Controlling of Non-Recurrent Lattice Random Walks

By
Karl Hinderer

1. Introduction

Let $X_{n}=\left(X_{n 1}, \ldots, X_{n d}\right), n=1,2, \ldots$, be independent, identically distributed, d-dimensional random vectors with integer-valued components. Throughout this paper we assume the existence and finiteness of the vector of expectations $E X_{1}=\left(E X_{11}, \ldots, E X_{1 d}\right)$. We shall interpret the stochastic sequence $S=\left\{S_{n}\right\}$, defined by

$$
\begin{equation*}
S_{n}=\sum_{\nu=1}^{n} X_{\nu}, \quad n=1,2, \ldots, \tag{1}
\end{equation*}
$$

as a (generalized) random walk in the Euclidean space R_{d}. In most cases, we shall be concerned only with linear and planar random walks.

If $E X_{1}=0,\left[E X_{1}=0\right.$, and $\left.E\left|X_{1}\right|^{2}<\infty\right]$, then by Chung and Fuchs [3] every possible state of the linear [planar] random walk S is recurrent. If $E X_{1} \neq 0$, then it is well known that S does not possess any recurrent state. Furthermore, an investigation of this case by Chung and Derman [2] showed: if S is a linear random walk having all positive integers as possible states and if $0<E X_{1}<\infty$, then any infinite set of positive integers is visited by S infinitely often with probability 1 .

In this paper we want to make another study of the case where $E X_{1} \neq 0$, $d=1,2$. Centering the X_{n} at expectations leads to a new random walk $S^{*}=\left\{S_{n}^{*}\right\}$, defined by

$$
\begin{equation*}
S_{n}^{*}=\sum_{\nu=1}^{n}\left(X_{\nu}-E X_{1}\right), \tag{2}
\end{equation*}
$$

for which all possible states are recurrent, but which in general no longer proceeds in the lattice. This suggests the following question: Does there always exist a sequence of constant vectors c_{n} with integer components, such that the random walk $V=\left\{V_{n}\right\}$, given by

$$
\begin{equation*}
V_{n}=\sum_{\nu=1}^{n}\left(X_{\nu}+c_{\nu}\right), \tag{3}
\end{equation*}
$$

possesses recurrent states? The substitution of S by V may be interpreted as a control of S : A particle which performs the random walk S undergoes during the n-th step an additional translation c_{n}. Our aim is to determine c_{n} in such a way, that the particle is prevented from drifting away. It is important that c_{n} is a constant vector and hence does not depend on the position of the particle at time n. This means that V is a spatially homogeneous and temporarily inhomogeneous random walk. Recurrence problems for spatially inhomogeneous and temporarily homogeneous random walks have been studied by several authors (see e.g. [5]).

We derive a necessary criterion and a sufficient criterion for the existence of recurrent states in V. In particular, we show that any linear [planar] random walk S, for which X_{1} has a genuine one-dimensional [two-dimensional] distribution, may be controlled in infinitely many ways such that all lattice points become recurrent states.

The proof of the main result (theorem 2, sufficient criterion) is based on three facts: (i) the cited result of Chung and Fuchs; (ii) a generalization of a theorem of Chung on Markov chains with stationary transition probabilities to Markov chains with non-stationary transition probabilities; (iii) an analysis of the set of possible states of the random walk S (lemmas 2-4).

2. Definitions

Let $U=\left\{U_{n}\right\}$ be an arbitrary sequence of d-dimensional random vectors $U_{n}=\left(U_{n 1}, \ldots, U_{n d}\right)$. We use the following definitions (cf. [3]):
(a) The point $a \in R_{d}$ is a possible value of U_{n}, if $P\left(\left|U_{n}-a\right|<\varepsilon\right)>0$ for every $\varepsilon>0$.
(b) The point $a \in R_{d}$ is a possible state of U, if for every $\varepsilon>0$ there exists an $n=n(\varepsilon)$ such that $P\left(\left|U_{n}-a\right|<\varepsilon\right)>0$.
(c) The point $a \in R_{d}$ is a recurrent state of U, if $P\left(\left|U_{n}-a\right|<\varepsilon\right.$ i.o. $)=\mathbf{1}$ for every $\varepsilon>0$; or equivalently, if a is a limit point of the sequence $\left\{U_{n}\right\}$ with probability 1 . In the case of lattice random vectors these definitions coincide with the usual ones.

It is sometimes convenient to describe V in such a way that only the nonvanishing ones of the c_{v} - denote them by $c_{n_{1}}, c_{n_{2}}, \ldots$, - are used. (In the sequel we consider only those random walks V, for which infinitely many of the c_{ν} do not vanish, since this is the only interesting case.) Put $n_{0}=0, c_{0}=0, S_{0} \equiv 0$; and for $k=0,1, \ldots$ put $C_{k}=\sum_{j=0}^{k} c_{n_{j}}$. Then V is given by

$$
V_{n_{k}+m}=S_{n_{k}+m}+C_{k}, \quad \begin{align*}
& k=0,1, \ldots \tag{4}\\
& m=0,1, \ldots, n_{k+1}-n_{k}-1 .
\end{align*}
$$

We call the numbers n_{k} control times and the vectors $c_{n_{k}}$ control values.

