On a Mixing Property of Operators in L_n Spaces^{*}

H. Fong and L. Sucheston

Let (X, \mathscr{A}) be a measurable space. For a measure μ defined on \mathscr{A} and a fixed number p with $1 \leq p < \infty$, $L_p(\mu)$ shall denote the Banach space of functions f such that $\int |f|^p d\mu < \infty$; $L_{\infty}(\mu)$ denotes the Banach space of μ -essentially bounded functions. We consider the following conditions on a linear contraction operator T defined on $L_p(\mu)$:

(A) For each $f \in L_p(\mu)$, $T^n f$ converges weakly in $L_p(\mu)$.

(B) For each $f \in L_p(\mu)$, $\sum_i a_{ni} T^i f$ converges in $L_p(\mu)$ for each matrix (a_{ni}) satisfying

 $(UR) \sup_{n} \sum_{i} |a_{ni}| < \infty; \lim_{n} \sum_{i} a_{ni} = 1; \lim_{n} \max_{i} |a_{ni}| = 0.$

Condition (A) corresponds to mixing, or more generally stability in applications to Ergodic Theory (cf. [2, 9, 3, 10]). The matrices satisfying (UR) could be called uniformly regular. It is not difficult to see that the last condition in (UR) may be replaced by: $\lim_{n \to i} a_{ni} = 0$ for each *i* and $\lim_{i} \max_{i} |a_{ni}| = 0$. Lorentz characterized the class of (UR) methods in terms of "summability functions" (see [11] and [12]). In Section 1 we show that (A) and (B) are equivalent for p=1 and 2. This is still true if 1 , under some additional conditions on*T*, as shown $in Section 2. Passage from <math>L_2$ to L_p , $p \neq 2$, is accomplished via an interpolation result (Theorem 1.2) proved by a very simple argument, but including results for point-transformations and Markov operators which seemed fairly difficult to establish (cf. [2]; [9], Theorem 4.1; [10], Theorem 3.2).

The authors wish to thank B. Baishanski and M. Lin for valuable comments.

Section 1

Our first theorem generalizes some results in Blum-Hanson [2], Hanson-Pledger [6], Akcoglu-Sucheston [1], and Jones-Kuftinec [8].

Theorem 1.1. Let T be a contraction operator on L_2 of a σ -finite measure space (X, \mathcal{A}, μ) . Let f be a fixed function in $L_2(\mu)$. Then the following conditions are equivalent:

(a) $T^n f$ converges weakly in $L_2(\mu)$.

(b) For every (UR)-matrix (a_{ni}) , $A_n f = \sum_i a_{ni} T^i f$ converges in $L_2(\mu)$.

Proof. (b) \Rightarrow (a) In fact, we show that condition (a) is easily implied-not only in L_2 , but in any Banach space-by the following weaker condition:

* This research was supported by the National Science Foundation, grant GP-34118.

¹² Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 28

(b') There exists a *regular* matrix (a_{ni}) such that for every increasing sequence of positive integers (k_i) , $\sum a_{ni} T^{k_i} f$ converges weakly.

We recall that a matrix (a_{ni}) is called *regular* if: $\sup_{n} \sum_{i} |a_{ni}| < \infty$, $\lim_{n} \sum_{i} a_{ni} = 1$, $\lim_{n} a_{ni} = 0$ for each *i*. Assume that (b') holds for some regular matrix (a_{ni}) and that (a) fails. Then there exists $g \in L_2(\mu)$ such that $(T^n f, g) = \int T^n f \cdot g \, d\mu$ diverges. The sequence $c_n = (T^n f, g)$ being bounded, there are sequences of positive integers (r_i) and (t_i) such that $\alpha = \lim_{i} c_{t_i} \pm \lim_{i} c_{r_i} = \beta$. We shall form an increasing sequence of positive integers (k_i) such that the sequence $\sum_{i} a_{ni} c_{k_i}$ does not converge. Since (a_{ni}) is regular, there exist increasing sequences of integers (n_k) and (m_k) such that

$$\lim_{k \to \infty} \left(\sum_{i \le m_{k-1}} |a_{n_k,i}| + \sum_{i > m_k} |a_{n_k,i}| \right) = 0.$$
 (1.1)

