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0. Introduction

It is well known by results of Meyer, Boboc-Constantinescu-Cornea, Hansen
that for every P-harmonic space (X, #*) with a countable base for which the
function 1 is hyperharmonic there exists a Hunt process # with state space X
and paths continuous on [0, {[ such that the set of positive hyperharmonic
functions coincides with the set of excessive functions of 2" (see [4]). This paper
is devoted to a study of the converse problem. Our main theorem (5.2) gives a
complete solution, namely:

For any standard process & on a locally compact space X with a countable
base and proper potential kernel, the set of excessive function of 2 is the set of
positive hyperharmonic functions of a P-harmonic space (X, #°*) if and only if
the following conditions are satisfied:

(a) Every excessive function is the limit of an increasing sequence of
continuous excessive functions.

(b) The paths of & are almost surely continuous on [0, {[.

(c) & has no absorbent points.

The paper is divided in five sections.

Inspired by [4], Chapter IV, we introduce in section one the notion of a
balayage space (X, #"), i.e. # is a convex cone of continuous positive numerical
functions on a Baire space X such that the axioms of increasing sequences,
lower semi-continuous regularization and natural decomposition are satisfied.

In sections two and three we consider the special situation of a convex cone
" of lower semi-continuous numerical functions on a locally compact space X
with countable base such that (X, #7) is a balayage space when X is endowed
with the ¥ -fine topology. Furthermore, we assume that #” contains an adapted
linearly separating convex cone £ <% *(X) such that every function in # is the
limit of an increasing sequence in & We note that these “standard” balayage
spaces give rise to a rich potential theory generalizing [4] and [8]. In this paper
we content ourselves with a proof of some basic properties. In particular, the
Bauer convergence property turns out to be a consequence of the axiom of Ls.c.
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regularization (see Prop. 3.4). Furthermore, ¥  is the set of positive hyperhar-
monic functions of a P-harmonic space (X, *#°) iff the standard balayage space
(X, #") satisfies the truncation property and has no finely isolated points.

In section four we give characterizations of standard balayage spaces by
means of semi-groups and standard processes.

The final section contains the proof of the main theorem stated at the
beginning.

Having prepared the material of this paper we received a preprint of Taylor
[13] where the same problem is studied with different methods (see our Remark
5.3).

1. Balayage Spaces

Throughout this section let X be a Baire topological space and #” be a convex
cone of continuous positive numerical functions on X containing the constant
function + co.

We shall call (X, #") a balayage space if the following axioms are satisfied:

I. Axiom of Increasing Sequences. For every increasing sequence (u,) in #~ we
have supu,e ¥

II. Axiom of Lower Semi-Continuous Regularization. For every non-empty

S

subset ¥~ of ¥ we have inf ¥ ew.!

II1. Axiom of Natural Decomposition. If u, v, v"e#" such that u<v'+v", there
exist u',u’eW such that u=v'+u", W <v', u"<v".

1.1. Examples. 1) Let #" be the convex cone of positive hyperharmonic func-
tions on a harmonic space (X, *5) in the sense of Constantinescu-Cornea [4] or
Hansen [6]. Then (X, #") is a balayage space if X is endowed with the fine
topology (see [4], Chapter 5).

2) Let (X, *5#) be a ‘B-harmonic space in the sense of Constantinescu-Cornea
satisfying the axiom of domination. For every finely open set Uc X, (U, #") is a
balayage space where U is endowed with the fine topology, #  is the convex
cone of positive finely hyperharmonic functions on U (Fuglede [5], p. 131).

3) Let & be the set of excessive functions of a standard process with state
space X having a reference measure (see [1]). Then (X, &) is a balayage space if
X is endowed with the fine topology of the process. Indeed, by [1], page 86, X
possesses a base of open sets which are compact in the initial topology. This
implies that X is a Baire topological space. By [1], page 72, (X, &) satisfies the
axiom of increasing sequences, by [1], page 200ff, the axiom of ls.c. re-
gularization. Finally, the axiom of natural decomposition is satisfied by [10],
page 221.

1 As usual f denotes for any numerical function f on X the greatest lower semi-continuous (Ls.c.)
minorant of f



Markov Processes and Harmonic Spaces 311

The proofs of the following properties of balayage spaces can be obtained in
the same way as in Chapter 4 of Constantinescu-Cornea [4].

