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Results and Problems in the Theory
of Doubly-Stochastic Matrices*

By
L. MirskY

1. Introduction

In a short but penetrating note published in 1923, ScHUR [57] gave a highly
effective method for deriving inequalities between the characteristic roots and the
diagonal elements’of hermitian matrices**. Now, if H = (k) is a hermitian matrix
with characteristic roots wi, ... , wy, then there exists a unitary matrix U = (uy)
such that

(1.1) H = U diag (w1, ..., wy,) U¥;

and the starting point in Schur’s argument was the observation of a simple con-
sequence of (1.1), namely

/hll ]ulllz [ Iulnlz w1
(1.2) .=

han [un1]? . oo |%anl? Wn

The matrix (| urs|2) appearing on the right-hand side has very special properties.
It is square in shape, its elements are real non-negative numbers, and the sum of
the elements in each row and each column is equal to 1. ScHUR referred to such
matrices, or more precisely to the linear substitutions associated with them, simply
as ‘averages’ (Mittelbildungen) but in modern terminology they are known as
doubly-stochastic (d.s.) matrices***.

A great deal of work on the properties of d.s. matrices has been carried out
since they were first introduced into the literature, but it is probably no over-
simplification to say that two fundamental theorems, proved respectively by
Harpy, LiTTLEWO0OD, and Pérya in 1929 and by G. BIRKHOFF in 1946, have
been dominant in this field of study. It is therefore inevitable that the present
survey should be largely concerned with the territory charted by these two
theorems.

* This survey is based on an address given to the meeting of the Stochastic Analysis
Group held in Southampton in April 1962.

** Schur’s investigations in this field were pursued further by A. Osrrowskir [61].

*** The term ‘stochastic process’ (derived from otéy0s = target) has come to replace
the older term ‘random process’. Certain matrices which occur in the theory of stochastic
processes are consequently called ‘stochastic matrices’, and the special stochastic matrices
with which we are concerned are now known as ‘doubly-stochastic matrices’. As far as I am
aware, the term ‘doubly-stochastic’ was first employed in Feller’s book [18].
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HaRDY, LirTLEWo0D, and POLyA established their result by means of an
elementary though somewhat involved algebraic procedure, while BIRKHOFF based
his proof on P. Hall’s theorem about systems of distinct representatives [20).
Both arguments are notable examples of ad hoc reasoning, but in recent years it
has come to be recognized that the natural setting for the discussion of d.s.
matrices is the theory of convex polytopes. We shall, therefore, recall briefly a
few familiar definitions and results in this field. For a systematic treatment of
convex sets, the reader may be referred to Eggleston’s tract [10].

We shall be concerned with points (vectors) in real n-dimensional euclidean
space E7. The inner product of x and y will be denoted by (x, y). A point x of
a convex set € is said to be extreme (in €) if it does not admit a representation
of the form z = }(y + 2), where y,2€€ and y +z.

(a) A convex polytope is defined as the convex hull of a finite non-empty set
of points, and it is easily demonstrated that a convex polytope is identical with
the convex hull of its extreme points, Moreover, it is known that if the inter-
section of a finite number of closed half-spaces is bounded and non-empty, then
it is a convex polytope.

(b) Let € be the intersection of a finite number of closed half-spaces, i.e. let
it be the set of all vectors  such that (ax, %) < g% (1 < k& =< N), where the a’s
are given non-zero vectors and the ¢’s are given scalars*. It is then easily seen
that, if xp is an extreme point of (the convex set) €, then (ag, x) = g; for at
least n values of k& **.

(¢) Again, let € be any closed convex set and let z be a point. Then there exists
a plane strictly separating z from € if and only if 2z ¢€. If we formulate this
statement in algebraic terms and apply it to the case when € is a convex polytope,
we infer that z does not belong to the convex hull of the points 21, ..., 2y if
and only if

(z, w) > max (2, u)
1Sk=m

for some #. We shall refer to this result as the separation theorem.

(d) Finally, we mention Carathéodory’s theorem. Let & be an m-dimensional
linear variety in E#, and suppose that ¥ is a subset of & Then any point in the
convex hull of ¥ lies in the convex hull of at most m -+ 1 suitable points of X.

2. The theorems of Hardy, Littlewood, and Pdlya

Throughout our discussion, 4, will stand for the set of all d.s. n X n matrices.
Next, let &, denote the set of all permutations on the symbols 1,2,...,n. If

% = (X1, ...,%s) and weS,, we shall write x5 = (Xa1, ..., Tan). Again, H(x)
denotes the convex hull of the n! vectors z; (7w € &,).
Let ¢ = (%1, ..., Za), ¥ = (Y1, ..., Yn) be real vectors; denote by z¥, ..., z¥

* Since the inequalities (@, ¥) = ¢ and (—a, ) = — ¢ are together equivalent to (e, z)
= ¢, it follows that the set of relations defining € can also contain equalities.

