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Control l ing  o f  ~ o n - R e c u r r e n t  Lat t ice  R a n d o m  W a l k s  

By 

KARL HINDERER 

1. Introduction 

Let X n  -~ ( X n l ,  . . .  , Xn~),  n = 1, 2 . . . . .  be independent, identically dis- 
tributed, d-dimensional random vectors with integer-valued components. Through- 
out this paper we assume the existence and finiteness of the vector of expectations 
E X 1  ~- ( E X l l  . . . .  , E X l d ) .  We shall interpret the stochastic sequence S = {Sn),  
defined by 

n 

(1) sn = y x~, n = 1,2, . . . ,  

v = l  

as a (generalized) random walk in the Euclidean space R~. In  most cases, we shall 
be concerned only with linear and planar random walks. 

I f  E X 1  ~ 0, [EX1  = O, and E ]X1] 2 < c~], then by  C ~ v ~  and FUCHS [3] 
every possible state of the linear [planar] random walk S is recurrent. I f  E X 1  * 0, 
then it is well known tha t  S does not possess any recurrent state. Furthermore,  an 
investigation of this case by  CHV~G and DEI~A~r [2] showed: if  S is a linear 
random walk having all positive integers as possible states and if 0 < E X 1  < c~, 
then any infinite set of positive integers is visited by S infinitely often with proba- 
bility 1. 

In  this paper we want to make another s tudy of the case where E X 1  * O, 
d --~ 1, 2. Centering the Xn at  expectations leads to a new randomwalk  S* --~ {S~}, 
defined by  

(2) S*~ = ~ (X~ - -  E X 1 ) ,  
v = l  

for which all possible states are recurrent, but which in general no longer proceeds 
in the lattice. This suggests the following question: Does there always exist a 
sequence of constant vectors cn with integer components, such tha t  the random 
walk V = { Vn}, given by 

(3) Vn - ~ (Xv + cv), 
v = l  

possesses recurrent states ? The substitution of S by V may  be interpreted as a 
control of S: A particle which performs the random walk S undergoes during the 
n-th step an additional translation cn. Our aim is to determine cn in such a way, 
tha t  the particle is prevented from drifting away. I t  is important  tha t  Cn is a 
constant vector and hence does not depend on the position of the particle at  t ime n. 
This means tha t  V is a spatially homogeneous and temporari ly inhomogeneous 
random walk. Recurrence problems for spatially inhomogeneous and temporarily 
homogeneous random walks have been studied by several authors (see e.g. [5]). 
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We derive a necessary criterion and a sufficient criterion for the  existence of  
recurrent  states in V. I n  particular,  we show t h a t  any  linear [planar] r andom walk 
S, for which X i  has a genuine one-dimensional [two-dimensional] distribution, 
m a y  be controlled in infinitely m a n y  ways such tha t  all lattice points become 
recurrent  states. 

The proof  of  the main  result  (theorem 2, sufficient criterion) is based on three 
facts : (i) the cited result  of  CHU~G and  FUCHS ; (ii) a generalization of a theorem of 
C~u~G on Markov chains with s ta t ionary  t ransi t ion probabilities to Markov chains 
with non-s ta t ionary  t ransi t ion probabilit ies; (iii) an analysis of  the set of possible 
states of  the r andom walk S (lemmas 2--4) .  

2. Def in i t ions  

Let  U ~ {Un) be an  arb i t rary  sequence of  d-dimensional r andom vectors 
Un = (Uni . . . . .  Una). We use the following definitions (cf. [3]): 

(a) The point  a ~ Ra is a possible value of Un, if P(]  Un -- a[ ~ e) ~ 0 for 
every e ~ 0. 

(b) The point  a ~ Ba is a possible state of U, ff for every e > 0 there exists an 
n --~ n(e) such tha t  P([ U n - -  a] < e) > O. 

(c) The point  a ERa  is a recurrent state of U, if P([ Un - -  a I < e i.o.) = 1 for 
every e > 0; or equivalently,  f f a  is a limit point  of  the sequence {Un} with proba- 
bili ty 1. I n  the case of  lattice r andom vectors these definitions coincide with the  
usual ones. 

