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Explosiveness of Age-Dependent Branching Processes 
D. R. Grey 

1. Introduction 

Consider a continuous-time Markov branching process with state-space the 
non-negative integers and family-size generating function h(s). It is well-known 
(see Harris [3]) that the process is explosive if and only if h'(1)= ~ and 

1 ds 
s_h(s--~< ~ (1) 

for suitably small e > 0. 

Ikeda, Nagasawa and Watanabe [4] define a Markov branching process on a 
more general state-space, for which Savits [5] obtains some results in special 
cases; these results are essentially analogous to the above. 

In this paper we consider the problem of explosiveness of the age-dependent 
Bellman-Harris process (see [3]) with life-length distribution function G(t) 
and family-size generating function h (s). It is seen that if G is suitably well-behaved 
at the origin, the condition (1) is again necessary and sufficient; examples are also 
given where necessity and sufficiency are violated due to the form of G. 

2. The Age-Dependent Branching Process 

In the Bellman-Harris process, individuals have random life-lengths with 
distribution function G(t) (t_>_0); at death, an individual produces a family of 
random size with probability generating function h(s); and all life-lengths and 
family-sizes are independent of each other. We will assume that the process starts 
at time t = 0 with one individual of age zero. We will also assume that G (0)= 0; 
this involves no loss of generality, since it may be shown that if G (0)> 0, the process 
is equivalent to one characterised by G* and h*, where 

G (t) -- G (0) 
G *  (t) = 

1-G(O) 

and h* (s) is, for each s, the unique solution of 

h* (s) = h { [1 - G (0)] s + G (0) h* (s)} 

and obviously, G*(0)=0. 

We shall usually only be concerned with the process {Nt}, where N t is the 
number of individuals alive at time t, and the sample-paths of {N~} are assumed 
to be right-continuous. The p.g.f. F(s,t)=Es Nt is determined by the integral 
equation 

F(s, t)=s[1-G(t)]+ ~ h[F(s, t-u)] dG(u) (2) 
fo, t] 

and the p.g.f.'s of the higher-order joint distributions satisfy similar equations. 
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For 0__<s<l, F(s, t) is the unique solution of (2) and may be expressed as 
lim Fk (s, t) where the Fk (s, t) are defined recursively by Fo---0 and 
k ~  co 

Fk+I(S, t ) = s [ 1 - G ( t ) ] +  ~ h[Fk(S, t - u ) ]  dG(u). (3) 
[O, tl 

3. Explosiveness 

The process is called explosive if there is a positive probability that N t becomes 
infinite for finite t; otherwise it is conservative. Since 

P I N t =  ~176 = 1 -  L P I N = h i = l - F (  1, t) 
n = 0  

it follows that the process is explosive if and only if F(1, t)< 1 for some t. 

Harris [3] proves that if G(0)=0, h'(1)<oe is a sufficient condition for the 
process to be conservative, and so in looking for criteria for explosiveness or other- 
wise, the only interesting case is when h'(1)=oe. In general, F(I, t)=O(t) (say) 
satisfies 

0 (t)--- 1 - G (t) + ~ h I0  ( t -  u)] dG (u). (4) 
[0,  t] 

0 (t)-= 1 is always a solution of (4), but may not be the only one. 0 (t) may be written as 
lim 0k(t) where the Ok are defined recursively by 0 o - 0  and 

Oa+l( t )=l -G( t )+ S h[Ok(t-u)]  dG(u). (5) 
[0,  t] 

The following theorem tells us which solution of (4) is the "right" one. 

Theorem 1. 0 (t) is the smallest non-negative solution of  (4), in the sense that if 
r is any non-negative solution, then O(t)<r for all t>O. 

Proof. We prove by induction on k that Ok (t)< r (t) for all k and t. It is true for 
k = 0; now suppose it is true for some k. Then for all t > 0, 

0k+l(t)=l-G(t)+ j hEO~(t-u)]dG(u) 
[o, t ]  

< 1 - G (t) + S h [~ ( t -  u)] dG (u) (since h non-decreasing) 
[0,  t] 

= r (t). 

