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Thinning and Rare Events in Point Processes 

Peter Jagers and Torgny Lindvall 

In 1956 R6nyi [10] proved a first theorem on the thinning of point processes: 
In a renewal process on the non-negative line (= time) independently retain each 
point with probability p and cancel it with probability 1 - p. Change the time scale 
by a factor p-1 and let p ~  0. Then the process approaches a Poisson stream. 
R~tde [9] treated more general deletion procedures of this type: Given that a 
point is retained, then the next point not cancelled is its k-th successor with prob- 
ability Pk, k = 1, 2, .... In this formulation R6nyi thinning amounts to the particular 
choice Pk = (1 -- p)k- ~ p, geometric cancelling. 

Both authors rely upon analytic tools, requiring that the thinning mechanism 
is independent of the renewal process to be thinned. Like Lindvall in [7], we use a 
probabilistic approach. This one shows, that the independence is, in fact, not 
necessary. Therefore we can study fairly complicated thinnings like those associated 
with the incidence of rare patterns in the underlying process. We can also handle a 
somewhat richer class of processes to be thinned, including except renewal 
processes for example stationary ergodic ones. 

For such processes the original R6nyi thinning has been studied by Nawrotzki 
[8] and Belyaev [1] (the latter's relevant Theorem 1 is correct in spite of the mistaken 
Lemma 1). 

Some applications are made, to renewal processes, to thinning procedures 
that treat different points independently, and to the process of large claims in 
risk theory. 

1. Preliminaries 

Denote by ~(R) the Borel algebra on the real numbers, R, and JV the class 
of integer valued measures on ~ (R) which are finite on compact sets. Endow X 
with the a-algebra ~ (Y)  generated by the sets 

{p~Jff; p A  =j}, A ~ J ( R ) ,  j=0 ,  1, .... 

A point process is a measurable map from some probability space (supposed to be 
fixed in the sequal -we shall use P for its probability measure) into (W, N (W)). 

The natural topology for Y is the vague topology:/Z, ~ ,/~ (read vaguely) if 

S fd/z ,  -+ ~ f d #  
R R 

for all continuous functions f :  R ~ R with compact support. Equivalently ~t, v ~/Z 
if and only if/Z,A--~ ktA for all bounded measurable A, whose boundaries have 
#-measure zero. ~(dff) is actually the Borel algebra of the vague topology 
[6, Prop. 1.1]. 
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On sV with its vague topology weak convergence in the usual sense can be 
studied: Let 4, and ~ be point processes, ~, ~ 4 (read weakly) if and only if for 
all bounded continuous ~0: sV---~ R the expectations satisfy E [q)(4,)] ~ E [q~(4)]. 
This holds if and only if for all continuous f :  R ~ R with compact support the 
random variables ~fd4, ,  ~fd~ satisfy ~fd~. ~ ~fd~ (for random variables d ) 
is, of course, convergence in distribution). 

A point of occurrence of 4 is a point x such that { {x} > 1. Since 4 is finite on 
bounded sets there cannot, for any outcome, be more than countably many 
points of occurrence. Another necessary and sufficient condition for 4, a , ~ is that 

(~,A 1 . . . . .  ~,Ak) d)(4A 1 . . . . .  ~A,) 

for all bounded measurable A j, l___j__< k, such that 4 with probability one has no 
occurrences in the boundary of any Aj. The convergence 4, d ) ~ often implies 
weak convergence in the Skorohod Jl-sense [6, Sect. 3]. 

The points of occurrence can be enumerated in the order they appear: 

X~=inf{x>0;  ~ [0, x-] > j + l } ,  j > 0 ,  

X2=sup{x<O; 4 [x, 0)_ > _ - j } ,  j < 0 .  
Then 

. '" ~ X  2 ~ X _ I < O ~ X o ~ X I ~  . . .  

and only finitely many Xy can coincide. As usual inf ~ is interpreted as + oo and 
sup g as - oo. 

We shall make use of two simple lemmata. A point xeR  is an atom of 4 if it is 
with positive probability a point of occurrence, i.e. P(~ {x} > 1)> 0. The process ~ is 
completely random if 4 Ai . . . . .  ~ Ak are independent as soon as A1 ....  , A, are disjoint. 

Lemma 1. No point process can have more than a countable number of atoms. 

