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Summary. For  rank-discounted partial sums and averages, forward and 
backward invariance principles are established through the use of the Bahadur- 
Kiefer representation of sample quantiles and the Kiefer process approxima- 
tion of the sample distributions. 

1. Introduction 

Let {X~, i>  1} be a sequence of independent and identically distributed random 
variables (i.i.d.r.v.) with a continuous distribution function (dO F, defined on the 
real line ( - oo, or). For  every n( > 1), let R,~ be the rank of X~ among Xa, ..., X ,  for i 
= 1, ..., n; by virtue of the assumed continuity of F, ties among the X~ may be 
neglected, in probability, so that R,  = (R, ~, ..., R,,) is some (random) permutat ion 
of( l ,  ..., n). We conceive of a triangular array {G(i), 1 <iNn; n>_ 1} of real scores 
and define a rank-discounted (partial) sum by 

T,= ~ ak(Rkk)g(Xk) , n > l ;  To=0 , (1.1) 
k = l  

where g(.) is a suitable function. Basically, at each stage k, the r.v. g(Xk) is 
discounted by the factor ak(Rkk ) depending on the rank (Rkk) of X k among 
X~,.. . ,  Xk, k > 1, and the ranking is made sequentially. 

Note that if the discounting factor a,(i) does not depend on i, viz., 

a,(i)=a, for every i = l , . . . , n ;  n > l ,  (1.2) 

then T, reduces to T ~ = ~ a k g(Xk) and involves independent summands so that 
k = l  

the classical invariance principles hold under very general conditions on g and {G}. 
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Secondly, ifg(x) = g( + 0), except perhaps on a set of measure 0, then T n reduces to T, 

where by  emma3  

j > 1 are all independent, so that T, again involves independent summands and the 
classical invariance principles hold under very general conditions on the scores 
{an(i)}. Here, we are primarily concerned with the non-degenerate case where 
neither (1.2) hold nor g(x) is a constant a.e. It may be noted that Rkk is independent 
of Rj~, j < k  and also g(Xk) is independent of g(Xj), j<k,  but [g(Xk), Rkk ] is not 
independent of ([g(X;), R;;], j<k), and hence, in general, T~ does not involve 
independent summands. In view of the nature of the dependence of the Rkk, g(Xk), 
k > 1, invariance principles for martingales (or related sequences) are difficult to 
apply here. Let Zk, 1 <"" <Zk, k be the ordered r.v. corresponding to X1 . . . .  , Xk, for 
k > 1. Then, T n may be expressed in either of the following two equivalent forms: 

Tn= ~ ag(Rkk)g(Zk, Rkk) or ~, ak(Rkk)g(Zn, R,k), n>l. (1.3) 
k = l  k = l  

Though there is an one-to-one corresponding between R, and ~* = (R 1 l, R 2 2  , . . . ,  

Rnn), for n > 2, they are defined on different spaces and are not identical. Thus, in 
either form, T n is different from a conventional linear combination of functions of 
order statistics, and the invariance principles for the latter [viz., Sen (1978)] may 
not yield the desired results for { Tn}. These call for a somewhat different approach 
to the study of invariance principles for the partial sequence { Tk, k < n} or the tail 
sequence { T k, k > n}. 

Our task is accomplished here by some particular decomposition of T n and by 
an appeal to the Bahadur-Kiefer representation of sample quantiles and the Kiefer- 
process approximation for th e empirical distributions. Along with the preliminary 
notions, the main results are stated in Section 2. Section 3 is devoted to the proofs of 
the main theorems. The concluding Section deals with some general remarks, 
including the scope of this approach in some related problems. 

