_{n}\right) ; n \geqq 0\right\}$ such that

$$
P\left\{X_{n}=k, S_{n} \leqq x \mid \Im_{n-1}\right\}=Q_{X_{n-1} k}\left(x-S_{n-1}\right)
$$

The (X, S)-process with semi-Markov transition function Q is called the Markov additive process with kernel Q. This terminology follows that used by Çinlar [2] in the continuous time case.

Before stating the first lemma we make a few remarks. In some respects the value of X_{0} affects the behaviour of the S-process. This can be illustrated by noting that whether the hitting time to the positive half-line is a proper random variable or not may depend on the value of X_{0}. We will return to this later in the paper. The distribution of X_{0} remains unspecified and we will deal with proba-
bilities conditional on X_{0}. With this in mind, relative to $(\Omega, \mathfrak{I}, P)$, we denote $P\left\{\cdot \mid X_{0}=i\right\}$ by $P_{i}\{\cdot\}$. Throughout the paper N and τ with and without subscripts and superscripts will denote stopping times.

In this paper the following lemma plays a crucial role. It is a generalisation of a result of Chung [1, p.78] which states that if $\left\{X_{n}\right\}$ is a Markov chain and f a function from the state space of the chain to the real line then $\sum_{n=\tau_{k}+1}^{\tau_{k+1}} f\left(X_{n}\right)$, $k>0$, are i.i.d. random variables, where $\tau_{k}, k>0$, are the times of successive occurrences of the state j in the Markov chain.

To simplify the statement of our lemma we introduce the following notation. Let $\left\{j_{1}, \ldots, j_{r}\right\}$ be a sequence of states of the state space $\{1, \ldots, m\}$. We define inductively the sequence of stopping times $\left\{\tau_{k}: k=1, \ldots, r\right\}$ by

$$
\begin{aligned}
& \tau_{1}=\inf \left\{n \geqq 0: X_{n}=j_{1}\right\}, \\
& \tau_{k}=\inf \left\{n>\tau_{k-1}: X_{n}=j_{k}\right\}, \quad k=2, \ldots, r .
\end{aligned}
$$

Let $Z_{k}=S_{\tau_{k+1}}-S_{\tau_{k}}, k=1, \ldots, r-1$. With the above notation we have:
Lemma 1. $\left\{Z_{k}: k=1, \ldots, r-1\right\}$ is a set of independent random variables.
The proof of this is an immediate consequence of the strong Markov property for the bivariate Markov chain $\left\{\left(X_{n}, S_{n}\right) ; n \geqq 0\right\}$. We remark also that if $j_{1}=j_{2}=\cdots=j_{r}$ then the random variables are identically distributed. In future we shall often refer to Z_{1} as the increment from a $\left(j_{1}, j_{2}\right)$-block or simply a j_{1}-block if $j_{1}=j_{2}$.

3. Classification of the Random Walk

In our classification of the random walk defined on the chain, category (iv) of Theorem A is replaced by a modification of the idea of degeneracy introduced by Miller [8].

If $Q_{i j}(\infty)>0$ then we let

$$
F_{i j}(x)=\frac{Q_{i j}(x)}{Q_{i j}(\infty)}=P\left(Y_{n} \leqq x \mid X_{n-1}=i, X_{n}=j\right)
$$

Definition. The process (X, S) is degenerate if there exists constants $\beta_{1} \ldots \beta_{m}$ such that whenever $Q_{i j}(\infty)>0$ it follows that $F_{i j}$ is the distribution function of a degenerate random variable which takes the value $\beta_{j}-\beta_{i}$ a.s. This modification of Miller's definition rules out the possibility of an overall drift of the S-process. It follows that if $X_{0}=i$ and $X_{n}=j$ then $S_{n}=\beta_{j}-\beta_{i}$. We are now in a position to state the analogue of Theorem A for the random walk defined on a Markov chain.

Theorem 1. For a random walk defined on a finite state ergodic Markov chain there are four mutually exclusive possibilities:
(i) $\lim _{n} S_{n}=+\infty$ a.s.
(ii) $\lim _{n} S_{n}=-\infty$ a.s.
(iii) $\lim _{n} S_{n}=+\infty, \underline{\lim _{n}} S_{n}=-\infty$ a.s.
(iv) The (X, S)-process is degenerate.

Before giving a proof of the theorem we will state and prove the following lemmas.

Lemma 2. If for some j the increment from a j-block equals zero a.s. then the (X, S)-process is degenerate.

