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Results  and Problems in the Theory 
of Doubly-Stochast ic  Matrices* 

B y  

L. MIRSKY 

1. Introduction 

I n  a shor t  b u t  pene t r a t ing  no te  publ i shed  in 1923, ScHu~ [57] gave a h igh ly  
effective m e t h o d  for der iv ing inequal i t ies  be tween the  character is t ic  roots  and  the  
d iagonal  elements~of he rmi t i an  matr ices**.  Now, ff H = (hr~) is a he rmi t i an  m a t r i x  
wi th  charac te r i s t ic  roots  o~1 . . . . .  ~on, t hen  there  exists  a u n i t a r y  m a t r i x  U = (Urs) 
such t h a t  

(1.1) H --~ U diag (0)1 . . . . .  on) U*; 

and  the  s t a r t ing  po in t  in Sehur ' s  a rgumen t  was the  observa t ion  of  a s imple con- 
sequence of  (1.1), n a m e l y  

' h~ lull] ~ . . .  l U ~ n l  ~ ~o~ 

( 1 . 2 )  . . . . . . . . . .  

\hno/ lunll2.., lun.12/ 
The m a t r i x  (] Ur8 ]~) appear ing  on the  r igh t -hand  side has  ve ry  special  p roper t ies .  
I t  is square in shape,  i ts  e lements  are real  non-negat ive  numbers ,  and  the  sum of  
the  e lements  in each row and  each column is equal  to 1. Sc~va~ referred to  such 
matr ices ,  or more  precisely to  the  l inear  subs t i tu t ions  associa ted  wi th  them,  s imply  
as ' averages '  (Mittelbildungen) b u t  in  modern  t e rmino logy  t h e y  are  known as 
doubly-stochastic (d.s.) mat r ices*** .  

A grea t  dea l  of  work  on the  proper t ies  of  d.s. mat r ices  has been carr ied out  
since t hey  were first in t roduced  into  the  l i tera ture ,  b u t  i t  is p r o b a b l y  no over-  
s implif icat ion to  say  t h a t  two fundamen ta l  theorems,  p roved  respec t ive ly  b y  
HARDY, LTTTLEWOOD, and  PdLYA in 1929 and  b y  G. BII~KttOFF in 1946, have  
been d o m i n a n t  in this  field of  s tudy .  I t  is therefore  inevi tab le  t h a t  the  p resen t  
su rvey  should  be largely  concerned wi th  the  t e r r i t o ry  cha r t ed  b y  these  two  
theorems.  

* This survey is based on an address given to the meeting of tile Stochastic Analysis 
Group held in Southampton in April 1962. 

** Schur's investigations in this field were pursued further by A. OSTROWSK~ [51]. 
*** The term 'stochastic process' (derived from aT6Zo; = target) has come to replace 

the older term 'random process'. Certain matrices which occur in the theory of stochastic 
processes are consequently called 'stochastic matrices', and the special stochastic matrices 
with which we are concerned are now known as 'doubly-stochastic matrices'. As far as I am 
aware, the term 'doubly-stochastic' was first employed in Feller's book [18]. 
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HARDY, LITTLEWOOD, and F()LYA established their result  by  means of  an  
e lementary though  somewhat  involved algebraic procedure, while BIRKI~OFF based 
his proof  on P. Hall ' s  theorem about  systems of  distinct representatives [20]. 

Both  arguments  are notable  examples of  ad  hoc reasoning, bu t  in recent  years it 
has come to  be recognized t h a t  the natura l  sett ing for the discussion of  d.s. 
matr ices is the theory  of  convex polytopes.  We shall, therefore, recall briefly a 
few familiar definitions and  results in this field. For  a systematic  t r ea tmen t  of  
convex sets, the reader  m a y  be referred to Eggleston 's  t rac t  [10]. 

We shall be concerned with points (vec to r s / in  real n-dimensional euclidean 
space E n. The inner p roduc t  of  x and  y will be denoted by  (x, y). A point  x of  
a convex set ~ is said to  be e x t r e m e  ( in  ~ )  if it does not  admit  a representat ion 
of  the form x ~ ~ (y + z), where y ,  z ~ ~ and y ~= z. 

(a) A c o n v e x  p o l y t o p e  is defined as the convex hull of  a finite non-empty  set 
of  points, and it is easily demonst ra ted  t h a t  a convex polytope is identical with 
the convex hull of  its extreme points. Moreover, it is known t h a t  if the inter- 
section of  a finite number  of  closed half-spaces is bounded  and non-empty ,  then 
it is a convex polytope.  

(b) Let  ~ be the  intersection of  a finite number  of  closed half-spaces, i.e. let 
it be the set of  all vectors x such tha t  (a~, x) =< q~ (1 ~< k ~< 2V), where the a 's  
are given non-zero vectors and the q's are given scalars*. I t  is then easily seen 
that ,  if x0 is an extreme point  of  (the convex set) ~, then (a~, x) : q~ for at  
least n values of  k ** 

(c) Again, let ~ be any  closed convex set and let z he a point.  Then there exists 
a plane str ict ly separating z f rom ~ if  and only if z ~ ~. I f  we formulate  this 
s ta tement  in algebraic terms and apply  it to  the  case when ~ is a convex polytope,  
we infer t ha t  z does not  belong to  the  convex hull of  the points zl . . . . .  Zm if 
and only if 

(z, u) > max (z~, u) 
l < k < m  

ibr some u. We shall refer to this result as the s e p a r a t i o n  theorem.  

(d) Finally, we ment ion Carath4odory 's  theorem. Let  ~ be an m-dimensional 
linear var ie ty  in E n, and suppose tha t  ~ is a subset of  ~. Then  any  point  in the 
convex hull of  E lies in the convex hull of  at  mos t  m ~- 1 suitable points of  ~. 