I t  is sometimes convenient  to  describe V in such a way  t h a t  only the non- 
vanishing ones of  the  cv - -  denote them b y  Cnl, cn~ . . . .  , - -  are used. ( In  the sequel 
we consider only those r a n d o m  walks V, for which infinitely m a n y  of  the cv do 
no t  vanish, since this is the  only interesting case.) P u t  no = 0, co ---- 0, So ~- 0; 

k 

and for k = 0, 1 . . . .  pu t  Ck = ~ cn~. Then V is given by  
j=0 

k = O ,  1 . . . . .  
(4) V ~ + m  = S~+.~ + C~, 

m = 0, 1, . . .  , n ~ + i - -  n ~ - -  1. 

We call the  numbers  nk control times and the vectors Cnk control values. 

3. Necessary conditions for recurrent states 

Theorem 1. Assume that the random walk V -= {Vn}, Vn = ~ (X~ ~- c~.), 

possesses a recurrent state. 
(i) I < ]or some r, 1 <= r < 2, then 

n n l / r  I 1 

In  particular, in any case E X i  -~ ~- 1 

(ii) I / E  I Xi]r  < r /or some r, 1 ~ r ~ 2, bn ? oo and Z bnr < c~, then 
1 

lim 1 n E X i - ~ -  c~ = 0 .  -~-bT 
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(iii) I / l i r a  nk+l _ _  1, then 
k-+oo ~/z 

~ i m  

k 

Pro@ Since m a x  I XI~[ G 
~=l, . . . ,d  

I X1 I, the  conditions on the momen t s  of  IX1 J imply  

the  corresponding conditions for  all components  of  X1. I n  (i), b y  KOn~OGOROV- 
MARCIZ~KIEWZVZ (see e.g. [6], p. 243), we have  

'* 1 ( V ~ - - E V ~ ) ~ O  a.s.  1 ~, ( x ,  - EX~) =- - ~ -  
nllr 

1 

(ii), b y  L o ~ v ~  [6], p. 241, we have  b ~  ( Vn - -  E Vn) -+ 0 a.s. Pu t t ing  bn = I n  nl /r  

in case (i), the  definition of a lmost  sure convergence yields in both  eases 

(5) P(]  Vn -- E V n [  ~ ebn i.o.) = 0 for every  s > 0. 

I f  a is now a recurrent  s ta te  of  V, then  by  definition 

(6) P ( l V n - - E V n l ~ l E V n - - a ] - - l i . o . ) > = P ( ] r n - - a ] < l i . o . ) = l .  

The compar ison of (5) and (6) implies t ha t  for infinitely m a n y  n, I E Vn -- a] --  1 
< s b n ;  therefore [EVn[  ~ [ E V n - - a [  @ [a[ < e b n ~ -  [al @ 1  for infinitely 

m a n y  n. As bn -+ c~, l im I E Vn I < 2 e. This being valid for every  s > 0, we get  
bn 

n 

(7) lim [EVnJ _ O. 
bn 

n 

F r o m  (7), (i) and  (ii) follow immedia te ly .  To prove  (iii), we note  t ha t  (i), r = 1, 
applies. Hence  there  exists a sequence of posit ive integers ls ~ oo such t h a t  

1 ls 
1-~ ~ c~ --~ -- E X1.  

Y = I  

One can choose ls in such a way  t h a t  each interval  (ls-1, Is] contains a t  least  one of 
the n$. Denote  by  n~, the largest  of  the  nk lying in t h a t  interval .  F r o m  

1 < 1L < n~+ l  -+  1 ( s - +  cr 
~,Y's n/~'s 

- -  nj - -  n~, ls c~, we get - -  n 1  -+ - -  E X1, which proves  (iii). 
nlcs j nks ] 

R e m a r k s .  1. The conditions in theorem 1 are in general not  sufficient for the 
existence of recurrent  s ta tes  in V. Take,  for example,  X1 = c (c some integer),  and  
Cn ~- [Vn] - [ V n -  1 ]  - c, where [b] denotes the  greates t  integer g b .  Then 

lim t E X 1  ~ - - - l ~ c ,  l --~ l im [l/n] - 0, bu t  Vn = [ / n ] - - >  oo a.s. 

2. I n  general, the  existence of a recurrent  s ta te  does not  tell us any th ing  abou t  

Tako for example :  ( somointeger). Then, forany , lira~ + ~  1 
1 

24* 
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0 ~ b ~ co, there exists a sequence of integers Cn such that  V has a recurrent 
state and 

[ lira E X I + - I  c~ = b .  

