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O. Introduction 

It is well known by results of Meyer, Boboc-Constantinescu-Cornea, Hansen 
that for every ~-harmonic  space (X, d4e*) with a countable base for which the 
function 1 is hyperharmonic there exists a Hunt process X with state space X 
and paths continuous on [0, ~[ such that the set of positive hyperharmonic 
functions coincides with the set of excessive functions of X (see [4]). This paper 
is devoted to a study of the converse problem. Our main theorem (5.2) gives a 
complete solution, namely: 

For  any standard process X on a locally compact space X with a countable 
base and proper potential kernel, the set of excessive function of X is the set of 
positive hyperharmonic functions of a ~-harmonic space (X, ~ * )  if and only if 
the following conditions are satisfied: 

(a) Every excessive function is the limit of an increasing sequence of 
continuous excessive functions. 

(b) The paths of X are almost surely continuous on [0, ~[. 
(c) X has no absorbent points. 
The paper is divided in five sections. 
Inspired by [4], Chapter IV, we introduce in section one the notion of a 

balayage space (X, Yg'), i.e. Y,K is a convex cone of continuous positive numerical 
functions on a Baire space X such that the axioms of increasing sequences, 
lower semi-continuous regularization and natural decomposition are satisfied. 

In sections two and three we consider the special situation of a convex cone 
of lower semi-continuous numerical functions on a locally compact space X 

with countable base such that (X, ~K) is a balayage space when X is endowed 
with the Y~-fine topology. Furthermore, we assume that Y~ contains an adapted 
linearly separating convex cone ~ c U + (X) such that every function in Y~ is the 
limit of an increasing sequence in ~. We note that these "standard" balayage 
spaces give rise to a rich potential theory generalizing [4] and [8]. In this paper 
we content ourselves with a proof of some basic properties. In particular, the 
Bauer convergence property turns out to be a consequence of the axiom of 1.s.c. 
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regularization (see Prop. 3.4). Furthermore, ~ is the set of positive hyperhar- 
monic functions of a ~3-harmonic space (X, * i f )  iff the standard balayage space 
(X, ~r satisfies the truncation property and has no finely isolated points. 

In section four we give characterizations of standard balayage spaces by 
means of semi-groups and standard processes. 

The final section contains the proof of the main theorem stated at the 
beginning. 

Having prepared the material of this paper we received a preprint of Taylor 
[13] where the same problem is studied with different methods (see our Remark 
5.3). 

1. Balayage Spaces 

Throughout this section let X be a Baire topological space and ~ be a convex 
cone of continuous positive numerical functions on X containing the constant 
function + oo. 

We shall call (X, ~r a balayage space if the following axioms are satisfied' 
I. Ax iom of  Increasing Sequences. For every increasing sequence (u~) in ~K we 

have sup u,e~/r r. 
II. Axiom of Lower Semi-Continuous Regularization. For every non-empty 

subset ~ of ~K we have infU~/K. 1 
III. Axiom of Natural Decomposition. If u, v', v" E~tr F such that u < v' + v", there 

exist u', u" ~g# such that u = u' + u", u' <= v ', u" < v". 

1.1. Examples. 1) Let ~ be the convex cone of positive hyperharmonic func- 
tions on a harmonic space (X, * ~ )  in the sense of Constantinescu-Cornea [4] or 
Hansen [6]. Then (X, ~/r is a balayage space if X is endowed with the fine 
topology (see [4], Chapter 5). 

2) Let (X, *.:40) be a ~3-harmonic space in the sense of Constantinescu-Cornea 
satisfying the axiom of domination. For every finely open set U c X, (U, :~K) is a 
balayage space where U is endowed with the fine topology, ~K is the convex 
cone of positive finely hyperharmonic functions on U (Fuglede [5], p. 131). 

3) Let g be the set of excessive functions of a standard process with state 
space X having a reference measure (see [1]). Then (X, g) is a balayage space if 
X is endowed with the fine topology of the process. Indeed, by [1], page 86, X 
possesses a base of open sets which are compact in the initial topology. This 
implies that X is a Baire topological space. By [1], page 72, (X, E) satisfies the 
axiom of increasing sequences, by [1], page 200ft., the axiom of 1.s.c. re- 
gularization. Finally, the axiom of natural decomposition is satisfied by [10], 
page 221. 

1 As usual f d e n o t e s  for any numerical (unction f on X the greatest lower semi-continuous (1.s.c.) 
minorant of f 
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The proofs of the following properties of balayage spaces can be obtained in 
the same way as in Chapter 4 of Constantinescu-Cornea [4]. 