2. The theorems ot Hardy,  Littlewood, and P61ya 

Throughout  our discussion, An will s tand for the set of  all d.s. n • n matrices. 
Next ,  let | denote the  set of  all permutat ions  on the symbols 1, 2, . . . ,  n. I f  
x -~ @1 . . . . .  Xn) and ~ ~ ~ n ,  we shall write x:~ ~ (x:~l . . . . .  x~n ) .  Again, Y~ (x) 
denotes the convex hull of  the n!  vectors x~ (7~ ~ | 

Le t  x ~ (Xl . . . . .  xn ) ,  y ~ ( y l  . . . .  , Yn)  be real vectors;  denote by  x* . . . . .  x* 

* Since the inequalities (a, x) ~ q and (--a, x) ~ - -  q are together equivalent to (a, x) 
q, it follows that the set of relations defining ~ can also contain equalities. 
** In fact, more is true : the point x0 ~ ~ is extreme ff and only if the set of vectors a~ 

such that (a~, x0) = q~ contains n linearly independent vectors. 
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the numbers  X l , . . . ,  xn arranged in non-ascending order of  magni tude;  and let 
y* ,  . . .  , y*  be defined analogously. I f  the relations 

(2.1) y* ~ - . . .  -~ y~' < x~ + . . -  -~ x~' (1 ~< k ~< n) 

are satisfied, we shah write y ~ x. If, in addition, there is equali ty in (2.1) for 
k = n, we shall write y -< x. 

The principal result of  t t ~ D Y ,  LITTLEWOOD, and P6Lu on d.s. matrices can 
now be s ta ted [23, 24 (Theorem 46); cf. also 1, 14, 36, 43, 51, 53]. 

Theorem 1 a. Let x, y be any real vectors with n components. Then the/ollowing 
statements are equivalent. (i) y ~( x; (ii) y ~ ~ (x); (iii) y = D x  /or sonie D ~ An. 

I n  fact,  the theorem as originally enunciated asserted only the equivalence of  
(i) and (ifi). Clause (ii) was added much later by  1% RA])O [53] who appears to 
have been the first mathemat ic ian  to make explicit use of  results on convex sets 
in the discussion of  d.s. matrices. 

The implication (ii) ~ (ifi) is immediate,  and (iii) ~ (i) is entirely straight- 
forward. The crux of  the a rgument  thus lies in the proof  of  the implication (i) ~ (ii). 
Assume, then, t h a t  for certain vectors x and y, (i) is t rue while (ii) is false. Since 
y ~ ~ (x), it follows by  the separation theorem (w 1, c) t ha t  there exists a vector  
u = (U l , . . . ,  un) such tha t  

(y ,  u )  > m a x  (x~, u), 
~ e  ~ n  

i.e. Yk uk > max  Z x~k uk = ~. x~ u~ ,  
] c = l  ~ e ~ n  k = l  k = l  

and therefore (cf. [24], Theorem 368) 

* $ 
(2.2) Y~Y~ ~ > 5 ~ * X k U k �9 

k = l  , ~ = 1  

On the other hand, in view of (i), we have 
n n - - 1  

~ y ~ @  = ~ (u~ - u~+0 (y~ + .. .  + y~) + ~*(y~ + . . .  + y*) 
k = l  i = l  

~ - - 1  

= * * "'" + X * )  < ~ (@ - u~+l) (x* + . . .  + xD + u~ (xl + 
k = l  

n 

= ~ x* u~ ,  
k = l  

and this contradicts (2.2). The proof is therefore complete*.  
We m a y  strengthen the result just established by  replacing An in (Hi) by  the 

set of  'or thostochast ic '  n • n matrices, i.e. matrices of  the type  2 (ars), where (ars) 
is an orthogonal  m a t r i x * *  [27, 44]. 

Further ,  it m a y  be ment ioned tha t  there is a ra ther  obvious analogue of  
Theorem la  for stochastic matr ices**% A more interesting result  can be proved 

* This argument is due to RADo [53]. 
** I t  is easy to verify that the set of orthostochastic matrices is properly contained in 

the set of d.s. matrices. 
*** A square matrix is called stochastic if its elements are non-negative and the sum of 

the elements in each row is equal to 1. It  will be recalled that the study of these matrices 
figures prominently in the theory of Markov chains. 
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for doub ly - subs tochas t i c  (d.s .s .)  mat r ices ,  i .e .  square  mat r ices  wi th  rea l  non- 
nega t ive  e lements  none of  whose row-sums or co lumn-sums exceeds 1. W r i t e  
a + --~ m a x  (a, 0) and,  when x = (xl . . . . .  xn), p u t  x+ = (x~ . . . . .  x+). I f  x, y are  
a n y  rea l  vec tors  wi th  n components ,  t hen  there  exists  a d . s . s ,  n • n m a t r i x  E 
such t h a t  y ~ E x  i f  and  on ly  ff y - (  x + and  - - y  ~ ( ( - - x )  + ([45] cf. also [11]). 

A n  unso lved  and  diff icult  p r o b l e m *  is concerned wi th  t he  extens ion  of  Theo- 
rem 1 a to  the  case of  complex vectors  : ff z and  w are  given complex  vectors ,  w h a t  
condi t ions  are  necessary  a n d  sufficient for the  exis tence of  a d .s .  m a t r i x  D such 
t h a t  w = Dz  ? W e  encoun te r  th is  p rob lem when we seek to  es tabl i sh  cr i ter ia  for 
t he  exis tence of  a no rma l  m a t r i x  wi th  prescr ibed  d iagonal  e lements  and  charac-  
ter is t ic  roots .  

I n  recen t  years ,  the  t heo rem of  HAI~DY, LITTL:EWOOD, and  P6LYA has been 
ass imi la ted  in to  much  more  genera l  inves t iga t ions .  Thus  i t  emerges as a corol lary  
of  a resu l t  of  FA~ [13] concerning convex funct ions  defined in topologica l  vec to r  
spaces.  This  is no t  a l toge ther  surpris ing,  for there  is a n a t u r a l  ]ink be tween  convex 
funct ions  and  d .s .  mat r ices .  This  was recognized b y  I~AI~DY, LITTLEWOOD, and  
P6LYA who p roved  the  following resu l t  ([23]; [24] (Theorem 108)), the  germ of  
which  is a l r e ady  con ta ined  in Schur ' s  pape r  [57]. 