The sequence (k_i) is formed as follows: take m_1 terms of (t_i) , then $(m_2 - m_1)$ larger terms of (r_i) , then $(m_3 - m_2)$ larger terms of (t_i) , etc. It follows from (1.1) and the regularity of (a_{ni}) that

$$\lim_{j}\sum_{i}a_{n_{2j+1},i}c_{k_{i}}=\alpha \quad \text{and} \quad \lim_{j}\sum_{i}a_{n_{2j},i}c_{k_{i}}=\beta.$$

Remark. The above argument establishes the following fact, perhaps already observed: If (c_n) is any bounded sequence, (a_{ni}) is regular and $\sum_i a_{ni} c_{k_i}$ converges for every (k_i) , then c_n converges.

(a) \Rightarrow (b) The following lemma is taken from [1].

Lemma 1.1. Let *S* be a contraction operator on $L_2(\mu)$ and assume that $h \in L_2(\mu)$. Then $||h||^2 - ||Sh||^2 \leq \varepsilon^2$ implies that for each $g \in L_2(\mu)$, $|(h, g) - (Sh, Sg)| \leq \varepsilon ||g||$.

Proof of Lemma. $|(h, g) - (Sh, Sg)| = |(h, g) - (S^*Sh, g)| \le ||h - S^*Sh|| ||g||$. But $||h - S^*Sh||^2 = ||h||^2 - 2||Sh||^2 + ||S^*Sh||^2 \le ||h||^2 - ||Sh||^2 \le \varepsilon^2$, since S^* is also a contraction.

Assume (a), and let (a_{ni}) be a (UR)-matrix. We note that $\lim_{n} ||T^{n}f||$ exists since T is a contraction. We first make the additional assumption that $T^{n}f \to 0$ weakly. Hence, for each $\varepsilon > 0$, one can find an integer $K \ge 0$ such that $k \ge K$ and $j \ge 0$ imply that $||T^{k}f||^{2} - ||T^{j+k}f||^{2} \le \varepsilon^{2}$ and also $|(T^{k}f, f)| \le \varepsilon$. Applying the lemma with $S = T^{j}$, $h = T^{k}f$, g = f, we obtain that

$$|(T^{j+k}f, T^{j}f) - (T^{k}f, f)| \leq \varepsilon \cdot ||f||,$$

$$|(T^{j+k}f, T^{j}f)| \leq \varepsilon \cdot (1+||f|)$$

and hence

$$|(T^{j+k}f, T^jf)| \leq \varepsilon \cdot (1 + ||f||)$$

whenever $j \ge 0$ and $k \ge K$. Consequently, we have that

$$|(T^{i}f, T^{j}f)| \leq \varepsilon \cdot (1 + ||f||) \quad \text{for } |i-j| \geq K.$$
 (1.2)

Since $\lim_{n} \max_{i} |a_{ni}| = 0$, there exists an integer N such that $n \ge N$ implies that $\max_{i} |a_{ni}| < \varepsilon$. Let $m = \sup_{n} \sum_{i} |a_{ni}|$.