Assume for the present that (X, ~ )  satisfies the axioms I and II. It is obvious 
that for any non-empty subset Y/~cY~ the natural infimum A~Y exists and is 

equal to ~ In particular, Y~ is min-stable. 

1.2. Proposition. 1) lfu~Yg" then [-u=O] and [u<  + oQ] are open. 
2) I f  ~ ' , ~ "  ~ U  then A(~U'+'U")=A~U'+A~". 
3) Let ~//s ~ c ~ K  and define f , = i n f ~ ,  f = i n f ~ .  I f  (f,) is an increasing 

sequence converging to f then lira A ~ =  A ~. 
n ~  oo 

Let f be a numerical function on X. We set 

R l = ; R l = i n f { u e ~ :  f <u}. 

Then Iq;.EY//. If moreover f is 1.s.c., then R I = R  I. We have 

f < g ~ R 1 < R g ;  RI+g<=Rf+R~, R~I=c~R I (~IR+).  

1.3. Proposition. The axiom of natural decomposition is equivalent to the following 
property." for any u, vEY~K we have R I, u -  RlsY~K where 

UoV on {v< +oo} 
f =  on {v = + oo} 

For the remainder of this section let (X, Y~) be a balayage space. Let uE~Y and 
A c X .  Define the reduit of u on A by 

RO=inf{veVdr: v>u on A} 

= in f{vE~ ' :  v=u on A}. 

The function *a R~ cY, K is called the balayage of u on A. 
Obviously, 

R~Gu; R2=u on A; 

if A c B ,  u<v then RuA<Rv,8" 

A A A .  A w B  A B .  Ru+v<R u +Rv, R, <R~ +R~, 

__ A if A is open t h e n / ~ -  R=. 

1.4. Proposition. Let A c X and u E ~  finite on A. Then 

Rua=inf{R,V: U open, A c  U, u finite on U}. 

1.5. Theorem. 1) For any A c X and any u, v~Yd/ we have 

A __ A A .  ~ A  __ ^ A  ~ A  R u + v - R , ,  + R  v ,  R ~ + , - R  u + R  v. 
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2) For any A ; B c X  and any ue~K we have 

RAuB_I_ R A n B  A B. I~AwB I_ I~AnB < I~A u - - - .  <=R. + R . ,  __. ___. =__. + R B  u. 

1.6. Theorem. 1) Let (un) c~K be increasing and let u= lim u n. Then, for any A c X  
we have lim/~ A. = R,,.̂ A ,,~oo 

n~oo 

2) Let (An) be an increasing sequence of subsets of X and A = U An. Then for 
nEfi'q 

any u6~i#, we have 

m ^ A  lim/~A~ _ R..  

2. Standard Balayage Spaces 

In the following let X be a locally compact space with a countable base. Let 
denote the set of all Borel measurable numerical functions on X, and let (g be 
the set of all continuous real-valued functions on X. For any set sd of numerical 
functions on X, we shall denote by d +, d b, d , ,  sJ c the set of all functions in d 
which are positive, bounded, real-valued and which have compact support 
respectively. The support of a numerical function f on X will be denoted by 
S(f) .  

Let ~ be a convex cone of 1.s.c. positive numerical functions on X. The 
coarsest topology on X which is finer than the initial topology and for which all 
the functions of ~ are continuous will be called the ( ~ - )  fine topology on X. 
Every point of X possesses a fundamental system of fine neighborhoods which 
are compact in the initial topology; in particular, X is a Baire topological space 
with respect to the fine topology (Brelot [2], p. 5). 

For every subset ~ of ~ + let 

J ( ~ ) =  {f: B ( f n ) c ~  such that fnTf} 

and let ~ ( ~ )  be the smallest subset of ~ +  having the following properties: 

a) Y ~ q ( Y ) .  
b) 5e(N(~)) CN(~) .  
c) If J / , J g ' ~ ( ~ )  such that infd//, i n f J / / ' ~  + and in f Jg+inf~ /g '~N(~)  

then inf Jg ~N(Y). 

We say that N(~)  is generated by ~ .  
A convex cone ~ c c g +  will be called admissable, if 

a) N is adapted; 
b) ~ is linearly separating; 
c) ~ contains a strictly positive function. 

If an admissable cone ~ is min-stable then N - N  is dense in cg~ 
={fecg(X):  2 p e n  with Ifl <p} with respect to the order topology (see [11], 
p. 57), especially for every f~cg+ there exists poE~ such that for every e >0  there 
exist p, q ~  satisfying 

O < p - q <  f < P - q + e P o .  
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We note that for every admissable cone N on X and every ~-bounded  u.s.c. 
function f on X 

i n f { p ~ :  p> f }  =inf{u65~(~):  u> f } .  