Theorem l b .  Let xk,  y~ (1 ~_ k ~_ n) be given real numbers. Then the inequality 

(2.3) q~ (yl) + " "  ~ q5 (Yn) ~ q)(xl) -[- ' . .  -[- q5 (Xn) 

is val id /or  every convex/unction ** q5 i / a n d  only i/ 

(2.4) (yl . . . . .  yn) -< (x~ . . . . .  xn) . 

I t  will be observed  t h a t  the  statement of  th is  t heo rem does no t  involve  d .s .  
mat r ices .  They  m a k e  the i r  appea rance  in the  proof,  and  this  seems a n a t u r a l  mode  
of  a rgument ,  t hough  i t  should  be no ted  t h a t  there  also exis t  proofs depending  on 
qui te  different  ideas  [19, 30]. 

The necess i ty  of  t he  condi t ion  (2.4) becomes ev iden t  i f  we a p p l y  (2.3) in t u r n  
to  the  funct ions  

~(t)=t ,  - t ,  (t-x~)§ (l_<k_<n). 

To demons t r a t e  i ts  sufficiency, we note  t ha t ,  b y  Theorem 1 a, (2.4) implies  t he  
exis tence of  a d .s .  m a t r i x  D -~ (drs) such t h a t  

Yr ~- d r l x l  ~- "'" -}- drnxn (1 ~ r ~ n) .  

Hence,  for a n y  convex func t ion  q), 

q)(Yr) ~ dr lq)  (Xl) -~- "'" -]- drn~)(Xn) (1 ~ r ~ n);  

and  (2.3) follows i f  we sum for 1 --~ r ~ n. 
Numerous  modif ica t ions  of  th is  resu l t  are possible.  F o r  example ,  i t  was shown 

b y  I)6LYA [52] t h a t  the  t heo rem remains  va l id  ff (2.4) is weakened  to 

(yl . . . . .  yn) ~ (xl . . . . .  xn), 

* See, however, the p~pers of HoR~ [27] ~nd SHnRMA~ [60]. 
** The function ~ is said to be convex if, for any numbers x, y and any positive numbers 

2, # with sum 1, we have 
r + #y) ~ ;tO(x) + ttqS(y). 
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p rov ided  t h a t  we res t r ic t  ourselves to  the  class of  convex non-decreasing funct ions .  
Again, i n s t ead  of  considering 

(tl) + . . .  + ~ fin), 
we can a d m i t  more  general  classes of  funct ions of  tl . . . . .  tn and  ob ta in  several  
va r i an t s  of  Theorem 1 b (see [46]). Thus,  for instance,  the  inequa l i t y  F(y) ~ ~(x)  
is va l id  for every  funct ion  F(x) ~ F(x l  . . . . .  xn), which is symmet r i c  wi th  respect  
to  the  xk and  convex wi th  respect  to  the  vec tor  var iab le  x, i f  and  only  i f  y -~ x. 
There  are  m a n y  resul ts  more  loosely l inked wi th  Theorem 1 b. W e  con ten t  our- 
selves wi th  a mere  ment ion  of  inequal i t ies  involv ing  'Sehur-convex '  funct ions* 
[51, 57] and  of  resul ts  on ' symmet r i c  gauge funct ions '  and  on ' un i t a r i ly  i nva r i an t  
m a t r i x  n o r m s ' * *  [11, 15, 47]. 

Theorem 1 b is the  source of  a whole series of  m a t r i x  inequal i t ies ,  of  which we 
give a single example .  Le t  H = (hrs) be a he rmi t i an  m a t r i x  wi th  charac te r i s t ic  
roots  COl , . . . ,  Wn- Thenl b y  (1.2), 

(hl l  . . . . .  hnn) ~ = D(o~l, . . . ,  o)~) T, 

where D ~An.  Hence,  b y  Theorem l a, 

(hl l  . . . . .  hnn) "~ (o91 . . . . .  ~On) 
and  so, b y  Theorem l b ,  

r + "" + r  =< ~ ( o ~ )  + .-. + ~ ( o ~ ) ,  

where ~b is a n y  convex funct ion.  I n  par t icu lar ,  i f  H is posi t ive  definite,  then ,  for  
a n y  real  number  p > 1, we have***  

(2.5) h ~  + . . .  + h ~  --<_ ~ + . . .  + ~ ~. 

I n  view of  P61ya's modif icat ion of  Theorem l b  ment ioned  above,  th is  i nequa l i t y  
can be ex t ended :  i f  ~ol ~ "-" ~ (on and  p > 1, then,  for 1 ~< k --< n, we have  

h~ + .-. + h~k --<_ ~ + "" + o~ .  

3. B i rkho f f ' s  theorem 

The s imples t  d.s. mat r ices  are, of  course, the  p e r m u t a t i o n  matr ices ,  and  i t  is 
n a t u r a l  to  conjec ture  t h a t  t h e y  are cast  for a special  role in the  t heo ry  we are  
describing.  Tha t  this  is, indeed,  the  case is demons t r a t e d  b y  Birkhoff ' s  t heorem 
[3]. 

Theorem 2. The set zl n o/doubly-stochastic n • n matrices is identical with the 
convex hull o/the set o / n  • n permutation matrices. 

I t  is r emarkab le  t h a t  so s t r ik ing and  in tu i t ive ly  so s imple a resul t  was no t  
d iscovered t i l l  1946. There exis t  now, in add i t ion  to  Birkhoff ' s  original  t r e a tme n t ,  
severa l  o ther  proofs  [2, 9, 22, 26, 43, 50, 61]. Most  of  these  d r aw  upon  combina-  

* A ftmction F of a vector variable is said to be Schur-convex if, for every vector x and 
every d.s. matrix D, we have F(Dx) ~ F(x). The class of convex, symmetric functions is con- 
tained in the class of Schur-convex functions. 