Proof. Let j be as above and fix i. We consider adjacent (i, j) and (j, i)-blocks having increments $W_{i j}$ and $W_{j i}$ respectively. Now $W_{i j}$ and $W_{j i}$ are independent random variables and $P\left(W_{j i}+W_{i j}=0\right)=1$. It follows that there exists a constant $C_{i j}$ such that

$$
P\left(W_{i j}=C_{i j}\right)=P\left(W_{j i}=-C_{i j}\right)=1
$$

Similarly there exists constants $C_{k j}$ for $k=1, \ldots, m$. If we now consider adjacent $(j, k),(k, l)$ and (l, j) blocks with increments $W_{j k}, W_{k l}$ and $W_{l j}$ respectively where $k, l \neq j$ then we see that

$$
P\left(W_{k l}=-C_{j k}-C_{l j}\right)=1 \quad \text { where } C_{j k}=-C_{k j}
$$

Let us denote by $C_{k l}$ the value ($-C_{j k}-C_{l j}$). By similarly considering a (l, k)-block we can say that for all l and k the increment from a (l, k)-block is a degenerate random variable taking the value $C_{l k}$ and moreover $C_{l k}=-C_{k l}$.

Let us now suppose that a certain $l \rightarrow k$ transition is possible and denote by $Y_{l k}$ the increment associated with such a transition. Now $l \rightarrow k$ is a particular realisation of an (l, k)-block and therefore $Y_{l k}=C_{l k}$ a.s.

Define $\beta_{1}, \ldots, \beta_{m}$ as follows:

$$
\begin{aligned}
& \beta_{1}=C \quad \text { an arbitrary constant } \\
& \beta_{r}=C_{r 1}+\beta_{1}=C_{r 1}+C \quad \text { for } r=2, \ldots, m
\end{aligned}
$$

It is immediate that

$$
C_{1 l}+C_{l k}+C_{k 1}=C_{11}
$$

from which it follows that

$$
C_{l k}=C_{11}+C_{l 1}-C_{k 1}=0+\left(\beta_{l}-\beta_{1}\right)-\left(\beta_{k}-\beta_{1}\right)=\beta_{l}-\beta_{k}
$$

Hence

$$
Y_{l k}=\beta_{l}-\beta_{k} \quad \text { a.s. }
$$

This completes the proof.
The sequence $\left\{S_{n}: n \geqq 1\right\}$ is said to be dominated if there exists a finite valued function M such that for all $n:\left|S_{n}\right| \leqq M$ a.s.

Lemma 3. The process (X, S) is degenerate if and only if the sequence $\left\{S_{n}: n \geqq 1\right\}$ is dominated.

Proof. If the process is degenerate then since $\sup _{n} S_{n}=\max _{i, j}\left(\beta_{i}-\beta_{j}\right)$ it follows that $\left\{S_{n}: n \geqq 1\right\}$ is dominated. Conversely we suppose $\left\{S_{n}: n \geqq 1\right\}$ is dominated. Now for a fixed j we define the following sequence of stopping times $\left\{\tau_{k}: k \geqq 0\right\}$ by

$$
\tau_{0}=0, \quad \tau_{k}=\inf \left\{n>\tau_{k-1}: X_{n}=j\right\}, \quad k>0
$$

If we let $Z_{k}=S_{\tau_{k+1}}-S_{\tau_{k}}, k=0,1, \ldots$ then $S_{\tau_{n}}=Z_{0}+\sum_{k=1}^{n-1} Z_{k}$. From Lemma 1 we see that $Z_{k}, k=1,2, \ldots$ are i.i.d. random variables and since $\left\{S_{\tau_{n}}: n \geqq 1\right\}$ is dominated
and Z_{0} is finite a.s. it follows from Theorem A that $P\left(Z_{k}=0\right)=1$ for $k=1,2, \ldots$ Now Z_{k} is the increment from a j-block therefore by Lemma 2 we see that the (X, S)-process is degenerate, and the Lemma is proved.

In view of the next Lemma, now is an opportune time to elaborate further the importance of the value of X_{0}, the initial position of the chain. To do this we define the two stopping times

$$
N=\inf \left\{n>0 ; S_{n}>0\right\}, \quad N^{-}=\inf \left\{n>0 ; S_{n}<0\right\}
$$

If for all i we have $P_{i}(N<\infty)=1$ then we say that N is totally proper. It is important to note that if $P_{i}(N<\infty)=1$ for some i then it does not necessarily follow that N is totally proper. This can be seen in the following example.