Hence the induction follows. So 0 (t) = li~m 0k (t) == r (t). 

Corollary 1.1. The process charaeterised by G and h (henceforth called "the 
process (G, h)") is explosive iff (4) has a solution with 0 < O (t) <= 1 and O (t) ~_ 1. 

Corollary 1.2. The process (G, h) is explosive iff there exist T > 0  and a function 
~b(t) on [0, T] such that 0<~b(t)<l ,  ~ ( t ) ~ l  and 

r (t) >- 1 -- G (t) + S h [r (t -- u)] dG (u) for 0 < t-< T. (6) 
[0, t] 
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Proof Necessity is obvious, as ~ (t) itself must satisfy the above conditions. 

For sufficiency, suppose ~ exists. Define ~0 by 

~o( t )=~( t )  (O<=t<=T) 

=1 ( t>T)  

and {~bk} recursively by (5). Then q~o (t) >_ ~b 1 (t) for 0_< t_< T by the given condition 
on 0; and also trivially for t > T. It follows by induction that ~b, (t) is decreasing in k 
for each fixed t, and so (a(t)=l'mae~k(t) exists; also, by bounded convergence it 

satisfies (4). q~ (t)< ~ (t)< 1 for some t ~ [0, T] and so by Corollary 1.1, the process is 
explosive. 

Further information about  q~ is given by the following two theorems, which will 
be of use later. 

Theorem 2. Each C~k is a non-increasing function of t; and hence also (o is, 

Proof The Eqs. (5) may be written 

1-q~k+~(t)= ~ {1--h[(~k(t--u)]} riG(u). 
[o, t] 

We prove the result by induction on k. ~bo(t)=0; suppose q~k is non-increasing. 
Then if 0 =< t < t', 

(~k+l ( t ) -  q~k+l (tr) = {1 --(~k+l (t')} -- {1 -q~k+a (t)} 

= y {hE(~k(t-u)]-hEdPk(t'-u)]} dG(u) 
[0, t] 

+ ~ {1--h[C~k(t'--u)] } dG(u)>_O 
(t , t ']  

since h non-decreasing, q~k non-increasing. Hence the result. 

Theorem 3. I f  (~(t)~ 1 then ~b(t)< l for all t>0 .  

Proof Suppose on the contrary there exists t > 0 for which q~ (t) = 1. Then since ~b 
is non-increasing, there must be a t o > 0 such that 

~b (t) = 1 for t < to 

q~(t)< 1 for t>to. 
Then for t >- t o , 

(t)= 1 -  G(t) + ~ h Er u)] dG(u) + ~ riG(u) 
[0, t -  to] ( t -  to, t] 

= 1 - G ( t -  to) + ~ h Eq~ ( t -  u)] dG (u). 
[0, t -  to] 

Now for z>0,  define ~*(z)=~(Z+to). Then for z>_0, 

dp*(z)=~(Z +to)= 1-G(z)+ ~ hEd~(r +to-U)] dG(u) 
[0, r] 

= 1-G(r )+  S hEq~*(~-u)] dG(u). 
[0, r] 

Hence q~* is a solution of (4), but is strictly smaller than q~ at at least one point, 
e.g. z = �89 t o , contradicting Theorem 1. Hence the result is proved. 
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4. Comparison Theorems 

In this section we show that explosiveness is essentially determined by the 
steepness of G (t) near t = 0 and the steepness of h (s) near s = 1, and obtain ways of 
comparing different processes. 

Theorem 4. [Comparison of G's.] Let G, G* be distribution functions with 
G (0) = G* (0) = O. I f  there is a T > 0 such that G (t) < G* (t)for 0 < t <_ T, and the process 
(G, h) is explosive, then the process (G*, h) is explosive. 