** Tn fact, more is true: the point zo & € is extreme if and only if the set of vectors ax
such that (ax, 20) = g5 contains n linearly independent vectors.
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the numbers 2, ..., 2, arranged in non-ascending order of magnitude; and let
y¥, ...,y be defined analogously. If the relations
(2.1) g4 by Safbedof  (I=k=Zn)

are satisfied, we shall write y <€ x. If, in addition, there is equality in (2.1) for
k = n, we shall write y <x.

The principal result of HARDY, LirTLEWOOD, and POLYA on d.s. matrices can
now be stated [23, 24 (Theorem 46); cf. also 1, 14, 36, 43, 51, 53].

Theorem 1a. Let x, y be any real vectors wztk 7w components Then the following
statements are equivalent. (1) y <wz; (i) y € H (x ) ¥y = Dx for some D e Ay.

In fact, the theorem as orlgmally enunclated asserted only the equivalence of
(i) and (iii). Clause (ii) was added much later by R. Rapo [63] who appears to
have been the first mathematician to make explicit use of results on convex sets
in the discussion of d.s. matrices.

The implication (i) =- (iii) is immediate, and (iii) = (i) is entirely straight-
forward. The crux of the argument thus lies in the proof of the implication (i) = (ii).
Assume, then, that for certain vectors z and y, (i) is true while (ii) is false. Since
y ¢ H(z), it follows by the separation theorem (§ 1, ¢) that there exists a vector
u = (%1, ..., uy) such that

(y, u) > max (zx,u),

ne Sn
i.e. Zykuk>max zxnkuk~—2xk ug,
k= neGn k=1 k=
and therefore (cf. [24], Theorem 368)
(2.2) Zyk uf > Zxk uf.
k=1
On the other hand, in view of (i), we have
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and this contradicts (2.2). The proof is therefore complete *.

We may strengthen the result just established by replacing 4, in (iii) by the
set of ‘orthostochastic’ n X n matrices, i.e. matrices of the type (a2), where (ays)
is an orthogonal matrix ** [27, 44].

Further, it may be mentioned that there is a rather obvious analogue of
Theorem la for stochastic matrices ***. A more interesting result can be proved

* This argument is due to Rapo [43].

** It is easy to verify that the set of orthostochastic matrices is properly contained in
the set of d.s. matrices.

**% A square matrix is called sfochastic if its elements are non-negative and the sum of
the elements in each row is equal to 1. It will be recalled that the study of these matrices
figures prominently in the theory of Markov chains.
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for doubly-substochastic (d.s.s.) matrices, i.e. square matrices with real non-
negative elements none of whose row-sums or column-sums exceeds 1. Write
at = max(a, 0) and, when x = (x1, ..., %), put 2t = (z{, ..., 2}). If z, y are
any real vectors with n components, then there exists a d.s.s. n X n matrix E
such that y = Ex if and only if y <zt and —y < (—a)* ([45] cf. also [II]).

An unsolved and difficult problem * is concerned with the extension of Theo-
rem 1a to the case of complex vectors: if z and w are given complex vectors, what
conditions are necessary and sufficient for the existence of a d.s. matrix D such
that w = Dz ? We encounter this problem when we seek to establish criteria for
the existence of a normal matrix with prescribed diagonal elements and charac-
teristic roots.

In recent years, the theorem of Harpy, LirrLEWoO0D, and PéLya has been
assimilated into much more general investigations. Thus it emerges as a corollary
of a result of Fax [13] concerning convex functions defined in topological vector
spaces. This is not altogether surprising, for there is a natural link between convex
functions and d.s. matrices. This was recognized by Harpy, LirrLEWO0OD, and
Pérya who proved the following result ([23]; [24] (Theorem 108)), the germ of
which is already contained in Schur’s paper [57].

Theorem 1h. Let xz, yx (1 < k < n) be given real numbers. Then the inequality

(2.3) Dy1) + -+ Dyn) = D(@1) + -+ + D(w)
ts valid for every convex function** @ if and only if
(2.4) (Y15 eees Yn) < (&1, .00, %0).

It will be observed that the stafement of this theorem does not involve d.s.
matrices. They make their appearance in the proof, and this seems a natural mode
of argument, though it should be noted that there also exist proofs depending on
quite different ideas [19, 30].