3. In  the proof of t~heorem 1 we did not need the assumption that  X1 has 
integer-valued components. Furthermore, part (ii) does not require that  the Xn 
are identically distributed. This remark and a modification of the conditions on 

the moments of the Xn (see L o i r e  [6], p. 241) lead to the following recurrence 
criterion for sums of independent random vectors. 

Corollary. Let Y1, Y~ . . . .  be independent d-dimensional random vectors. Assume 
there are two sequences o/ real numbers bn ? co and rn, 1 ~ rn ~ 2, such that 

E I Yn It, < co. Then, i / the  sequence Un = Y~ possesses a recurrent state, 
n = 1 b~% 

lira IEvnl _ O .  

- -  b z ~  

4. A lemma on 1Narkov chains 

The following lemma is a generalization of a theorem of C~u~G (see e.g. [2], 
theorem 1) to the case where the Markov chain does not have stationary transition 
probabilities. 

Lcmma 1. Let U = {Un, n ~ 0} be a Markov chain, not necessarily with 
stationary transition probabilities. Let Z be the minimal state space o /U .  For B c Z, 
i e Z  and m ~ 0 define, i/ P ( U m  = i) ~ O, 

[~,B(m) = P (Un e B for some n > m] U m =  i). 

Then the [ollowing statement holds: 1[ P ( U n  ~ A i.o.) = 1 and inf  [i,B(m) ~ O, 
i s A , m  >= 0 

then P ( U n e B  Lo.) ~ 1". 

As the proo/is just a modification and extension of the proof of theorem 5 in [1], 
p. 19, we indicate only the necessary alterations. 

P u t ~  = inf [~ ,B(m).Thenfor0  ~ N '  ~ N  
i e A , m  >=O 

P ( U n c A  for s o m e n ~ N ;  U n ~ B f o r n ~ N ' )  

= ~,, ~ P ( V n ( - A f o r N < = n < m ;  U r n = i ;  U n ( ~ B f o r n ~ N ' ) ~  
i ~ A  m =  N 

o o  

g ~ ~. P ( U n ~ A f o r N < n < m ; U m = i ; U n C B f o r N ' < ~ n < ~ N ;  
i c A  m =  N 

U n ~ B  for n > m) 

* For inf and ~ only those m are considered, for which the corresponding conditional 
probabilities are defined. 
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= ~ ~ P ( U n + A f o r N ~ = n < m ;  U r n = i ;  U n ~ B f o r N ' ~ n ~ N )  
i e A  m = 2 g  

• P ( U n ~ B  for n > m  I Um : i )  

< = ( 1 - - g ) P ( U n e A  for some n ~ 2V; U n ~ B f o r N ' < _ n < ~ N ) .  

The rest follows then by  letting N -~ co and N '  -~ oo. 

5. A n a l y s i s  of the  set of possible  va lues  of S .  

I f  one tries to  apply  the  preceding lemma to  our recurrence problem, it turns  
out,  t ha t  the verification of  the condition inf /i,B (m) > 0 requires some 

ieA,m>~O 

information about  the manner,  in which the probabil i ty mass of Sn spreads over 
the line (or the plane) as n--~ c~. I n  this section we state only the pert inent  
results. The proofs for lemmas 2- -4 ,  which require several facts f rom the theory  
of  diophantine equations, are par t  of a for thcoming paper [4] which deals with 
other problems on the set of  possible values of  Sn.  I n  order to avoid repetition, 
we shall describe the properties of  the sets in question for d-dimensional r andom 
walks, though  we shall make use of  it only for d = 1 and d = 2. 

Denote by  L0 the set of  all points in the Eucl idean space Ra with integer 
coordinates. For  any  d @ 1 points b~ ----- (hi1, . . . ,  b~a) E L0, i = 1, 2 . . . . .  d -~ 1, we 
pu t  

bl1 b12 �9 �9 �9 bla[ 

A ~- A (bl . . . . .  ba) = b21 . . . . . . . . . .  b22 �9 . �9 b2a 

b ~ l b ~  �9 . �9 b~a[ 
and 

bll b12 �9 . . big 1 

D --= D(bl  . . . . .  ba+l) = b21 b22 �9 �9 �9 b2a 1 

bd+l, 1 bd+l, 2 �9 �9 �9 ba+l,a 1 

I f  bl, b2, . . . ,  bs, 1 <-- s <_ d, are linearly independent  d-dimensional (constant) 
8 