3. Necessary conditions for recurrent states

Theorem 1. Assume that the random walk $V=\left\{V_{n}\right\}, V_{n}=\sum_{\nu=1}^{n}\left(X_{\nu}+c_{\nu}\right)$, possesses a recurrent state.
(i) If $E\left|X_{1}\right| r<\infty$ for some $r, 1 \leqq r<2$, then

$$
\frac{\lim }{n} \frac{1}{n^{1 / r}}\left|n E X_{1}+\sum_{1}^{n} c_{\nu}\right|=0 .
$$

In particular, in any case $\frac{\lim }{n}\left|E X_{1}+\frac{1}{n} \sum_{1}^{n} c_{\nu}\right|=0$.
(ii) If $E\left|X_{1}\right|^{r}<\infty$ for some $r, 1 \leqq r \leqq 2, b_{n} \uparrow \infty$ and $\sum_{1}^{\infty} b_{n}^{-r}<\infty$, then

$$
\frac{\lim }{n} \frac{1}{b_{n}}\left|n E X_{1}+\sum_{1}^{n} c_{v}\right|=0
$$

(iii) If $\lim _{k \rightarrow \infty} \frac{n_{k+1}}{n_{k}}=1$, then

$$
\frac{\lim }{k}\left|E X_{1}+\frac{1}{n_{k}} \sum_{j=1}^{k} c_{n_{j}}\right|=0
$$

Proof. Since $\max _{v=1, \ldots, d}\left|X_{1}\right| \leqq\left|X_{1}\right|$, the conditions on the moments of $\left|X_{1}\right|$ imply the corresponding conditions for all components of X_{1}. In (i), by KolmogorovMarcinkiewicz (see e.g. [6], p. 243), we have

$$
\frac{1}{n^{1 / r}} \sum_{1}^{n}\left(X_{v}-E X_{p}\right) \equiv \frac{\mathrm{l}}{n^{1 / r}}\left(V_{n}-E V_{n}\right) \rightarrow 0 \mathrm{a} . \mathrm{s} .
$$

In (ii), by Loève [6], p. 241, we have $\frac{1}{b_{n}}\left(V_{n}-E V_{n}\right) \rightarrow 0$ a.s. Putting $b_{n}=n^{1 / r}$ in case (i), the definition of almost sure convergence yields in both cases

$$
\begin{equation*}
P\left(\left|V_{n}-E V_{n}\right| \geqq \varepsilon b_{n} \text { i.o. }\right)=0 \text { for every } \varepsilon>0 \tag{5}
\end{equation*}
$$

If a is now a recurrent state of V, then by definition

$$
\begin{equation*}
P\left(\left|V_{n}-E V_{n}\right| \geqq\left|E V_{n}-a\right|-1 \text { i.o. }\right) \geqq P\left(\left|V_{n}-a\right|<1 \text { i.o. }\right)=1 \tag{6}
\end{equation*}
$$

The comparison of (5) and (6) implies that for infinitely many $n,\left|E V_{n}-a\right|-1$ $<\varepsilon b_{n}$; therefore $\left|E V_{n}\right| \leqq\left|E V_{n}-a\right|+|a|<\varepsilon b_{n}+|a|+\mathbf{1}$ for infinitely many n. As $b_{n} \rightarrow \infty, \frac{\lim }{n} \frac{\left|E V_{n}\right|}{b_{n}} \leqq 2 \varepsilon$. This being valid for every $\varepsilon>0$, we get

$$
\begin{equation*}
\frac{\lim }{n} \frac{\left|E V_{n}\right|}{b_{n}}=0 \tag{7}
\end{equation*}
$$

From (7), (i) and (ii) follow immediately. To prove (iii), we note that (i), $r=\mathbf{1}$, applies. Hence there exists a sequence of positive integers $l_{s}!\infty$ such that

$$
\frac{1}{l_{s}} \sum_{\nu=1}^{l_{s}} c_{\nu} \rightarrow-E X_{1} .
$$

One can choose l_{s} in such a way that each interval $\left(l_{s-1}, l_{s}\right.$] contains at least one of the n_{k}. Denote by $n_{k_{s}}$ the largest of the n_{k} lying in that interval. From

$$
1 \leqq \frac{l_{s}}{n_{k_{s}}}<\frac{n_{k_{s}+1}}{n_{k_{s}}} \rightarrow 1(s \rightarrow \infty)
$$

and $\frac{1}{n_{k_{s}}} \sum_{j=1}^{k_{s}} c_{n_{j}}=\frac{l_{s}}{n_{k_{s}}} \frac{1}{l_{s}} \sum_{1}^{l_{s}} c_{\nu}$, we get $\frac{1}{n_{k_{s}}} \sum_{j=1}^{k_{s}} c_{n_{j}} \rightarrow-E X_{1}$, which proves (iii).
Remarks. 1. The conditions in theorem 1 are in general not sufficient for the existence of recurrent states in V. Take, for example, $X_{1}=c$ (c some integer), and $c_{n}=[\sqrt{n}]-[\sqrt{n-1}]-c$, where $[b]$ denotes the greatest integer $\leqq \mathrm{b}$. Then

$$
\frac{\lim }{n}\left|E X_{1}+\frac{1}{n} \sum_{1}^{n} c_{v}\right|=\frac{\lim }{n} \frac{\left[V^{\prime}\right]}{n}=0, \text { but } V_{n}=[\sqrt{n}] \rightarrow \infty \text { a.s. }
$$

2. In general, the existence of a recurrent state does not tell us anything about $\overline{\lim }_{n}\left|E X_{1}+\frac{1}{n} \sum_{1}^{n} c_{\boldsymbol{v}}\right|$. Take for example $X_{1}=c(c$ some integer). Then, for any b,
$0 \leqq b \leqq \infty$, there exists a sequence of integers c_{n} such that V has a recurrent state and

$$
\varlimsup_{n}\left|E X_{1}+\frac{1}{n} \sum_{1}^{n} c_{\nu}\right|=b .
$$

3. In the proof of theorem 1 we did not need the assumption that X_{1} has integer-valued components. Furthermore, part (ii) does not require that the X_{n} are identically distributed. This remark and a modification of the conditions on the moments of the X_{n} (see LoEve [6], p. 241) lead to the following recurrence criterion for sums of independent random vectors.