The necessity of the condition (2.4) becomes evident if we apply (2.3) in turn
to the functions

D) =t, —t, (—ax)t 1=Ek=<a).

To demonstrate its sufficiency, we note that, by Theorem la, (2.4) implies the
existence of a d.s. matrix D = (dps) such that

Yr=dnx1 -+ + dra2y (l=r=mn).
Hence, for any convex function @,

D(yr) = dnn P (x1) + -+ -+ drn P(zn) (1 =r=mn);
and (2.3) follows if we sum for 1 < r =< n.
Numerous modifications of this result are possible. For example, it was shown

by PoryYA [62] that the theorem remains valid if (2.4) is weakened to

(y17 cev y’l‘b) < (x17 tee 9xn)>

* See, however, the papers of Horx [27] and SHERMAN [60].
** The function @ is said to be convex if, for any numbers x, ¥ and any positive numbers
A, p with sum 1, we have
Dz + py) = A0 () + pP(y).
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provided that we restrict ourselves to the class of convex non-decreasing functions.
Again, instead of considering
B(tr) + - + D(ta), |

we can admit more general classes of functions of #j, ..., #, and obtain several
variants of Theorem 1b (see [46]). Thus, for instance, the inequality F(y) < F (x)
is valid for every function F(x) = F(x1, ..., &), which is symmetric with respect
to the x; and convex with respect to the vector variable z, if and only if ¥y < «.
There are many results more loosely linked with Theorem 1b. We content our-
selves with a mere mention of inequalities involving ‘Schur-convex’ functions*
[61, 571 and of results on ‘symmetric gange functions’ and on ‘unitarily invariant
matrix norms’** [11, 15, 47].

Theorem 1b is the source of a whole series of matrix inequalities, of which we
give a single example. Let H = (#ss) be a hermitian matrix with characteristic
roots w1, ..., wy. Then, by (1.2),

(hll, ave s hnn)T = D(wl, ee s wn)T,
where D e 4,. Hence, by Theorem 1a,

(hlly see s knn) < (wl, ey wn)
and so, by Theorem 1b,

D (h11) + -+ + Phpn) = P(w1) + -+ + D(wa),

where @ is any convex function. In particular, if H is positive definite, then, for
any real number p > 1, we have***

(2.5) [ R Sy

In view of Pélya’s modification of Theorem 1b mentioned above, this inequality
can be extended: if w1 = *++ = wy and p > 1, then, for 1 < k£ < n, we have

My e M S of o o of.

3. Birkhoff’s theorem

The simplest d.s. matrices are, of course, the permutation matrices, and it is
natural to conjecture that they are cast for a special role in the theory we are
deseribing. That this is, indeed, the case is demonstrated by Birkhoff’s theorem
[3].

Theorem 2. T'he set Ay of doubly-stochastic n X n matrices is identical with the
convex hull of the sef of n X n permutation matrices.

It is remarkable that so striking and intuitively so simple a result was not
discovered till 1946. There exist now, in addition to Birkhoff’s original treatment,
several other proofs [2, 9, 22, 26, 43, 50, 61]. Most of these draw upon combina-

* A function F of a vector variable is said to be Schur-convex if, for every vector z and
every d.s. matrix D, we have F(Dx) = F (). The class of convex, symmetric functions is con-
tained in the class of Schur-convex functions.

** For definitions of these terms, see e.g. [47].

**%* The inequality (2.5) was proved in a different way by Scuur [57].
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torial or upon geometric ideas, or upon both. In the combinatorial proofs, the
essential step often consists in the demonstration that, for any d.s. n X n matrix
D = (dys), there is a permutation me &, such that dp » >0 (1 Zr Zn)*;
from this Theorem 2 follows readily by induction with respect to the number of
strictly positive elements of D (see e.g. [9]). However, the proof we shall indicate
below (due to HorFman and WIELANDT [26]) is of the geometric type and depends
on properties of convex sets.

‘We shall interpret real n X % matrices as points in E*. The matrix X = ()
belongs to A4, precisely if

(3.1 Zps =0 1Zr,s=n),
n
(3.2) Zxrs = 1=r=n),
s=1
n
(3.3) Zxrszl l1=s=s=n—1),
r=1

since the relation 1, 4 *+* + Zpn = 1 is a consequence of (3.2) and (3.3). Thus
Ay is the non-empty, bounded intersection of a finite number of closed half-spaces
and so, by § 1(a), is a convex polytope. Theorem 2 will therefore follow if we can
show that the extreme points of A, are precisely the permutation matrices. One
half of this statement is trivial, for every permutation matrix is clearly extreme
in Ay. To prove the converse, suppose that X is extreme in 4,. Then, by § 1 (b),
it follows that equality must hold in at least 22 of the relations (3.1), (3.2), and (3.3),
and so in at least n2 — 2n + 1 of the relations (3.1). This implies that at least one
row of X must consist of n — 1 zeros and one unit. In the column containing this
unit, all other elements must be equal to zero. We are thus able to reduce our
problem to the consideration of A,-1; and the proof is now easily completed by
induction with respect to n.