Assume for the present that (X, #") satisfies the axioms I and II. It is obvious
that for any non-empty subset ¥" %" the natural infimum A7 exists and is

equal tow In particular, #° is min-stable.

1.2. Proposition. 1) If ue %" then [u=0] and [u< + o] are open.

D IfV, VW then AWV +4"y=AV" + AV,

3) Let ¥,,¥ W and define f,=infv¥,, f=inf¥. If (f) is an increasing
sequence converging to f, then lim AV, =AY

n— oo

Let f be a numerical function on X. We set

R,="R,=inf{ue#": f<u}.

Then Iij,e“//. If moreover f is Ls.c., then Rf=ﬁf. We have
SE2g=R,=R,; R, SR, +R,, R,;=aR, (xeR).

1.3. Proposition. The axiom of natural decomposition is equivalent to the following
property: for any u,ve#” we have R;, u—R.eW where

f_{u—v on {v< +o0}
10 on {v=+ow}

For the remainder of this section let (X, #7) be a balayage space. Let ue#” and
Ac X. Define the reduit of u on A by

RA=inf{ve# : v=u on A}
=inf{ve#": v=u on A}.

The function RZe#  is called the balayage of u on A.
Obviously,

RA<u; R*=uon A4;

if A=B, u<v then R*<R%;
RILSRI+RY;  RIVPSR{+RY;

if A is open then RA=R4,

1.4. Proposition. Let A< X and uew’ finite on A. Then
R =inf{RY: U open, A< U, u finite on U}.

1.5. Theorem. 1) For any A< X and any u, ve#” we have

R} ,=R}+R#; R4, =RA+RA

u+ty
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2) For any A; Bc X and any ue#” we have

RAVP4RIPPSRI+RE;,  RiVE+RAB<RA+RE.

1.6. Theorem. 1) Let (u,) =#" be increasing and let u=lim u,. Then, for any Ac X

we have lim R4 =RZ. e
2) Let (A,) be an increasing sequence of subsets of X and A= UAn. Then for

nelN
any ue¥’', we have

s PAn_ PA
lim Rj"=Rj.

2. Standard Balayage Spaces

In the following let X be a locally compact space with a countable base. Let #
denote the set of all Borel measurable numerical functions on X, and let € be
the set of all continuous real-valued functions on X. For any set & of numerical
functions on X, we shall denote by &/ 7, &, o,, o, the set of all functions in ./
which are positive, bounded, real-valued and which have compact support
respectively. The support of a numerical function f on X will be denoted by
S(1)-

Let % be a convex cone of ls.c. positive numerical functions on X. The
coarsest topology on X which is finer than the initial topology and for which all
the functions of #” are continuous will be called the (#"—) fine topology on X.
Every point of X possesses a fundamental system of fine neighborhoods which
are compact in the initial topology; in particular, X is a Baire topological space
with respect to the fine topology (Brelot [2], p. 5).

For every subset # of #* let

F(F)={f Uf)cF such that T/}

and let (%) be the smallest subset of 4™ having the following properties:

a) F <%(¥).

b) S(G(F)=%(7).

o) If M, M =% (F) such that inf A, inf . #'eB and inf M +inf M'e%(F)
then inf A# €% (F).

We say that %(F) is generated by F.

A convex cone € will be called admissable, if

a) & is adapted;

b) # is linearly separating;

¢) 2 contains a strictly positive function.

If an admissable cone 2 is min-stable then £ — 2 is dense in %,
={fe¥(X): 3pe? with |f|<p} with respect to the order topology (see [11],
p. 57), especially for every fe¥ there exists p,e# such that for every ¢>0 there
exist p, ge satisfying

0=p—q=f=p—q-+ep,.
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We note that for every admissable cone 2 on X and every #-bounded u.s.c.
function f on X

mf{pe?: p= f}=inf {ueF(P): u=f}.

An admissable cone 2 on X will be called a potential cone if the following
holds:

a) 7R, e for every pe% .

b) p—?R,_,e2 for every p,qe?.

In particular, 2 is min-stable and closed with respect to the order topology.
Let #” be a convex cone of 1s.c. positive numerical functions on X containing
the constant function + co. (X, #7) will be called a standard balayage space if

(i) (X,#") is a balayage space where X is endowed with the # -fine
topology.