Proof Let j, k be positive integers. An argument parallelling [2, p. 124] shows 
that 

P(4 {x} >___ 1) >_ 1/j 

is possible only for finitely many xe [ - k ,  k]. Take the union over all j and k. 

Lemma 2. I f  ~, ~ ~ and the 4, are completely random, then so is 4. 

Proof. Write d(~)  for the class of bounded AeN(R)  with P(~(~?A)=0)-= 1, "•" 
denoting "boundary of". d (4)  is a ring and by Lemma 1 it contains a class of 
intervals whose right as well as left end points are dense. Hence it generates N(R). 

Consider the set 

~ ' 1 =  BeN(R);  ~ B \  Aj , ~A E, . . . ,~A k 

are independent for all disjoint A 2 . . . . .  AkeSr 

A passage to the limit ~, a , ~ reveals that ~ '  (4) ~ ~ 1  and by the usual monotone 
class argument [5, Sect. 6., Th. 3, p. 27J dgl=N(R) .  The rest goes inductively: 
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Define for 1 < j  < k 

~ j  = {B ~ ( R ) ;  ~ B =U+,Aj , ~ (Ba ", B), ..., ~ (Bj._ 1 "- B), ~ (Aj+I) . . . . .  ~. (Ak) 

are independent for all disjoint B l . . . . .  B j_ ~ , A j+l , . . . ,  Ak 

such that the A-sets ~ 4 ( ~ )  and the B-sets ~ ( R )  are bounded}. 

If J g l - . . . - ~ j  = ~(R), monotonicity yields t ha t / f f j+x=  ~(R) and, finally, 

~ ( R ) =  ~t'k= {ne~(R) ;  ~(B), ~(U 1 ".B) . . . .  , ~(U,_~ " .S)  

are independent for all disjoint bounded B1 . . . .  , Bk_ I ~ ( R ) } .  

The fact that also the numbers of points in disjoint possibly nonbounded sets are 
independent follows by approximation. 

2. The Thinning Theorem 

Let ~ be any point process and {Y.j}j~z,Z the integers, for each n = 1 , 2  . . . .  
a sequence of random variables taking only the values zero or one. Define, for 
A e N(R), ~. A to be the number of points Xje  A such that Y.j = 1 and similarly r/,, A 
to be the number of indicesjeA such that Y.j = 1. These point processes r/. we shall 
refer to as thinning. 

Define also, for any a > 0 the operator C. taking a measure # into C./~, where 
(Cap) A = # ( a A ) = p { a  x; x~A} .  

Theorem 1. Assume that 

or, what is the same, 

lim X j j = m > O  a.s. 
j ~  +oo 

lim ~ [0, x]/x = - lira ~ [ - x, O]/x = m-  1. 

Then, for a n ~  o% 

if and only if, 
C~.q~ d ~ .  

Note. As will be evident from the proof it is enough that there be some enumera- 
tion of ~'s points of occurrence, not necessarily the one of their order of appearance, 
such that the first condition holds. With this formulation the theorem is valid in R k, 
though the limit process will be supported by the line through the origin with 
direction m (which of course is a vector in Rk). (To obtain such a case let ( Y,),~z be 
a sequence of random vectors in Rk for which the strong law of large numbers holds, 

lim (Yo +""  + Y~)/J= m a.s. Define a point process by putting unit mass at each 
j ~ o o  

Yo+ "" + Yj, j >  0, and each I1-1 + "'" + Y~,J< - 1.) 
It should also be clear that R could be replaced by R+ = [0, or). Then we need 

of course no requirement on lim Xj/j .  
) 4  --CO 
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Proof. The proof will be given for the implication 

Cat / ,  d ~ t / ~ C a , ~ ,  a ,C. ,_ l t /  

but the same arguments would yield the converse. 

Let f :  R ~ R be any continuous function with compact support. We wish to 
show that 

~fdCa.r ~fdC,, ,rl. 
However, 

~fd Ca. ~, = ~f(a2 ~ x) ~, (d x) = ~ f ( a ;  1 X j) Y,.i 
jez  

= ~ If(a2 ~ X j ) -  f (a ;  ~ m j)] Y~ + ~ f ( a 2  ~ m j) Y~. 
J J 

The last sum is nothing but 

Sf(a2 ~ m j) 17, (dx) = Sf(m x) co. rl, (dx) ~ , Sfd C,~-, tl 
by assumption. 