Let

$$
H_{a}(x)= \begin{cases}0 & \text { if } x<a \\ 1 & \text { if } x \geqq a\end{cases}
$$

and we will consider the (X, S)-process in which the X-process is a 2 state Markov chain and the semi-Markov transition function $Q(x)$ is of the form

$$
Q(x)=\left(\begin{array}{ll}
p H_{0}(x) & q H_{d}(x) \\
r H_{b}(x) & s H_{c}(x)
\end{array}\right)
$$

where $p, q, r, s, d>0$ and $b, c<-d$. It can be seen that $P_{1}(N<\infty)=1$ but $P_{2}(N<\infty)=0$.

In some respects however the value of X_{0} does not affect the process. For example if $\lim S_{n}=\infty$ a.s. P_{i} then $\lim S_{n}=\infty$ a.s. P_{j} for all j. We are now able to state the following lemma.

Lemma 4. N is totally proper if and only if $\varlimsup_{n} S_{n}=\infty$ a.s.
Proof. If $\varlimsup_{n} S_{n}=\infty$ a.s. then it is obvious that N is totally proper. Conversely if N is totally ${ }^{n}$ proper then we define the sequence of stopping times $\left\{\tau_{k}: k \geqq 0\right\}$ inductively by

$$
\tau_{0}=0, \quad \tau_{k}=\inf \left\{n>\tau_{k-1}: S_{n}>S_{\tau_{k-1}}\right\}, \quad k>0
$$

By assumption each τ_{k} is a proper random variable and moreover $\lim _{k} S_{\tau_{k}}=\infty$ a.s. It follows from this that $\lim S_{n}=\infty$ a.s.

Theorem 1 is now an immediate corollary from the following theorem.
Theorem 2. (i) N and N^{-}are both totally proper if and only if $\varlimsup_{n} S_{n}=+\infty$ a.s. and $\underline{l i m}_{n} S_{n}=-\infty$ a.s.
(ii) N is totally proper and N^{-}is not totally proper if and only if $\lim _{n} S_{n}=\infty$ a.s.
(iii) N is not totally proper and N^{-}is totally proper if and only if $\lim _{n} S_{n}=-\infty$ a.s.
(iv) Neither N nor N^{-}is totally proper if and only if the (X, S)-process is degenerate.

Proof. (i) This is immediate from Lemma 4.
(ii) Assume N is totally proper and N^{-}is not totally proper. For each j we define the following sequence of stopping times $\left\{\tau_{k}^{j}: k>0\right\}$ by

$$
\begin{aligned}
& \tau_{1}^{j}=\inf \left\{n: X_{n}=j\right\}, \\
& \tau_{k}^{j}=\inf \left\{n>\tau_{k-1}^{j}: X_{n}=j\right\}, \quad k>1
\end{aligned}
$$

If we let $Z_{k}^{j}=S_{\tau k_{k}^{j}+1}-S_{\tau_{k}^{j}}$ then τ_{k}^{j} is the time of the k-th occurrence of the state j in the Markov chain and Z_{k}^{j} is the increment from the k-th j-block. We further define for each j the stopping time N_{j} to be

$$
N_{j}=\inf \left\{k>1: S_{\tau_{k}^{j}}>S_{\tau_{1}^{i}}\right\}
$$

Similarly we define $N_{j}^{-}=\inf \left\{k>1: S_{\tau k}<S_{\tau i}\right\}$.
It follows from Lemma 4 that $\varlimsup_{n} S_{n}=+\infty$ a.s. If we suppose that N_{j}^{-}is proper for some j then by Lemma $\mathrm{B} \frac{\lim }{k} S_{\tau_{k}^{j}}=-\infty$ a.s. therefore $\frac{\lim }{n} S_{n}=-\infty$ a.s. and this contradicts, by use of Lemma 4, the fact that N^{-}is not totally proper. Hence N_{j}^{-}is improper for all j. If we now assume that N_{j} is improper for some j then by Theorem A $Z_{k}^{j}=0$ a.s. and by application of Lemma 2 we see that the process is degenerate. This is also a contradiction therefore N_{j} is proper for all j. By further application of Lemma B we see that for all $j \lim _{k} S_{\tau_{k}}=\infty$ a.s. whereby it follows that $\lim _{n} S_{n}=\infty$ a.s.

Conversely we assume $\lim S_{n}=\infty$ a.s. The conclusion is a direct consequence of Lemma 4.
(iii) This is proved in a similar manner as (ii).
(iv) If N and N^{-}are both not totally proper then we show as in part (ii) that N_{j} and N_{j}^{-}are improper for all j.