(i) There exists an admissable cone Z on X such that #(P)=¥".

2.1. Examples. 1) If (X, *5#) is a P-harmonic space in the sense of Constantinescu-
Cornea or Hansen, then (X,*# *(X)) is a standard balayage space.

2) Let X be a denumerable set (with the discrete topology) and #” be the set
of all positive numerical functions on X. Then (X, #") is a standard balayage
space.

2.2. Proposition. For any standard balayage space (X, #") there exists a potential
cone @ on X such that W =S (P)=YP).

Proof. Let 2 be an admissable cone on X such that #(#)=%" and define &'
=% n%,. Then 7' is a min-stable convex cone such that # c#' <%, hence &’
is admissable.

Furthermore, for any fe%} we have
_Wp _Pp _Pp .
R,="R,=?R,=’R;;

in particular R, is upper semi-continuous (u.s.c.) and thus R,e#'. Take now f
=(p—q)* for p,qe#’. Then

R R,_,+€7.

P‘q:
By (1.3) we obtain
P—R,_ W NCr=2,

hence #' is a potential cone.

It remains to show that # =% (#)=%(2').

First note that 4(#") =" Indeed, obviously F(#\<W. Let M, H =W
such that u=inf.# e}, v=inf . #' € B} and u+veW. By (1.2/2) u+v=u+v=0
+9, hence u=deW , v=>0e# . Since P =P =W we obtain

W =P (P) P (P) <G P)G(W V=W
which implies &(#)=%(?) =W
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In Section 5 we shall prove the converse of Proposition 2.2., ie. for every
potential cone Z on X such that & (?)=%(2), the pair (X, ¥(¥)) is a standard
balayage space.

For the remainder of this section let (X, #") be a standard balayage space.
By Proposition (2.2) there exists a potential cone £ such that

P=W by, W =S(P)=%P).
Let Ac X be closed and peZ. Then
R4 =inf{ge?: g=p on A}
is u.s.c, and the mapping
p—RS on 2

is additive, increasing and positively homogeneous. Hence there exists a unique
kernel R, on X such that

R,,p=R3

for every pe. Since # = (&), we obtain R u=R for every ue¥" Further-
more, for any xeX, the measure R (x, ") is supported by 4, for Rj =R/ if p=¢q
on A.

2.3. Lemma. For any closed A< X and any pe?, we have

lim R, ¢ yp=R,p.
UlX .

U open,

rel. comp.

In particular, for any xeX, (R, y(x, *)) is vaguely convergent to R 4(x,*) as U
tends to X.

Proof. For every open subset U of X,
R p=R, ,;vP=R, p+Ryyp.

Let xeX and ¢>0. Since & is adapted there exists a function ge# and a
compact subset K of X such that g(x)<e and g=p on [ K. Then for every open
neighborhood U of K we obtain Ry ;p<R;xp =g, hence

Repp(x)<e.

So the statement follows.

2.4. Proposition. For every Ls.c. function uz0 on X the following statements are
equivalent:

1. ue#.

2. Ryu=u for every compact subset K of X.

3. Ryyu=u for every relatively compact open subset V of X.

Proof. (1) = (3): Trivial.
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(3)=(2): Let K be a compact subset of X. Let ¢c%,, 0<¢=<wu Then for
every relatively compact open subset U of X

RKucU(szc(U\K)(p SR gU=u,
hence
Ryo=u

by (2.3). So we obtain Ryu=u.

(2) = (1): We may assume that u is #-bounded since & (#")=¥". By [11], chap.
II. C, it suffices to show that u in Z-concave, i.e. u(u)<u(x) for any xeX and
(positive) measure y on X satisfying u(p)<p(x) for every pe#. But this is an
immediate consequence of the assumption (2) and [9], page 5-11.