It follows from (1.2) that for $n \ge N$

$$\begin{split} \|A_n f\|^2 &= \left(\sum_{i} a_{ni} T^i f, \sum_{i} a_{ni} T^i f\right) \\ &\leq \sum_{|i-j| < K} \left|a_{ni} \|a_{nj}\| \left(T^i f, T^j f\right)\right| + \varepsilon (1 + \|f\|) \cdot \sum_{|i-j| \ge K} |a_{ni}| |a_{nj}| \\ &\leq 2K \left(\max_{j} |a_{nj}|\right) \|f\|^2 \left(\sum_{i} |a_{ni}|\right) + \varepsilon (1 + \|f\|) \cdot \left(\sum_{i} |a_{ni}|\right)^2 \\ &< \left[2Km \|f\|^2 + (1 + \|f\|) m^2\right] \varepsilon. \end{split}$$

Thus $\lim_{n} ||A_n f|| = 0$. In the general case, let $T^n g$ converge weakly to \overline{g} . Clearly \overline{g} is *T*-invariant, hence the above argument applied to $f = g - \overline{g}$ shows that $||A_n f|| \to 0$. It then follows from

$$\|A_n f\| = \|\sum_i a_{ni} T^i g - \sum_i a_{ni} T^i \bar{g}\| = \|A_n g - (\sum_i a_{ni}) \bar{g}\|$$

that $||A_n g - \overline{g}|| \to 0$ since $\lim_n \sum_i a_{ni} = 1$.

A sequence of operators T_n is said to converge weakly in L_p if $T_n f$ converges weakly for each $f \in L_p$.

Theorem 1.2. Let (X, \mathcal{A}, v) be a finite measure space, and let S be a contraction operator on $L_{p_1}(v)$ and $L_{p_2}(v)$ hence on L_p , $p_1 , where either (<math>\alpha$) $1 \le p_1 \le 2 < p_2 \le \infty$, or (β) $1 = p_1 < p_2$. Then the following conditions are equivalent:

(1) For some fixed $q_0 \in [p_1, p_2)$, S^n converges weakly in $L_{q_0}(v)$.

(2) For every $q \in [p_1, p_2)$, S^n converges weakly in $L_q(v)$.

(3) For every $q \in [p_1, p_2)$ and every $f \in L_q(v)$, $\sum_i a_{ni} T^i f$ converges in $L_q(v)$ for every (UR)-matrix (a_{ni}) .

If v is assumed only σ -finite and (α) holds, then (1), (2), (3) are still equivalent, provided that $[p_1, p_2)$ is replaced by (p_1, p_2) when $p_1 = 1$.

Proof. We only prove the theorem under the assumption that $v(X) < \infty$; the proof of the σ -finite case is similar. *Case* (α). The implication (2) \Rightarrow (1) is obvious; the implication (3) \Rightarrow (2) follows from the same argument as in the proof of (b) \Rightarrow (a) in Theorem 1.1; thus we need only to show that (1) \Rightarrow (2) and (2) \Rightarrow (3). For $1 \le p < \infty$, p' is given by 1/p + 1/p' = 1.

 $(1) \Rightarrow (2)$ Assume that (1) holds for $q_0 \in [p_1, p_2)$, and let $q \in [p_1, p_2)$ be fixed. Since the sequence (S^n) is uniformly bounded, we need only to show that $S^n f$ converges weakly for $f \in L_q(v) \cap L_{q_0}(v)$ which is dense in $L_q(v)$. But it follows from (1) that for each $f \in L_q(v) \cap L_{q_0}(v)$, $\lim_n \int g \cdot S^n f \, dv$ exists for each $g \in L_{q'}(v) \cap L_{q_0}(v)$ which is dense in $L_{q'}(v)$. Hence S^n converges weakly in $L_q(v)$.

