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Summary. The gambling problem of "Red-and-Black" casinos in the presence 
of inflation is introduced. The optimality of the bold strategy is shown when 
the lottery is subfair or fair. The non-optimality of the bold strategy is also 
shown when the lottery is superfair. 

1. Introduction 

Suppose you have x dollars and you want to buy a house which sells today 
for y dollars, y > x > 0. Due to inflation, the price of the house tomorrow will 
be (1 +c0y (~>0), and will continue to go up at the same rate, so as to become 
( l+c 0"y  on the n th day. Once each day, you can stake any amount of money 
in your possession, but no more than you possess, on a "Red-and-Black" lottery. 
If you do so, you gain the amount of your stake with probability w and lose your 
stake with the complementary probability ~ = 1 - w .  How should you gamble 
so as to maximize your chance of eventually catching up with inflation and 
being able to buy the house? 

Plainly, if the rate of inflation is 100 % or more (i.e. ez> t), you will never 
catch up, so this case is trivial. The other extreme case of no inflation at all 
(i.e. c~=0) was settled by Dubins and Savage (Chapter 5 of [5]), who established 
the optimality of the bold play, when the lottery is subfair or fair, i.e. when w<�89 
In this paper, we will show that when the lottery is subfair or fair, the bold play 
continues to be optimal for all ~ > 0. However, it is also shown that when the 
lottery is superfair, the bold play is no longer optimal, even if w/(1 + c~)<�89 that 
is, even if the inflation rate is high enough to make the situation subfair in the 
sense that the ratio of your fortune to the price of the house is an expectation 
decreasing semimartingale. 

In [8], Klugman used a somewhat different (less direct) method to account 
for inflation and he also obtained a similar result. In [3], Chert used Klugman's 
method to account for inflation in primitive casinos and he proved that, in 
general, the bold play is no longer optimal. In the fall of 1975, the author of this 
paper discussed with L.E. Dubins the curiosity of the non-optimality of the 
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bold play for subfair primitive casinos by using Klugman's method to handle 
inflation. Dubins suggested that with a more direct method of handling inflation, 
as used by him and Teicher in [6], it might be shown that the bold play is always 
optimal for subfair "Red-and-Black" lotteries and subfair primitive casinos in 
the presence of inflation. This is the motivation of the current research. However, 
the optimality (or non-optimality) of the bold play for subfair primitive casinos 
in this new model has not been obtained yet and the problem is still open. 

2. Formulation of the Problem 

In order to make our gambling problem fit easily into the gambling framework 
of Dubins and Savage (1965), we can consider that the price of the house is 
fixed at 1 but the value of fortunes will be discounted step by step by the fixed 
discount rate (1 +e)-1,  i.e., the current one dollar will be worth only (1 + c~)-1 
dollars on the next step. Therefore our gambling problem can be formally 
formulated as a game whose set of fortunes, utility function, and set of available 
gambles are respectively as follows: F =  [0, oe); u(f)=0 or 1 according as 0 < f <  1 
or f >  1; F(f)= {y(f, s)[7(f s)=w6{(f+s)/(1 +~)} +~6{(f-s)/(l+ ~)}, O<s<f} 
if 0 < f <  1 and F(f)= {5(f), 7(f  s)lT(f, s)= w•{(f+ s)/(1 + e)} + ff,,5{(f-s)/(l+ ~)}, 
0 < s < f }  if l < f < o e .  Here # = l - w ,  6(x) denotes the probability measure 
which assigns probability one to {x} for all 0 < x < oe, and c~ is the inflation rate 
(a device often encountered in dynamic programming models) for the gambler 
and is used to handle inflation. The reason that 6(f) is in F(f) for f >  1 is that 
when the gambler has a fortune f >  1, he can buy the house immediately and 
he has reached his goal already. 