Whence it follows that $Z_{k}^{j}=0$ a.s. for all j. The fact that (X, S) is degenerate follows by appealing to Lemma 2. If conversely the process (X, S) is degenerate then the fact that N and N^{-}are both not totally proper is immediate from parts (i), (ii), (iii) and Lemma 3.

4. A Criterion

The aim in this section is to generalize Theorem C to the Markov additive process (X, S). We will prove,

Theorem 3. Let (X, S) be a Markov additive process in which the Markov chain $\left\{X_{n}\right\}$ is ergodic with a finite state space. A necessary and sufficient condition for N to be totally proper is that

$$
\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)=\infty \quad \text { for all } i
$$

Before giving a proof we need the following two lemmas.

Lemma 5. Let Y, Z_{1}, Z_{2}, \ldots be a sequence of independent random variables such that Z_{1}, Z_{2}, \ldots are also identically distributed and let $S_{n}=\sum_{1}^{n} Z_{i}$. If $\sum_{1}^{\infty} n^{-1} P\left(S_{n}>0\right)=\infty$ then $\sum_{1}^{\infty} n^{-1} P\left(S_{n}+Y>0\right)=\infty$.

Proof. We denote by $F(x)$ the distribution function of Y. Now

$$
\begin{aligned}
\sum_{1}^{\infty} n^{-1} P\left(Y+S_{n}>0\right) & =\sum_{1}^{\infty} n^{-1} \int_{-\infty}^{\infty} P\left(S_{n}>-x\right) d F(x) \\
& =\int_{-\infty}^{\infty}\left(\sum_{1}^{\infty} n^{-1} P\left(S_{n}>-x\right)\right) d F(x)=\int_{-\infty}^{\infty} c(x) d F(x)
\end{aligned}
$$

where $c(x)=\sum_{1}^{\infty} n^{-1} P\left(S_{n}>-x\right)$.
By application of Theorem 1 of a paper by Rosén [11, p.324] which states that there is a constant A such that $P\left\{S_{n} \in(0, x)\right\} \leqq A n^{-\frac{1}{2}}$, we see that for $x>0$

$$
\sum_{1}^{\infty} n^{-1} P\left(S_{n} \in(0, x)\right) \leqq \sum_{1}^{\infty} n^{-\frac{3}{2}} A<\infty \quad \text { where } A \text { is a constant } .
$$

Since $c(0)=\infty$ it follows that $c(x)=\infty$ for all finite x. Thus the result follows.
We now let τ_{k}^{j} be as in Section 3, namely the time of the k-th occurrence of state j. With this notation we have:

Lemma 6. If for some $j, \sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}}>0\right)=\infty$, then $\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)=\infty$.
Remark. As a consequence of this lemma we see that to prove the divergence of the series $\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)$ it is sufficient to show that for some j, the imbedded series, namely the series obtained by considering the process only when the chain is in state j, diverges.

Proof. The $\tau_{1}^{j}, \tau_{2}^{j}-\tau_{1}^{j}, \tau_{3}^{j}-\tau_{2}^{j}, \ldots$ are independent random variables and with the exception of τ_{1}^{j} they are also identically distributed. Here we are assuming the initial state i is not necessarily equal to j. Since the Markov chain is ergodic the above random variables have finite means and variances.

Let

$$
c=\max \left\{E_{i}\left(\tau_{1}^{j}\right), E_{i}\left(\tau_{2}^{j}-\tau_{1}^{j}\right)\right\}+1
$$

and

$$
\sigma^{2}=\max \left\{\operatorname{Var}_{i}\left(\tau_{1}^{j}\right), \operatorname{Var}_{i}\left(\tau_{2}^{j}-\tau_{1}^{j}\right)\right\}
$$

Our initial aim is to show

$$
\begin{equation*}
\sum_{k=1}^{\infty}(c k)^{-1} \sum_{n>c k} P_{i}\left(S_{\tau_{k}}>0, \tau_{k}^{j}=n\right)<\infty \tag{1}
\end{equation*}
$$