An admissable cone ~ on X will be called a potential cone if the following 
holds: 

a) ~ R o ~ f o r  every (p~cs 
b) p - ~ R p _ a ~  for every p, q ~ .  

In particular, ~ is rain-stable and closed with respect to the order topology. 
Let # / b e  a convex cone of 1.s.c. positive numerical functions on X containing 
the constant function + oo. (X, ~/U) will be called a standard balayage space if 

(i) (X, ~/t~) is a balayage space where X is endowed with the #/-fine 
topology. 

(ii) There exists an admissable cone N on X such that 5~(N)= #/ .  

2.1. Examples. 1) If (X,*Jf)  is a ~-harmonic space in the sense of Constantinescu- 
Cornea or Hansen, then (X,*2/f+(X)) is a standard balayage space. 

2) Let X be a denumerable set (with the discrete topology) and # / b e  the set 
of all positive numerical functions on X. Then (X, # / )  is a standard balayage 
space. 

2.2. Proposition. For any standard balayage space (X, ~/#) there exists a potential 
cone ~ on X such that # / =  5P(~)= fY(~). 

Proof Let ~ be an admissable cone on X such that 5 P ( ~ ) = # /  and define ~ '  
= ~/U c~ ~ .  Then ~ '  is a min-stable convex cone such that ~ c ~ ' ~  ~ ,  hence ~ '  
is admissable. 

Furthermore, for any f6cg~ we have 

Rf = ~Rf  = ~'Rf = PRf; 

in particular R I is upper semi-continuous (u.s.c.) and thus R I ~ ' .  Take now f 
= ( p - q ) +  for p, q ~ ' .  Then 

Rp_q = R(p_q)+ ~ ' .  

By (1.3) we obtain 

p -  Rp_qe#/  c~ Cg~ = ~',  

hence ~ '  is a potential cone. 
It remains to show that ~/U = Y(~ ' ) - -N(~ ' ) .  
First note that N(~t/')=~/U. Indeed, obviously 5P(~#/')c'/U. Let Jd, J / l ' c # /  

such that u = i n f J / l ~ ,  +, " ' + v = m f J ~ E ~ ,  a n d u + w ~ K .  By(1.2/2) u + v = u + v = ~  
+4, hence u=~ i~K,  v = ~ .  Since ~ c ~ ' c ~ K  we obtain 

which implies 5~(~ ') =N(~ ' )  = ~U. 
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In Section 5 we shall prove the converse of Proposition 2.2., i.e. for every 
potential cone N on X such that ~ (N)=N(N) ,  the pair (X, 5P(N)) is a standard 
balayage space. 

For the remainder of this section let (X, ~K) be a standard balayage space. 
By Proposition (2.2) there exists a potential cone N such that 

~ = ~ g ~ ,  ~ = ~ ( ~ ) = ~ ( ~ ) .  

Let A c X  be closed and pe5  ~. Then 

R ~ = i n f { q ~ :  q>p on A} 

is u.s.c., and the mapping 

p~--~ R~ on 

is additive, increasing and positively homogeneous. Hence there exists a unique 
kernel R A on X such that 

_ _  A 
R A p - Rp  

_ _  A for every p ~ .  Since ~/U=5~(~), we obtain R A u - R  u for every u ~ .  Further- 
more, for any x~X, the measure RA(x, .) is supported by A, for R vA--RqA i f p = q  
on A. 

2.3. Lemma. For any closed A ~ X  and any p ~ ,  we have 

lim RAucvP=RAP. 
u~x  

u open, 
rel. comp. 

In particular, for any x~X,  (RA~cv(X, .)) is vaguely convergent to RA(x, ") as U 
tends to X. 

Proof For every open subset U of X, 

RAP <= RA,~cvP <--_RAp + RcvP. 

Let x e X  and e>0.  Since N is adapted there exists a function q eN  and a 
compact subset K of X such that q(x)<~ and q>p on C K. Then for every open 
neighborhood U of K we obtain R: vP < RcKP <= q, hence 

R c vp(x) < e. 

So the statement follows. 

2.4. Proposition. For every l.s.c, function u > 0 on X the following statements are 
equivalent: 

1. u~Yg#. 
2. RKu<u for every compact subset K of X. 
3. RcvuGu for every relatively compact open subset V of X.  