Proof Let ~b (t) correspond to the (G, h) process. Then q~ (t) < 1 for t > 0 (Theo- 
rem 3). For any t <  T, we have 

qS(t)= 1 - G ( t ) +  ~ h[(o(t-u)] dG(u) 
[o,t ]  

= l - G ( t ) +  ~Z,(u)dG(u) 
[o, t] 

where Zdu)-h[q)( t -u)] .  Since h is non-decreasing, and 4~ non-increasing 
(Theorem 2), )~ is a non-decreasing function of u. An integration by parts gives 

Zdu)dG(u)+ ~ G(u)dz3(u)=G(t). 
[o, t ]  [o, 3] 

Hence 
q~ (t) = 1 - 5 G (u) dz, (u) 

[0, t] 

_>_ 1 - S o *  (u) dz,(u) 
[o, t] 

= l - G * ( t ) +  ~h[~b( t -u)]dG*(u) .  
[0, t] 

Hence ~b satisfies the condition (6) for the process (G*, h) and so that process is 
explosive. 

Corollary 4.1. [Comparison with Markov Process.] I f  there exist T > 0  and 
constants fl > c~ > 0 such that ~ t < G(t) < flt for 0 <_ t <_ T, then the process (G, h) is 

ds 
explosive/ffh'(1)= Go and ~ s_h ( s~<  oo for some 5>0.  

This follows as a consequence of two-way comparison with a Markov process 
for which G(t)= 1 -e-X3, , ,2t  as t ~ 0  for some 2>0 .  

Theorem 5. [Comparison of h's.] I f  h, h* are p.g.f's such that h*(s)<=h(s) for 
O<_s<l, some 0<1,  G is a distribution function with G(0)=0, and the process 
(G, h) is explosive, then the process (G, h*) is explosive. 

Proof Let q~ (t) correspond to the (G, h) process. Then q5 (t)< 1 for t>=0; also, 
from the equation defining q~, q5 (t)> 1 -  G (t) and so q5 (t)T 1 as t$ 0. Hence there 
exists T > 0 such that ~b (t) > 0 for 0_< t-< T. For these values of t, 

O ( t ) = l - G ( t ) +  ~ h[O( t -u)]  dG(u) 
[o, 3] 

> l - G ( t ) +  ~ h*E~o(t-u)] dG(u) 
[O, t] 

and 4~ satisfies the criterion (6) for the (G, h*) process. Hence that process is explo- 
sive. 
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5. E x i s t e n c e  T h e o r e m s  

In cases where comparison with the Markov process is not possible, we would 
expect the necessary and sufficient condition (1) no longer to be applicable, and 
explosiveness to depend on the forms of both G and h. The following theorems, and 
the examples given in the next section, emphasise the extent to which this is so. 
We start with a lemma, which makes use of the inverse function h- 1 of h, which is 
defined on [h(0), 1] since h is strictly increasing on E0, 1]. 

L e m m a  A. I f  there exists T > 0  such that 

l - h -~ (1 - t )_ -<  ~G(u)du for O<-t<-T (7) 
[o, t] 

then the process (G, h) is explosive. 

Proof Define ~ (t) -- h-  l (1 - t) for 0 _< t_< T. Then for these values of t, 

1 - G ( t ) +  ~ h[~t ( t -u)]dG(u)  
[o, t] 

= l - G ( t ) +  ~ [ 1 - t + u ] d G ( u )  
[o,  t] 

= 1 - ~ ( t -  u) dG (u) = 1 - ~ G (u) d u (integration by parts) 
[0,  t] [o,  t] 

_<h-l(1 - t ) - -  ~,(t). 

Hence ~ satisfies the conditions of Corollary 1.2 and the process is explosive. 

This lemma immediately yields the first existence theorem: 

T h e o r e m  6. Given h such that h'(1)= ~ ,  there is a G with G(0)=0 such that the 
process (G, h) is explosive. 

1 
Proof Put G ( t ) -  for t in a neighbourhood of 0; then (7) holds 

with equality, h' [h-  1 (1 - t)] 

The following theorem shows that the "reverse" can be done but the proof 
gives little indication of the nature of the h constructed. 