** For definitions of these terms, see e.g. [47]. 
*** The inequality (2.5) was proved in a different way by Sc~v~ [57]. 
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torial or upon  geometric ideas, or upon  both.  I n  the combinatorial  proofs, the 
essential step often consists in the demonst ra t ion  that ,  for any  d.s. n • n matr ix  
D -~ (drs), there is a pe rmuta t ion  7~e | such tha t  dr,~r ~ 0 (1 ~ r ~ n)*;  
f rom this Theorem 2 follows readily by  induct ion with respect  to the number  of  
str ict ly positive elements of  D (see e.g. [9]). However,  the proof  we shall indicate 
below (due to  HoF]~A~  and WI]~LA~DT [26]) is of  the geometric type  and depends 
on properties of  convex sets. 

We shall interpret  real n • n matrices as points in E n'. The matr ix  X ~-- (Xrs) 
belongs to  A n precisely ff 

(3.1) xrs ~ 0 (1 ~ r, s g n) ,  

q~ 

(3.2) ~ Xrs : 1 (1 ~ r _~ n),  

(3.3) ~ X r s = l  ( l ~ s ~ n - - 1 ) ,  

since the  relation xln + "'" + xnn : -  1 is a consequence of (3.2) and (3.3). Thus 
A n is the non-empty ,  bounded intersection of  a finite number  of  closed half-spaces 
and so, by  w 1 (a), is a convex polytope.  Theorem 2 will therefore follow if we can 
show tha t  the extreme points of  A n are precisely the permuta t ion  matrices. One 
half  of  this s ta tement  is trivial, for every permuta t ion  matr ix  is clearly extreme 
in t in .  To prove the converse, suppose tha t  X is extreme in a n .  Then, by  w 1 (b), 
it follows t h a t  equali ty mus t  hold in at  least n 2 of  the relations (3.1), (3.2), and (3.3), 
and so in at  least n u - -  2n  + 1 of  the relations (3.1). This implies t ha t  at  least one 
row of X mus t  consist of  n - -  1 zeros and one unit. I n  the column containing this 
unit,  all o ther  elements mus t  be equal to zero. We are thus  able to reduce our 
problem to the consideration of  A n-1 ; and the proof  is now easily completed by  
induct ion with respect to n. 

The theorem just  discussed shows t h a t  every d.s. matr ix  can be expressed as a 
convex combinat ion of  permuta t ion  matrices. Bu t  the representat ion of  any  one 
d.s. mat r ix  does no t  require all n l permuta t ion  matrices. I n  fact, the set A n lies 
in a linear var ie ty  of  dimension (n - -  1)u in E n2. Hence, b y  Carath6odory 's  
theorem (w 1, d), any  d.s. n X n mat r ix  belongs to the convex hull of  at  mos t  
(n - -  1) 2 + 1 suitable permuta t ion  matrices, and it is not  difficult to  show tha t  
this result  is best  possible [17, 21, 40]. However ,  when addit ional information is 
given, the number  (n - -  1) 2 + 1 can be diminished. I f  D e an ,  let v(D) denote 
the  least number  of  permuta t ion  matrices which contain D in their convex hull. 
Then, as we have seen, 

v(D) < : ( n - - l )  ~ + 1  

and here the sign ' ~ '  cannot ,  in general, be replaced by  ' ~ ' .  Now it is plain tha t  
all characteristic roots of  D lie on the unit  disk I z[ __< 1. We shall denote by  
c : c (D) the number  of  characteristic roots on the uni t  circle [z I : 1 (so tha t  
c >= 1 since 1 is a characterist ic root  of  every  d.s. matrix.)  I t  was shown by  

* This is an easy consequence of Hall's theorem [20]. Cf. also [33]. 
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MARCUS, MI~c ,  and  MoYLs [37] t h a t  ~ (D) is smal l  when c (D) is large. More pre- 
cisely, i f  D is indecomposable* ,  then  

(3.4) v ( D ) = < c  c - - ]  + 1 .  

This re la t ion  and  other ,  more  precise, es t imates  due to  the  same au thors  go 
some w a y  towards  the  solut ion of the  p rob lem of charac te r iza t ion  of the  set of  d.s. 
n X n m a t r i c e s  D for which v(D) has  a prescr ibed value**.  

One consequence of  Bi rkhoff ' s  t heorem is t h a t  any  funct ion  of  a m a t r i x  
var iable ,  defined and  convex on An,  assumes i ts  m a x i m u m  for a p e r m u t a t i o n  
ma t r i x .  Tiffs pr inciple  was s t ressed b y  MARCVS who used i t  to  ob ta in  inequal i t ies  
in m a t r i x  t h e o r y  [35] and  also r der ive  afresh known  inequal i t ies  [36]. F o r  
example ,  he gave  a proof,  on these lines, of  an ex t remal  p r o p e r t y  of  he rmi t i an  
mat r ices  due to  FA~r [12]. Again,  t tOF~A~r and  WIELANDT [26] used the  same 
pr inciple  to  show tha t ,  ff A,  B are  normal  mat r ices  wi th  charac ter i s t ic  roots  {g~}, 
{fl~} respect ive ly ,  then,  for a sui table  number ing  of  the  roots,  

k = l  

where  II. ]1 denotes  the  eucl idean norm.  
N o t  surpris ingly,  there  are  analogues of  Theorem 2 for s tochast ic  and  also for 

d.s.s,  mat r ices  [17, 45]. The l a t t e r  resu l t  is an  easy  consequence of  the  fact ,  no t ed  
b y  HOR~ [27], t h a t  any  d.s.s, n X n m a t r i x  E can be exh ib i ted  as a s u b m a t r i x  of  a 
sui table  d.s. N X N m a t r i x  D, where N ~ 2n. Since D is a convex combina t ion  
o f  ~V • N p e r m u t a t i o n  matr ices ,  i t  follows t h a t  E is a convex combina t ion  of  n • n 
sub -pe rmu ta t i on  mat r ices***.  We infer, therefore,  t h a t  the  set of  d.s.s, n • n 
mat r ices  is ident ica l  wi th  the  convex hull  of  the  set of  n • n sub -pe rmu ta t i on  
matr ices .  