Proof (1) ~ (3): Trivial. 
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(3)~(2) :  Let K be a compact subset of X. Let pEc~, 0<q~<u. Then for 
every relatively compact open subset U of X 

RK,~CVP = Rc(v-.K)CP <= Rc(v\K)U < U, 

hence 

Rncp < u 

by (2.3). So we obtain RKu<u. 
(2) ~ (1): We may assume that u is ~-bounded  since 5~(~/r = ~U. By 1-11], chap. 
III. C, it suffices to show that u in ~-concave, i.e. #(u)<__u(x) for any x e X  and 
(positive) measure # on X satisfying la(p)<p(x) for every p ~ .  But this is an 
immediate consequence of the assumption (2) and [-9], page 5-11. 

2.5. Proposition. Let U be an open subset of X and let (U,,) be a sequence of open 

sets such that U = U U,. Let (k,) be a sequence in N such that for every m~N the 
n = l  

set {n~N: k,=m} is infinite. Then for every p ~  

ira Rc u~ Rc v~._ ~ -.. Rcv~P =RcvP. 

In particular, (Rcvk... Rcvk~(x , .)) is vaguely convergent to Rcv(x , .) for every 
xeX.  

Proof. We may choose open sets V. such that V. c U. and U = ~) V.. There are 

functions ~o.ec~(X) such that 0_< ~0.__< 1, cr = 0 on 17 and ~. = 1 on C u~. 
Let U/,=Ukn, V2=Vk~ and O'.=Ok~ and let p ~ ' .  We define (u.) and (q.) 

recursively by 

Uo =P, qo =P, 

u,=Rcu;~Un 1, q,=Ro;,q,~-l" 

Evidently, (q,) ~ N. Assuming u,_ 1 --< q, - ~ the inequality 1 c v~ < cp~ implies 

Un = Rc u~,Un-1 < Rc v;~ q,-1 ~ R~oh q . -  t = qn" 

Assuming u,_ 1 >RcvP we obtain 

u~=Rcv~U . I>Rcv~(Rcvp) 

=inf{Rcvaq: qe~,  q>p on C U} > RcvP. 

Hence for all n e N  

RcvP<un<q,. 

Evidently, the sequences (u,) and (qn) are decreasing. We obtain 

Rcvp<= lira u . ~  lim q,,=: q. 
n ~ o o  r l ~ c o  
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Let meN.  Take n~N such that k,=m. Since qn=R+mq,,_E~.~ and CPm=0 on V m 
we have 

The set {n~N: k,=rn} is infinite and (q,) is decreasing. Thus 

Rcv,,q =q. 

Therefore by (2.4), for every ueYr 

Rcv~(U-q)<-_u-q, 

hence the Choquet boundary of X with respect to the convex cone ~/r IR+ q is 
contained in C u. 

Let uE~/K such that u>p on C u. Then u - q > O  on C u, hence u - q > O  by the 
minimum principle. This implies Rcv p > q, hence 

Rcvp=q= lim u~. 
n ~ c o  

3. The Associated Harmonic Structure 

We shall now proceed to construct a harmonic structure on a given standard 
balayage space (X, ~K). Again let N be a potential cone such that N = ~/~ c~ cg~ 
and 5f(N) = ~#/. 

For every open subset U of X let *af~(U) denote the set of all lower ~ -  
bounded functions u e N  such that u is 1.s.c. in U and 

Rcvu<=u 

for every open set V with lPc  U. We note that * ~ ( X ) = ~ / C F  by (2.4). 

3.1. Proposition. Let U be an open set in X and let 98 be a base of U consisting of 
open sets Wsatisfying W ~ U. Let ue~  be lower ~-bounded and l.s.c, on U and let 
Rcwu<U for every WE98. Then ue*~a~(U). 

Proof Let p e ~  such that -p<=u and let ~oecg + such that cp<u+p. Let 1/be an 
open set such that lP c U and let (W.) be a sequence in ~ such that W. c g for 
every n. Then for every n 

- p  <= - R c w  ... Rcwlp + Rr.w.... RcwlrP 

<= Rcw ...RcwlU<U. 

So we conclude from (2.5) that 

Rcv(-p+~o)<u. 
Hence 

Rcvu<=u. 
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3.2. Corollary. Let (Ui)id be a family of open subsets of X. Then 

i~I i~I 

3.3. Proposition. Let U be an open set and let V be a relatively compact open set 
such that V c U. Let p ~ .  Then there exists a function q e ~  and an increasing 
mapping v~--~q~ from {v~*~/f~(U): O<=v<p} into ~ such that 

q~=v+q 

on V. For every v which is continuous on U we may choose a continuous qv. 