2.5. Proposition. Let U be an open subset of X and let (U)) be a sequence of open

sets such that U= | ) U,. Let (k,) be a sequence in N such that for every meN the
=1

set {nelN: k,=m} is infinite. Then for every pcP

lim Ryy, Rey, .- Ryy, P=Ryup.

h— 00

In particular, (Ryy, - Rpy, (%, *)) is vaguely convergent to R,y(x,*) for every
xeX. "

Proof. We may choose open sets V, such that ¥, U, and U= | ) V,. There are
n=1

functions ¢,e%(X) such that 0<¢,<1, ¢,=00n V, and ¢,=1 on [ U,.
Iet U;=U, , V,=V, and ¢,=¢, and let pe?. We define (4,) and (g,
recursively by

Ug=p, 9o =D;

un:RCUﬁlun*I’ qn:Rq),’an_l'

Evidently, (g,) =Z. Assuming u,_, <q,_, the inequality 1,,, < ¢, implies
Un=Rppy 1 SRy, G- 1 SRy g, =4,

Assuming u,_; ZR;,p we obtain

U, =Ry, u,— 1 Z Ry, (Rypp)
=inf{Ryy,q: ge?, qzp on [U} 2 Ryyp.

Hence for all nelN
R[: Up é Un é qn -
Evidently, the sequences (u,) and (g,) are decreasing. We obtain

R[:Upé lim u,,§ lim q4,=:4.

n— oo nh— o0
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Let melN. Take nelN such that k,=m. Since q,=R
we have

e#? and ¢,,=0 on V,

Pmln-1

Rchqn:RS:l/m'__qn'
The set {neN: k,=m} is infinite and (g,) is decreasing. Thus

Ry, 4=4-
Therefore by (2.4), for every ue#”

Rcvm(u—Q)§“—q,

hence the Choquet boundary of X with respect to the convex cone #—R_q is
contained in [ U.

Let ue# such that u=p on [U. Then u—g=0 on [ U, hence u—g=0 by the
minimum principle. This implies R;;;p =4, hence

Reyp=q=1lim u,.

n— ©

3. The Associated Harmonic Structure

We shall now proceed to construct a harmonic structure on a given standard
balayage space (X, #7). Again let & be a potential cone such that Z=%#"n¥,
and F(P)=W".

For every open subset U of X let *# ,(U) denote the set of all lower £-
bounded functions ue# such that u is Ls.c. in U and

Reyu=u
for every open set ¥ with V= U. We note that *# 5(X)=%" by (2.4).

3.1. Proposition. Let U be an-open set in X and let B be a base of U consisting of
open sets W satisfying W = U. Let ue % be lower P-bounded and l.s.c. on U and let
RywuZu for every WeB. Then ue*H 4(U).

Proof. Let pe# such that —p=<u and let 9%, such that p <u+p. Let V be an
open set such that ¥ < U and let (W,) be a sequence in B such that W, <V for
every n. Then for every n

So we conclude from (2.5) that
Rcv(—p +o)=u.
Hence

Ryyu=u.
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3.2. Corollary. Let (U),.; be a family of open subsets of X. Then

*%”g:(l_EUI U)= Q*%ﬂ((]i)'

ie

3.3. Proposition. Let U be an open set and let V be a relatively compact open set
such that V. < U. Let pe®. Then there exists a function qe? and an increasing
mapping vi— g, from {ve*H# 4(U): 0=Zv=<p} into W such that

4,=0+4
on V. For every v which is continuous on U we may choose a continuous q,.

Proof. Let K be a compact subset of U such that V < K. Since 2 is a potential
cone there exist ¢,q'€? such that ¢<q’, g=¢' on [K and ¢ —g=p on V. For
any ve*# ,(U) such that 0Zv<p define

4, =U+grq.

’

Evidently, g,e*#,(U). Furthermore, ¢q,<q and ¢,=q on [K, hence
q,€*#,([K). Since UU[K=X we obtain by (3.2) that g,e*#5, (X)="" It is
obvious that the mapping v g, is increasing and that ¢, is continuous if v is
continuous on U.

For every open U in X we define

Hp(U)=*HH(U) (= *H5(U)).

3.4. Proposition. Let U be an open subset of X and let (h,) be a decreasing
sequence in 3, (U). Then inf h e #, (U).

Proof. We have to show that h=infh, is ls.c. on U. Let V be a relatively
compact open subset of U such that V< U. Let pe? such that h, <p. We
choose a function ge# and a mapping v g, according to the preceding
proposition. We first consider the differences

v,=p—h,.