The gambling problem formulated above is a modification of the "Red-and- 
Black" casinos considered by Dubins and Savage in [5] (1965). The modification 
is designed to handle inflation and to motivate the gambler recognizing the 
time value of money and completing the game as quickly as reasonably consistent 
with reaching the goal. To distinguish it from the "Red-and-Black", this modified 
game will be simply called "Red-and-Black in the presence of inflation" in this 
paper. When c~=0, the modified game is identical to the "Red-and-Black" 
considered by Dubins and Savage in [5]. 

Since the possibilities l < e < o %  or w=0  or --1, would not be interesting, 
we will always assume that 0 < e < 1 and 0 < w < 1 in this paper. 

3. The Utility of Modified Bold Strategies 

As in "Red-and-Black" casinos, in a "Red-and-Black in the presence of 
inflation" gambling system, the gambler desires to reach his goal, i.e., the interval 
[1, oe), he can play only one "Red-and-Black" lottery with win probability w 
(w is fixed) in each step, and he can stake any or all of his current fortune on each 
game. The only difference is that the value of his current fortune f will be worth 
only ( l + e ) - " f  on the n th step for all n > 0  (his fortune will be discounted step 
by step by the fixed discount rate (1 + ~)-1). 
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The gambler stakes s when he uses the game y ( f  s) at f The modified bold 
stake at f is defined by s ( f ) = m i n { f 2 r - f }  if 0 < f < l  and s ( f ) = 0  if f > l ,  

1 + ~ .  
where r = - ~ -  is in [�89 1). A gambler uses the modified bold strategy if he stakes 

the modified bold stake s(f) whenever he has fortune f 
Let Q(f) be the probability that the gambler starting from f and using the 

modified bold strategy reaches his goal [1, oo). It is obvious that Q(0)= 0, Q(f)= 1 
if f > l ,  and if 0 < f < l ,  then, after the first game, the gambler's fortune is 

f+s ( f )  f - s ( f )  with probability w or ~ respectively, hence 1 + - - ~ - -  or 1 +~--  

Therefore 

if 0 < of< 1. 

Q ( f ) = / I + # Q  ( ~ T f )  if r < f < l  (1) 

if f > l .  

Lemma 1. The bounded solution of (1) is unique. 

Proof The proof is essentially the same as that in page 99 of [5] and is omitted. 

Let {Xn},>__l be a sequence of i.i.d, random variables such that P ( X I = 0  ) 
= w = 1 - P(X I = 1). For each integer n > 1 and each integer 1 < k < n, let Sn,, = rX, 
and S,,k=rXk+rmin{1, S,,k+~}. Let G(x)=]imP{S,,a<x} for all x < l  and let 

G(x)= 1 for x >  1. Since S,,~ is non-decreasing in n, G(x) is well-defined for all x. 

Lemma 2. The distribution function G satisfies (1) on the interval [0, oo), i.e., 

G(f)=wG ( f )  if O< f <r, G(f)=w+~G -~-\__/(J~) if r< f <l, and G(f)=l if 
f > l .  

Proof (a) By the definition of G, G(f) = 1 if f >  1. 
(b) If O<f<r, then 

G(f)=!ifnP{Sn, 1 <f}=limP{S, ,1 <f, X 1 =0} + !irn P{Sn, 1 < f  X 1 = 1} 

= w  .~olim P{r min { 1, S.,2}<f} =!imwP~ S., 2 = ~  

(since S.,l=rXl+rmin{1, S.,2} and f<r). Since {X.} is independent and 
identically distributed, the distribution of S., z is the same as of S._~, 1. Hence 

G(f)=l imP{S, , l<f}=-wl imP S~,2= 7-  = w l i m P  S~_~,~< 
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(c) If r < f < l ,  then 

G(f)  = lim P {S,, 1 < f } = lim P {S,,~ < f, X t = 0} + lim P {S, 1 --< f X1 = 1 } 

=w+u5 lim P{r rain {1, S,,2} < f - r }  

(since �89 < r < 1, r < f < 1, and S,, 1 = r X1 + r rain { 1, S,, 2 })- Since {X,} is indepen- 
dent and identically distributed, the distribution of S,, 2 is the same as of S,_ 1, ~. 
Hence 

G(f)=jimP{S,~ ,1 < f }  = w + ~  ,~lim P{r min { 1, S,, 2}__< f -  r} 

= w + #  .~oolim P S., 2 < ~ 3  = w  + u5 .~o~lim P 

= w + u S G ( f ~  f )  i f r < f < l .  