The theorem just discussed shows that every d.s. matrix can be expressed as a
convex combination of permutation matrices. But the representation of any one
d.s. matrix does not require all »! permutation matrices. In fact, the set A, lies
in a linear variety of dimension (n — 1)2 in En»®, Hence, by Carathéodory’s
theorem (§1,d), any d.s. n X n matrix belongs to the convex hull of at most
(n — 1)2 -+ 1 suitable permutation matrices, and it is not difficult to show that
this result is best possible [17, 21, 40]. However, when additional information is
given, the number (rn — 1)2 -}- 1 can be diminished. If D e 4,, let »(D) denote
the least number of permutation matrices which contain D in their convex hull.
Then, as we have seen,

rD)=m—12+1
and here the sign ‘=<’ cannot, in general, be replaced by ‘<<’. Now it is plain that
all characteristic roots of D lie on the unit disk |z| =< 1. We shall denote by

¢ = ¢(D) the number of characteristic roots on the unit circle |z| =1 (so that
¢ =1 since 1 is a characteristic root of every d.s. matrix.) It was shown by

* This is an easy consequence of Hall’s theorem [20]. Cf. also [33].
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Magrous, Mixc, and Moyrs [37] that »(D) is small when ¢(D) is large. More pre-
cisely, if D is indecomposable*, then

(3.4) »(D) < ¢ (% — 1)2 +1.

This relation and other, more precise, estimates due to the same authors go
some way towards the solution of the problem of characterization of the set of d.s.
n X nmatrices D for which »(D) has a prescribed value**,

One consequence of Birkhoff’s theorem is that any function of a matrix
variable, defined and convex on A4,, assumes its maximum for a permutation
matrix. This principle was stressed by MArcUS who used it to obtain inequalities
in matrix theory [35] and also to derive afresh known inequalities [36]. For
example, he gave a proof, on these lines, of an extremal property of hermitian
matrices due to Fax [12]. Again, HorrMan and WrigLanpT [26] used the same
principle to show that, if 4, B are normal matrices with characteristic roots {uz},
{fx} respectively, then, for a suitable numbering of the roots,

|4 — B|2 ;zl — Bul2,

where [|.| denotes the euclidean norm.

Not surprisingly, there are analogues of Theorem 2 for stochastic and also for
d.s.s. matrices [17, 45]. The latter result is an easy consequence of the fact, noted
by Horx [27], that any d.s.s. # X % matrix F can be exhibited as a submatrix of a
suitable d.s. N X N matrix D, where N < 2x. Since D is a convex combination
of N x N permutation matrices, it follows that E is a convex combination of 7 X %
sub-permutation matrices***, We infer, therefore, that the set of d.s.s. n xn
matrices is identical with the convex hull of the set of # X n sub-permutation
matrices.

Various writers considered extensions of Birkhoff’s theorem. Thus MENDEL-
soHN and DuLMAGE [42] determined the convex hull of the set of all sub-permuta-
tion matrices which possess exactly 7 non-vanishing elements. An as yet unproved
generalization of Birkhoff’s theorem has been proposed by Rivisz [55]. Let
A1, ..., An be non-negative numbers with sum 1 and denote by A, the set of all
n X n matrices (xrs) with real non-negative elements such that

n n
Sars=1 (1=r=mn), Dhrps =125 (1=s=n).
s=1 r=1

* The square matrix 4 is said to be indecomposable if there exists no relation of the form

A1 O
T —
PTAP= ( A As) ,
where P is a permutation matrix and 41, A3 are square matrices. The condition of indecom-
posability in (3.4) is not a serious restriction since it can be shown that, for any d.s. matrix D,
there exists a permutation matrix P such that P? D P is the direct sum of indecomposable d.s.
maitrices.

** For the determination of an upper bound of » (D) in terms of a graph associated with D,
see [29].

*x%x A sub-permutation matriz is a square matrix in which at most one element in each row
and in each column is equal to 1 while all other elements are equal to zero.
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It is then required to prove that the convex polytope /1, possesses at most =!
extreme points. Theorem 2 corresponds to the case Ay = -+ = A, = n~1 of this
conjecture.