Now

$$
\begin{aligned}
\sum_{k=1}^{\infty}(c k)^{-1} \sum_{n>c k} P_{i}\left(S_{\tau_{k}}>0, \tau_{k}^{j}=n\right) & \leqq \sum_{k=1}^{\infty}(c k)^{-1} \sum_{n>c k} P_{i}\left(\tau_{k}^{j}=n\right) \\
& =\sum_{k=1}^{\infty}(c k)^{-1} P_{i}\left(\tau_{k}^{j}>c k\right) \\
& =\sum_{k=1}^{\infty}(c k)^{-1} P_{i}\left\{\tau_{k}^{j}-E_{i}\left(\tau_{k}^{j}\right)>c k-E_{i}\left(\tau_{k}^{j}\right)\right\} \\
& \leqq \sum_{k=1}^{\infty}(c k)^{-1} P_{i}\left(\tau_{k}^{j}-E_{i}\left(\tau_{k}^{j}\right)>k\right) \\
& \leqq \sum_{k=1}^{\infty}(c k)^{-1} \sigma^{2} k^{-1}<\infty
\end{aligned}
$$

The last step follows by application of Čebyšev's inequality. This proves (1). Now

$$
\begin{aligned}
\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right) & =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{l=1}^{m} n^{-1} P_{i}\left(S_{n}>0, \tau_{k}^{l}=n\right) \\
& \geqq \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} n^{-1} P_{i}\left(S_{\tau_{k}}>0, \tau_{k}^{j}=n\right) \\
& \geqq \sum_{k=1}^{\infty} \sum_{c k \geqq n \geqq k} n^{-1} P_{i}\left(S_{\tau_{k}}>0, \tau_{k}^{j}=n\right) \\
& \geqq \sum_{k=1}^{\infty}(c k)^{-1} \sum_{c k \geqq n \geqq k} P_{i}\left(S_{\tau k}>0, \tau_{k}^{j}=n\right) \\
& =\sum_{k=1}^{\infty}(c k)^{-1} \sum_{n=k}^{\infty} P_{i}\left(S_{\tau_{k}^{j}}>0, \tau_{k}^{j}=n\right)-\sum_{k=1}^{\infty}(c k)^{-1} \sum_{n>c k} P_{i}\left(S_{\tau_{k}^{j}}>0, \tau_{k}^{j}=n\right) \\
& =\frac{1}{c} \sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}}>0\right)-\sum_{k=1}^{\infty}(c k)^{-1} \sum_{n>c k} P_{i}\left(S_{\tau_{k}^{j}}>0, \tau_{k}^{j}=n\right) .
\end{aligned}
$$

It follows from (1) and the assumption of the lemma that $\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)=\infty$. We are now in a position to prove the theorem.

Proof of Theorem 3. Assume N is totally proper. Let $X_{0}=i$ be fixed and N_{j} be as in Theorem 2 namely

$$
N_{j}=\inf \left\{k>1: S_{\tau k}>S_{\tau i}\right\}
$$

By the argument used in Theorem 2 it follows that N_{j} is proper for some j. An application of Theorem C yields the fact that $\sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}^{j}}-S_{\tau_{i}}>0\right)=\infty$ for that
particular j. From Lemma 5 we obtain particular j. From Lemma 5 we obtain

$$
\sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}^{j}}>0\right)=\infty
$$

The conclusion that $\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)=\infty$ is now an immediate consequence of
Lemma 6 .

Conversely assume that $\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right)=\infty$ for all i. Let i be arbitrary but fixed. Then

$$
\begin{aligned}
\sum_{1}^{\infty} n^{-1} P_{i}\left(S_{n}>0\right) & =\sum_{n=1}^{\infty} \sum_{k=1}^{n} \sum_{j=1}^{m} n^{-1} P_{i}\left(S_{n}>0, n=\tau_{k}^{j}\right) \\
& =\sum_{j=1}^{m} \sum_{k=1}^{\infty} \sum_{n=k}^{\infty} n^{-1} P_{i}\left(S_{\tau_{k}^{j}}>0, \tau_{k}^{j}=n\right) \\
& \leqq \sum_{j=1}^{m} \sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{\tau k}>0\right)
\end{aligned}
$$

It follows that at least one of the series $\sum_{k=1}^{\infty} k^{-1} P_{i}\left(S_{r_{k}^{j}}>0\right) j=1, \ldots, m$ diverges. We will denote by $\theta(i)$ the least j for which this is so. Similarly we define $\theta(l)$ for $l=1, \ldots, m$.

Define the sequence $\left\{\theta^{k}(i): k \geqq 1\right\}$ inductively by $\theta(i)$ as above, $\theta^{k}(i)=\theta\left(\theta^{k-1}(i)\right)$ for $k>1$.