The sequence (v,) is increasing, hence (g, ) is an increasing sequence in 2. So
sup g, €#". On the set V we have

hn:p_vn:p+q_qvn’
for every n, hence
h=p+q—supgq, .

Therefore & is finely continuous on V.
Furthermore, we have on V

G, =yt 4
for every n, hence

mfg, =h-+gq.
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S
We know that u=infg, e#". Since h+q is finely continuous on V' we obtain
u=h+g on V.
In particular, & is Ls.c. on V.

3.5. Proposition. Let pe%,,. Then R e #; ([ S(¢)).

Proof. We have R e2. Let V be a relatively compact open subset of [‘,S(go) Then
R':V—R Thus R, 5 ([ S(p)

3.6. Corollary. For every closed subset A of X and every pe®, Rie A, ([ A).

Proof. There exists a decreasing sequence (p,) in & such that p,<p, p,=p on 4
and
P

R4 =infp,.
Let (U,) be a sequence of open sets in X such that U,,cU,and A= ﬂ U,. Let
(p,) be a sequence in ¥ such that 0=5¢,<1, ¢,=1 on Un+1, ,=0 on I:U For
every n, take

4,=R,, p.-

Then R} <q,<p,, hence

i sS4 T
R <infg,, Rj;=infq,.

Since (p,) and (@,) are decreasing, the sequence (q,) is decreasing. For every m,
(@uzm=#5 ([ U,) by (3.5), hence inf g,e ;" ([ U,) by (3.4). Thus inf q,e 4, ([ 4)
by (3.2).

Therefore we obtain for every xef}4

. T~ A
inf g,(x) = inf g,(x) = R4(x) S RA(x).

Since evidently infq,=p =R;‘ on A, we conclude that
R#=infq,ex; ([ A).

For every open subset U of X and every numerical function f on X let %U
denote the set of all Ls.c. functions ue*#,(U) such that u>f on [U and let %U
= —%",. Defining

HY=inf%y, Hj=sup¥;

we have HY <HY by the minimum pr1n01ple for the Choquet boundary of X
with respect to *#,(U) is contained in [ U by the definition of *3#,(U).

3.7. Proposition. Let U be an open subset of X. Then for every fe%,
HY=H} =Ry fe#,(U).
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Proof. Let pe?. Evidently, HY <RLY since {ue#": u=p on [U}<%!. On the
other hand REY is us.c., REUE%Q(U) and R\ <p. Hence R\ eZ and therefore
RYV<HY. So

HY=HY =RtUe #;,(U).

The statement now follows readily since & — 2 is dense in €, with respect to the
order topology.

We shall say that (X, #") has the truncation property if the following holds:
For every open U in X and every u, ve#” such that u=v on U¥ the function w
defined by

_jinf(u,v) on U
P on [U

is contained in # .

3.8. Proposition. The following properties are equivalent:

(1) (X, #") has the truncation property.

(2) For every open V in X and every xeV, Ry, (x, [ V*)=0.

(3) There exists a base B of open sets V such that Ry, (x, [ V*)=0 for every
xeV.

Proof. (1) =(2): Let V be an open subset of X. Let p, geZ such that g<p and ¢
=p on V* Let ue#" such that u=q on V. Then u=g=p on V*, hence by the
truncation property the function w defined by

_jinf(w,p) on ¥V
p on [V

is contained in #. Therefore w=RLV. In particular, u2RE” on V. So we obtain
that RV ZREY on V, ie. RE = R’:V on V since g <p. Thus for every xeV,

0=RL"(x)~ R (x)=Ryy (p —4) ().
Since g <p we conclude that

Rey(x,{p—q>0})=

This yields Rgy(x, [} V*)=0.

2)=(3): Trivial.

(3)=(1): Let U be an open subset, and u,ve#” such that u=v on U*
Define

{inf (w,v) on U,
W =
v on [jU.

Since #"=(#) we may assume veZ. Suppose first that u>v on U*. Then w
=inf (4, v) on some open neighborhood W of U, hence Ry, w=<w for every V'eB
such that V<W. For every open set V such that Vc[; U we have
Ryyw=R pv=v=w on V, hence Ry, w<w. Therefore we#" by (3.1).
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1
Suppose now u=v on U*. Choose pye, p,>0. Replacing u by u+— p, we
n

obtain a sequence (w,) in #" such that w, |w. Hence the Ls.c. function w is in #”
by the axiom of ls.c. regularization.