2. The Main Theorems 

We conceive of a score-function q5 = {qS(u), 0 < u <  1} and define the scores as 

a,(i)=~b or E:q~(U,,i), i = l , . . . , n ;  n > l ,  (2.1) 

where Un, 1 < ' "  < U,., are the ordered rv's of a sample of size n from the rectangular 
(0, 1) dr. Also, note that U~ = F(Xi), i > 1 are i.i.d.rv with the rectangular (0, 1) df, and 
we may write 

g(X~) = g(F -1 (U0) = h(U), i > 1. (2.2) 

We assume that r is absolutely continuous inside I = [0, 1] and h has a continuous 
first derivative h (1) inside I. Denoting h(u) by h(~ 0 < u < 1, we assume that there 
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exist non-negative numbers ~, fl and positive constants ~ and K ( <  oo), such that 

- -  1 15 O < c ~ + f i = ~ -  , 6 > 0 ;  

Ih(~)(u)l<=K[u(1-u)] . . . .  , O < u < l ,  r=O, 1; 

l~)(u)l<K[u(1-u)] -~, O < u < l .  

For every n(>  1), let us define 

IQi=Eh(Un, i), l <i<_n, 

h"={ h"(u)=#",i'i-l <i } < u = - ,  l <=i<n , 
n n 

Also, let 

1 1 

# = y h ( u ) d u = y h . ( u ) d u = n  1 ~ ~n,i,  
0 0 i = 1  

1 ~ 2 1 2 = S h 2 ( u ) d u _ ] . 1 2  ' h r '=~  2 2 Gh gn, i - - ]  .2 , 
0 i = l  

1 1 

T=5h(ul~(uldu, ~2=5h2(ul(02(uldu-.E2, 
0 0 

1 

r (o(u)du, ?(u)=EO(u)-d?]h(1)(u), 0 < u < l ,  
0 

a~=4  ~ 2(u)y(v)u(1 -v)dudv, 
O < u < v < l  

o2=~+~. 

By virtue of (2.3)-(2.5), it can be shown that 

1 

lim 5 {(on(u)-(a(u)}2du=O, 
n ~ o o  0 

1 

lim 5 {h.(u)-h(u)}2du=O, 
n ~ o o  0 

1 1 

lim ~ha(u) 4b.(u)du=Sh~(u)~b(u)du, a>O, b>O, a+b<2. 
n~co 0 0 

Further, let 

~. =~ h.(u)(a.(u)du= a.(i)g.,i, n> l, 
0 i = 1  

(2.3) 

(2.4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

{2.9) 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

(2.15) 

(2.16) 

(2.17) 

(2.18) 
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*-- ~ n_>l Tn - -  "~k~ - -  

k = l  

Then, we note that  

E T . -  * V n>O. 

P.K. Sen 

and Zo = z~ = 0. (2.19) 

(2.20) 

First, we consider the forward invariance principle, and for every n ( > l ) ,  we 
introduce a stochastic process W, = {W,(t), t E I} by letting 

W,(t)=a-ln-~{Tk,(t)--Zk*(O}, t e l ;  (2.21) 

k,( t)=max {k: k/n<t},  t e l .  (2.22) 

Then, W, belongs to the D [0, 1] space endowed with the Skorokhod  Jl-tOpology. 
Further,  let W =  { W(t), t ~ I} be a s tandard Wiener process on I. 

Theorem 1. Under (2.1) through (2.5), 

W n ~ , W, in the J~-topology on D [0, 1]. (2.23) 

Let  us next consider a backward invariance principle, and define 

S, = n -  1 T,, ~-, = n-  1 z*, n > 1. (2.24) 

Then, we introduce another  stochastic process W,* = { IV,* (t), t e I} by letting 

W,* (t) = a -  1 n ~ {S~( ~ _ z-~(t)}, t ~ I, (2.25) 

k*(t)=min{k: n/k<t},  t e l .  (2.26) 

Thus, W,* is constructed from the tail-sequence {n+(Sk--Zk), k> n}. 

Theorem 2. Under (2.1) through (2.5), 

W,* ~ , W, in the Jl-topology on D [0, 1]. (2.27) 

It may be remarked that  in the so called degenerate case where either ~b(u) or 
h(u) is a constant  on I, ?(u)-=0, and hence, a ~ = 0 .  Thus, in such a case, a = may be 
replaced by o-~. 