Corollary. Let Y_{1}, Y_{2}, \ldots be independent d-dimensional random vectors. Assume there are two sequences of real numbers $b_{n} \uparrow \infty$ and $r_{n}, \mathbf{l} \leqq r_{n} \leqq 2$, such that

$$
\begin{gathered}
\sum_{n=1}^{\infty} \frac{E\left|Y_{n}\right|_{n}}{b_{n}^{r_{n}}}<\infty . \text { Then, if the sequence } U_{n}=\sum_{v=1}^{n} Y_{v} \text { possesses a recurrent state, } \\
\frac{\lim _{n}}{} \frac{\left|E U_{n}\right|}{b_{n}}=0 .
\end{gathered}
$$

4. A lemma on Markov chains

The following lemma is a generalization of a theorem of Chung (see e.g. [2], theorem 1) to the case where the Markov chain does not have stationary transition probabilities.

Lemma 1. Let $U=\left\{U_{n}, n \geqq 0\right\}$ be a Markov chain, not necessarily with stationary transition probabilities. Let Z be the minimal state space of U. For $B \subset Z$, $i \in Z$ and $m \geqq 0$ define, if $P\left(U_{m}=i\right)>0$,

$$
f_{i, B}(m)=P\left(U_{n} \in B \text { for some } n>m \mid U_{m}=i\right)
$$

Then the following statement holds: If $P\left(U_{n} \in A\right.$ i.o. $)=1$ and $\inf _{i \in A, m \geqq 0} f_{i, B}(m)>0$, then $P\left(U_{n} \in B\right.$ i.o. $)=1^{*}$.

As the proof is just a modification and extension of the proof of theorem 5 in [1], p. 19, we indicate only the necessary alterations.

Put $\alpha=\inf _{i \in A, m \geqq 0} f_{i, B}(m)$. Then for $0<N^{\prime}<N$ $P\left(U_{n} \in A\right.$ for some $n \geqq N ; U_{n} \notin B$ for $\left.n \geqq N^{\prime}\right)$

$$
\begin{aligned}
& \quad=\sum_{i \in A} \sum_{m=N}^{\infty} P\left(U_{n} \notin A \text { for } N \leqq n<m ; U_{m}=i ; U_{n} \notin B \text { for } n \geqq N^{\prime}\right) \leqq \\
& \leqq \\
& \sum_{i \in A} \sum_{m=N}^{\infty} P\left(U_{n} \notin A \text { for } N \leqq n<m ; U_{m}=i ; U_{n} \notin B \text { for } N^{\prime} \leqq n \leqq N ;\right. \\
& \left.U_{n} \notin B \text { for } n>m\right)
\end{aligned}
$$

[^0]\[

$$
\begin{gathered}
=\sum_{i \in A} \sum_{m=N}^{\infty} P\left(U_{n} \notin A \text { for } N \leqq n<m ; U_{m}=i ; U_{n} \notin B \text { for } N^{\prime} \leqq n \leqq N\right) \\
\times P\left(U_{n} \notin B \text { for } n>m \mid U_{m}=i\right) \\
\leqq(1-\alpha) P\left(U_{n} \in A \text { for some } n \leqq N ; U_{n} \notin B \text { for } N^{\prime} \leqq n \leqq N\right) .
\end{gathered}
$$
\]

The rest follows then by letting $N \rightarrow \infty$ and $N^{\prime} \rightarrow \infty$.

5. Analysis of the set of possible values of S_{n}

If one tries to apply the preceding lemma to our recurrence problem, it turns out, that the verification of the condition $\inf _{i \in A, m \geqq 0} f_{i, B}(m)>0$ requires some information about the manner, in which the probability mass of S_{n} spreads over the line (or the plane) as $n \rightarrow \infty$. In this section we state only the pertinent results. The proofs for lemmas $2-4$, which require several facts from the theory of diophantine equations, are part of a forthcoming paper [4] which deals with other problems on the set of possible values of S_{n}. In order to avoid repetition, we shall describe the properties of the sets in question for d-dimensional random walks, though we shall make use of it only for $d=1$ and $d=2$.

Denote by L_{0} the set of all points in the Euclidean space R_{d} with integer coordinates. For any $d+1$ points $b_{i}=\left(b_{i 1}, \ldots, b_{i d}\right) \in L_{0}, i=1,2, \ldots, \mathrm{~d}+1$, we put

$$
\Delta \equiv \Delta\left(b_{1}, \ldots, b_{d}\right)=\left|\begin{array}{ccccc}
b_{11} & b_{12} & \ldots & b_{1 d} \\
b_{21} & b_{22} & \ldots & . & b_{2 d} \\
\cdots & \cdots & \cdots & \cdots & \cdot \\
b_{d 1} & b_{d 2} & \ldots & b_{d d}
\end{array}\right|
$$

and

$$
D \equiv D\left(b_{1}, \ldots, b_{d+1}\right)=\left|\begin{array}{llllll}
b_{11} & b_{12} & \ldots & b_{1 d} & 1 \\
b_{21} & b_{22} & \ldots & b_{2 d} & 1 \\
\ldots & \cdots & \ldots & \ldots & \cdots & \cdots \\
b_{d+1,1} & b_{d+1,2} & \ldots & b_{d+1, d} & 1
\end{array}\right|
$$

If $b_{1}, b_{2}, \ldots, b_{s}, 1 \leqq s \leqq d$, are linearly independent d-dimensional (constant) vectors, any set of the form $L \equiv L\left(b_{0} ; b_{1}, \ldots, b_{s}\right)=\left\{b: b=b_{0}+\sum_{1}^{s} y_{i} b_{i}, b_{0} \in L_{0}\right.$, y_{i} arbitrary integers $\}$ is called a s-dimensional sublattice of L_{0}. A lattice has many different representations. It is not difficult to see that for $s=d$ the positive integer $m_{L}=\left|\Delta\left(b_{1}, \ldots, b_{d}\right)\right|$ is invariant under the class of all representations of the lattice $L\left(b_{0} ; b_{1}, \ldots, b_{d}\right)$. Hence m_{L} is a geometrical property of the lattice, namely the content of a mesh of the lattice.