We next turn to a different kind of refinement of Birkhoft’s theorem. Suppose
that, instead of considering the entire symmetric group of »! permutation
matrices, we restrict our attention to some subgroup & and seek to determine the
convex hull of the set of permutation matrices in &. Our aim, then, is to link up the
multiplicative and the linear structure of &, and this problem turns out to be un-
expectedly difficult. Even for the case of the alternating group, the answer is not
known. The situation is equally obscure with regard to the corresponding ex-
tension of Theorem la of Harpy, L1TTLEWOOD, and Pérya. Here the problem is
to determine necessary and sufficient conditions for the existence of a (d.s.) matrix
D belonging to the convex hull of & and such that y = Dx, where x and y are
given vectors. In view of the intractable nature of these questions, it may be
worth while to investigate the easier problem of characterization of diagonal
elements of d.s. matrices. For the group of all permutations the problem was

solved by HorN [27]: the numbers i, ..., , are the diagonal elements of some
d.s. #n X » matrix if and only if
(3.5) 0Z21,...,2p =1
and
n
(3.6) Zxk—Zminxjgn—Q.
k=1 1=i=En

Next, consider the case of the alternating group. Let a d.s. matrix be called even
if it belongs to the convex hull of permutation matrices associated with even
permutations. Making use of the separation theorem, it is not difficult to show [49]
that x;, ..., x, are the diagonal elements of some even d.s. % X n matrix if and
only if they satisfy (3.5) and the relation

n
(3.7) Dax—3ming <n—3.
k=1 1<i=n
Suppose, now, that D = (ds) is an even d.s. matrix; let = be an even permuta-
tion; and denote by P, the permutation matrix corresponding to sz *. Then DP,
is again an even d.s. matrix and so, by (3.7),

K

2, (DPa)ix — 3 min (D Pr)j; <n — 3;

k=1 1<j=n
in other words
n
(3.8} de,nk—~3mjndj,m§n——3.
F=1 1<j=<n

It is natural to attempt to invert this conclusion by inquiring whether a d.s. matrix
D which satisfies (3.8) for every even permutation 7 is necessarily even, but it is
not known whether this is the case.

* By this we mean that the (r, s)-th element of P is equal to y, zs.
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4. Infinite and continnous analogues of the fundamental theorems

In his book on Lattice Theory [4, p. 266], BIRKHOFF proposed the problem of
extending his theorem to the set 4 of (denumerably) infinite d.s. matrices. This
question has acquired some celebrity as ‘Birkhoff’s problem 111°. It may be
noted, in the first place, that if D = (dys) € 4, then a combinatorial theorem due
to pE BRUIIX ([6]; cf. also IsBELL [28]) guarantees the existence of a permutation
7 of the positive integers such that dy, z > 0 (r =1, 2, ...). In contrast to the
finite case, however, this result does not lead to a solution of Birkhoff’s problem
since the possibility that inf d,, 4, is zero cannot be discounted.

r

Indeed, before the problem can be treated successfully, it needs to be formulated
more precisely. Now, in the transition from the finite to the infinite case, the purely
algebraic notion of a convex hull is naturally superseded by the topological notion
of convex closure. Let 8B be a vector space of infinite matrices such that A C %,
and denote by f8 the set of infinite permutation matrices. It is then required to
prove that, for a suitable choice of B and a suitable topology J on & (which is
compatible with the linear structure of ), the set A is the convex closure of
under 7.

This problem was first discussed by IsBELL [28] who considered the space B
of ‘boundedly line-summable’ infinite real matrices, i.e. the space of matrices such
that X e B if

sup Z]x,-s|<oo, sup ZIxrs]<°°-

r=zls=1 szl r=1

A solution was given by RATTRAY and PEck [4] and, independently, by KENDALL
[32]. Kendall’s choice of % is identical with that of IsBELL; his treatment de-
pends on a separation theorem for locally convex spaces [4, pp. 73—74] and the
topology used by him is the weakest (locally convex Hausdorff) topology which
makes all elements, row-sums, and column-sums of matrices continuous as linear
functionals on .

There still remain some obvious questions. For example, how can one character-
ize those infinite d.s. matrices which can be expressed as finite (or as denumerably
infinite) convex combinations of permutation matrices ?