 $(2) \Rightarrow (3)$ Assume (2); hence S^n converges weakly in $L_2(v)$. By Theorem 1.1, for each fixed matrix (a_{ni}) satisfying (UR) and each $f \in L_2(v)$, $A_n f = \sum_i a_{ni} S^i f$ converges strongly in $L_2(v)$. For a fixed q, $p_1 \leq q < p_2$, clearly $L_{p_2}(v)$ is contained and dense in $L_q(v)$. Since $A_n = \sum_i a_{ni} S^i$ is a sequence of uniformly bounded linear operators in $L_q(v)$, in order to prove that $A_n f$ converges strongly in $L_q(v)$ for L_{2^*}

each $f \in L_q(v)$, it suffices to verify the convergence for f belonging to a dense subspace, say $L_{p_2}(v)$. If $p_1 \leq q \leq 2$, set $r = p_1(2-q)/(2-p_1)$, $s = 2(q-p_1)/(2-p_1)$, $p = (2-p_1)/(2-q)$, and $p' = p/(p-1) = (2-p_1)/(q-p_1)$; then r+s=q, $r p = p_1$, and s p' = 2. Let $f \in L_{p_2}(v)$; it follows from Hölder's inequality that

$$\begin{split} \|A_n f - A_m f\|_q^q &= \int |A_n f - A_m f|^r |A_n f - A_m f|^s \, dv \\ &\leq \|(A_n f - A_m f)^r\|_p \|(A_n f - A_m f)^s\|_{p'} \\ &= \|A_n f - A_m f\|_{p_1}^{p_1/p} \|A_n f - A_m f\|_2^{2/p'} \\ &\leq (2\|f\|_{p_1} \cdot \sup_n \sum_i |a_{ni}|)^{p_1/p} \|A_n f - A_m f\|_2^{2/p'} \end{split}$$

which converges to zero since $\sup_{n} \sum_{i} |a_{ni}| < \infty$ and $(A_n f)$ is Cauchy in $L_2(v)$. If $2 < q < p_2$, set $r = p_2(q-2)/(p_2-2)$, $s = 2(p_2-q)/(p_2-2)$, $p = (p_2-2)/(q-2)$, $p' = (p_2-2)/(p_2-q)$; a similar argument yields the conclusion. Case (β) . The proof is the same, with the following Theorem 1.3 applied instead of Theorem 1.1.

The proof of Theorem 1.3 depends on (α) , but not (β) , case of Theorem 1.2. We next consider the case p=1. The following theorem is due to Akcoglu and the second named author [1] in the case when the matrices (a_{ni}) in condition (B) are obtained from the Cesàro matrix by arbitrarily inserting columns of zeros.

Theorem 1.3. Let T be a contraction operator on $L_1(X, \mathcal{A}, \mu)$. Then the conditions (A) and (B) are equivalent:

(A) T^n converges weakly in $L_1(\mu)$.

(B) For each $f \in L_1(\mu)$ and for each (UR)-matrix (a_{ni}) , $\sum_i a_{ni} T^i f$ converges in $L_1(\mu)$.

Proof. We prove that (A) \Rightarrow (B); the implication (B) \Rightarrow (A) is valid in general Banach spaces, as remarked in Theorem 1.1. Let τ be the linear modulus of T; τ is a positive linear contraction on $L_1(\mu)$ and $|Tf| \leq \tau |f|$ for each $f \in L_1(\mu)$ (see Chacon and Krengel [4]). The following lemma is taken from [1]:

Lemma 1.2. A contraction T on $L_1(X, \mathcal{A}, \mu)$ decomposes the space X into sets G and F = X - G such that

(i) If $f \in L_1$ and if $T^n f$ converges weakly in L_1 then $\lim_{n \to F} \int |T^n f| d\mu = 0$.

(ii) There exists an $h \in L_1^+$ such that the support of h is G and $\tau h = h$, where τ is the linear modulus of T.