Var ious  wri ters  considered extensions of  Birkhoff ' s  theorem.  Thus ME~DEL- 
S O ~  and  DULMAG~ [d2] de t e rmined  the  convex hull  of  the  set of  all  sub-pe rmuta -  
t ion  mat r ices  which possess exac t ly  r non-vanish ing  elements.  A n  as y e t  unp roved  
genera l iza t ion  of  Bi rkhoff ' s  t heorem has  been proposed  b y  l~gv~sz [55]. Le t  
~1 . . . . .  ~n be non-nega t ive  numbers  wi th  sum 1 and  denote  b y  An the  set of  all  
n • n mat r ices  (xrs) wi th  real  non-negat ive  e lements  such t h a t  

n ~t 

8 = 1  r = l  

* The square matrix A is said to be indecomposable if there exists no relation of the form 

where P is a permutation matrix and A1, A~ are square matrices. The condition of indeeom- 
posabflity in (3.4) is not a serious restriction since it can be shown that, for any d.s. matrix D, 
there exists a permutation matrix P such that PzDP is the direct sum ofindeeomposable d.s. 
matrices. 

** For the determination of an upper bound of v (D) in terms of a graph associated with D, 
see [29]. 

*** A sub-permutation matrix is a square matrix in which at most one element in each row 
and in each column is equal to 1 while all other elements are equal to zero. 
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I t  is then required to prove that  the convex polytope A~ possesses at most n! 
extreme points. Theorem 2 corresponds to the case ~1 . . . . .  2u ---- n -1 of this 
conjecture. 

We next turn to a different kind of refinement of Birkhoff's theorem. Suppose 
that,  instead of considering the entire symmetric group of n! permutation 
matrices, we restrict our attention to some subgroup | and seek to determine the 
convex hull of the set of permutation matrices in | Our aim, then, is to link up the 
multipllcative and the linear structure of | and this problem turns out to be un- 
expectedly difficult. Even for the case of the alternating group, the answer is not 
known. The situation is equally obscure with regard to the corresponding ex- 
tension of Theorem 1 a of HARDY, LITWL~WOOD, and P6nYA. Here the problem is 
to determine necessary and sufficient conditions for the existence of a (d.s.) matrix 
D belonging to the convex hull of | and such that  y ~- Dx,  where x and y are 
given vectors. In  view of the intractable nature of these questions, it may be 
worth while to investigate the easier problem of characterization of diagonal 
elements of d.s. matrices. For the group of all permutations the problem was 
solved by H o ~  [27] : the numbers xl . . . . .  xn are the diagonal elements of some 
d.s. n X n matrix if and only if 

(3.5) 

and 

(3.6) 

0 <=xl . . . .  ,xn <= 1 

~ x k - -  2minx j  g n - -  2. 
k = l  l ~ ] < = n  

Next, consider the case of the alternating group. Let a d.s. matrix be called even 
if it belongs to the convex hull of permutation matrices associated with even 
permutations. Making use of the separation theorem, it is not difficult to show [49] 
that  xl . . . . .  xn arc the diagonal elements of some even d.s. n X n matrix if and 
only if they satisfy (3.5) and the relation 

n 

(3.7) ~ x ~  --  3 m i n x  I ~ n --  3.  
k=l l~j--<_~ 

Suppose, now, that  D ---- (drs) is an even d.s. matrix; let ~ be an even permuta- 
tion; and denote by P~ the permutation matrix corresponding to ~ *. Then DP~ 
is again an even d. s. matrix and so, by  (3.7), 

i (D P:~)k~ -- 3 rain (D P:~)jj ~ n -- 3; 

in other words 

(3.8) ~d  ~ , ~  ~ 3mindy,  n I <--_n-- 3. 
Ic= l l ~_j g n  

I t  is natural to at tempt to invert this conclusion by inquiring whether a d.s. matrix 
D which satisfies (3.8) for every even permutation ~ is necessarily even, but it is 
not known whether this is the case. 

* By  this  we m e a n  t h a t  t he  (r, s ) - th  e lement  of  P z  is equal  to  ~r, ns. 
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4. Infinite and continuous analogues of the fundamental theorems 

In  his book on Lattice Theory [4, p. 266], BmK~O~F proposed the problem of 
extending his theorem to the set A of (denumerably) infinite d.s. matrices. This 
question has acquired some celebrity as 'Birkhoff's problem 111'. I t  m a y  be 
noted, in the first place, tha t  if  D = (drs) ~ A, then a combinatorial theorem due 
to D~ B~VlJ~ ([6]; cf. also ISB~LL [28]) guarantees the existence of a permutat ion 
7~ of the positive integers such tha t  dr, sr ~ 0 (r = 1, 2 . . . .  ). In  contrast to the 
finite case, however, this result does not lead to a solution of Birkhoff's problem 
since the possibility tha t  inf dr, sr is zero cannot be discounted. 

Indeed, before the problem can be treated successfully, it needs to be formulated 
more precisely. Now, in the transition from the finite to the infinite case, the purely 
algebraic notion of a convex huh is naturally superseded by  the topological notion 
of convex closure. Let  ~ be a vector space of infinite matrices such tha t  zJ C ~,  
and denote by  ~ the set of infinite permutat ion matrices. I t  is then required to 
prove that,  for a suitable choice of ~ and a suitable topology J -  on ~ (which is 
compatible with the linear structure of ~), the set zJ is the convex closure of 
under 3_. 