vectors, any  set of  the form L ==-L(bo;bl . . . .  ,bs) = {b :b = bo-F ~y~b i ,  b0eL0,  
1 

yi a rb i t ra ry  integers} is called a s-dimensionM sublattice of  L0. A lattice has m a n y  
different representations. I t  is not  difficult to  see tha t  for s = d the positive 
integer mL = [A (bl . . . . .  ba) ] is invariant  under  the class of  all representations 
of  the lattice L (b0; bl . . . . .  ba). Hence m L  is a geometrical p roper ty  of  the lattice, 
namely  the content  of  a mesh of  the lattice. 

Let  M n  and M be the set of  possible values of  Sn and  possible states of  S 
c o  

respectively. Then M = u M n ,  and Mn and M are uniquely determined by  M1, 

the set of  possible values of  X1, for 
n 

Mn ---- { z : z =  ~ a ~ , a ~ M 1 } .  
1 
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F o r  th is  and  the  following sect ions we m a k e  the  assumpt ion ,  t h a t  X1 has  a 
genuine d-d imens iona l  d i s t r ibu t ion ,  i.e., t h a t  M1 conta ins  d ~- 1 poin ts  for which 
the  d e t e r m i n a n t  D is no t  equal  to  zero. Then  the re  exist  t he  g rea tes t  common  
d iv i so r*  (g. c .d.)  g of  the  d e t e r m i n a n t s / [  and  the  g. c .d.  h of  the  de t e rminan t s  D, 
al l  d e t e r m i n a n t s  t a k e n  for the  po in ts  in M1. Obvious ly  g d ivides  h. 

L e m m a  2. There exists a unique smallest d-dimensional lattice L s  containing M .  
The mesh-content o / L z  is equal to g. I n  particular, L z  is a proper sublattice o / L o  
if  and only if  g > 1. 

L e m m a  3. I f  g ~ 1, then there exists a finite subset M~ of M1 with the following 
property: to every positive integer 1 there exist a positive integer n (l) and a d-dimen- 
sional cube W (1) (the position of which may depend on l) with sides of length l, 
such that 

h n ( l ) + t  h 

(8) Lo (~ W(1) c L) {b: b = ~ a ~ ,  a~ EM1} c k) Mnq)+t .  
t = l  i = 1  t = l  

L e m m a  4. I f  g ~-- 1, then Lo is the disjoint union of h congruent lattices L1, 
. . . .  La,  which have mesh-content h. I f  n =- t (mod h), then M n  c Lt ,  t ---- 1, 2, . . .  , h. 

The  la t t i ce  Lz  in L c m m a  2 will  be cal led the  minimal  lattice of S.  L e m m a  3 
is of  special  impor t ance  for our  problem.  The  re la t ion  (8), in which the  second 
inclusion needs  no proof,  tel ls  us e.g. in the  case h ~ 1, t h a t  the  possible values  
of  Sn ' c lus ter '  in t he  following sense:  as n -~  ~ ,  the  la t t i ce  po in ts  of  larger  and  
larger  cubes can be reached  in n steps,  even if  one uses in the  r a n d o m  walk  only 
some finite set  of  possible values  of  X1. 

6. Sutficient condit ions for recur ren t  states 

Theorem 2. Let S be the linear or planar random walk (1), and assume E ] XI[ 2 ~ c~ 
in the planar ease. I]  {n~} is any sequence o/control  times, then all points o/ the 
minimal  lattice L z  are recurrent states o / the  random walk V, defined by 

(4) Vnk+m : Snk+m ~- Ck,  

i] the/ollowing conditions are satisfied: 

(i) C~ -~ - -  n k E X 1  -~ 0(1), ( k - ~  zo); 

(ii) sup (n~+l - -  nk) < ~ ; 
k 

(iii) there exists an integer K > 0 such that/or s ~-- 1, 2, . . .  

m a x  (nTc+l - -  nk) ~ h 
k = s , s §  ..... s + K  g 

R e m a r k s .  1. Condi t ion  (i) is plausible ,  for i t  says  t h a t  one selects C~ in such 
a w a y  t h a t  I EVn~] cannot  go to  infini ty.  2. Condi t ion  (iii)** cannot  be t o t a l l y  

* We use the usual convention, that if a and b are non-negative integers, then g.e.d. 
(a, --b) : g.c.d. (a, b) ~ 0 and g.c.d. (a, 0) ~ g.e.d. (a) = a. 