Assume that (A) holds. If $G = \emptyset$, then (B) follows from (i) of the lemma; otherwise, there is an $h \in L_1^+$, $h \neq 0$, satisfying (ii) of the lemma. Let λ be the finite measure defined by $d\lambda = h d\mu$. We note that a function $\varphi \in L_1(G, \lambda)$ if and only if $h \varphi \in L_1(G, \mu)$. The operator S defined on $L_1(G, \lambda)$ by

$$S\varphi = \frac{1}{h}T(h\varphi), \quad \varphi \in L_1(G,\lambda)$$
 (1.3)

is a contraction since

$$\int |S\varphi| \, d\lambda = \int |T(h\varphi)| \, d\mu \leq \int |\varphi| \, d\lambda. \tag{1.4}$$

S is also a contraction on $L_{\infty}(G, \lambda)$ since for each $g \in L_{\infty}(G, \lambda)$

$$|Sg| = \left|\frac{1}{h}T(hg)\right| \le \frac{1}{h}\tau(h|g|) \le ||g||_{\infty}.$$
(1.5)

To prove (A) \Rightarrow (B), we first note that if T^n converges weakly in $L_1(X, \mu)$ then S^n converges weakly in $L_1(G, \lambda)$. Indeed, for $\varphi \in L_1(G, \lambda)$, $g \in L_{\infty}(G, \lambda)$ we have that $h \varphi \in L_1(G, \mu)$ and hence

$$\int S^n \varphi \cdot g \, d\lambda = \int T^n(h \, \varphi) \cdot g \, d\mu$$

converges by assumption (A). Applying Theorem 1.2 to S with $p_1 = 1$ and $p_2 = \infty$, we obtain that for each matrix (a_{ni}) satisfying (UR) and for each $\varphi \in L_1(G, \lambda)$, $\lim_n \sum_i a_{ni} S^i \varphi$ exists in $L_1(G, \lambda)$; i.e., the sequence $\sum_i a_{ni} T^i(h\varphi) = h \cdot \sum_i a_{ni} S^i \varphi$ is Cauchy hence convergent in $L_1(G, \mu)$. This proves that $\lim_n \sum_i a_{ni} T^i f$ exists for each $f \in L_1(G, \mu)$. For an arbitrary $f \in L_1(X, \mu)$, let $A_n f = \sum_i a_{ni} T^i f$. To prove the convergence of $A_n f$, it suffices to show that for each $\varepsilon > 0$ there exists a Cauchy sequence $g_n \in L_1(X, \mu)$ satisfying

$$\limsup_{n\to\infty} \|A_n f - g_n\|_1 < \varepsilon$$

Let $m = \sup_{n} \sum_{i} |a_{ni}|$; apply Lemma 1.2 to obtain an integer $i_0 > 0$ such that

$$\int_{F} |T^{i_0}f| \, d\mu < \varepsilon/m \,. \tag{1.6}$$

Let $g = 1_G \cdot T^{i_0} f$. It follows from $\lim_n \max_i |a_{ni}| = 0$ that

$$\lim_{n} \sum_{i=1}^{i_0} |a_{ni}| = 0.$$
(1.7)

Set for $n, i = 1, 2, ..., b_{ni} = a_{n, i+i_0}$.

Clearly, (b_{ni}) also satisfies (UR). Since $g \in L_1(G, \mu)$, the first part of the proof shows that the sequence $g_n = \sum b_{ni} T^i g$ is Cauchy in $L_1(X, \mu)$. We note that

$$g_n = \sum_{i} b_{ni} T^{i+i_0} f - \sum_{i} b_{ni} T^i (1_F \cdot T^{i_0} f) = \sum_{i} a_{n,i+i_0} T^{i+i_0} f - h_n$$

where by (1.6)

$$\|h_n\|_1 = \left\|\sum_i b_{ni} T^i (1_F \cdot T^{i_0} f)\right\|_1 \leq \left(\sum_i |b_{ni}|\right) (\varepsilon/m) \leq \varepsilon$$

Thus

$$\|g_{n} - A_{n}f\|_{1} \leq \|\sum_{i} a_{n, i+i_{0}} T^{i+i_{0}}f - \sum_{i} a_{ni} T^{i}f\|_{1} + \varepsilon$$

$$\leq \left(\sum_{1 \leq i \leq i_{0}} |a_{ni}|\right) \|f\|_{1} + \varepsilon$$
(1.8)

which implies by (1.7) that $\limsup_{n \to \infty} ||g_n - A_n f||_1 \leq \varepsilon$.