By (a), (b), and (c), hence the distribution function G satisfies (1) on the interval 
[0, oo). 

In view of Lemmas 1 and 2, we have the following theorem. 

Theorem 1. There is one and only one bounded function Q on the interval [0, oo) that 
satisfies (1). Moreover the function Q is right continuous on the interval [0, oo) 
and strictly increasing on the interval [0, 11. 

Remark. The function Q is discontinuous on a subset A of [0, 1], which is defined 
in the next section. 

4. For w_<~, the Modified Bold Strategy is Optimal 

As defined in [5], an available strategy (in our "Red-and-Black" in the presence 
of inflation gambling problem) for the gambler is a sequence a=(0.o, 0.1, ~ 
such that 0.o is a gamble in the set F(f) of available gambles and, for each positive 
integer n, G is a gamble in the set f(fn) of available gambles, where f is the 
gambler's initial fortune and, for each positive integer n, f, is the gambler's fortune 
on the n th step. 

The worth of a particular available strategy (in our "" Red-and-Black" in the 
presence of inflation gambling system), a, is given by its utility, u(a), the probability 
that the gambler reaches his goal by using the strategy 0. and an available strategy 
for the gambler is optimal if no other available strategy has a higher utility. 

In [5], Dubins and Savage showed that the bold strategy is optimal for a 
subfair "Red-and-Black" (Theorem 5-3-1 of [5]). In [8], Klugman showed that 
the bold play is still optimal for a subfair "Red-and-Black" with a discount 
factor (Theorem 2-4 of [81). In this section, we will show that the modified bold 
strategy is optimal for a subfair "Red-and-Black" lottery in the presence of 
inflation. { ~ . 

For each integer n_>_l, let A,-- f [ O < f < l , f =  cjr ~, where c j=0  or 1 for 
j = l  

h 

all l<=j<n, and, for each k - - -1 ,2 , . . . , n -1 ,  if ~ cjr~>r k then Ck=l ~ and let 
j ~ k + l  J 
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A = U A,. Any number f in A is called a finite order (in r) number and the 
n - - 1  

smallest positive integer n such that f ~ A ,  is called the order (in r) of f 

Lemma 3. I f  �89 <r < 1, then A is a dense subset of [0, 1]. 

Proof Let B be the set of all binary rationals in [0, 11, Qr be the utility function 
of the bold strategy in a "Red-and-Black" with win probability r (see [5, 
pp, 84-86]), and C r = Qr(B) the image of B under Qr- Since B is a dense subset 
of [0, 11 and Qr is a homeomorphizm from [0, 11 into [0, 1], C, is a dense subset 
of [0, 11. Now it is easy to check that, for each number x in Cr and each e> 0, 
there is a number f in A such that I f - x l  <e. Hence A is a dense subset of [0, 11. 

Now we are in the position to show that the modified bold strategy is optimal 
in a subfair "Red-and-Black" in the presence of inflation gambling system. 

Theorem 2 (The Optimality of the 
then the modified bold strategy is 

Proof Since the case that ~> 1 is 
in the proof. 