For vector spaces of infinitely many dimensions we possess, just as for finite-
dimensional vector spaces, the notion of extreme points. It is plain that every
permutation matrix is extreme in A. Making use of ideas connected with the
Krem-Mil'man theorem [4, p. 84], KExDALL and Krierer [32] established the
converse proposition by showing that every extreme point in A is a permutation
matrix. This is a purely algebraic result and it is very satisfactory that an algebraic
proof of this and of related results has been recently discovered by MavLpoN [41].
A divergence between the finite and the infinite case is, however, to be noted. From
the fact that the permutation matrices are the only extreme points in A, , Birk-
hoff’s (finite) theorem follows at once. On the other hand, the result of KeNDALL
and KIEFER does not imply the infinite analogue of Birkhoff’s theorem.

As a footnote to the work on Birkhoff’s problem 111, we mention a character-
ization of diagonal elements [48]. According to a result stated in § 3, the numbers
21, ... , p are the diagonal elements of some d.s. n X n matrix if and only if they
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satisfy (3.5) and (3.6); and it is plain that the latter condition can be rewritten in
the form

n
2(1 —minay) < > (1 — az).
1sjsn k=1

It is not difficult to extend this result by proving that xi, xa, 23, ... are the
diagonal elements of an infinite d.s. matrix if and only if 0 <a; <1 (£=1,2,..))
and :

2(1 — infay) <

izl

T8

1

The introduction of infinite d.s. matrices raises the question whether there
exists an infinite analogue of Theorem 1a of HarDY, LiTTLEWOOD, and PéLya.
Let x = (x1, %2, ...), ¥ = (¥1, Y2, ...) be real vectors with infinitely many com-
ponents and, for k£ = 1, write

Mk(x) = sup (xil + te + xik):

where the upper bound is taken with respect to all sets of k& distinct positive
integers 1, ..., ¢x. Suppose that, for some matrix De A,

4.1) y=Dzwx.
It is easy to deduce that, if the sequence {x} is bounded, then
(4.2) My (y) < My () (k=1,2,..0.

Furthermore, we have
(4.3) DYk = > ¥k,
E=1 k=1

provided that the series on the right-hand side converges absolutely. 1t is harder to
decide whether the converse inference is valid, i.e. whether the relations (4.2) and
(4.3) imply the existence of a matrix D € 4 satisfying (4.1).

We next turn to consider the possibility of continuous analogues, and here
Theorem 1b is a natural starting point since the replacement of sums by integrals
at once suggests itself. However, before we can pursue this line of thought, we need
some preliminary definitions.

Let 9 denote the class of functions bounded and measurable on the unit
interval. Two functions f, g € M are said to be equimeasurable if, for every (finite
or infinite) interval I, the measures of the two sets

f:0<t<1,jyel}, {$:0=<t=1,g(t)el}

are equal. It can be easily shown [24, pp. 276-—277] that, associated with every
function fe IR, there is a function f* € I which is non-increasing and equi-
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measurable with f *. Moreover, f* is essentially unique**. For any functions
I, g € M, we shall write g < fif

o < | e
0 0

for 0 <u <1 and if this relation reduces to an equality for « = 1. HarDY,
LirrLEwoop, and Pérya [23] obtained an analogue of Theorem 1b which states
that, for f, g € M, the inequality

1 1
(4.4) Of D(g()dt < qub(f(t))dt

is valid for every convex function @ if and only if g < f. As our knowledge of
infinite d.s. matrices is as yet slight, we cannot establish this result by adapting
the argument used in proving Theorem 1b. However, the proof does not present
any serious difficulties if we make use of the fact that, in a finite interval, a convex
function can be approximated uniformly by the sum of a linear function and a
finite number of positive multiples of functions of type (¢ — ¢)+ ***, For further
theorems related to the inequality (4.4), we refer the reader to papers by LorENTZ
[34] and Fax and LoreNtz [16], and for an alternative continuous analogue of
Theorem 1b to the paper of Karamara [30].

The possibility of establishing a continuous analogue of Theorem la appears
to be more elusive. We naturally wish to replace d.s. matrices by suitable operators
on IR. Now it is easily verified that a matrix D is d.s. if and only if it satisfies the
following conditions: (i) # = 0 implies Dz = 0, where inequalities between vectors
are interpreted component-wise; (ii) Dwu = u, where v = (1, ..., )7; (iii) ¢ (Dx)=
= ¢ (x) for every x, where g (x) denotes the sum of components of «. This character-
ization of d.s. matrices suggests that an operator 2 on I should be called doubly-
stochastic if (a) 2 maps M linearly into itself; (b) f =0, fe M imply Zf = 0;
(c) f =1 implies Zf = 1; (d) f e M implies

1 1
f2iwadr = [@)de.
0 0

We can now formulate a conjectured analogue of Theorem la: if f, ¢ € M, then
there exists a d.s. operator & such that ¢ = Zf if and only if g < f.