This problem was first discussed by  ISBELL [28] who considered the space 
of 'boundedly line-summable' infinite real matrices, i.e. the space of matrices Such 
tha t  X e ~ if 

sup 2 Ix~s l  < r sup 2]Xr , ]  < ~ .  
r_-->l s = l  s_-->l r = l  

A solution was given by I~ATTgAu and PEc~ [5~] and, independently, by  KENDALL 
[32]. Kendall 's  choice of ~ is identical with tha t  of ISBELI~; his t rea tment  de- 
pends on a separation theorem for locally convex spaces [5, pp. 73--74] and the 
topology used by  him is the weakest (locally convex tIausdorff) topology which 
makes all elements, row-sums, and column-sums of matrices continuous as linear 
functionals on ~3. 

There still remain some obvious questions. For example, how can one character- 
ize those infinite d.s. matrices which can be expressed as finite (or as denumerably 
infinite) convex combinations of permutat ion matrices ? 

For vector spaces of infinitely many  dimensions we possess, just as for finite- 
dimensional vector spaces, the notion of extreme points. I t  is plain tha t  every 
permutat ion matr ix  is extreme in A. Making use of ideas connected with the 
Kre~n-Mil'man theorem [5, p. 84], KE~DAJ, L and K I E ~ ' ~  [32] established the 
converse proposition by  showing tha t  every extreme point in A is a permutat ion 
matrix.  This is a purely algebraic result and it is very satisfactory tha t  an algebraic 
proof of this and of related results has been recently discovered by MavLDo~ [41]. 
A divergence between the finite and the infinite ease is, however, to be noted. From 
the fact tha t  the permutat ion matr ices  are the only extreme points in A n, Birk- 
hoff's (finite) theorem follows at  once. On the other hand, the result of K ~ D ~ L  
and KI~FER does not imply the infinite analogue of Birkhoff 's theorem. 

As a footnote to the work on Birkhoff's problem 111, we mention a character- 
ization of diagonal elements [48]. According to a result stated in w 3, the numbers 
Xl . . . .  , xn are the diagonal elements of some d.s. n • n matrix if  and only if they 
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satisfy (3.5) and (3.6) ; and it is plain tha t  the latter condition can be rewritten in 
the form 

n 

2(1 - -minx j )__<  ~ ( 1 - - x ~ ) .  
l<=]~_n k = l  

I t  is not difficult to extend this result by  proving tha t  xl ,  xz, x3 . . . .  are the 
diagonal elements of an infinite d.s. matr ix  if and only if 0 =<x~ =< 1 (k ---- 1, 2 . . . .  ) 
and 

2(1 -infxj) ~ ~ (1  - x ~ )  =< oo. 
j>=l k = l  

The introduction of infinite d.s. matrices raises the question whether there 
exists an infinite analogue of Theorem 1 a of HAI~Du LITTLEWOOD, and P6LYA. 
Let  x -~ ( x l ,  x2 ,  . . . ) ,  y ~ (Y l ,  Y2 . . . .  ) be real vectors with infinitely many  com- 
ponents and, for k ~ 1, write 

M~(x) = sup (xi, § "'" + xiD, 

where the upper bound is taken with respect to all sets of k distinct positive 
integers il . . . .  , i~. Suppose that ,  for some matr ix  D ~ A, 

(4.1) y = D x .  

I t  is easy to deduce that ,  if the sequence {x~} is bounded, then 

(4.2) M~ (y) ~ M~ (x) (k = 1, 2 . . . .  ). 

Furthermore,  we have 

c o  c o  

( 4 . 3 )  = 
~=i k=l 

provided tha t  the series on the right-hand side converges absolutely. I t  is harder to 
decide whether the converse inference is valid, i.e. whether the relations (4.2) and 
(4.3) imply the existence of a matr ix  D e A satisfying (4.1). 

We next  turn to consider the possibility of continuous analogues, and here 
Theorem 1 b is a natural  starting point since the replacement of sums by  integrals 
at  once suggests itself. However, before we can pursue this line of thought, we need 
some preliminary definitions. 

Let  ~ denote the class of functions bounded and measurable on the unit 
interval. Two functions /, g e 9~ are said to be equ imeasurab le  if, for every (finite 
or infinite) interval I ,  the measures of the two sets 

{ t : O - - ~ t ~ l , / ( t )  e I } ,  { t : O ~ t - - ~ l , g ( t )  e I }  

are equal. I t  can be easily shown [24, pp. 276--277] that ,  associated with every 
function / c  O), there is a function / * e  Y2 which is non-increasing and equi- 
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measurable with / *. Moreover, /* is essentially unique**. For  any  functions 
/, g ~ !))~, we shall write g ~( / i f  

g*(t)dt ~ ~ ]*(t)dt 
o o 

for 0 ~ u ~ 1 and if this relation reduces to an equali ty for u = 1. HARDr, 
~LITTZEWOOD, and P6LYA [23] obtained an analogue of  Theorem 1 b which states 
that ,  f o r / ,  g ~ ~ ,  the inequal i ty  

1 1 

(4.4) ~ q5 (g (t)) dt ~ ~ r (/(t)) dt 
0 0 

is valid for every convex function ~5 if  and only ff g ~( / .  As our knowledge of  
infinite d.s. matrices is as ye t  slight, we cannot  establish this result by  adapt ing 
the a rgument  used in proving Theorem lb .  However,  the proof  does not  present 
any  serious difficulties i f  we make use of  the fact  that ,  in a finite interval, a convex 
function can be approximated  uniformly by  the sum of  a linear function and a 
finite number  of  positive multiples of  functions of  type  (t - -  c) + ***. For  fur ther  
theorems related to the inequali ty (4.4), we refer the reader to papers by  Lo~]~Tz  
[34] and Fx~  and Lo~w~TZ [16], and for an alternative continuous analogue of  
Theorem 1 b to  the paper of  KA~AMATX [30]. 