3. Proofs of the Theorems 

The following basic decomposi t ion is considered 

T.-z*= ~ [ak(Rkk)#k, Rkk--Zk]+ ~ ak[h(Uk)--#k,R ~] 
k = l  k = l  

+ ~ [ak(R~k)--G] [h(G)--~k, RJ 
k = l  

= B I . + B 2 . + B 3 . ,  say, n > l ,  (3.1) 
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where 
1 n 1 

5n= n ~ l a , ( i ) = S ( G ( u ) d u ,  n > l .  (3.2) 
i= 0 

Before proceeding to the derivation of (2.23) and (2.27), we consider the following. 

Lemma 3.1. Rkk , k > 1 are all stochastically independent and P{Rkk =S} = k-1 ,  for 
l<_s<_k, k>=l. 

Proof. Since the X~ are i.i.d.rv, 

P { R k + l k + l = s  R ~ } = P { Z k ,  s _ I < X k < Z  k s} = l / ( k +  1), V l < s _ < k + l  

(where Zk, o = --o0 and Zk,k + 1 = +oO). Q.E.D. 

Lemma 3.2. R, and 2n = (Z,, 1, ..., Z , , , )  are stochastically independent. 

Proof. The conditional distribution of (XI, ..., X,) given Z,  is uniform over the n ! 
permutations of the coordinates of Z,  yielding a uniform distribution of R, (given 
Z,) over the n ! permutations of (1 . . . .  , n). Since the unconditional df of R, is also 
uniform over the n ! permutations of (1, ..., n), the lemma follows. 

Lemma3.3. n-~{ max IB2kl} v-Y~0, as n-+oe. 
l<_k<_n 

Proof. Let us define Lo=L*o=O and for n__> 1, 

k = l  k = l  
1 , ( 3 . 3 )  

L , = n - I L ,  and ~ * = n - L , .  

* - -  # Then, I2 , - -E(L ,  IR,),  Vn=>l, so that for every m<=n, 

n 1E(L , , , -  * 2 -1 2 ,2 Lm) =n {E(L~)-E(/Jm)} 

n -  1 k ~  - 2  a k (h(u)-hl~(u))2du -+0 as n--+oo, (3.4) 
1 

by (2.1) and (2.17). Hence, by the Cebygev inequality, as n--.o�9 

n-  =IL~,,~--LT,,11 =n  IB2[,t]l ,0, V t e l .  (3.5) 

Let us now introduce two sequences of stochastic processes { W,(~ I-W, (~ (t), t e I], 
i=  1, 2}, by letting 

W~(1)(t) =n  ~a21 {(k+ 1 - n t ) L  k + ( n t - k ) L k + l }  , 

k t < k + l  
- <  _ , k = 0  . . . . .  n - l ;  ( 3 . 6 )  
r/ n 

W(Z)(t) = n-  ~-rr~- 1 {(k+ 1 - n t ) L *  +(n t -k )L*k+l}  , 

k k + l  
- _ < t _ < - - ,  k = 0  .. . .  , n - 1 .  (3.7) 
n t/ 
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Then both W, m and W (2) belong to the C [0, lJ space. Since, both L, and L* involve 
independent summands, the classical Donsker theorems holds, and hence, as n--+ oo, 

Wf ) ~ , q~W (~ in the uniform topology on C[0, 1]; i=  1, 2, (3.8) 

where W (~ is a standard Wiener process on I, i=  1, 2. Let us define for every 
x e  C[0, 1] and 6EI, 

c%(x)=sup {Ix(t)- x(s)l: O ~ s < t <=s-t-a <= 1}. (3.9) 

Then, (3.8) insures that for every e > 0 and t/> 0, there exist a 6 :0  < 6 < 1 and an no, 
such that 

P{ooa(Wf))>�89 for n>no; i=1 ,2 .  (3.1o) 