** I t  is easy to see that theorem 2 remains valid if condition (iii) is only satisfied for all 
but a finite number of the positive integers s. 
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dispensed with, as is seen by  the following example. Take M1 = {1, 4, 7}, and 
assign probabilities to  the points of  M1 such t h a t  EX1  = 2.5. Then take n~ - 2 k, 
Ck = - - n ~ E X 1 - - ~  - - 5 k .  Conditions (i) and (fi) are satisfied, but  none of  the 
points 2 -~ 3 2, where 2 is an a rb i t ra ry  integer, are in M ;  hence none of them is 
recurrent,  while all of  them belong to  Ls  = L0. 

The proo /o f  theorem 2 is carried through in three steps. At  first we compare 
the controlled r andom walk 

k = 0 , 1 , . . . ,  
(4) V~k+m = Sn~+m + C~, m = 0, 1, . . .  , n~+l - -  n~ - -  1, 

with the centered r andom walk 

(2) Sn = Sn -- n E X 1 ,  n = 1, 2 . . . . .  
s 0 - 0 .  

I f  we pu t  ~ (/c) = U~ @ n~EX1,  our assumptions imply  the existence of  con- 
s tants  T1, T2 such t h a t  n~+l - -  ne ~ T1 < oo and [~ (/c)[ =_< T2 < oo. Hence 

l Vn,+m - S;,+ra I ~-- I Ck @ n k E X ,  -~ mEX11 <= Jr/(lc)l ~- m ]EX11 < 

< T2 + TllEX~I < ~ ,  

therefore, for some constant  T, 

(9) sup I v .  - s~  ] < T < ~ .  

Let  b be any  possible value of  X1. Then P (S~ = b --  EX1)  = P (X1 = b) > 0, 
which means t h a t  b' = b -- E X 1  is a possible state of  S*. Now S n is a sum of 
independent,  identically distr ibuted random vectors X~ ~ X~ -- EX~,  for which 
E X ~ = O  and E IX~] < c ~  in the linear ease, and E X ~ = O ,  E I X ~ ] 2 < o o  in 
the planar  ease. B y  the result of  CHUNG and  F v c ~ s  [3], b' is then a recurrent  
state of  S*, which implies on account  of  (9) t ha t  

(10) P(IV,--b ' I  < 2 T i . o . ) > P ( I S ~ - - b '  I < Ti .o . )  = 1. 

I n  the second step we apply  lemma 1 of  section 4. We have now to distinguish 
between the  linear and the planar  r andom walk. The proof  will be continued only 
for the first of  these two cases, the other  being completely analogous. We remark  
tha t  it is sufficient to  prove theorem 2 for the case g = 1, the general case can 
be reduced easily to the special ease by  replacing the lattice L0 by  the lattice Ls.  
I f  we take  now in Lemma 1 for A the set of  all lattice points in the interval  
[b'--  2 T, b' ~- 2 T], and for B an arbi t rary  lattice point  a ' ,  then  equat ion (10) 
and the finiteness of  A imply, t ha t  a" is a recurrent  state of  V, if  for any  a ~ A 

(11) inf/~, ~, (~) > 0. 

The verification of (11) will be based on the fact  t h a t / a ,  a" (v) can be represented 
in the  form 

(12) ] a , a , ( r ) ~ P ( S e ~ - - a ' - - a - ~ E X l - - ~ ( ~ , , ~ )  f o r s o m e  ~ > 0 ) ,  

where ~ (v, ~) is a bounded double-sequence. This is proved in the following way. 
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W e  h a v e  

/a ,a ' ( r )=P(Vn=a'  for some n > v I V ~ : a )  
n 

0 0 

=P(Sn--S~-- - -a ' - -a- -~c~ for some n > ~ )  
~ + 1  

= P ( S n - , , : a ' - - a - - i c ~  for some n > v )  

@--1 

7 )(S e = a ' - a - ~ , c ~ + l + i  for some @>0)  
i = 0  

= P ( S  e = a ' - a ~ - @ E X l - ~ ( v , @ )  for some ~ > 0 ) ,  
Q--1 

where $ (% @) = ~ (c~+1+/+ EX1). 
i = 0  

Now define n~(v) to be the largest of the numbers n~ which are --< v. From ~ (k) 

C~ + n~EX1, we get cn~ ~ (nk-i -- nk)EX1 + N(]c) -- N(]c -- 1), which yields 

v+l =<n~<~+e 

. /  
/ 

0}, 
} E X ~ = 2 ,  g =  1, h = 3  

Since nk+l -- n~ _< 5"1 < 0% the de- 
finition of k (r) implies 

(13) 
v =  1 ,2 , . . . .  