The possibility of  establishing a continuous analogue of  Theorem 1 a appears 
to be more elusive. We natura l ly  wish to replace d.s. matrices b y  suitable operators 
on ~ .  How it  is easily verified tha t  a matr ix  D is d.s. if  and only if  it satisfies the 
following conditions: (i)x ~ 0 implies Dx ~ O, where inequalities between vectors 
are interpreted component-wise;  (ii) D u ~ u, where u ~ (1 . . . . .  1) T; (iii) a (Dx) = 

~ (x) for every x, where (~ (x) denotes the sum of components  ofx.  This character- 
ization of  d.s. matrices suggests t ha t  an operator  ~ on ~ should be called doubly- 
stochastic if  (a) ~ maps  ~ linearly into itself;~ (b) / ~ 0, / z ~ imply  ~ / ~  0; 
(c) ] ~ 1 implies ~ ]  ~ 1; (d) / ~  ~)~ implies 

1 1 

f  /(t)dt = .[ l(t) dt. 
0 0 

We can now formulate  a conjectured analogue of  Theorem 1 a:  f f / ,  g ~ ~0~, then 
there exists a d.s. operator  ~ such tha t  g - -  ~ / i f  and only if  q -~ / .  

The set of  d.s. operators is convex if  multiplication by  scalars and addit ion are 
defined in the obvious way. I t  is na tura l  to extend the notion of  a permuta t ion  
matr ix  by  calling a d.s. operator  a permutator if  it t ransforms every funct ion in ~)~ 
into an equimeasurable function. This definition at once prompts  several questions. 
We content  ourselves with mentioning the most  interesting of  these. Does every 
d.s. operator belong to the convex closure, in a suitable sense, of  the set of  per- 
muta to rs  ? 

* Thus the statement 'the functions f and g are equimeasurable' is analogous to the 
statement 'the vectors x and y can be obtained from each other by a permutation of compo- 
nents'. Moreover, the relation between f and f* is analogous to that between the vectors 
(xl . . . . .  Xn) and (x~ . . . . .  x*). 

** I owe this observation to Dr. H. BURKILL. 
*** Needless to say, an alternative proof of Theorem 1 b can also be based on this principle. 
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5. Further problems 

In  this final section we shall give a brief account of some properties of d.s. 
matrices which do not fall within the ambit  of the two fundamental  theorems. 

5.1. Van der Waerden's problem. The permanent ,  per A, of the n • n matr ix  
A -= (ars )  is defined by  the equation 

p e r A  ---- ~ a l ,  u l . , . a n ,  z n .  
~e ~n 

More than  thirty-five years ago, VAN DWR WA~RD~ [62] proposed the problem 
of determining the minimum of per D as D ranges over zl n. I t  has been conjectured 
that ,  for D e A n ,  

(5.1) p e r D  ~ n!  n -n  , 

with equality ff and only f f  D -~ J n ,  where J n  denotes the n • n matr ix  all of 
whose elements are equal to n-1. Until  recently this problem received no attention 
and it still remains unsolved, but  in the last few years several partial results have 
been secured. 

I f  (5.1) is valid, then 

(5.2) dl, ~1...  dn,:~n ~ n -n  for some ~ e ~n  

and therefore, in view of the inequality of the arithmetic and geometric means, 
we have, for some 7e e ~n ,  

(5.3) dl, ~1 ~- "'" -[- dn, ~n ~ 1 ; dl,  nJ- > 0 . . . . .  dn, :~n > O. 

The relation (5.2) has not been proved*, but  MARCUS and R ~  [40] obtained results 
stronger than  (5.3). They showed, for example, tha t  ff/c characteristic roots of D 
lie on the unit circle, then, for some ~ e | 

d l , ~ l - ~ " ' - ~ d n , ~ n  ~ / c ;  d l , ~ l ~ 0  . . . . .  d n , ~ n ~ O .  

Another result closely related to van dcr Waerden's  problem was found by  
MAl~CVs and N]~WMAN [38]. Let  An + denote the set of all d.s. n • n matrices with 
strictly positive elements. Then, if  per D attains its lower bound in An*, it does so 
for D ~ J n  only. More recently, the same authors [39] obtained a host of new 
inequalities for the permanent  by  observing tha t  if  xl . . . . .  x~ and yl . . . . .  y~ are 
any vectors in n-dimensional uni tary space 1I with inner product (., .), then 
per ((x~, yj)) can be interpreted as an inner product on a certain space associated 
with 1I. Hence, by  Schwarz's inequality 

I per ((x~, yj.))1 ~ ~ per ((x~, xj)) �9 per ((y~, yj)); 

and this relation gives rise to a var ie ty  of results. For example, let ~n denote the 
set of all symmetric positive definite or positive semi-definite d.s. n • n matrices. 

Then (5.1) holds for all D e ~ with equality if and only if D -~ J n .  
In  spite of recent progress, most  problems concerning the permanent  are still 

unsolved. We mention three of these problems, formulated by  MAxcuS and 
I~WMA~ [39]. Does the inequality 

per (A B) ~ min (per A ,  per B) 

�9 Compare the addendum at the end of the p~per. 
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hold for all A, B E A n ? I f  D e ~n,  is the following counterpart to Hadamard's  
determinantal inequality valid: 

per D => dlld22 ... dnn ? 

Again, does the inequality per (I  --  D) _--> 0 hold for all D ~ A n  ? MARCUS and 
N~WMAN [39] showed that  it certainly holds when D is d.s. and symmetric. 

5.2. Distribution of characteristic roots. Our knowledge of the spectral pro- 
perties of d.s. matrices is very scanty. The most obvious question that  arises in 
this context is concerned with the determination of the region f2n of the complex 
plane which is specified by the requirement that z E s if and only if z is a charac- 
teristic root of some matrix in A n- The analogous problem for stochastic matrices 
was raised in 1938 by  A. N. KOL~OGOROFF, investigated by DMIT~IEV and DYx- 
y:IN [7, 8], and finally solved by Ka~PnL]~vIcg [31]. Both the statement and the 
proof of Karpelcvich's result are complicated; the problem of specifying s is 
probably more tractable but it has not yet been solved or even discussed in the 
literature. However, a partial result can be obtained quite easily as follows *. 

For k => 2, denote by H k  the closed, finite region bounded by the regular 
k-gon whose vertices are the points 0 m (m = O, 1 . . . . .  ]c - -  1), where 0 = e 2zd/k. 