This, in turn, implies that for n>no, 

2 

P{c%(W ~  W,(2)) > e} < ~ P{c%(W,(i))>�89 <rl. (3.11) 
i = i  

On the other hand, (3.5) insures that for every (fixed) m(__> 1) and 0 __< t 1 < . . .  <tm < 1, 
{Win(q)-  w(Z)(q), ..., W,(1)(tm) - W~(2)(tm)} P ) {0, ..., 0}, so that their joint dis- 
tribution is asymptotically degenerate at the origin. Hence, by (3.11), as n ~ ,  

sup I W~' ) ( t ) -  W~2)(t)I p > O, (3.12) 
t e I  

and the lemma follows directly by noting that n -~ {max [Bzk]} is equal to the left 
kn 

hand side (lhs) of (3.12). Q.E.D: 

Lemma3.4. n~{supk-llB2g]} P ,O, as n~oe .  
k>_n 

The proof follows on parallel lines. We need to replace L, and L*, by L,  and L*, 
and [nt] by [n/t], while for the tightness part, we need to construct tail-sequence 
processes {n~Lk, k>n} and {n~L*i, k>n} which by (3.8) and Sen (1976) also 
converge weakly to 4~W (i), i=  1, 2. Hence, the details are omitted. 

For every e' 0<e<�89 let us define 

=~[ak(Rkk)--dk] [h(Uk)--#k, R j ,  if k- iRgk ~ [e, 1 - e ] ,  
Yk,~ ~0, otherwise, for k > l ;  (3.13) 

:B3,,~= ~ Yk,~, n> l. (3.14) 
k = l  

Lemma 3.5. Under the regularity conditions of Section 2, for every t 11 > 0 and t/2 > 0, 
there exist an e>0  and an no, such that 

P {max ~ (3.15) {n LB3k--/~3k,,l}>th}<r/2, g n>n o. 
k < n  
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Proof. Note  that, by definition, for every n >  1, 

max{n  IB3k--BBk,~I}<B~,,~ 
k < k  

=n -~ ~ I(k- l Rkk ~ [e, 1--e])l[ak(Rkk)--ak] [h(gk, R~)-- #a,a~JI. 
k = l  

(3.16) 

Also, by (2.4), for every l<i<k; k>l,  

t#k,il<EIh(G,,)l=k 5lh(u)ld-l(1-u)k-idu 
0 

1 

= 1  { k i w i - / - [ ~  ]k+ 1 -i-c~/]i Ik- i+ 1 [k+ 1 - 2 e }  

<Kl{i(k+l-i) /(k+l)2} -~, where K l < o o .  (3.17) 

Similarly, by (2.1) and (2.5), for every 1 <__i<k; k>= 1, 

lak(i)-Gl<=K2{i(k+l-i)/(k+l)2} -e where K2 < oo. (3.18) 

Further ,  for any a: 0 < a < 1 and na<-i<-n-n ~, it can be shown that  

{ i >c(l~ exp~ (i) for every c>O,P n ~ U,,i-n+~ 

entially converges to 0, 

i < ~. 
(ii) E U,,i-n+ 1 =n" {i(n+l-i)/(n+l)2} ~, and hence, by using (2.4), it 

follows by some s tandard steps that 

n~EIh(U,,i)-IQil<K3[i(n+l-i)/(n+l)2] ~, V na<-i<-n-n ~, (3.19) 

where K 3 < oo. Then,  on letting a = 6/(1 + 2 ~5)( > 0), where ~ is defined by (2.3), we 
have 

EB* -n -~  k 1 3.,~- ~{ Y, + ~ lak(i)--GlElh(gk, z)--#k,~[} 
k = t  i < k e  i > k - k e  

<_n_ ~ ~, 1 
- u=~ ~ { ( 2  +i<ko i>k-k~ • 2glh(gk'*)llak(i)--GI) 

+( ~ + ~ EIh(U<i)-#k, il lak(i)--ffk[)} 
ka<=i<ke  k - k e < i < = k - k  a 

k = l  i a i > k  k a 

* ( [ i ( k + l - i ) ] - ~ - ~ - ~  
+k-:KIK  E + E t  +i7 I !J 

ka<=i<ke  k - k e < i < _ k - k  a 

_ l C *  e a _ L  I C *  ~ - a / 2 .  - * ~  . . . .  2 "  , (K* < co, i =  1,2) (3.20) 
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where both K* and K* depend only on ~ and ft. Now, (3.15) follows from (3.16), 
(3.20) and the Chebychev inequality. Q.E.D. 