From now on we shall assume that (X, #") has the truncation property.

For every open subset U of X let *5#(U) be the set of all 1s.c. functions
u: U—]—o0, + 0] such that for every relatively compact open V satistying
V< U and for every xeV

Ju() Ryy (x, dy) Su(x).

Extending by 0 we may view the set {ue*#(U): u lower #-bounded} as a
subset of *#,(U) whereas on the other hand *#,(U)l, = *# (U). In particular,
*HHU)Y=*H5 (U)ly, *HA T (X)=H"

3.9. Theorem. *3# is a hyperharmonic sheaf satisfying the axioms of convergence,
resolutivity and completeness ([4]).

Proof. Evidently U’ U implies *2#(U’) = *#(U). Let (U),; be a family of open
sets, let U=UUi and let v: U—RR such that o], e*#(U) for every iel. Let
iel _
V be a relatively compact open set in X such that V< U. Let W be relatively
compact open such that Ve W and WcU. Then vl (extended by 0) is a
function in () *54,(Wn U)=*#, (W U). Hence R;, v<v. Thus ve*#(U).
iel

Using (3.4) we easily obtain the axiom of convergence.

Let U be a relatively compact open subset of X and let ge4(U*). Let fe¥,
such that f=g on U*. Then

(H))ly=inf {ue*# (U): lim inf u(x) 2 g(z) for every ze U*}.
Indeed, if v is a Ls.c. function in*#,(U) such that v= fon [U then v e*#(U)
and liminfo(x) = v(z) = f(z) =g(z) for every ze U*.

X—2z

Coﬁgersely, let ue*2#(U) such that lim inf u(x) = g(z) for every ze U*. Definev
by X—=Z
_ju on U
v { f on [U.

Then v is a l.s.c. function in *5£,(U) such that v=f on [U.

So we conclude from (3.7) that U is resolutive. Hence the axiom of re-
solutivity is satisfied.

Furthermore, (3.7) yields that for every xeU the measure Rg,(x,*) is the
harmonic measure with respect to the sheaf *#. So by definition of *5# the
axiom of completeness is satisfied.

We shall say that a point xeX is absorbent if Ry,(x, X)=0.

3.10. Proposition. For every xeX the following statements are equivalent:

1. x is absorbent.
2. Ryy(x, X)=0 for every open neighborhood V of x.
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3. h{x)=0 for every function h which is harmonic in a neighborhood of x.
4, x is finely isolated.

Proof. Let pe, p>0,
(1)=(2): For every open neighborhood V of x,

REY(x) S RE¥(x) =0,

hence Ry (x, X)=0.
(2)=(1): Let (V) be a sequence of neighborhoods of x such that ¥, |{x}.
Then

REH(x)=sup RE"(x)=0,

hence R ,(x, X)=0.
(2)=(3): Let V be an open neighborhood of x and let he # (V). Let W be
open such that xeW and W c V. Then

h(x)= Ry h(x)=0.

(3)=(2): Let V be an open neighborhood of x. Then (RIEV)IVE%(V), hence
R (x)=0, ie. Rpy(x, X)=0.

(1)=4#): {x}={R™ <p} is finely open.

(4) = (3): By the definition of finely open sets there exists an open set U in
X, a function ve?#” and a real § such that

xeUn{v<f}c{x}.

Suppose that there exists an open neighborhood ¥V of x and a function he # (V)

such that h(x)=1. Let U—(ﬁi)<oc<1 and let W be an open set such that

WcUn{yeV: ah(y)<1}. Then we obtain the contradiction

v(x) = Ry v(x) 2 BRy wlx, W¥)
ZafRyyh(x)=af>uv(x).

So (3) holds.

3.11. Example (see [3], p. 171). Let X =[0,1[ and #~ be the convex cone of (l.s.c.)
positive concave functions on X. Then (X, #") is a standard balayage space
having the truncation property such that the point 0 is an absorbent point.

3.12. Theorem. For any convex cone W~ of ls.c. positive numerical functions on a
locally compact space X with countable base the following statements are
equivalent :

(1) (X,#") is a standard balayage space such that the truncation property is
satisfied and no point of X is finely isolated.