Proof Let K be a compact  subset of U such that l ?c /~ .  Since ~ is a potential 
cone there exist q,q'eN such that q<q', q=q' on ~K and q ' - q > p  on l?. For  
any v~*Jf~(U) such that O<v<p define 

q~=(v+q)Aq'. 

Evidently, q~e*~(U) .  Furthermore,  q~<q' and qo=q' on CK, hence 
q~*Jfe(CK). Since U u ~ K = X  we obtain by (3.2) that qv~*Jf~+(X)=~.  It is 
obvious that the mapping v ~ q~ is increasing and that q~ is continuous if v is 
continuous on U. 

For  every open U in X we define 

3.4. Proposition. Let U be an open subset of X and let (h,) be a decreasing 
sequence in : ~  (U), Then inf h, ~ Jr (U). 

Proof We have to show that h = i n f h ,  is 1.s.c. on U. Let V be a relatively 
compact  open subset of U such that I ? c U .  Let p E ~  such that ha<=p. We 
choose a function q ~  and a mapping v~--~q~ according to the preceding 
proposition. We first consider the differences 

v, = p - h n. 

The sequence (v,) is increasing, hence (qv,) is an increasing sequence in ~ .  So 
sup q~ ~ U .  On the set V we have 

hn=P-vn=p+q-q~n ,  

for every n, hence 

h = p + q - s u p q v , .  

Therefore h is finely continuous on V. 
Furthermore,  we have on V 

qhn=hn+q 

for every n, hence 

inf %, -- h + q. 
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We know that u=infqh~i/Y. Since h +q  is finely continuous on V we obtain 

u=h+q on K 

In particular, h is 1.s.c. on  V. 

3.5. Proposition. Let ~ o ~ .  Then R~e~f f  (CS(~o)). 

Proof We have RoaN. Let V be a relatively compact open subset of CS(qo). Then 
RR ~r.v__Ro. Thus Re6~(CS(~o)). 

3.6. Corollary. For every closed subset A of X and every p ~ ,  RAe2/f~(CA). 

Proof There exists a decreasing sequence (p,) in ~ such that Pn <= P, Pn = P on A 
and 

/~pa =infp, .  

Let (Un) be a sequence of open sets in X such that U,+ 1 c Un and A = (~ U,. Let 
n = l  

(~0,) be a sequence in cg such that 0<~o,__<1, ~0,=1 on U,+I, (p,=0 on CUR. For 
every n, take 

qn ~ R~npn" 

Then R A < q, =< p~, hence 

RAp<infqn, /~A=infqn. 

Since (p,) and (q0,) are decreasing, the sequence (qn) is decreasing. For every m, 
(q,),>__m c We + (~Um) by (3.5), hence inf qn~ J4~2 (~ Urn) by (3.4). Thus inf qn~g/fe+ (CA) 
by (3.2). 

Therefore we obtain for every x~CA 

inf q,(x) = inf qn(x) = RJ(x) < RA(x). 

Since evidently i n fq ,=p  =R~ on A, we conclude that 

RA=inf q,~2/f~ (CA). 

For every open subset U of X and every numerical function f on X let ~ v  
denote the set of all 1.s.c. functions u~*Jf~(U) such that u > f  on C U and let _~v 
= _ ~ v  Defining 

--f" 

H~: =inf~ff ,  H ~ = s u p ~ y  

we have H ~ < H ~  by the minimum principle, for the Choquet boundary of X 
with respect to *W~(U) is contained in C U by the definition of *3f~(U). 

3.7. Proposition. Let U be an open subset of X. Then for every f ecge 

- -U  u H) = H) = Rc v f ~ Yf~( U ). 
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u Cu Proof Let p ~ .  Evidently, Hp <Rp since {u~r u>p on ~ U} ~W"  On the 
other hand RCp v is u.s.c., RCpVeYf~(U) and RCpU<_p. Hence cv v Rp e~p and therefore 

CU< Rp =__Hr. So 

H u  u CU 

The statement now follows readily since ~ - . ~  is dense in c~r with respect to the 
order topology. 

We shall say that (X, ~#/) has the truncation property if the following holds" 
For every open U in X and every u, veCU such that u>v on U* the function w 
defined by 

w={ivnf(u,v) on U 
on ~U 

is contained in ~K. 

3.8. Proposition. The following properties are equivalent." 
(l) (X, ~ )  has the truncation property. 
(2) For every open V in X and every xsV, Rcv(X, ~V*)=0. 
(3) There exists a base 23 of open sets V such that Rcv(X , C v * ) = o  for every 

x~V. 