Lemma 3.6. Under the regularity conditions of Section 2, for every t 11 > 0 and r12 > O, 
there exist an e > 0  and an no, such that 

P{sup{n~k -11B3k--/~3k,~l} >~/1} <t/2, V n>n  o. (3.21) 
k>n 

The proof follows on parallel lines, and hence, is omitted. 

Lemma 3.7 [Kiefer (1970)]. As n ~  oo, 

& , sup n2 IUn,[,pl-P+F~ (P)-Pl =O([n- l ( logn)Zloglogn]  �88 a.s., (3.22) 
p e I  

where F~*(u)=n -1 ~ I(Ui <u), 0_<u_<l is the sample df and Un,0=0. 
i = 1  

Lemma 3.8 [Koml6s, Major and Tusn~tdy (1975)]. As n--+ 0% 

sup In{F*( t ) - t}  - K ( t ,  n)l =O((logn) 2) a.s., (3.23) 
0 < t < l  

where {K (t, s), 0 < t < 1, 0 < s < oo } is a Kiefer process which is Gaussian with E K  (t, s) 
= 0  V s, t and EK(t,  x)K(t' ,  s') =(t/x t ' - t t ' ) ( s  /x s'). 

Let us now return to the proof of Theorem 1. Since h(1)(u) is continuous and 
bounded inside [-5, 1 - e], by (3.13), (3.14), (3.21) and (3.22), it follows that n- ~/~3,,~ is 
asymptotically equivalent, in probability, to 

- n- ~ ~ h(1)((k + 1)- 1Rkk) [ak(Rkk) _ dk ] k-  1K((k + 1)- 1Rkk, k), 
k = l  

and hence, given R*, it is asymptotically normal with 0 mean and variance 

V,=n -~ ~, ~ (kVq)-a[ak(Rkk)--dk][aq(Rqq)--gq] 
k = l  q = l  

�9 'h~ + 1)- ~ Rkk ) h(~)((q + 1)- a Rqq) 

�9 [ { (k+l ) - lRkk} /x  { ( q + l ) - l R q q } - ( k + l ) - l R k k ( q + l ) - l R q q ]  

�9 I((k + 1)- ~ Rkk e [e, 1 -- 5], (q + 1)- ~ Rqq e [5, 1 -- e]). (3.24) 

In view of the fact that the summands in (3.24) are all bounded and by Lemma 3.1, 
the R j; are all independent, it follows by some standard steps that 

V , ~ a  2 in probability (actually, in Ll-norm), as n---,oo. (3.25) 

Thus, for any real (and finite) 0 and almost everywhere in ,R*, 

E{exp(iOn-~B3,,  e) IN*} --+ exp { -gvl  n2 0.2) ,2", as n--+ m. (3.26) 

On the other hand, given R*, B , ,  is also held fixed, so that 
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E{expOOn (Bln+B3n,~)) } 

=E[E {exp(iOn-�89 + B3,,~))IR*}] 

= exp ( - �89 0 z cr2z ) E { exp (i 0 n- ~ B1,)} + o (1). (3.27) 

Further, by Lemma 3.1, B~, involves independent summands with 0 mean and 

variances S (~(u)h~(u)du- Ok(U)hk(u)du (~a  2 as k~oo), and by the classical 
0 

central limit theorem, as n--, o9 

E{exp(iOn-�89 V real and finite 0. (3.28) 

From (3.1), Lemmas 3.3 and 3.5, (3.27) and (3.28), we conclude that 

5~ ~ Y(0,  o-2); cr2=a 2 +~22. (3.29) 