Let M_{n} and M be the set of possible values of S_{n} and possible states of S respectively. Then $M=\cup M_{n}$, and M_{n} and M are uniquely determined by M_{1}, the set of possible values of X_{1}, for

$$
M_{n}=\left\{z: z=\sum_{1}^{n} a_{\nu}, a_{\nu} \in M_{1}\right\}
$$

For this and the following sections we make the assumption, that X_{1} has a genuine d-dimensional distribution, i.e., that M_{1} contains $d+1$ points for which the determinant D is not equal to zero. Then there exist the greatest common divisor* (g.c.d.) g of the determinants Δ and the g.c.d. h of the determinants D, all determinants taken for the points in M_{1}. Obviously g divides h.

Lemma 2. There exists a unique smallest d-dimensional lattice L_{S} containing M. The mesh-content of L_{S} is equal to g. In particular, L_{S} is a proper sublattice of L_{0} if and only if $g>1$.

Lemma 3. If $g=1$, then there exists a finite subset M_{1}^{\prime} of M_{1} with the following property: to every positive integer l there exist a positive integer $n(l)$ and a d-dimensional cube $W(l)$ (the position of which may depend on l) with sides of length l, such that

$$
\begin{equation*}
L_{0} \cap W(l) \subset \cup_{t=1}^{n}\left\{b: b=\sum_{i=1}^{n(l)+t} a_{i}, a_{i} \in M_{1}^{\prime}\right\} \subset \bigcup_{t=1}^{h} M_{n(l)+t} \tag{8}
\end{equation*}
$$

Lemma 4. If $g=1$, then L_{0} is the disjoint union of h congruent lattices L_{1}, \ldots, L_{h}, which have mesh-content h. If $n \equiv t(\bmod h)$, then $M_{n} \subset L_{t}, t=1,2, \ldots, h$.

The lattice L_{S} in Lemma 2 will be called the minimal lattice of S. Lemma 3 is of special importance for our problem. The relation (8), in which the second inclusion needs no proof, tells us e.g. in the case $h=1$, that the possible values of S_{n} 'cluster' in the following sense: as $n \rightarrow \infty$, the lattice points of larger and larger cubes can be reached in n steps, even if one uses in the random walk only some finite set of possible values of X_{1}.

6. Sufficient conditions for recurrent states

Theorem 2. Let S be the linear or planar random walk (1), and assume $E\left|X_{1}\right|^{2}<\infty$ in the planar case. If $\left\{n_{k}\right\}$ is any sequence of control times, then all points of the minimal lattice L_{S} are recurrent states of the random walk V, defined by

$$
\begin{equation*}
V_{n_{k}+m}=S_{n_{k}+m}+C_{k} \tag{4}
\end{equation*}
$$

if the following conditions are satisfied:
(i) $C_{k}=-n_{k} E X_{1}+0(1),(k \rightarrow \infty) ;$
(ii) $\sup _{k}\left(n_{k+1}-n_{k}\right)<\infty$;
(iii) there exists an integer $K>0$ such that for $s=1,2, \ldots$

$$
\max _{k=s, s+1, \ldots, s+K}\left(n_{k+1}-n_{k}\right) \geqq \frac{h}{g}
$$

Remarks. 1. Condition (i) is plausible, for it says that one selects C_{k} in such a way that $\left|E V_{n_{k}}\right|$ cannot go to infinity. 2. Condition (iii) ${ }^{\star \star}$ cannot be totally

[^1]dispensed with, as is seen by the following example. Take $M_{1}=\{1,4,7\}$, and assign probabilities to the points of M_{1} such that $E X_{1}=2.5$. Then take $n_{k}=2 k$, $C_{k}=-n_{k} E X_{1}=-5 k$. Conditions (i) and (ii) are satisfied, but none of the points $2+3 \lambda$, where λ is an arbitrary integer, are in M; hence none of them is recurrent, while all of them belong to $L_{S}=L_{0}$.

The proof of theorem 2 is carried through in three steps. At first we compare the controlled random walk

$$
V_{n_{k}+m}=S_{n_{k}+m}+C_{k}, \begin{align*}
k & =0,1, \ldots \tag{4}\\
m & =0,1, \ldots, n_{k+1}-n_{k}-1
\end{align*}
$$

with the centered random walk

$$
\begin{align*}
& S_{n}^{*}=S_{n}-n E X_{1}, \quad n=1,2, \ldots \tag{2}\\
& S_{0}^{*} \equiv 0
\end{align*}
$$