T h e o r e m  7. Given a distribution function G with G(0)=0, and G(t)>0 for all 
t>0 ,  there is a p.g. f  h such that the process (G, h) is explosive. 

Proof Since G(0)=0 and G( t )>0  for t>0 ,  the function 

r ( t )  = ~ G (u) du (t >= O) 
[o, tl 

is continuous and strictly increasing, and F(O)=O. So it has an inverse which is 
continuous and F-I (O)=0.  The condition of Lemma A may be written 

h-  1 (1 - t )> 1 - F ( t )  for t in a neighbourhood of 0 

or equivalently, 

b(x) = - 1 - F - l ( 1  - x ) > h ( x )  for x in a neighbourhood of 1. 

Such an h may be found as a consequence of the following lemma. 

10 Z. Wahrscheinlichkeitstheorie verw. Geb., Bd. 28 
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LemmaB. I f  b is a continuous function with b(1)=l ,  there exist 0<1 and a 
p.g.f h such that h(x)<b(x) for O<_x< 1. 

Proof (after Besicovitch [1]). Let {Pi} be a sequence of numbers with each 
oo 

Pi>O and ~ pi= 1. Choose 0 so that b(x)>pl for O<_x<_ 1. We find recursively a 
i = l  

sequence {nl, hE,...} of integers such that 

k 

~k (X) = Y~ Pi xn' < b (x) 
i = l  

for O<_x<_ l. 

By the choice of 0, we may take nl = 0. Suppose now that nl, ha , . . . ,  nk have been 
chosen. Then Pk (X)= b (x)-rc k (x) is a strictly positive continuous function on [0, 1] 

with pk(1)= ~ Pi. Let m= min Ok(X)>O. Choose {e[0, 1) such that pk(x)>pk+l 
i = k + l  O<_x<_l 

m 
for ~ _< x < 1. Choose nk+ ~ such that ~,~+1 < _ _ .  Then for 0___ x < 4, 

Pk+ t 

and for ~<x__< 1, 

and so for all xe[O, 1], 

Pk+t X"k+ l <=Pk+l ~"~+1 < m< pk(X) 

Pk+l X"~+'<=Pk+t <Pk(x) 

k + l  

b(x)_rCk(X)>Pk+lX . . . .  , i.e. b(x)> y, pix "~. 
i=1  

k 

Hence nk+l has the required property. Thus b(x)> ~,pix"' for xe[O, 1] for all k, 
and so in the limit as k ~ o% i= 1 

oo 

b(x)> ~pix" '=h(x)  say, 
i = I  

and h is a p. g. f. Hence the lemma is proved. 

Finally in this section, we have a theorem ensuring the existence of a conserva- 
tive process for given h. 

Theorem 8. Given a p.g.f h such that h' (1)= 0% there is a distribution function G 
with G (t) > O for all t > 0 such that the process (G, h) is conservative. 

Proof Take a sequence {t,},>o, decreasing to zero, for which ~ t . - o o .  
n=O 

Consider the generation sizes of a process (G, h); these are well-known to form 
a Galton-Watson process, the n-th generation having p. g. f. h ~"), the n-fold functional 
iterate of h. Let A, be the event that the n-th generation contains a member whose 
life-length is not greater than t,. Because of the independence of life-lengths and 
family-sizes, we have 

P (A,) = ~ h~ ") {1 - [1 - G (t,)] J} 
j=l 

= 1 - h~"~ [1 - G ( t . ) ] .  
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co 
Now if ~ P (An) < oo, we have by the Borel-Cantelli Lemma that with probability 

n=O 
one, An occurs only finitely often. And as h(n)(s) 1" 1 as s T 1, it is possible to choose the 
values of G successively at the points t n so that this condition holds. 