The sequence of stopping times $\left\{\lambda_{k}: k \geqq 0\right\}$ are defined inductively as follows:

$$
\lambda_{0}=0, \quad \lambda_{k}=\inf \left\{n>\lambda_{k-1}: X_{n}=\theta^{k}(i)\right\}, \quad k>0
$$

If we let $U_{k}=S_{\lambda_{k+1}}-S_{\lambda_{k}}$ for $k \geqq 0$ then the elements of the sequence $\left\{U_{k}: k \geqq 0\right\}$ are the increments from adjacent $\left(\theta^{k},(i), \theta^{k+1}(i)\right)$ blocks. Let τ be the stopping time defined by $\tau=\inf \left\{\lambda_{k}: U_{k} \leqq 0\right\}$.

We consider separately the two possibilities that $P_{i}(\tau<\infty)=1$ or otherwise.
Firstly we suppose $P_{i}(\tau<\infty)=1$. We define the sequence of stopping times $\left\{\tau_{k}: k>0\right\}$ inductively by

$$
\begin{aligned}
& \tau_{1}=\inf \left\{n>\tau: X_{n}=\theta\left(X_{\tau}\right)\right\}, \\
& \tau_{k}=\inf \left\{n>\tau_{k-1}: X_{n}=\theta\left(X_{\tau}\right)\right\}, \quad k>1 .
\end{aligned}
$$

From these definitions and that of θ we see that $\sum_{1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}}-S_{\tau}>0\right)=\infty$. Using the definition of τ which implies that $S_{\tau_{1}}-S_{\tau} \leqq 0$ we deduce that

$$
\sum_{1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k}}-S_{\tau_{1}}>0\right)=\infty
$$

It is easy to see that $\sum_{1}^{\infty} k^{-1} P_{i}\left(S_{\tau_{k+1}}-S_{\tau_{1}}>0\right)=\infty$.
Noting that ($S_{\tau_{k+1}}-S_{\tau_{1}}$) is the sum of k i.i.d. random variables we can use Theorem C and Lemma B to deduce that $\varlimsup_{k} S_{\tau_{k}}=\infty$ a.s. Hence $\varlimsup_{n} S_{n}=\infty$ a.s. and by Lemma 4 it follows that N is totally proper.

Secondly suppose that $P_{i}(\tau<\infty)<1$ from which it follows that $P_{i}\left\{U_{k}>0\right.$; $k=0,1, \ldots\}>0$. Since the Markov chain has only m states we know that least from $k=m$ onwards the sequence $\left\{\theta^{k}(i): k=1, \ldots\right\}$ will be of a cyclic nature. Hence the distribution functions of the U_{k} will also be so and since the U_{k} are independent
random variables it follows that at least for $k>m, P\left(U_{k}>0\right)=1$. Hence $\varlimsup_{k} S_{\lambda_{k}}=\infty$ a.s. P_{i} therefore $\varlimsup S_{n}=\infty$ a.s. P_{i} and therefore by Lemma 4 we can say that N is totally proper.

Finally I would like to express my thanks to Dr. T.P. Speed for many helpful suggestions.

References

1. Chung, K.L.: Markov chains with stationary probabilities (2nd ed.). Berlin-Heidelberg-New York: Springer 1967.
2. Çinlar, E.: Markov additive processes. Preprint.
3. Feller, W.: An introduction to probability theory and its applications, Vol. I (3rd ed.). New York: Wiley 1968.
4. Feller, W.: An introduction to probability theory and its applications, Vol. II (2nd ed.). New York: Wiley 1971.
5. Keilson, J., Wishart, D.M.G.: A central limit theory for processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 60, 547-567 (1964).
6. Keilson, J., Wishart, D.M.G.: Boundary problems for additive processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 61, 173-190 (1965).
7. Keilson, J., Wishart, D.M.G.: Addenda to processes defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 63, 187-193 (1967).
8. Miller, H.D.: A matrix factorization problem in the theory of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58, 268-285 (1962).
9. Miller, H.D.: Absorption probabilities for sums of random variables defined on a finite Markov chain. Proc. Cambridge Philos. Soc. 58, 286-298 (1962).
10. Pyke, R.: Markov renewal process: definitions and preliminary properties. Ann. Math. Statist 32, 1231-1242 (1961).
11. Rosén, B.: On asymptotic distribution of sums of independent identically distributed random variables. Ark. Mat. 4, 323-332 (1963).
12. Spitzer, F.: Principles of random walk. Princeton: Van Nostrand 1964.

Martin Newbould
Department of Probability and Statistics
University of Sheffield
Sheffield S3 7RH
England