If we put $\eta(k)=C_{k}+n_{k} E X_{1}$, our assumptions imply the existence of constants T_{1}, T_{2} such that $n_{k+1}-n_{k} \leqq T_{1}<\infty$ and $|\eta(k)| \leqq T_{2}<\infty$. Hence

$$
\begin{gathered}
\left|V_{n_{k}+m}-S_{n_{k}+m}^{*}\right|=\left|C_{k}+n_{k} E X_{1}+m E X_{1}\right| \leqq|\eta(k)|+m\left|E X_{1}\right|< \\
<T_{2}+T_{1}\left|E X_{1}\right|<\infty
\end{gathered}
$$

therefore, for some constant T,

$$
\begin{equation*}
\sup _{n}\left|V_{n}-S_{n}^{*}\right| \leqq T<\infty \tag{9}
\end{equation*}
$$

Let b be any possible value of X_{1}. Then $P\left(S_{1}^{*}=b-E X_{1}\right)=P\left(X_{1}=b\right)>0$, which means that $b^{\prime}=b-E X_{1}$ is a possible state of S^{*}. Now S_{n}^{*} is a sum of independent, identically distributed random vectors $X_{v}^{*}=X_{v}-E X_{1}$, for which $E X_{1}^{*}=0$ and $E\left|X_{1}^{*}\right|<\infty$ in the linear case, and $E X_{1}^{*}=0, E\left|X_{1}^{*}\right|^{2}<\infty$ in the planar case. By the result of Chung and Fucus [3], b^{\prime} is then a recurrent state of \boldsymbol{S}^{*}, which implies on account of (9) that

$$
\begin{equation*}
P\left(\left|V_{n}-b^{\prime}\right|<2 T \text { i.o. }\right) \geqq P\left(\left|S_{n}^{*}-b^{\prime}\right|<T^{\prime} \text { i.o. }\right)=1 \tag{10}
\end{equation*}
$$

In the second step we apply lemma 1 of section 4 . We have now to distinguish between the linear and the planar random walk. The proof will be continued only for the first of these two cases, the other being completely analogous. We remark that it is sufficient to prove theorem 2 for the case $g=1$, the general case can be reduced easily to the special case by replacing the lattice L_{0} by the lattice L_{S}. If we take now in Lemma 1 for A the set of all lattice points in the interval $\left[b^{\prime}-2 T, b^{\prime}+2 T\right]$, and for B an arbitrary lattice point a^{\prime}, then equation (10) and the finiteness of A imply, that a^{\prime} is a recurrent state of V, if for any $a \in A$

$$
\begin{equation*}
\inf _{\nu} f_{a, a^{\prime}}(\nu)>0 . \tag{11}
\end{equation*}
$$

The verification of (11) will be based on the fact that $f_{a, a^{\prime}}(v)$ can be represented in the form

$$
\begin{equation*}
f_{a, a^{\prime}}(\nu)=P\left(S_{\varrho}=a^{\prime}-a+\varrho E X_{1}-\zeta(\nu, \varrho) \text { for some } \varrho>0\right) \tag{12}
\end{equation*}
$$

where $\zeta(\nu, \varrho)$ is a bounded double-sequence. This is proved in the following way.

We have

$$
\begin{aligned}
f_{a, a^{\prime}(\nu)} & =P\left(V_{n}=a^{\prime} \quad \text { for some } n>\nu \mid V_{v}=a\right) \\
& =P\left(S_{n}=a^{\prime}-\sum_{0}^{n} c_{i} \text { for some } n>v \mid S_{\nu}=a-\sum_{0}^{\nu} c_{i}\right) \\
& =P\left(S_{n}-S_{\nu}=a^{\prime}-a-\sum_{\nu+1}^{n} c_{i} \text { for some } n>v\right) \\
& =P\left(S_{n-\nu}=a^{\prime}-a-\sum_{\nu+1}^{n} c_{i} \text { for some } n>v\right) \\
& =P\left(S_{\varrho}=a^{\prime}-a-\sum_{i=0}^{\varrho-1} c_{v+1+i} \text { for some } \varrho>0\right) \\
& =P\left(S_{\varrho}=a^{\prime}-a+\varrho E X_{1}-\zeta(v, \varrho) \text { for some } \varrho>0\right),
\end{aligned}
$$

where $\zeta(\nu, \varrho)=\sum_{i=0}^{\rho-1}\left(c_{p+1+i}+E X_{1}\right)$.
Now define $n_{k(\nu)}$ to be the largest of the numbers n_{k} which are $\leqq \nu$. From $\eta(k)$ $=C_{k}+n_{k} E X_{1}$, we get $c_{n_{k}}=\left(n_{k-1}-n_{k}\right) E X_{1}+\eta(k)-\eta(k-1)$, which yields $|\zeta(\nu, \varrho)|=\mid \sum_{\nu+1 \leqq n_{k} \leqq \nu+\varrho}^{c_{n_{k}}+\varrho E X_{1} \mid}$

$$
\begin{aligned}
& =\left|E X_{1} \sum_{\nu+1 \leqq n_{k} \leqq \nu+\varrho}\left(n_{k-1}-n_{k}\right)+\varrho E X_{1}+\sum_{\nu+1 \leqq n_{k} \leqq \nu+\varrho}(\eta(k)-\eta(k-1))\right| \leqq \\
& \leqq\left|E X_{1}\right| \cdot\left|n_{k(v)}-n_{k(v+\varrho)}+\varrho\right|+|-\eta(k(\nu))+\eta(k(\nu+\varrho))| \leqq \\
& \leqq\left|E X_{1}\right| \cdot\left|n_{k(v)}-n_{k(v+\varrho)}+\varrho\right|+2 T_{2} .
\end{aligned}
$$

Since $n_{k+1}-n_{k} \leqq T_{1}<\infty$, the definition of $k(\nu)$ implies

$$
\begin{gather*}
\nu-T_{1} \leqq n_{k(v)} \leqq v, \\
\nu=1,2, \ldots \tag{13}
\end{gather*}
$$

Applying (13) twice, we get

$$
-T_{1} \leqq n_{k(v)}-n_{k(\nu+\varrho)}+\varrho \leqq T_{1}
$$

and finally

$$
\begin{align*}
& |\zeta(\nu, \varrho)| \leqq T_{1}\left|E X_{1}\right|+2 T_{2} \\
& =T_{3}<\infty \quad \text { for all } \nu \text { and } \varrho . \tag{14}
\end{align*}
$$

This proves that $f a, a^{\prime}(v)$ has the asserted representation.