Applying 03) twice, we get 

-- T1 ~ ~k(v) -- nk(v+q) -~ @ ~ T1 

and ~nally 

(14) 
T 3 < o 0  for a l l v a n d f f .  

This proves that  /a,a' (v) has the 
asserted representation. 

The third step of the proof con- 
sists in the verification of relation 
(11). The argument will become 
clearer by representing the linear ran- 
dom walk {Se} as a sequence of (ran- 
dom) points (~, SQ) in a two-dimen- 
sional (if, y)-spaee R (see Fig. 1). 
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n 

For  any  set B c Mz we define B n  = (z : z = ~ b~, b~ e B } .  For  any  set A n  c Lo 
1 

r  _ _  

we define An - {(Q,x):Q = n , x ~ A n }  and A--~ U A n .  Thus, L0 is the two- 
1 

dimensional representat ion of  the minimal lattice of S. 

Since X1 has a genuine one-dimensional distr ibution (i.e. Xz does not  de- 
generate into one point) and since E X 1  lies in the convex huli of  M1, there are 
points bl, b2 ~ M1 such tha t  bz < E X z  < b2. I f  we put  E X 1  = t an  ~, bl ---- t an  ~z, 
b2 ~- t an  ~2, then ~1 < ~ < ~2, if  one takes the appropriate  determinat ion for 

I 
are tan. By  lemma 3 there is a number  Q0, a finite subset M 1 c Mz and in R some 

closed rectangle Q, whose sides are parallel to  the axes and of  length h - -  1 and 
h 

b2 - -  bl*, such tha t  L0 (~ Q c w Meo+t- This relation implies, since Sn is a sum 

of independent,  identically distr ibuted random variables, t h a t  there exists a sec- 

tor  A in R with the following properties:  (a) the legs of  A form with the Q-axis 
oo  - - t l  / I  / 

angles of  s i z e ~ l a n d  ~2; (b) A n L 0 c w M  n , w h e r e M  1 ~ - M  1 U ( b l , b 2 } ; t h i s  
1 

means, t h a t  all points of  the minimal lattice L0, which lie in A, can be reached 
by  S, using only the points bl, b2, and the points in M~. 

I n  view of  (12), we consider in R for every fixed ~ the sequence {(Q, Yo (~))}, 
where 

(15) Yo(~) = a' - -  a + Q E X 1  --  ~(~, Q). 

By (14), the sequence {(Q, yq (v))} lies inside the parallel s t r i p / "wh ich  is symmetr ic  
to the fine y = a' - -  a + Q E X 1  and which has width 2 Ta cos ~0. Hence there 
exists a number  Qz = Qz (a, a ') ,  independent  of v, such tha t  (~, Yo (~)) E A for 
Q > Qz and for all v. Denote  by  Qz (v) the smallest of the numbers  Q > Qz for 

O - - 1  

which y~ (v) * Yol (v)" Since Ye (~) = a '  - -  a - -  ~ c,+l+i, the condition (li) implies 
i = 0  

Q2 (v) ~ Qz + T1 for all ~. Furthermore,  it follows from conditions (ii) and (iii) 
t ha t  yQ (v), considered as a funct ion of  Q, is constant  on a subinterval  of  length h 
of  the Q-interval [Q2 (v), ~z (v) -~ (K + 1)T~]. F rom lemma 4 we know tha t  there 

h 

is a sequence of  congruent  lattices Lo ,  Q = 1, 2 . . . .  , such t h a t  k9 Lo+ t ~- Lo 
t = l  

for all Q. Since L0 is the projection of  L0 onto the y-axis, the preceding eonsidera- 

tions show tha t  the sequence {(Q, yo (v))} - -  considered as a set of  points in R - -  
o o  

intersects A n L0 c w M~' in some point, the first coordinate of  which is some 
1 

number  
~(~) < Q~(v) + (K + I)T1 ~ ~z + (K + 2)T~ = T~ < oo. 