I t  is clear that, if 2 _< ]c _< n, then 0 is a characteristic root of some n • n per- 
mutation matrix, say P. Now any number z e I l k  can be expressed in the form 

z = to -~ ti0 + t2 02 + "'" -~ t~-i0 k-i , 

where to, t l ,  . . . ,  t~- i  are suitable non-negative numbers with sum 1. I t  follows 
that  z is a characteristic root of the d.s. n X n matrix 

to I + tl P 4- t2 p2 + ... _~ tz-1 P ~-1. 

Thus Hk C f2n and so 

(5.4) / /2  u / / 3 u  . . .  w / / ~  c p~,,. 

Whether the sign of inclusion in this relation can be replaced by the sign of 
equality remains at present an open question. 

Denote by f) the union of all f2n, so that z e f2 if and only if z is a charac- 
teristic root of some d.s. matrix. Then (5.4) implies that  the whole interior of the 
unit disk belongs to s while, of course, ~g is contained in the closed unit disk. 
Finally, it follows at once from the work of I)MITRIEV and I)YNKIN [7]  that  the 
only points of s on the unit circle are the 'rational' points e 2nialb, where a, b are 
any integers. 

Needless to say, the much harder problem of finding necessary and sufficient 
conditions for a set of n complex numbers to be the set of characteristic roots of 
some matrix in A ~ is at present completely inaccessible. 

5.3. Miscellaneous problems. In conclusion, we enumerate a few unsolved pro- 
blems. 

(i) I f  x, y are given real vectors, what conditions are necessary and sufficient 
for the existence of a non-singular d.s. matrix D such that  y = D x  ? 

* This result has been communicated to me by Dr. J. F. C. KI~OMA~X. 

Z. WahrscheintichkeRstheorie, Bd. 1 23 
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(ii) I f  x, y are given real  vectors ,  w h a t  condi t ions are necessary and  sufficient 
for the  exis tence of  a symmet r i c  d.s .  m a t r i x  D such t h a t  y = D x  ? (Cf. HO~F- 
~A~ [25]). 

(fii) W h a t  is the  convex  hull  of all  n • n p e r m u t a t i o n  mat r ices  o ther  t h a n  the  
un i t  m a t r i x  ? 

(iv) I s  there  a convenien t  w a y  of charac ter iz ing  those  d.s .  mat r ices  which are 
un i t a r i l y  s imi lar  to  d iagonal  mat r ices  ? 

(v) I s  the  set  of o r thos toehas t ic  n • n mat r ices  everywhere  dense, wi th  respect  
to the  eucl idean norm,  in zJ n ? 

(vi) I t  was conjec tured  b y  S. •AKUTANI (see SHEX~A~ [58]) tha t ,  i f  X,  Yed,~  
and  X u  ~ Y u  for every  real  vec tor  u, t hen  there  exists  a m a t r i x  D e d n  such 
t h a t  X ~ - D Y .  This conjec ture  was shown [59] to be genera l ly  incorrec t  for 
n ~ 4, b u t  SCHXEIBE~ [56] proved  t h a t  i t  is va l id  when Y is non-singular .  The 
quest ion of  a convenien t  condi t ion  which, in the  general  case, would  ensure the  
exis tence of  the  requis i te  m a t r i x  D is st i l l  open. 

(vii) I t  will be recal led  t h a t ,  for a n y  infinite d . s .  m a t r i x  (drs), there  exis t  a 
p e r m u t a t i o n  ~ of the  posi t ive  in tegers  such t h a t  dr, nr ~ 0 (r ~--- 1,2,...). J .  R. ISBELL 
has  ra i sed  the  quest ion whe the r  this  resu l t  can be p roved  wi thou t  recourse to  the  
ax iom of  choice. 

(viii) L e t  ] (x, y) be a non-nega t ive  and cont inuous  funct ion defined on the un i t  
square ,  which satisfies the  re la t ions  

1 1 

~ ] ( x , y ) d y = l ( O ~ x < _ l ) ,  ] ] ( x , y ) d x ~ - - l ( O ~ y ~ l ) .  
0 0 

P. R g v ~ s z  has  conjec tured  the  exis tence  of a measurab le  and  measure-preserv ing  
t r a n s f o r m a t i o n  T, def ined on the  un i t  in te rva l ,  such t h a t  [ (x, Tx)  > 0 for 
0 ~ x ~ 1. I f  th is  conjec ture  is correct ,  i t  provides  a cont inuous  analogue of the  
resul t  quo ted  in  (vii). 

The l ist  of  such prob lems  can, of course, be ex tended  a lmos t  indefini tely.  
Indeed ,  i t  is ev iden t  t h a t  in the  s t u d y  of  d .s .  mat r ices  we have  scarcely  advanced  
b e y o n d  the  fr inge of  the  subject .  

Added in proof (22 January 1963). Since this paper was submitted for publication, a 
number of new results on d.s. matrices have appeared in print. (a) P. Rkv~.sz, A probabilistic 
solution of problem 111 of G. Birkhoff, Acta Math. Acad. Scient. Hungaricae 13, 187--198 
(1962) has formulated and proved a probabilistic version of Birkhoff's theorem. (b) M. MARCUS 
and H. MI~C, Some results on doubly stochastic matrices, Proc. Amer. math. Soe. 13, 571 --579 
(1962) have now succeeded in establishing the inequality (5.2). (c) J. R. ISBELL, Infinite doubly 
stochastic ma*riees, Canad. math. Bull. 5~ 1 --4 (1962) has given a short and elementary proof 
of the theorem, due to KENDALL and KIEF~.~, to the effect that any matrix which is extreme 
in the set of infinite d. s. matrices must be a permutation matrix. I-Ie has also shown that an 
infinite d. s. matrix D ~ (drs) can be expressed as a finite convex combination of permutation 
matrices if and only if tho elements drs take only finitely many distinct values. The proof of 
this proposition rests on the axiom of choice. 
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