The third step of the proof consists in the verification of relation (II). The argument will become clearer by representing the linear random walk $\left\{S_{\varrho}\right\}$ as a sequence of (random) points ($\left.\varrho, S_{\varrho}\right)$ in a two-dimensional (ϱ, y)-space \bar{R} (see Fig. 1).

For any set $B \subset M_{1}$ we define $B_{n}=\left\{z: z=\sum_{1}^{n} b_{i}, b_{i} \in B\right\}$. For any set $A_{n} \subset L_{0}$ we define $\bar{A}_{n}=\left\{(\varrho, x): \varrho=n, x \in A_{n}\right\}$ and $\bar{A}=\bigcup^{\infty} \bar{A}_{n}$. Thus, \bar{L}_{0} is the twodimensional representation of the minimal lattice of S.

Since X_{1} has a genuine one-dimensional distribution (i.e. X_{1} does not degenerate into one point) and since $E X_{1}$ lies in the convex hull of M_{1}, there are points $b_{1}, b_{2} \in M_{1}$ such that $b_{1}<E X_{1}<b_{2}$. If we put $E X_{1}=\tan \varphi, b_{1}=\tan \varphi_{1}$, $b_{2}=\tan \varphi_{2}$, then $\varphi_{1}<\varphi<\varphi_{2}$, if one takes the appropriate determination for arctan. By lemma 3 there is a number ϱ_{0}, a finite subset $M_{1}^{\prime} \subset M_{1}$ and in \bar{R} some closed rectangle \bar{Q}, whose sides are parallel to the axes and of length $h-1$ and $b_{2}-b_{1}{ }^{\star}$, such that $\bar{L}_{0} \cap \bar{Q} \subset \cup_{t=1}^{h} \bar{M}_{\varrho_{0}+t}$. This relation implies, since S_{n} is a sum of independent, identically distributed random variables, that there exists a sector Λ in \bar{R} with the following properties: (a) the legs of Λ form with the ϱ-axis angles of size φ_{1} and φ_{2}; (b) $A \cap \bar{L}_{0} \subset \cup_{1}^{\infty} \bar{M}_{n}^{\prime \prime}$, where $M_{1}^{\prime \prime}=M_{1}^{\prime} \cup\left\{b_{1}, b_{2}\right\}$; this means, that all points of the minimal lattice L_{0}, which lie in Λ, can be reached by S, using only the points b_{1}, b_{2}, and the points in M_{1}^{\prime}.

In view of (12), we consider in \bar{R} for every fixed v the sequence $\left\{\left(\varrho, y_{\varrho}(\nu)\right)\right\}$, where

$$
\begin{equation*}
y_{\varrho}(\nu)=a^{\prime}-a+\varrho E X_{1}-\zeta(\nu, \varrho) . \tag{15}
\end{equation*}
$$

By (14), the sequence $\left\{\left(\varrho, y_{\varrho}(\nu)\right)\right\}$ lies inside the parallel strip T which is symmetric to the line $y=a^{\prime}-a+\varrho E X_{1}$ and which has width $2 T_{3} \cos \varphi$. Hence there exists a number $\varrho_{1}=\varrho_{1}\left(a, a^{\prime}\right)$, independent of ν, such that $\left(\varrho, y_{\varrho}(\nu)\right) \in \Lambda$ for $\varrho>\varrho_{1}$ and for all ν. Denote by $\varrho_{2}(\nu)$ the smallest of the numbers $\varrho>\varrho_{1}$ for which $y_{\varrho}(v) \neq y_{\varrho_{1}}(\nu)$. Since $y_{\varrho}(v)=a^{\prime}-a-\sum_{i=0}^{\varrho-1} c_{\nu+1+i}$, the condition (ii) implies $\varrho_{2}(\nu) \leqq \varrho_{1}+T_{1}$ for all ν. Furthermore, it follows from conditions (ii) and (iii) that $y_{\varrho}(\nu)$, considered as a function of ϱ, is constant on a subinterval of length h of the ϱ-interval $\left[\varrho_{2}(v), \varrho_{2}(v)+(K+1) T_{1}\right]$. From lemma 4 we know that there is a sequence of congruent lattices $L_{\varrho}, \varrho=1,2, \ldots$, such that ${\underset{t=1}{h} L_{\varrho+t}=L_{0}, ~}_{\text {a }}$ for all ϱ. Since L_{0} is the projection of \bar{L}_{0} onto the y-axis, the preceding considerations show that the sequence $\left\{\left(\varrho, y_{\varrho}(\nu)\right)\right\}-$ considered as a set of points in $\bar{R}-$ intersects $\Lambda \cap \widetilde{L}_{0} \subset \bigcup_{1}^{\infty} \bar{M}_{n}^{\prime \prime}$ in some point, the first coordinate of which is some number

$$
\varrho_{3}(v) \leqq \varrho_{2}(\nu)+(K+1) T_{1} \leqq \varrho_{1}+(K+2) T_{1}=T_{4}<\infty .
$$

The constant T_{4} depends on a and a^{\prime}, but not on ν.