The same treatment holds for any rn (>  1) and {n l, ..., nm} where nj/n ~ t j, 1 < j < m, 
0 < t ~ < . - . < t m < l  and we have 

y ( n - � 8 9  (T , j -  ~,*), j = 1, ..., m ) ~  ~,,(0, ~2 ((tj A t~,))), (3.30) 

insuring the convergence of the finite-dimensional distributions (f.d.d.) of { W,} in 
(2.21)-(2.22) to those of W. Hence, to prove Theorem 1, we need to show only that 
{W,} is tight. Since 141,(0)=0 with probability 1, by virtue of Lemmas 3.3 and 3.5, it 
suffices to show that for every e' > 0 and r/> 0, there exist p: 0 < p < 1 and an n o, such 
that for n>n o and every t~I, m=[nt], 

P{ max n-�89189189 (3.31) 
m<_k<_(m+np)  ^ n  

P{ max n- �89 I/~,~-/~2,.,~1 >�89 <�89 (3.32) 
m<_k<_(m+np)  A n  

N o w ,  Blk involves independent summands with zero means and finite variances 
(converging to a2), and hence, (3.31) follows readily by using the lemma on page 69 
of Billingsley (1968). Also, note that by (2.3) and (2.4) (where c~<�89 

max Ih(U~)l/m�89 a.s., as m-- ,~,  (3.33) 
l < i < m  

and hence, on letting k ,~n  +, we obtain from (3.1), (3.13), (3.17) and (3.18) that as 
~-+oo  

n-�89 max IB3k,~l}=O(n -~/2) a.s., as n--,oe. (3.34) 
i <<-k<--kn 

So, to prove (3.32), it suffices to work with any m > k,. Further, note that by (3.13), 
(3.18), (3.19), (3.22) and (3.23), 

n-�89 max 1/33k,~--/~am,~--Yk*[}--~0 a.s., as n-~oe, (3.35) 
kn<=m<_k<_n 

where 
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E - [ a s ( R J - a s ] h  ( ( s + l ) - l R j  
S= m-t- J- 

1 
�9 - K ( ( s + I ) - a R  s), k>m>_l.  (3.36) 

S s s ,  - -  

Hence, it is sufficient to show that for every m>kn, 

:t: t t P{ max n-}[Y~m[>X~ } <�89 V n>n  o. (3.37) 
m < = k < = ( m + n p ) ^ n  

By virtue of Lemma 3.2 and the construction of the Kiefer process in (3.23), we have 
for every s, s' > 1, 

: [(S V St) - 1 [-{(S -}- 1 ) -  1 R~s}/x { ( s ' +  1)- 1Rs,s,} 

- ( s +  1)- ~ Rss(S'+ 1)- 1R~,~,] ] 

(S V St) - 1 { [ '(S -}- 1)- 1 Rs,(1 - (s + 1)-1 R,s) ] 

�9 [(s'+ 1) -1 R,,,(1 - ( s ' +  1)- ~ Rs,,)]}} , (3.38) 

and the product moments of order 3 and 4 can be directly obtained by using the fact 
that the joint distributions of the K (a, b) are multinormal. Finally, by (2.3)-(2.5) and 
(3.18), 

g lUa~ ( R~) -  H~] h(1)((s + 1)-1 R~s)l-(s + 1) -1  R~ (1 - ( s  + 1)-~ R s~)]~ ] 

< K  2 s + l -  s+  2 -~-p-~ 
1 

< {u (1 -u ) } - l+6du  <o% V s > l .  (3.39) 

Hence, it follows by some routine steps that 

- 1  * 2  y*2 n E{Y2m ~ ,~,~. <K4[(m 2-m0(rn  x-m)] /n  2, K4< 0% (3.40) 

for every m =< m~ < m 2 where K 4 does not depend on (m, m~, m2). Then, (3.37) follows 
from (3.40) and Theorem 12.1 of Billingsley (1968, p. 89), and this completes the 
proof of Theorem 1. 