(2) There exists a hyperharmonic sheaf *# on X such that (X,*#) is a B-
harmonic space (in the sense of [4]) and *# T (X)=H"

Proof. (1) =(2): (3.9) and (3.10).
(2)=(1): (2.1), (3.8) and (3.10).
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3.13. Remark. We note that the hyperharmonic sheal *# of (3.12) is uniquely
determined by ¥ since on every PB-harmonic space (X,*#’) the extension
theorem ([4], p. 46) yields a characterization of every cone *#(U) in terms of
*#(X).

4. Balayage Spaces and Standard Processes

Let X be a locally compact space with a countable base. A quasi-Feller
semigroup P=(P),., on X is a semigroup of sub-Markovian kernels on (X, %)
having the following properties:
(i) P(%,) <%, for all t>0.
(if) For all fe®,, the function P, f converges locally uniformly to f as ¢t
tends to zero.
(iii) There exist strictly positive real continuous excessive functions p, ¢ such

that 2e%,.
q

We denote by &(P) the set of excessive functions with respect to the
semigroup P

4.1. Theorem. Let & be an admissable cone on X and let W =S (%) such that
1e¥. Then the following statements are equivalent:

(1) (X, #) is a standard balayage space.

(2) There exists a potential cone @' on X such that (P )=W.

(3) There exists a quasi-Feller semigroup P=(PB),. , on X such ¥ =&(P).
Furthermore, the potential kernel V of P satisfies V(#,)<%,.

(4 # is the set of excessive functions of a standard process & with state
space X having a proper potential kernel.

Proof. (1)=(2): (2.2).

(2) = (3): By [7], page 342, there exists a quasi-Feller semigroup P=(E),,, on X
such that # =& (P) and V(¥,)<=%,. Since every excessive function is Ls.c., we
obtain V(#,)c%,.

(3) = (4): [6], page 208.

(4)=>(1): Since the potential kernel V of & is proper, the fine topology is
generated by #”. Furthermore, every excessive function is 1.s.c., hence the process
& has a reference measure. Therefore, (X, #7) is a standard balayage space by

(1.1/3).

4.2. Remark. [ 6], page 208, shows that in (4.1), we can replace “standard process”
by “Hunt process”.

4.3. Corollary. Let W be a family of positive numerical functions on X. Then the
following statements are equivalent:

(1) (X, #") is a standard balayage space.

(2) There exists a potential cone P on X such that W =S (P)=%(P).

Proof. (1) =(2): (2.2).
(2)=(1) Let pe£, p>0 and define

1
P =-P.
p
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. 1
Then £’ is a potential cone such that #(#)=%(#)=—#" and 1e#. By (4.1),
1 p
(X,l—)“/V ) is a standard balayage space, and it easily follows that (X, #") is a

standard balayage space.

4.4, Remark. The statements (4.3) and (3.12) include a result of Sieveking [12],
stating that every reasonable potential cone generates a harmonic space.

5. Standard Processes and Harmonic Spaces

5.1. Proposition. Let & be a standard process on X with paths continuous on [0, {[
and proper potential kernel V. Suppose that the set & of excessive functions of &
satisfies & =S (8 N6). Then there exists a (unique) hyperharmonic sheaf *# on X
satisfying the axioms of convergence, resolutivity and completeness such that
*HT(X)=6.

Proof. By (1.1/3), (X, &) is a balayage space if X is endowed with the fine
topology of the process. Since V is proper, the fine toplogy coincides with the &-
fine topology. Let

P={peén%: inf RL*=0}.
K compact
It suffices to show that £ is an admissible cone on X such that S (£P)=§.
Indeed, using (3.8) the continuity of the paths yields the truncation property of
(X, &), hence the assertion follows from (3.9). The assertions about & will be
proved in several steps:
(a) Obviously, £ is a convex cone such that for every sequence (p,) =& with

p= ) p,e¥ we have peZ.

n=1

(b) Let fe#* such that Vf<co. Then for every compact subset K of X and
every xeX,

R,':,I}(x)=E"( j foXtdt>2,

T[;K

hence

KciggactR%:/I}:O.
Let xeX and fe#* such that Vf<oo and Vf(x)>0. Since by assumption &
=(& n¥) there exists a function peé ~¥ such that p<Vf and p(x)>0. Then
obviously peZ. Using (a) we obtain a strictly positive p,eZ

(c) Let ge& and (g,) =& n¥ such that g, Tg. Then p,=g,Anp,e? and p, g
Hence & =S (2).