The set of d.s. operators is convex if multiplication by scalars and addition are
defined in the obvious way. It is natural to extend the notion of a permutation
matrix by calling a d.s. operator a permutator if it transforms every function in It
into an equimeasurable function. This definition at once prompts several questions.
We content ourselves with mentioning the most interesting of these. Does every
d.s. operator belong to the convex closure, in a suitable sense, of the set of per-
mutators ?

* Thus the statement ‘the functions f and ¢ are equimeasurable’ is analogous to the
statement ‘the vectors # and y can be obtained from each other by a permutation of compo-
nents’. Moreover, the relation between f and f* is analogous to that between the vectors
(15 - s zn) a0d (X7, -on s Zh).

** T owe this observation to Dr. H. BURKILL.

*** Needless to say, an alternative proof of Theorem 1b can also be based on this principle.
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5. Further problems

In this final section we shall give a brief account of some properties of d.s.
matrices which do not fall within the ambit of the two fundamental theorems.

5.1. Van der Waerden’s problem. The permanent, per 4, of the n X n matrix
A = (ars) is defined by the equation

per 4 = Zal,nl “oe Qpu,n-
€Sy

More than thirty-five years ago, vAN DER WAERDEN [62] proposed the problem
of determining the minimum of per .D as D ranges over A ,,. It has been conjectured
that, for De4,,

(5.1) perD =nlnn,

with equality if and only if D = J,, where J, denotes the n X n matrix all of
whose elements are equal to n—1. Until recently this problem received no attention
and it still remains unsolved, but in the last few years several partial results have
been secured.

If (5.1) is valid, then

(5.2) d1,71...0n, qn = n~" for some mec &,

and therefore, in view of the inequality of the arithmetic and geometric means,
we have, for some 7S,

(6.3) gt dpan =1y di,21>0,... s, an > 0.

The relation (5.2) has not been proved*, but MArcus and ReE [40] obtained results
stronger than (5.3). They showed, for example, that if & characteristic roots of D
lie on the unit circle, then, for some &,

dl,nl + + dn,ym = k; dl,ﬂl > 0, see s dn,rm > 0.

Another result closely related to van der Waerden’s problem was found by
Marcus and NEwMAN [38]. Let A; denote the set of all d.s. » X n matrices with
strictly positive elements. Then, if per D attains its lower bound in A3, it does so
for D = J, only. More recently, the same authors [39] obtained a host of new
inequalities for the permanent by observing that if x1, ..., zz and y1, ..., ¥y are
any vectors in n-dimensjonal unitary space 11 with inner product (.,.), then
per ({(z;, y;)) can be interpreted as an inner product on a certain space associated
with 1. Hence, by Schwarz’s inequality

| per (i, 97)) |2 = per ((xe, 2)) - per ((¥i> ¥7));
and this relation gives rise to a variety of results. For example, let A, denote the

set of all symmetric positive definite or positive semi-definite d.s. » X n matrices.

Then (5.1) holds for all D e A, with equality if and only if D = J,.

In spite of recent progress, most problems concerning the permanent are still
unsolved. We mention three of these problems, formulated by Marcus and
NEwMAN [39]. Does the inequality

per (4 B) < min (per 4, per B)

* Compare the addendum at the end of the paper.
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hold for all 4, BeA,? If D ed n» is the following counterpart to Hadamard’s
determinantal inequality valid:

per D 2_ dlldzg dnnz

Again, does the inequality per (I — D) = 0 hold for all De 4, ? Marcus and
NewMan [39] showed that it certainly holds when D is d.s. and symmetrie.

5.2, Distribution of characteristiec roots. Our knowledge of the spectral pro-
perties of d.s. matrices is very scanty. The most obvious question that arises in
this context is concerned with the determination of the region £2, of the complex
plane which is specified by the requirement that z € Q,, if and only if z is a charac-
teristic root of some matrix in A,. The analogous problem for stochastic matrices
was raised in 1938 by A. N. KoLmMoGOROFF, investigated by DMI1TrIEV and Dyx-
KIN [7, 8], and finally solved by KarprELEVICH [31]. Both the statement and the
proof of Karpelevich’s result are complicated; the problem of specifying £2,, is
probably more tractable but it has not yet been solved or even discussed in the
literature. However, a partial result can be obtained quite easily as follows *.