The constant T 4 depends on a and a', but not on v. 

* For h = 1, Q degenerates to a segment of length bz -- bl. 
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From the last s tatement  and equations (12) and (15) we get 

inf/a,a'@) = i n fP (S e  = ye(v) for some Q > 0) 
y 

> inf P (Se~(~) = ye~(~) (~)) > [min P (X1 = z~)] T4 > 0. 
zi~Ml" 

This proves (Ii) and thereby theorem 2 for the linear case. If S is a planar random 
walk, all arguments go through as in the linear case. The only changes are, tha t  

R is a (e, x l ,  x2)-space, Q is a three-dimensional rectangle, A is a (generalized) 
cone, F is a cylinder. 

7. Examples and remarks 

We call any control of S, for which all points of the lattice L0 are recurrent 
states of V, a recurrence-control of S. 

a) From theorem 2 one gets the following 

Corollary. Any linear random walk S has infinitely many recurrence-controls. 
Any planar random walk S,/or which X1 has a genuine two-dimensional distribution 
with E ]Xll 2 < 0% has infinitely many recurrence-controls. 

ProoJ. I f  S is linear and X1 degenerates to one point, then the corollary is 
trivial. (The situation is different in the degenerate planar case. Theorem 2 is 
certainly not applicable, since in this case a recurrence-control cannot satisfy 
condition (i).) Now assume, tha t  S is linear [planar] and tha t  X1 has a genuine 
one-dimensional [two-dimensional] distribution. I f  g - -  1, then the corollary is 
true on account of theorem 2, for there are infinitely many  pairs ({he}, {cnk}) 
which satisfy the conditions (i)--(hi). For g > 1, we give only an outline of the 
proof. One can find a random walk V with the following properties. 

(i) Every  point of L0 is a possible state of V. 
(ii) V satisfies the conditions of theorem 2. 

(iii) I f  one shifts the coordinate-system such tha t  the origin coincides with an 
arbi t rary point b of a mesh of Ls, then V can be regarded in this system as 
a control Vb of a random walk Sb which starts in b and otherwise is identical 
with S. 

Now theorem 2 applies to Vb. 
In  the following examples we assume for simplicity tha t  X1 has a genuine 

one- or two-dimensional distribution and tha t  g -= 1. 

b) For the simplest linear random walk, where 

P ( X I - - ~ I ) = p ,  P ( X I - ~ - - I ) - ~ q ,  0 < q < p < l ,  

theorem 2 can be proved for c~ < 0 without the number-theoretic apparatus of 
section 5 and without lemma 1. Since n(=k 1 + q - -  1o) are possible values of S~, 
the argumentat ion following equation (9) shows tha t  for arbi trary large m, 

P ( V n <  - - m  i.o) • P ( V n > m  i.o.) ~ 1. 

In  a transition from the set ( - -  0% - -  m] to [m, oo) all steps in the direction of the 
positive x-axis have length one ; hence V passes through all points - -  m, - -  m q- 1, 
. . . .  m, which are therefore recurrent. 
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c) There exists in a ny  case a recurrence-control with equidistant  control times. 
Take e.g. in the linear case nk : hk, where h ~ max{h,  [EXI[-1}, and C~ : 
- -  [hkEX1]* ,  where [b] indicates tile greatest  integer :< b. 

d) For  any  linear r andom walk S for which E X 1  4:0 there exists a recurrence- 
control with constant  control values. P u t  n]~ = [t/c], t real and ~ 1, and take 
c ~  = c, where c is some integer such t h a t  sgn c = - -  sgn E X 1 ,  [c [ ~ h IEX11 .  
Then V has all or no integers as recurrent  states according to whether  

e c 
t = - -  - -  or t ~ : - - - -  E X1 .E X1 " 

The second assertion follows easily f rom theorem 1 (iii); the first one is a con- 
sequence of  theorem 2, whereby only the checking of  condition (iii) needs some 
consideration which we omit. Looking at  the special r andom walk of  example (b), 

we see tha t  Cn~ =- - -  2, nk = is a recurrence-control.  

e) I f  S is a planar  r andom walk for which E X 1  ~ (~, fi) 4= 0, there does not  
necessarily exist a recurrence-control  with constant  control values. More pre- 
cisely there exists  a recurrence-control wi th  constant  control values i /  and only i /  

either fi = 0 or -~ ~s rational. 