Section 2

For $p \neq 1, 2$, we require some additional conditions on the operator T. Whether the theorem is true without such conditions we do not know. An operator T on $L_p(\mu)$ is called *positive* if $f \in L_p(\mu)$ and $f \ge 0$ imply that $Tf \ge 0$. We first consider the case 1 .

Theorem 2.1. Let T be a positive contraction on $L_p(X, \mathcal{A}, \mu)$, where p is fixed, $1 . If there exists a positive function <math>h \in L_p(\mu)$ satisfying $Th \leq h$ then conditions (A) and (B) are equivalent:

(A) T^n converges weakly in $L_p(\mu)$.

(B) For each $f \in L_p(\mu)$ and for each (UR)-matrix (a_{ni}) , $\sum_i a_{ni} T^i f$ converges in $L_p(\mu)$.

Proof. We only prove that (A) \Rightarrow (B). Let v be the finite measure on \mathscr{A} defined by $dv = h^p d\mu$, and let S be defined on $L_p(X, \mathscr{A}, v)$ by

$$S \varphi = \frac{1}{h} T(h \varphi), \quad \varphi \in L_p(v).$$
 (2.1)

Clearly S is a positive linear operator on $L_p(v)$. Furthermore,

$$\|S\varphi\|_{p}^{p} = \int \frac{1}{h^{p}} |T(h\varphi)|^{p} d\nu = \int |T(h\varphi)|^{p} d\mu \leq \int |h\varphi|^{p} d\mu = \int |\varphi|^{p} d\nu,$$

which shows that S is a contraction on $L_p(v)$. The assumption that $Th \leq h$ and (2.1) with $\varphi = 1$ imply that $S1 \leq 1$, and hence S is a contraction on $L_{\infty}(v)$. We note that a function $\varphi \in L_p(v)$ if and only if $\varphi \cdot h \in L_p(\mu)$, and $\psi \in L_{p'}(v)$ if and only if $\psi \cdot h^{p-1} \in L_{p'}(\mu)$. Furthermore, iteration of (2.1) yields for n = 1, 2, ...,

$$S^{n} \varphi = \frac{1}{h} T^{n}(h \varphi), \qquad \varphi \in L_{p}(\nu).$$
(2.2)

Thus for $\varphi \in L_p(v)$ and $\psi \in L_{p'}(v)$, we have

$$\int \psi \cdot S^n \varphi \, d\nu = \int (\psi \, h^{p-1}) \cdot T^n(h \, \varphi) \, d\mu, \qquad (2.3)$$

which shows that S^n converges weakly in $L_p(v)$ if and only if T^n converges weakly in $L_p(\mu)$. Similarly, it follows from

$$\begin{split} \int \left|\sum_{i} a_{ni} S^{i} \varphi - \sum_{i} a_{mi} S^{i} \varphi\right|^{p} d\nu &= \int \frac{1}{h^{p}} \left|\sum_{i} a_{ni} T^{i}(h\varphi) - \sum_{i} a_{mi} T^{i}(h\varphi)\right|^{p} d\nu \\ &= \int \left|\sum_{i} a_{ni} T^{i}(h\varphi) - \sum_{i} a_{mi} T^{i}(h\varphi)\right|^{p} d\mu \end{split}$$

that S satisfies (B) on $L_p(v)$ if and only if T satisfies (B) on $L_p(\mu)$. By assumption (A), T^n converges weakly in $L_p(\mu)$, therefore S^n converges weakly in $L_p(v)$. Since S is a contraction on both $L_p(v)$ and $L_{\infty}(v)$ of the finite measure space (X, \mathcal{A}, v) , Theorem 1.2 applied to S with $p_1 = p$ and $p_2 = \infty$ shows that S satisfies (B) on $L_p(v)$ and hence T satisfies (B) on $L_p(\mu)$.