In view of Theorem 2-12-1 of 

Modified Bold Strategy). I f  ~ > 0 and 0 <_ w <_ �89 
optimal. 

obvious, we will always assume that 0 < c~ < 1 

[5], it suffices to show that Q is excessive, i.e., 

Q (f) > w Q ((f + s)/2 r) + ~ Q ( ( f -  s)/2 r), (2) 

for O<f- s< f<= 1, 0<c~<1, and 0=<w<�89 where � 8 9  and it is to be 
understood that Q((f+ s)/2r) = 1 if f +  s > 2r. 

z .  

The possibility that f + s > 2 r  can be set aside. For in view of the monotony 
of Q (Theorem 1 of Section 3), if (2) were to fail for some f + s > 2 r ,  it would also 
fail for f + s = 2 r  since Q ( f ) = l  if f > l .  Since 1<2r ,  O < s < f  and Q is non- 
decreasing (Theorem 1 of Section 3), (2) holds if s = 0, or s = f or f = 1, or f + s = 2 r, 
or f +  s = 2rf. Therefore, throughout the rest of the proof, we will always assume 
that 0 < s < f < l ,  f+s<2r ,  and 2 r f < f + s .  

Now we show that (2) holds in the following two steps. 

Step 1. For all f and s in the set A, (2) holds if 0 < s < f <  1, f +  s < 2 r, and 2 r f <  f +  s. 
Now we prove Step 1 by induction on the orders of f and s (in r). 
(i) If both f and s are of order 1 (in r), then f =  s = r and (2) holds. 

(ii) Now assume that (2) holds for all f '  and s' in the set A of order less than n 
(with the stated property) and let f and s be numbers in the set A of order less 
than or equal to n. To show that (2) holds for these values it will be easier to 
write (2) as 

Q (f) - w Q ((f  + s)/2 r) - ~ Q ( ( f -  s)/2 r) > O. (3) 

There are four cases that must be considered. 

CaseI. O<(f  -s) /2r< f < ( f  +s)/2r<r. 
(a) If f + s = 2 r  z, then rZ<f<r  (since 0 < s < f )  and Q(f)-wQ((f+s) /2r)  

-#Q( ( f - s ) / 2 r )=w2  +w~Q(( f - r2 ) / r2 ) -w2-w#Q(( f - s ) /2 r2 )=O since f +s 
= 2 r  2. So (3) holds. 
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(b) If f +s<2r  2, then 

Q ( f ) -  w Q((f + s)/2r)- ~ Q((f - s)/Zr) 

f + s  

Since 0 < s < f < r  and s, f are in the set A, ~ff and s are in the set A of order less 
r r 

than n. By inductive hypothesis, 

( ~ t - w Q  [ ( ~ t / q - ~ Q  [ ( ~ t  ~2~] ~0.  

So (3) holds. 

Case II. r<( f - s ) / 2 r<  f < ( f  +s)/2r< 1. 
s < r -  rZ < r a since 2 rZ < f - s, f + s < 2 r, a n d � 8 9  Hence 

f - s  ( f + s - 2 r  z] 
Q ( f ) - w Q  ( f ~ ) - # Q  (~7-r)=w+uTQ ( f ~ f - ) - w 2 - w # Q \  2r 2 ] 

( f - s - 2 r Z ~  
-wff~-ff~2Q \- ~rr 2 ] > # { Q [ ( f - r ) / r l - w Q [ ( f - r + s ) / 2 r z ]  

- # Q [ ( f  -r-s) /2r2]}  

(since r<2r 2 and Q is non-decreasing). Since r < f  s<r 2, r<-_2rZ<f-s, and f 

s are in the set A, ( f - r ) / r  and s - -  are in the set A of order less than n such that 
r 

s f - s  __< �9 By inductive hypothesis, 

So (3) holds. 