Proof (1 )~  (2)" Let V be an open subset of X. Let p, qE~  such that q<p and q 
=p on V*. Let u~/~K such that u>q on Cv. Then u>q=p on V*, hence by the 
truncation property the function w defined by 

W={pf(U,p) on V 

on C V 

is contained in ~ .  Therefore w>RCp v. In particular, u>RCp v on V. So we obtain 
CV Cv R~V=R~ v on that Rq ~Rp on  V, i.e. V since q<p. Thus for every x~V, 

0 V(x) =Rcv(p- q)(x)- 

Since q <p  we conclude that 

Rcv(X, {p-q>0})=0. 

This yields Rcv(X , ~ V*)=0. 
{2) ~ (3): Trivial. 
(3)~(1):  Let U be an 

Define 
open subset, and u, ve~K such that u>v on U*. 

w={invf(U,V) on U, 
on C U. 

Since ~- -5 '~(~)  we may assume w ~ .  Suppose first that u>v on U*. Then w 
=inf(u, v) on some open neighborhood W of U, hence Rcvw<w for every Vs23 
such that I?cW. For every open set V such that V ~ C U  we have 
Rcvw<Rcvv<V=w on V, hence Rcvw<w. Therefore w e ~  by (3.1). 



320 J. Bliedtner and W. Hansen 

1 
Suppose now u>=v on U*. Choose p0eN, P0>0. Replacing u by u +  n Po we 

obtain a sequence (w,) in ~ such that wnSw. Hence the 1.s.c. function w is in ~K 
by the axiom of 1.s.c. regularization. 

From now on we shall assume that (X, ~ )  has the truncation property. 
For every open subset U of X let *~uf(U) be the set of all 1.s.c. functions 

u: U ~ ] - G o ,  + o  el  such that for every relatively compact open V satisfying 
17~ U and for every x E V 

u ~) R cV(x, dy) <= u(x). 

Extending by 0 we may view the set {us*~C~(U): u lower N-bounded} as a 
subset of * ~ ( U )  whereas on the other hand *~f~(U) lv~*~(U ), In particular, 
* ~ + ( u ) - * ~ , + ~ u  ~ * ~ + ( x ) = ~ .  

3.9. Theorem. *J r  is a hyperharmonic sheaf satisfying the axioms of convergence, 
resolutivity and completeness ([4]). 

Proof Evidently U' c U implies "24~(U ') c *X/F(U). Let (Ui)i~ I be a family of open 
sets, let U = U U  i and let v: U ~ N  such that vlv,e*~f(Ui) for every i~I. Let 

ieI  

V be a relatively compact open set in X such that V c U. Let W be relatively 
compact open such that f l e w  and W c U .  Then v] w (extended by 0) is a 

function in ~ * ~ ( W c ~  U i ) = * ~ ( W c ~  U). Hence Rcvv<v.  Thus vs*Jf (U) .  
i s I  

Using (3.4) we easily obtain the axiom of convergence. 
Let U be a relatively compact open subset of X and let gECg(U*). Let f ~ c ~  

such that f =g  on U*. Then 

(H}1)I v = inf {ue*H(U):  lim inf u(x) >g(z) for every ze U*}. 
x ~ z  

Indeed, if v is a 1.s.c. function in*J4~(U) such that v > f  on C u then v[v~*~,~(U ) 
and lim inf v(x) > v(z) > f (z) = g(z) for every z E U*. 

x ~ z  

xEU 

Conversely, let u ~ * ~ ( U )  such that lira inf u(x)>g(z) for every zE U*. Define v 
by ~ 

v = { f  on U 
on CU. 

Then v is a 1.s.c. function in * ~ ( U )  such that v ~ f  on Cu. 
So we conclude from (3.7) that U is resolutive. Hence the axiom of re- 

solutivity is satisfied. 
Furthermore, (3.7) yields that for every x ~ U  the measure Rcv(x, .) is the 

harmonic measure with respect to the sheaf *gff. So by definition of *24 ~ the 
axiom of completeness is satisfied. 

We shall say that a point x ~ X  is absorbent if Rcl~(x, X)=0.  

3.10. Proposition. For every x ~ X  the following statements are equivalent." 

1. x is absorbent. 
2. Rcv(X , X ) = 0  for every open neighborhood V of x. 
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3. h(x)= 0 for every function h which is harmonic in a neighborhood of x. 
4. x is finely isolated. 

Proof Let p 6 ~ ,  p>0 .  
(1) ~ (2): For  every open neighborhood V of x, 

R~ V (x) < R~ {X}(x) = O, 

hence Rcv(X, X)=0.  
(2 )o (1 ) :  Let (V,,) be a sequence of neighborhoods of x such that V,+{x}. 