[^2]From the last statement and equations (12) and (15) we get

$$
\begin{aligned}
\inf _{\nu} f_{a,}, a^{\prime}(\nu) & =\inf _{\nu} P\left(S_{\varrho}=y_{\varrho}(v) \quad \text { for some } \quad \varrho>0\right) \\
& \geqq \inf _{\nu} P\left(S_{\varrho_{3}(\nu)}=y_{\varrho_{3}(v)}(v)\right) \geqq\left[\min _{z_{i} \in M_{1^{\prime}}} P\left(X_{1}=z_{i}\right)\right]^{T_{4}}>0 .
\end{aligned}
$$

This proves (11) and thereby theorem 2 for the linear case. If S is a planar random walk, all arguments go through as in the linear case. The only changes are, that \bar{R} is a (ϱ, x_{1}, x_{2})-space, \bar{Q} is a three-dimensional rectangle, Λ is a (generalized) cone, Γ is a cylinder.

7. Examples and remarks

We call any control of S, for which all points of the lattice L_{0} are recurrent states of V, a recurrence-control of S.
a) From theorem 2 one gets the following

Corollary. Any linear random walk S has infinitely many recurrence-controls. Any planar random walk S, for which X_{1} has a genuine two-dimensional distribution with $E\left|X_{1}\right|^{2}<\infty$, has infinitely many recurrence-controls.

Proof. If S is linear and X_{1} degenerates to one point, then the corollary is trivial. (The situation is different in the degenerate planar case. Theorem 2 is certainly not applicable, since in this case a recurrence-control cannot satisfy condition (i).) Now assume, that S is linear [planar] and that X_{1} has a genuine one-dimensional [two-dimensional] distribution. If $g=1$, then the corollary is true on account of theorem 2 , for there are infinitely many pairs ($\left\{n_{k}\right\},\left\{c_{n_{k}}\right\}$) which satisfy the conditions (i)-(iii). For $g>1$, we give only an outline of the proof. One can find a random walk V with the following properties.
(i) Every point of L_{0} is a possible state of V.
(ii) V satisfies the conditions of theorem 2.
(iii) If one shifts the coordinate-system such that the origin coincides with an arbitrary point b of a mesh of L_{S}, then V can be regarded in this system as a control V_{b} of a random walk S_{b} which starts in b and otherwise is identical with S.
Now theorem 2 applies to V_{b}.
In the following examples we assume for simplicity that X_{1} has a genuine one- or two-dimensional distribution and that $g=1$.
b) For the simplest linear random walk, where

$$
P\left(X_{1}=1\right)=p, \quad P\left(X_{1}=-1\right)=q, \quad 0<q<p<1,
$$

theorem 2 can be proved for $c_{k} \leqq 0$ without the number-theoretic apparatus of section 5 and without lemma 1 . Since $n(\pm 1+q-p)$ are possible values of S_{n}^{*}, the argumentation following equation (9) shows that for arbitrary large m,

$$
P\left(V_{n}<-m \text { i.o }\right)=P\left(V_{n}>m \text { i.o. }\right)=1 .
$$

In a transition from the set $(-\infty,-m]$ to $[m, \infty)$ all steps in the direction of the positive x-axis have length one; hence V passes through all points $-m,-m+1$, \ldots, m, which are therefore recurrent.
c) There exists in any case a recurrence-control with equidistant control times. Take e.g. in the linear case $n_{k}=\bar{h} h$, where $\bar{h} \geqq \max \left\{h,\left|E X_{1}\right|^{-1}\right\}$, and $C_{k}=$ $-\left[\bar{h} k E X_{1}\right]^{\star}$, where $[b]$ indicates the greatest integer $\leqq b$.
d) For any linear random walk S for which $E X_{1} \neq 0$ there exists a recurrencecontrol with constant control values. Put $n_{k}=[t k], t$ real and $\geqq 1$, and take $c_{n_{6}}=c$, where c is some integer such that $\operatorname{sgn} c=-\operatorname{sgn} E X_{1},|c| \geqq h\left|E X_{1}\right|$. Then V has all or no integers as recurrent states according to whether

$$
t=-\frac{c}{E X_{1}} \text { or } t \neq-\frac{c}{E X_{1}} .
$$

The second assertion follows easily from theorem 1 (iii); the first one is a consequence of theorem 2, whereby only the checking of condition (iii) needs some consideration which we omit. Looking at the special random walk of example (b), we see that $c_{n_{k}}=-2, n_{k}=\left[\frac{2 k}{p-q}\right]$ is a recurrence-control.
e) If S is a planar random walk for which $E X_{1} \equiv(\alpha, \beta) \neq 0$, there does not necessarily exist a recurrence-control with constant control values. More precisely there exists a recurrence-control with constant control values if and only if either $\beta=0$ or $\frac{\alpha}{\hat{\beta}}$ is rational.