For k = 2, denote by I the closed, finite region bounded by the regular
k-gon whose vertices are the points 67 (m = 0,1, ...,k — 1), where § = 27/,
It is clear that, if 2 < k =< =, then 0 is a characteristic root of some n X n per-
mutation matrix, say P. Now any number z € [T can be expressed in the form

B=1g+ 110 + 0% + -+ + 151 OF1,

where £y, 1, ..., -1 are suitable non-negative numbers with sum 1. It follows
that z is a characteristic root of the d.s. » X » matrix

toI+t1P—|—t2P2+"' —|—tk_lPk_1.
Thus IT; C £, and so
(5.4) 0I5 ... UIT,C Q.

Whether the sign of inclusion in this relation can be replaced by the sign of
equality remains at present an open question.

Denote by £ the union of all ,, so that z ¢ 2 if and only if z is a charac-
teristic root of some d.s. matrix. Then (5.4) implies that the whole interior of the
unit disk belongs to £2 while, of course, £ is contained in the closed unit disk.
Finally, it follows at once from the work of Durrriev and Dy~KIN [7] that the
only points of £2 on the unit circle are the ‘rational’ points ¢27¢%/% where a, b are
any integers.

Needless to say, the much harder problem of finding necessary and sufficient
conditions for a set of » complex numbers to be the set of characteristic roots of
some matrix in A, is at present completely inaccessible.

5.3. Miscellaneous problems. In conclusion, we enumerate a few unsolved pro-
blems.

(i) If x, y are given real vectors, what conditions are necessary and sufficient
for the existence of a non-singular d.s. matrix D such that y = Dz ?

* This result has been communicated to me by Dr. J. F. C. KINGMAN.

Z. Wahrscheinlichkeitstheorie, Bd, 1 23



332 L. Mirsky:

(ii) If z, y are given real vectors, what conditions are necessary and sufficient
for the existence of a symmetric d.s. matrix D such that y = Dz ? (Cf. Horr-
MAN [29]).

(iii) What is the convex hull of all #n x » permutation matrices other than the
unit matrix ?

(iv) Isthere a convenient way of characterizing those d.s. matrices which are
unitarily similar to diagonal matrices ?

(v) Is the set of orthostochastic n X n matrices everywhere dense, with respect
to the euclidean norm, in A, ?

(vi) It was conjectured by S. KARUTANI (see SHERMAN [58]) that, if X, Yed,
and Xu < Yu for every real vector «, then there exists a matrix D e 4, such
that X = DY. This conjecture was shown [§9] to be generally incorrect for
n = 4, but SCHREIBER [56] proved that it is valid when Y is non-singular. The
question of a convenient condition which, in the general case, would ensure the
existence of the requisite matrix D is still open.

(vii) It will be recalled that, for any infinite d.s. matrix (d,s), there exist a
permutation s of the positive integers such that dy »r > 0 (r=1,2,...). J.R. IsBELL
hasraised the question whether this result can be proved without recourse to the
axiom of choice.

(viii) Let f (,y) be a non-negative and continuous function defined on the unit
square, which satisfies the relations

[fendy—10=2=51), [Hepde—10=y=<1).
0 0

P. RfvEsz has conjectured the existence of a measurable and measure-preserving
transformation 7', defined on the unit interval, such that f (z, T%) > 0 for
0 <2 = 1. If this conjecture is correct, it provides a continuous analogue of the
result quoted in (vii).

The list of such problems can, of course, be extended almost indefinitely.
Indeed, it is evident that in the study of d.s. matrices we have scarcely advanced
beyond the fringe of the subject.

Added in proof (22 January 1963). Since this paper was submitted for publication, a
number of new results on d.s. matrices have appeared in print. (a) P. Rfiviisz, A probabilistic
solution of problem 111 of G. Birkhoff, Acta Math. Acad. Scient. Hungaricae 13, 187—198
(1962) has formulated and proved a probabilistic version of Birkhoff’s theorem. (b) M. MARCUS
and H. Mixc, Some results on doubly stochastic matrices, Proc. Amer. math. Soc. 18, 571 —579
(1962) have now succeeded in establishing the inequality (5.2). (c) J. R. IsBELL, Infinite doubly
stochastic matrices, Canad. math. Bull. 5, 1—4 (1962) has given a short and elementary proof
of the theorem, due to KENDALL and KIEFER, to the effect that any matrix which is extreme
in the set of infinite d.s. matrices must be a permutation matrix. He has also shown that an
infinite d. s. matrix D = (dys) can be expressed as a finite convex combination of permutation
matrices if and only if the elements d;s take only finitely many distinct values. The proof of
this proposition rests on the axiom of choice.
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