Let us now sketch the proof of Theorem 2. Since S, - ~ = n- 1 (T, - z*) for every 
n__>l, if we let nj: n/n;-*sj, sj~[0,1], l<j<=m, then n~[(S~j-~j) , l<j<=m] 
=n-~[(n/nj)(T,j-'c*j), 1 <j<m],  so that identifying s j=t  71, l <=j<m, the con- 
vergence of f.d.d, s of { W, } to those of W follows directly from (3.30). In this context 
note that n- ~ B I , ~ 0  a.s., as n~oo,  and hence, W*(0)=0, with probability 1. By 
virtue of Lemmas 3.4 and 3.6, to establish the tightness of { W,*}, it suffices to show 
that for every e' > 0 and t/> 0, there exist a p: 0 < p < 1 and an no, such that for n __> no, 
m ~ I n ~ t ] ,  m '  ~ l-n/(p + t)],  0__< t < t + p __< 1, 

P{ max n ~ [ k - l B l k - m  -1 1 , B m ] > ~  } <�89 (3.41) 
m' <--k<_m 

P{ max n~[k-lB3k,,-m-1;B3m,~l>�89189 (3.42) 
m'<=k<=m 
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Since {Blk , k=  > 1} is a martingale sequence and the forward invariance principle 
holds, by Theorem 2.2 of Sen (1976), (3.41) follows from (3.31). To prove (3.42), we 
note that by virtue of (2.4), (3.13), (3.17), (3.18), (3.22) and (3.23), as n~oo,  

n _  l ~3n ,~  1 n i) +n i=~1 h(1)((i + 1)-1 R u )  [ a i ( R u )  - -  di]  i -  1 K ( ( i  + 1) -1 R i i  , 

=o(n ~) a.s., (3.43) 

and hence, we may follow the line of approach in (3.37)-(3.40) and verify an 
inequality similar to (3.40), which insures (3.42). For brevity, the details are 
omitted. Q.E.D. 

4. Some General Remarks 

As has been noted in (3.29), the asymptotic normality of n-~(Tn-~*) [or n+(S, 
- ~ ) ]  follows directly from Theorem 1 or 2. In addition, either of these theorems 
also insure the asymptotic normality when the sample size n is itself a (positive 
integer-valued) rv. 

Statistics of the type T, in (1.1) are useful for testing randomness against trend 
alternatives when observations are available sequentially. For such a problem, a 

pure rank statistic is of the form i ak(Rkk) [see T. in Section 1] and for our 
k=l 

theorems to hold, we do not need (2.4) and we may even replace (2.3) and (2.5) by: 

cb(u) is the difference of two non-decreasing (4.1) 
and square integrable functions inside I. 

On the other hand, a mixed rank statistic is of the form (1.1) and our Theorems 1 
and 2 provide the desired results under the regularity conditions (2.1)-(2.5). Finally, 
for T, ~ in Section 1, for the invariance principle to holds, it suffices to assume that 

max ak 2 a/2 --,0 as n~o% (4.2) 
1 <-k<-n / i 

1 
yh2 (u) du < oo. (4.3) 
0 

Our Theorems 1 and 2 provide, respectively, the forward and backward invariance 
principles for { T,}. One could have also considered the space D [0, oo) endowed with 
the metric 

p*(x,y) =sup{(t + 1) -1 [x(t)-y(t)l:t>O} (4.4) 

and obtained the weak convergence of { T~ - r*, n > 0} (on D [0, oo) in the p*-metric) 
to a Wiener process on [0, oo). Since, in practical applications, we mostly face the 
forward or backward invariance principles, we prefer to use our Theorems 1 and 2, 
which insure the above weak convergence result. We conclude this section with the 
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following remark on the scope of  the techniques developed in this paper  in some 
related problems. For  t h e  study of some inavariance principles for linear 
combina t ion  of  order statistics, Sen (1978) has developed a reverse martingale 
approach  yielding a simple and direct proof. His regularity conditions are 
somewhat  different from those in here and are, in most  cases, relatively less 
stringent too. It seems that  the Kiefer-process representat ion of  empirical 
distributions can be used in the other  problem too. However,  certain addit ional 
results on the precise order of  approximat ions  at the two tails of  the empirical 
distributions are needed to enable the results to be derived under  the general set of 
conditions stated in Sen (1978). The reverse mart ingale approach  in Sen (1978) 
avoids these extra manipulations.  On the other hand, this reverse martingale 
approach  is not  very handy  in the current problem. 
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