Case III. O<(f -s ) /2r< f < r < ( f  +s)/2r< 1. 
r2<f  since s < f  and f +s>2r  2. Hence 

\ 2 r /  

- w ~ Q ( ( f +  s - 2 r2)/2 r 2) - w ~ Q ( ( f -  s ) /2  r 2)  = # { Q ( ( f -  rZ)/r)  

- w Q ( ( f  + s - 2 r2)/2 r 2) - w Q ( ( f -  s ) /2  r2)}  = H (s) 

(since f - ra  <r 2, Q((f -rZ)/r)=wQ((f -r2)/r2)). Since f +s> 2r 2, 2 r Z - f  <s. It 
suffices to show that H(s)>O for 2rZ- f<=s~ f  If f s are in the set A and 
r2<_s<_f<r, then ( f-r2)/r  and (s-r2)/r are in the set A of order less than n. 
Hence, by inductive hypothesis, H(s) = u~ {Q((f- rg)/r) - w Q([(f-  r 2) + (s - r2)]/2r 2) 
-wQ([(f-rZ)-(s-rZ)]/2r2)}>O for r2<-s<-f<r since w<�89 Now notice that 
H(s) is symmetric about s=r 2 on the interval [ 2 rZ- f , f ] ,  hence H(s)>O on the 
interval [2rZ- f , f ]  and (3) holds. 
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Case IV. O < ( f - s ) / 2 r < r <  f < ( f  +s) /2r< 1. 
r< f < r + r  2 since f - s < 2 r  2 and f +s<2r .  Hence  

Q ( f ) - w Q  ( f ~ ) - # Q  ( f ~ r S ) = w  + wff~Q(( f -r) /rZ)-  w z 

- w ~ Q ( ( f  + s - 2 rZ)/2 r 2 ) - w ~ Q ( ( f -  s ) /2  r z ) = w ~ + w ~ Q ( ( f -  r ) / r  2) 

- w v~ Q ( ( f  + s - 2 rZ)/2 r 2) - w ~ Q ( ( f -  s)/2 r2). 

(a) If 2 r - r 2 < f  or s < 2 r 2 - r ,  then ( f - r ) / r2>=( f+s-2r2) /2r2 .  Hence 
w ~ + w ~, Q ( ( f -  r)/r 2) - w ~ Q~ ( ( f +  s - 2 r2)/2 r 2) - w ~ Q ( ( f -  s)/2 r ~ ) >- 0 a n d  (3) 

holds since Q ( f ) <  1 for all f > 0 .  
(b) If 2 r Z - r < s < r  and f < 2 r - r  z (s<r since f + s < 2 r  and f > r ) ,  then 

Q ( f ) -  w Q ( ( f  + s ) /2r ) -  ff~ Q(( f  - s)/2r) 

= w { ( o - w ) + Q ( ( f  - r  +rZ) /r ) -OQ(( f  + s - Z r Z ) / 2 r Z ) - o Q ( ( f  -s)/2r2)} =H(s) .  

N o w  it suffices to show that  H(s)>O for 2 r g - r < s < r  and r < = f < 2 r - r  2. Since 
H(s) is symmetr ic  abou t  s = r 2 on the interval  (2 r 2 -  r, r), wi thout  loss of generality, 
it is sufficient to show that  H(s)>O for r a < s < r  and r < f < 2 r - r  2. Now, if 
r 2 < s < r  and r< f < 2 r - r  2, then 

H(s) > w { Q ( ( / -  r + r2)/r) - w Q ( ( f  + s - 2 r2)/2 r 2) - ~ Q(( f  - s)/2 r2)} 

> w { Q ( ( f -  r + rZ)/r) - w Q ( [ ( f -  r + r 2) + (s - r2)]/2 r 2) 

- # Q ( [ ( f -  r + r 2) - (s - r2)]/2 r2)} 

since � 8 9  and Q is non-decreasing.  Since r < f < 2 r - r  2, r2<s<r ,  f and s 
are in the set A, ( f - r +  r2)/r and (s-r2) /r  are in the set A of order  less than n 
( f -  r + r 2 > s -  r2). By inductive hypothesis ,  

Q ( ( f -  r + rZ)/r) - w Q ( [ ( f -  r + r z) + (s - r 2)]/2 r z) 

- # Q ( [ ( f -  r + r 2) - (s - r 2 ) ] / 2  r z) >__ O. 