Proof. If $\alpha \beta=0$, then one can take a control very similar to that of example (d). If $\alpha \beta \neq 0$, but $\frac{\alpha}{\beta}$ rational, then we have $\frac{\alpha}{\beta}=\frac{r}{s}$ for some integers r and $s>0$. Take then $c_{n_{k}}=(-\lambda|r| \operatorname{sgn} \alpha,-s \lambda \operatorname{sgn} \beta)$, where λ is some integer >0 such that $\lambda|r| \geqq(h+1)|\alpha|$, and take furthermore $n_{k}=\left[\frac{\lambda|r| k}{|\alpha|}\right]$. Then theorem 2 is applicable. Now suppose that $\beta \neq 0, \frac{\alpha}{\beta}$ irrational, and that n_{k} and $c_{n_{k}} \equiv c$ $\equiv\left(c_{1}, c_{2}\right) \neq 0$ are arbitrary. Then $E V_{n}=n E X_{1}+t_{n} c$, where t_{n} is some real number. If n is fixed, then $y=n E X_{1}+t c,-\infty<t<\infty$, represents a straight line in R_{2}, whose distance from the origin is given by $d_{n}=n\left|E X_{1}\right||\sin (\varphi-\psi)|$, with $\tan \varphi=\frac{\alpha}{\beta}, \tan y=\frac{c_{1}}{c_{2}}$. Our assumptions imply $\sin (\varphi-\psi) \neq 0$, hence

$$
\frac{\lim }{n} \frac{\left|E V_{n}\right|}{n} \geqq \frac{\lim }{n} \frac{d_{n}}{n}>0 .
$$

This means that on account of theorem. 1 (i) the random walk V cannot possess recurrent states.
f) If S is a linear or planar random walk for which $E X_{1} \neq 0$, then there exists a recurrence-control with constant control times and constant control values if and only if the components of $E X_{1}$ are rational.

We prove the statement for the planar case and put $E X_{1}=\left(\alpha_{1}, \alpha_{2}\right)$. Assume there is a recurrence-control of the form $n_{k}=b k, c_{n_{k}}=\left(c_{1}, c_{2}\right)$, where $b>0$ and c_{1}, c_{2} are integers. Since $n_{k+1} / n_{k} \rightarrow 1(k \rightarrow \infty)$, theorem $l($ iii) implies

$$
E X_{1}=\left(\frac{c_{1}}{b}, \frac{c_{2}}{b}\right)
$$

[^3]so that the components of $E X_{1}$ are rational. On the other hand, if
$$
E X_{1}=\left(\frac{r_{1}}{s_{1}}, \frac{r_{2}}{s_{2}}\right),
$$
where $s_{1}>0, s_{2}>0, r_{1}, r_{2}$ are some integers, then $n_{k}=h s_{1} s_{2} k, c_{n_{k}}=h\left(r_{1} s_{2}\right.$, $r_{2} s_{1}$) is a recurrence-control according to theorem 2.
g) Finally we consider the classical planar Pólya random walk with drift:
\[

$$
\begin{gathered}
P\left(X_{1}=(1,0)\right)=p_{1}, \quad P\left(X_{1}=(-1,0)\right)=q_{1}, \quad P\left(X_{1}=(0,1)\right)=p_{2}, \\
\\
P\left(X_{1}=(0,-1)\right)=q_{2} .
\end{gathered}
$$
\]

In order to exclude trivial cases, we assume $p_{1} q_{1} p_{2} q_{2}>0$ and $E X_{11} E X_{12} \neq 0$. If the ratio of the components of $E X_{1}$ is irrational, then there exists no recur-rence-control with constant control values, but one might try to find a control which is 'symmetric' with respect to the two components. For this purpose we propose $n_{k}=a\left[t_{1} t_{2} k\right], C_{k}=-a\left(\left[t_{2} k\right] \operatorname{sgn} E X_{11},\left[t_{1} k\right] \operatorname{sgn} E X_{12}\right)$, where a is an integer >0 and t_{1}, t_{2} are real numbers $\geqq 1$. Then by theorems 2 and 1 (iii) all or no lattice points of the plane are recurrent states of V according to whether $\left(t_{1}, t_{2}\right)=\left(\left|p_{1}-q_{1}\right|^{-1},\left|p_{2}-q_{2}\right|^{-1}\right) \quad$ or $\quad\left(t_{1}, t_{2}\right) \neq\left(\left|p_{1}-q_{1}\right|^{-1},\left|p_{2}-q_{2}\right|^{-1}\right)$.

Note added in proof: After completion of the manuscript, the author noticed that a special case of lemma 3 occurs in D. Meisler, o. Parastuk, E. Rvacheva: On the multidimensional local limit theorem of probability. [Russian.] Ukrain. Math. J. 1, 9-20 (1949).

References

[1] Chung, K. L.: Markov chains with stationary transition probabilities. Berlin, Göttingen, Heidelberg: Springer 1960.
[2] -, and C. Dermav: Non-recurrent random walks. Pacific J. Math. 6, 441-447 (1956).
[3] -, and W. H. J. Fuchs: On the distribution of values of sums of random variables. Mem. Amer. Math. Soc. 6 (1951).
[4] Hinderer, K.: Beiträge zur Theorie der Summen unabhängiger Zufallsvektoren. (Tentative title). To be published.
[5] Lamperti, J.: Criteria for the recurrence or transience of stochastic process. I. Math. Anal. Appl. 1, 314-330 (1960).
[6] Loève, M.: Probability Theory. Princeton, Van Nostrand 1960, 2nd ed.
Mathematisches Institut A Technische Hochschule Stuttgart and
University of California, Berkeley
(Received July 10, 1962)

[^0]: * For inf and \sum only those m are considered, for which the corresponding conditional probabilities are defined.

[^1]: * We use the usual convention, that if a and b are non-negative integers, then g.c.d. $(a,-b)=$ g.c.d. $(a, b) \geqq 0$ and g.c.d. $(a, 0)=$ g.c.d. $(\mathrm{a})=a$.
 ** It is easy to see that theorem 2 remains valid if condition (iii) is only satisfied for all but a finite number of the positive integers s.

[^2]: \star For $h=1, \bar{Q}$ degenerates to a segment of length $b_{2}-b_{1}$.

[^3]: * If $E X_{1}=0$, we have to modify n_{k} and C_{k} slightly.