Then 

R~(X~(x) = sup R~ Vn(x) = O, 

hence Rc~,~(x, X) = O. 
(2) ~ (3): Let V be an open neighborhood of x and let hEW(V). Let W be 

open such that x ~ W  and W c  V. Then 

h(x) = R c w h(x) = O. 

(3) ~ (2): Let V be an open neighborhood of x. Then (R~V)Jv~W(V), hence 
R~V(x)=O, i.e. Rcv(X, X)=0.  

(i) ~ (4): {x} = { R ~ < p }  is finely open. 
(4) ~ (3): By the definition of finely open sets there exists an open set U in 

X, a function ve'~K and a real/~ such that 

x~ u a  {v <fl} = {x}. 

Suppose that there exists an open neighborhood V of x and a function he,Urn(V) 
v(x) 

such that h ( x ) = l .  Let - - ~ - < c ~ < l  and let W be an open set such that 
t "  

W c  U ~ {ys V: cch(y)< 1}. Then we obtain the contradiction 

v(x) >= R c wV(X) >= f i r  c w(x, W*) 

> afiR e wh(x) = ~fl > v(x). 

So (3) holds. 

3.11. Example (see [3], p. 171). Let X =  [0,1[ and ~ be the convex cone of (1.s.c.) 
positive concave functions on X. Then (X, ~K) is a standard balayage space 
having the truncation property such that the point 0 is an absorbent point. 

3.12. Theorem. For any convex cone ~ of 1.s.c. positive numerical functions on a 
locally compact space X with countable base the following statements are 
equivalent: 

(1) (X, ~[U) is a standard balayage space such that the truncation property is 
satisfied and no point of X is finely isolated. 

(2) There exists a hyperharmonic sheaf *W on X such that (X,*~t ~) is a ~3- 
harmonic space (in the sense of [4]) and *W+(X)=Y,K. 

Proof. (1 )0(2) :  (3.9) and (3.10). 
(2) ~ (1): (2.1), (3.8) and (3.10). 
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3.13. Remark. We note that the hyperharmonic sheaf * ~  of (3.12) is uniquely 
determined by ~ since on every ~3-harmonic space (X,*JF) the extension 
theorem ([4], p. 46) yields a characterization of every cone *~/t~(U) in terms of 
*H+(X). 

4. Balayage Spaces and Standard Processes 

Let X be a locally compact space with a countable base. A quasi-Feller 
semigroup P = (Pt)t > o on X is a semigroup of sub-Markovian kernels on (X, N) 
having the following properties: 

(i) P~(~go)C(gb for all t>0 .  
(ii) For all f~cg o, the function Pt f  converges locally uniformly to f as t 

tends to zero. 
(iii) There exist strictly positive real continuous excessive functions p, q such 

that P-~(go. 
q 

We denote by g(P) the set of excessive functions with respect to the 
semigroup P. 

4.'1. Theorem. Let ~ be an admissable cone on X and let ~g# =5~(N) such that 
1 ~ .  Then the following statements are equivalent: 

(1) (X, qr is a standard balayage space. 
(2) There exists a potential cone ~ '  on X such that ~ ( N ' ) = ~ .  
(3) There exists a quasi-Feller semigroup P=(Pt),>o on X such ~//'=E(P). 

Furthermore, the potential kernel V of P satisfies V(Nb)CC~b. 
(4) ~#r is the set of excessive functions of a standard process 92 with state 

space X having a proper potential kernel. 

Proof. (1) ~ (2): (2.2). 
(2) ~ (3): By [7], page 342, there exists a quasi-Feller semigroup P =(P~),>o on X 
such that ~/K=g(P) and g(egb)cqfb. Since every excessive function is 1.s.c., we 
obtain V(~b) c ~gb- 
(3) ~ (4): [6], page 208. 
(4)~(1):  Since the potential kernel V of X is proper, the fine topology is 
generated by ~ .  Furthermore, every excessive function is 1.s.c., hence the process 
~c has a reference measure. Therefore, (X, ~/r is a standard balayage space by 
(1.1/3). 

4.2. Remark. [6], page 208, shows that in (4.1), we can replace "standard process" 
by "Hunt  process". 

4.3. Corollary. Let W" be a family of positive numerical functions on X. Then the 
following statements are equivalent: 

(1) (X, "t#') is a standard balayage space. 
(2) There exists a potential cone ~ on X such that ~/ / / ' =~ (~ )=~(~) .  