Hence H(s)>O for 2 r 2 - r < s < r  and r < f < 2 r - r  2 and (3) holds. 

Step 2. For  all O < s < f <  1, (2) holds. 
To see Step 2, we choose two non-increasing sequences {f,~} and {sin} f rom 

the set A (as is possible by L e m m a  3) such that  
(a) f m > f  for all m >  1 and lira f m = f  

m ~ o o  

(b) sm> s for all m > 1 and lira sm = s. 
? n ~ c o  

(c) Sin<fro for all m > l .  

(d) f - s < f , , +  1 -sm+ 1 <fro--Sin for all m >  1. 
Now,  by the right continuity of Q (Theorem 1 of Section 3) and Step 1 above,  
(2) holds for all f and s such that  0_< s < f < 1. The p roof  of T h e o r e m  2 now is 
complete.  

Remark. By a similar a rgument  used in [5], we can also show that  the opt imal  
strategy is not unique, i.e., there are some other  strategies that  are also op t imal  
for a subfair " R e d - a n d - B l a c k "  in the presence of inflation. 
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5. For �89 < w < 1 and 0 =< ~t < 1, the Modified Bold Strategy 
is not Necessarily Optimal even if 0 < w/l(1 + ~t)__< 1/2 

As in [8], the case discussed in Section 4 was clearly subfair. However, with 
�89 it is no longer clear how the game should be described. Each step the 
gambler's expected fortune is increasing (when the game is viewed as a "Red-and- 
Black" with moving goal). But when w/(1 + ~)<�89 the process of fortunes will 
be a supermartingale since E (fn+ 1 I f  n) = W (1 + e)- 1 (fn + S) + ~ (1 + ~)- t (f,__ S) 
< 2 w ( l + e ) - l f < f ,  and the optimal sampling theorem (Theorem 5-10 of [2], 
Breiman (1968)) gives the result U ( f ) < f  for all 0 < f < l  indicating that the 
game is subfair (see page 74 of [5]), where U(f) is the utility function of the game 
(see page 25 of [5]). One would suspect that if w/(1 +e)<�89 then the modified 
bold strategy should be still optimal even if 0 < e < 1 and �89 w < 1. However, 
unlike the extremely subfair game of Section 4, if 0 < e < 1 and �89 < w < 1, then 
the modified bold strategy is no longer optimal even if w/(1 + ~)<�89 The following 
theorem justifies this statement, which also provides us with a counterexample 
to an early gambling result obtained by Coolidge (1908-9). Coolidge [4] stated: 

"The player's best chance of winning a certain sum at a disadvantageous 
game is to stake the sum that will bring him that return in one play, or, if that 
be not allowed, to make always the largest stake which the banker will accept." 

In [9], Klugman also provided a counterexample to this early gambling 
result. A different counterexample has been provided in [7] by Heath, Pruitt, 
and Sudderth. By these counterexamples, we may have a better understanding 
of subfair games. 

Theorem 3. If  0 < ~ < 1 and �89 < w < 1, then the modified bold strategy is no longer 
optimal even if w/(1 + o0< �89 

Proof In view of Theorem 2-14-1 of I-5], it sufficies to show that Q is not excessive, 
i.e.~ 

( f + x ] - i O Q ( @ r S ) < o  for some 0 < s < f < l .  (4) Q ( f ) - w Q  \ 2r ] - - 

Since �89 < r < 1, there exists a positive integer n > 2 such that r + rn + r" + t < 1. 
Now let f=r2+r"+~+r z" and s=r2+rn+l-r  z", then 0 < s < f < l ,  Q(f) 

- w Q  ~-~-~-r ] - W Q  =~w2n-z(1-2w)<Osince�89 Hencethemodi - 

fled bold strategy is not optimal. 
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