P r o @  I f  ~/~ = 0, then one can take  a control very  similar to t ha t  of  example (d). 

I f ~ f i  + 0, bu t  rational, then we h a v e ~  = s  for some integers r and s > 0 .  

Take then Cn~ = ( - - 2  [r] sgn ~, - - s 2  sgn fi), where 2 is some integer > 0  such 

tha t  2 ]rl ~ (h + 1 ) l~ l ,  and take fur thermore nk = [-~-g~-j. Then theorem 2 

is applicable. Now suppose tha t  fi 4= 0, ~- irrational, and t h a t  nx and Cn~ -~ c 

=- (cl, c2)4=0 are arbi trary.  Then E V n  = n E X 1  + tnC, where tn is some real 
number.  I f  n is fixed, then y ----- n E X ~  + tc, - -  c~ < t < ~ ,  represents a s traight  
line in R2, whose distance from the origin is given by  cln = n IEX11 [sin (~v - ~0)[, 

C l  
with t an  ~ = -~, t an  ~0 = ~-2" Our assumptions imply  sin (q) - -  ~v) + 0, hence 

lim [EVn[. > l im  dn > O . 
n 

This means tha t  on account  of  theorem 1 (i) the r andom walk V cannot  possess 
recurrent  states. 

f)  I f  S is a linear or planar  r andom walk for which E X 1  4= O, then there exists 
a recurrence-control  with constant  control times and constant  control values if 
and  only ff the components  of  E X 1  are rational.  

We prove the s ta tement  for the planar  ease and pu t  E X 1  = (~l ,  ~2). Assume 
there is a recurrence-control of  the form n~ = bk,  cn~ = (Cl, c2), where b > 0 
and q ,  c2 are integers. Since nk+l/n~--> 1 (k--~ c~), theorem 1 (iii) implies 

E X 1  = , , 

* If  EXz  = 0, we have to modify n~ and C~ slightly. 
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so t h a t  t he  componen t s  of  E X  1 are  ra t ional .  On the  o ther  hand ,  ff 

E X 1  -~ , , 

where  s l  > 0, 89 > 0, r l ,  r2 are  some integers,  t hen  nt: ~ h s l s 2 k ,  cn k ~- h ( r l s 2 ,  

r~81) is a recur rence-cont ro l  according to  t heo re m 2. 

g) F i n a l l y  we consider  the  classical  p l ana r  P61ya r a n d o m  walk  wi th  dr i f t :  

P ( X 1  = (1,0)) = /9~,  P ( X I =  ( - -  1,0)) = q ~ ,  P ( X  l =  (0,1)) = P 2 ,  

P ( X ~  -~ ( 0 , -  1)) = q2. 

I n  order  to  exclude t r iv i a l  cases, we assume/91qlp2q2 > 0 and  E X l l E X I ~  # O. 

I f  the  ra t io  of  the  componen t s  of  E X 1  is i r ra t iona l ,  t hen  there  exists  no recur-  
rence-cont ro l  wi th  cons tan t  control  values,  b u t  one migh t  t r y  to  f ind a control  
which is ' s y m m e t r i c '  wi th  respec t  to  the  two components .  F o r  th is  purpose  we 
propose  n~ = a[ t l t 2k ] ,  C~ -~ - -  a ([t2k] sgn E X l l ,  [ t lk]  sgn E X 1 2 ) ,  where  a is an  
in teger  > 0 and  t l ,  t2 are  real  numbers  ~ 1. Then  b y  theorems  2 and  1 (fii) al l  or 
no l a t t i ce  po in t s  of the  p lane  are  recur ren t  s ta tes  of  V according to  whe the r  

(t~, t2) = ( [ p l  - ql  1-1, {p~ - q~ I -~) or (t~, t ~ ) .  ([p~ - ql  { -1,  1 ~  - q2 I - i ) .  

Note added in proof: After completion of the manuscript, the author noticed that  a special 
case of lemma 3 occurs in D. MEISLER, O. ~)ARASIUK, E. ~VACHEVA: On the multidimen- 
sional local limit theorem of probability. [Russian.] Ukrain. Math. J. 1, 9--20 (1949). 
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