Proof. ( 1 ) ~  (2): (2.2). 
(2) ~ (1) Let pe~,  p > 0  and define 

~ '  =1_~. 

P 



Markov Processes and Harmonic Spaces 323 

Then N' is a potential cone such that 5 P ( P ' ) = N ( ~ ' ) = I : u  and I~N'. By (4.1), 

X, ~ is a standard balayage space, and it easily follows that (X, ~#2) is a 

standard balayage space. 

4.4. Remark. The statements (4.3) and (3.12) include a result of Sieveking [12], 
stating that every reasonable potential cone generates a harmonic space. 

5. Standard Processes and Harmonic Spaces 

5.1. Proposition. Let Y; be a standard process on X with paths continuous on [0, ~[ 
and proper potential kernel V. Suppose that the set go of excessive functions of 
satisfies E = Y(go c~ cg). Then there exists a (unique) hyperharmonic sheaf ,~,vf on X 
satisfying the axioms of convergence, resolutivity and completeness such that 
* ~  + (X) = g. 

Proof By (1.1/3), (X, go) is a balayage space if X is endowed with the fine 
topology of the process. Since V is proper, the fine toplogy coincides with the go_ 
fine topology. Let 

~ ={pe gonc g :  inf RCpK=0}. 
K compact 

It suffices to show that ~ is an admissible cone on X such that 5e(~)=G.  
Indeed, using (3.8) the continuity of the paths yields the truncation property of 
(X, ~), hence the assertion follows from (3.9). The assertions about N will be 
proved in several steps: 

(a) Obviously, ~ is a convex cone such that for every sequence ( p , ) c ~  with 

p = ~ p, ~ cg we have p ~ ~. 
n = l  

(b) Let f e n  + such that V f <  oo. Then for every compact subset K of X and 
every xEX,  

2 

\TCK / 

hence 

CK inf Rvf=O. 
Kcompact 

Let x e X  and f e n  + such that Vf<oo  and Vf(x)>O. Since by assumption go 
= S P ( E n g  a) there exists a function pegong  a such that p< V f  and p(x)>0.  Then 
obviously pe~.  Using (a) we obtain a strictly positive poe,~. 

(c) Let gego and ( g , ) c S ~ c g  such that g, Tg- Then p, ,=g, /~ npoe~  and P,Tg. 
Hence go = 5a(~a). 

2 As usual T~K denotes the first hitting time of C K and ~ denotes the life time of X 
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(d) In order to show that ~ is linearly separating it suffices to show that # is 
separating since #=Se(N) and l eg .  Let x, yeX,  x+y,  and q~e~ + such that 

~o(x)+-~o(y), Since lim2Vz~o=~0 (pointwise) there exist a 2 > 0  such that 

Vx ~o(x) ~ Vx cp(y). The equation 

v~o = v~ q~ + ;~ v v ~  ~o 

shows that Vgo(x):~ V~p(y) or V(Vz~p)(x)~: V(V~go)(y). Hence d separates x and y. 
(e) Let p ~ ,  x e X  and 8>0. By definition of ~, there exists a compact subset 

K of X such that 

RCpK(X) < ~. 

Let U be a relatively compact open neighborhood of K. Let e > 0  such that 

epo(X)<~. There exists qeN such that q<R~ K and q+epo>p on U*, since R~ K 

=p  on U*. Define 

f inf  (q+~po, p) on U 
U=~p o n C u "  

Then ue# by [1], page 93. Furthermore ueCg and u<p, hence ue~. Finally, u>__p 
on C u and 

u(x) < q(x) + e po(X) < ~. 

Thus ~ is adapted by (a) and [11], page 34. 

5.2. Theorem. For every family ~K of numerical functions on X such that l e~U 
the following statements are equivalent: 

1. ~K is the set of positive hyperharmonic functions of a ~3-harmonic space 
(X ,*~)  in the sense of Constantinescu-Cornea [4]. 

2. ~K is the set of excessive functions of a standard process Y( on X having 
the following properties: 

(a) ~K = 5e(~K c~ cg). 
(b) The paths of Y( are continuous on [0, ~[. 
(c) Y" has no absorbent points. 
(d) The potential kernel V of f is proper. 

Proof (1 )~  (2): [63, page 213, and (3.10). 
(2) ~ (1): (5.1) and (3.10). 

5.3. Remark. If 5~ is a "reasonable" standard process in the sense of Taylor [13] 
and ~K denotes the set of its excessive functions then the condition (2) of (5.2) is 
obviously satisfied. Therefore Taylor's result on the existence of an associated 
harmonic structure (obtained by different methods) is included in the above 
theorem. 
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