Theorem 2.2. Let T be a positive contraction on $L_p(X, \mathcal{A}, \mu)$, where p is fixed, $2 . If there exists a positive function <math>h \in L_p(\mu)$ satisfying $Th \leq h$ and

 $T^*h^{p-1} \leq h^{p-1}$ then the following conditions are equivalent:

(A) T^n converges weakly in $L_p(\mu)$.

(B) For each $f \in L_p(\mu)$ and for each (UR)-matrix $(a_{ni}), \sum_i a_{ni} T^i f$ converges in $L_p(\mu)$.

Proof. Positive functions h satisfying the conditions $Th \leq h$ and $T^* h^{p-1} \leq h^{p-1}$ have been introduced and called *semi-fixed points* of T by Chacon-Olsen [5], where it is shown that a positive fixed point is semi-fixed. The proof of Theorem 2.1 shows that the operator S defined on $L_p(v)$ of the finite measure space (X, \mathcal{A}, v) is a contraction on both $L_p(v)$ and $L_{\infty}(v)$. One checks that the adjoint operators S^* is given by

$$S^* \psi = \frac{1}{h^{p-1}} T^*(h^{p-1} \cdot \psi), \quad \psi \in L_{p'}(v).$$
(2.4)

Since $||S^*||_{p'} = ||S||_p$, S^* is a contraction on $L_{p'}(v)$. Moreover, (2.4) and the assumption that $T^* h^{p-1} \leq h^{p-1}$ imply that S^* is also a contraction on $L_{\infty}(v)$. Thus S is a contraction on both $L_1(v)$ and $L_{\infty}(v)$, and Theorem 1.2 may be applied to S with $p_1 = 1$ and $p_2 = \infty$. The remaining part of the proof is the same as that of Theorem 2.1.

References

- 1. Akcoglu, M., Sucheston, L.: On operator convergence in Hilbert space and in Lebesgue space. Periodica Math. Hungarica 2, 235-244 (1972)
- Blum, J. R., Hanson, D. L.: On the mean ergodic theorem for subsequences. Bull. Amer. Math. Soc. 66, 308-311 (1960)
- Brunel, A., Keane, M.: Ergodic theorems for operator sequences. Z. Wahrscheinlichkeitstheorie verw. Gebiete 12, 231-240 (1969)
- Chacon, R. V., Krengel, U.: Linear modulus of a linear operator. Proc. Amer. Math. Soc. 15, 553-560 (1964)
- Chacon, R. V., Olsen, J.: Dominated estimates of positive contractions. Proc. Amer. Math. Soc. 20, 266-271 (1969)
- Hanson, D. L., Pledger, G.: On the mean ergodic theorem for weighted averages. Z. Wahrscheinlichkeitstheorie verw. Gebiete 13, 141-149 (1969)
- 7. Ionescu Tulcea, A.: Ergodic properties of isometries in L_p spaces, 1 . Bull. Amer. Math. Soc. 70, 366–371 (1964)
- Jones, L. K., Kuftinec, V.: A note on the Blum-Hanson theorem. Proc. Amer. Math. Soc. 30, 202-203 (1971)
- Krengel, U., Sucheston, L.: On mixing in infinite measure spaces. Z. Wahrscheinlichkeitstheorie verw. Gebiete 13, 150-164 (1969)
- Lin, M.: Mixing for Markov operators. Z. Wahrscheinlichkeitstheorie verw. Gebiete 19, 231-242 (1971)
- Lorentz, G. G.: A contribution to the theory of divergent sequences. Acta Math. 80, 167-190, (1948)
- 12. Lorentz, G. G.: Direct theorems on methods of summability, Canad. J. Math. 1, 305-319 (1949)

H. Fong and L. Sucheston Department of Mathematics Ohio State University Columbus, Ohio 43210/USA