> As usual Ty denotes the first hitting time of [ K and { denotes the life time of &
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(d) In order to show that 2 is linearly separating it suffices to show that & is
separating since & =%(2) and leé. Let x,yeX, x+y, and @e%. such that

p(x)£¢(y), Since limAV,¢=¢ (pointwise) there exist a A>0 such that
A0
V,o(x)+V,¢0(»). The equation

Vo=V, p+iVV,0

shows that Vo (x)+Ve(y) or V(V,0)(x)=V(V,0)(y). Hence & separates x and y.
(¢) Let peZ, xcX and ¢>0. By definition of &, there exists a compact subset
K of X such that

£

Let U be a relatively compact open neighborhood of K. Let >0 such that
ocpo(x)<%. There exists g2 such that g<R!¥ and g+ap,>p on U*, since RL*

=p on U*. Define

_ inf (g+apg,p) on U
“= r on ':U'

Then ueé by [1], page 93. Furthermore uc® and u<p, hence ue# Finally, u=p
on {U and

u(x) = q(x)+oapo(x)<e.

Thus £ is adapted by (a) and [11], page 34.

5.2. Theorem. For every family W of numerical functions on X such that 1eW’
the following statements are equivalent :

1. W is the set of positive hyperharmonic functions of a PB-harmonic space
(X, *3#) in the sense of Constantinescu-Cornea [4].

2. W is the set of excessive functions of a standard process ¥ on X having
the following properties:

@) W=F (W E).

(b) The paths of & are continuous on [0, {[.

(c) & has no absorbent points.

(d) The potential kernel V of 4 is proper.

Proof. (1)=(2): [6], page 213, and (3.10).
(2)=(1): (5.1) and (3.10).

5.3. Remark. If Z is a “reasonable” standard process in the sense of Taylor [13]
and #~ denotes the set of its excessive functions then the condition (2) of (5.2) is
obviously satisfied. Therefore Taylor’s result on the existence of an associated
harmonic structure (obtained by different methods) is included in the above
theorem.



Markov Processes and Harmonic Spaces 325

References

. Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York-London:

Academic Press 1967

. Brelot, M.: On Topologies and Boundaries in Potential Theory. Lectures Notes in Mathematics

175. Berlin-Heidelberg-New York: Springer 1971

. Constantinescu, C., Cornea, A.: Examples in the Theory of Harmonic Spaces. Lecture Notes in

Mathematics 69, 161-171. Berlin-Heidelberg-New York: Springer 1968

. Constantinescu, C., Cornea, A.: Potential Theory on Harmonic Spaces. Berlin-Heidelberg-New

York: Springer 1972

. Fuglede, B.: Finely Harmonic Functions. Lecture Notes in Mathematics 289. Berlin-Heidelberg-

New York: Springer 1972

. Hansen, W.: Konstruktion von Halbgruppen und Markoffschen Prozessen. Invent. Math. 3, 179-

214 (1967)

7. Hansen, W.: Charakterisierung von Familien exzessiver Funktionen. Invent. Math. 5, 335-348

8.
9.
10.
11

12.
13.

(1968)

Hansen, W.: Potentialtheorie harmonischer Kerne. Lecture Notes in Mathematics 69, 103-159.
Berlin-Heidelberg-New York: Springer 1968

Mokobodzki, G.: Eléments extrémaux pour le balayage. Séminaire Brelot-Choquet-Deny
(Théorie du potentiel) 13, n®5 (1969/70)

Mokobodzki, G.: Cdnes de potentiels et noyaux subordonnés. In: Potential theory, 209-248
(CIME, 1° Ciclo, Stresa 2-10 Luglio 1969). Roma: Edizioni Cremonese 1970

Sibony, D.: Cdnes de fonctions et potentiels. Lecture Notes, McGill University. Montreal: 1968
Sieveking, M.: Dependence on parameters in elliptic potential theory I. (Preprint).

Taylor, J.C.: The Harmonic Space Associated with a “Reasonable” Standard Process (Preprint).

Received April 25, 1977