But if with probability one all the members of all but finitely many generations 

live for at least the corresponding tn, it follows since ~ t n = oo that the process 
(G, h) cannot explode, n= o 

6. Examples 

There follow some examples of processes where the explosiveness question 
has been decided; in all, the Markov comparison is not applicable, and in Examples 1 
and 3 the necessity and sufficiency of the condition (1) are violated. 

Example I. The usual example given of a Markov process with h'(1)= oo but 
which is not explosive is h (s)= s + (1 - s )  log (1 - s ) :  a distribution in the domain of 
attraction of a stable law of order 1. Theorem 6 ensures that G may be found such 
that the process (G, h) is explosive; G must simply satisfy the condition (7), for 
which in this case it is sufficient that 

t 
G (u) a u  = t ( - l o g  t) for small t 

0 
and so 

1 
o(t) 

( -  log t) 
as t ~ O .  

As expected, this function is very "steep" at the origin. 

Example 2. If h is the p.g.f, of a distribution in the domain of attraction of a 
stable law of order c~, 0 < e < 1, then, using results of Feller [2], we have that 

[ | \  
1 - h ( s ) = ( 1 - s ) ' L [ ~ _ s  ) as s ~  1, 

where L is a function varying slowly at ~ .  

Hence (1 - s )  ~+ ~< 1 - h  (s)< (1 - s )  ~-~ (e > 0) for small s and by Theorem 5 (com- 
parison of h's) there is no loss of generality in representing this class of p. g. f.'s by 

h ( s ) = l - ( 1 - s )  ~ for 0 < e < l .  

It is well-known that for this h, the Markov process is explosive. Here it is shown 

that even if G(t)=exp - ~  (k>0,/~>0), an extremely "flat" function at the 

origin, the process (G, h) is explosive-which in the absence of Theorem 8 might 
lead one to suppose that all processes are explosive for this particular h. 

The condition of Corollary 1.2 becomes, in this case, writing t/(t) = 1 - ~ (t): 
we require t/(t) such that q (t)> 0 for some t > 0 and 

q(t)<_ ~ {q(t-u)}~dG(u) for O<_t<-T. (8) 
[0, t] 

10" 



136 D .R .  G r e y  

tot We will show that t/(t)= exp - 7  is a suitable choice for sufficiently large c. 
If t/(t) takes this form, t J 

{ct L.H.S. of(8)=exp - ~ -  

and 

R. H. S. of (8) = ~ exp c ~ k fi k 
o ( t -u)~ u ~ u - ~ - d u  

t _ ~ fik - ~ -  [ ~ + - 0 g  I dO where u=tO 
- ~ J t ~ 0 p + a exp 

fikL f M ) 
->- t/~ e x p l - ~ -  ~ 

where M is a constant to be chosen and L is the length of the interval on which 

cc~ k 
(1-o7 ~b ~----M 

So provided we choose M so that L is positive and M < c, we have 

L .H.S .>  exp - ~ -  >exp - =R.H.S .  for small enough t. 

But clearly L is positive if and only if 

c a  k 
M > m i n i m u m  value of (1-0)  p 4-0~ on [0, 1] 

1 1 

= {(c c 0 ~ +  k~+-;g} l + ~ by elementary calculus. 

Hence M must be chosen so that 

1 1 

{(c cO~-?-+ kl-~} '  +~ <M <c 

1 1 

and this is possible provided {(c e)+x~ + k~;~}l+~< c, which is true for 

1 

C > - -  1 

So c and hence t/(t) can be found, and the process is explosive. 

Example 3. For the same choice of h as in the above example, the proof of 
Theorem 8 gives us a way of making G "flat" enough to obtain a conservative 
process. For in this case, 

h ~") (s) = 1 - (1 - s) ~'. 
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! f k )  
So taking t . = ~  for each n, and G(t)=exp ~-exp@~ for small t (k>0), we have 

~ {1--h(")[1--G(t.)l}=~ exp {--(c~ ek)"} < oo provided ~ek> l. 
n n 

I should like to thank Professors J. F. C. Kingman and J. A. Williamson for their helpful suggestions 
during the course of this work. 
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