For the first sum let b, Too but so slowly that b,/a,--,O. Set 

A,={[Xj / j -ml<m/2  for [jl>~b,}. 

Obviously PA, T 1. Then, 1A denoting the indicator function, 

IZ [ - f (a~XJ) - f (a ;  1 mj)] Y, jI< ~ If(a; 1 X j ) - f ( a ;  ~ m j)l Y,j 
J [jl<bn 

+ 1A. ~ If(a21 X j ) -  f (a ;  ~ m j)[ r,j + (1 - 1a.) ~ If(a2 ~ X j ) -  f(a2 ~ mj) l Y,j. 
l J[ > b~ lJl >b .  

The last sum tends to zero a.s. since 1A. with probability one actually equals one 
ultimately. Introduce the modulus of continuity 

6-(~)= sup If(xO-f(x2)l  
[xl- x21<=~ 

and the a.s. finite random variable X = sup ]Xj/j-m[. 
J 

The first term is not greater than 

6 (lay 1 Xj - a; 1 mj[) Y,j <= imax 6 (a2 lj IX~#- ml} q, [ - b,, b,] 
IJl < b,~ 

<6(a2  ~ b,. X).  ~, [ - b , ,  b,] ~ 0  

since {~/, [ - b , ,  b,]} is tight and f is uniformly continuous. For the intermediate 
sum let the support o f f  be contained in [ - a ,  a]. Since a21 [Xj[>a21 m j~2 on A., 
this sum is not greater than, writing b = 2 a/m, 

la," ~', If(Xj .j-1 . ja21)_ f (m "ja2')[ r.j 
Ib,d<lJl<a.b 

<_ sup [f(Xj.j -x.  x ) - f (mx) l  Ca r l ,[-b ,  b]. 
Ix[=b 
[jl>b. 

The supremum tends to zero a.s. and as Ca. ~/, d ~ ~/the proof is complete. 
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3. Independent Deletions 

For any Borel measure 2, which is finite on bounded sets, the Poisson process 
with intensity 2, Hz, is defined by the requirements that H ; A  1 . . . .  , HxA,  be inde- 
pendent for disjoint sets A1 . . . . .  A, and 

e (Hx A = k) = e- ~A. (2A)k/k !, 

k = 0, 1 . . . . .  [4]. In particular, if 2 is a multiple of Lebesgue measure L we talk of 
stationary Poisson processes. 

It is of particular interest to know when the thinned process is approximately 
Poisson. By Theorem 1 this is the case if and only if the thinning processes are 
themselves Poisson in the limit. In this section we shall see that Poisson limits 
always arise if the deletion mechanism treats different points independently, in the 
next that rare configurations in renewal processes are approximately Poisson. 

If for each n the random variables Y,j,js Z, are independent (but not necessarily 
independent of 4) we talk of independent deletions; if they also have the same 
distribution, the deletions will be called i.i.d. The following generalization of 
R6nyi's theorem holds: 

Theorem 2. Let ~ be as in Theorem 1 and a,--~ ,~. Then, with independent deletions 
Y,j such that for any constant c lim max P(Y,j= 1)=0, C,, ~, can only have Poisson 

n ~  IJl<=can 
limits. Further Ca. ~, d ) 17~ if and only iffor all bounded intervals A, whose bound- 
aries have Cm 2-measure zero, 

(,) lira ~, P (Y , j=I )=(Cm2)A .  
n~ oo j~an A 

I f  the deletions are i.i.d., P(Y,~= 1 ) = p , > 0 ,  then to obtain a limit a, must be of the 
same order of magnitude as ps and 

Ca~ ~ )IL/.,L 
if and only if anp,-+c~. 

Proof. It is here that Lemmata 1 and 2 are needed. Assume that Ca, ~, a > 4. 
Then by Theorem 1 C, .q ,  a ) Cm ~_. Since the Y,j are independent, the Ca, q, are 
completely random, forcing C,. ~ to be the same. For A~seC(Cm~) as introduced 
in the proof of Lemma 2 

2 Ynj=-(Ca. t ln)  A " ' ( C m ~ ) A "  
jEanA 

By classical theory it follows that 

Z P(Y,J= 1) 
j~an A 

must converge, as n-~ ~ ,  to some number v A and that Cm ~A must have a Poisson 
distribution with parameter v A. The reader can verify this from any general central 
limit theorem, like [4, Theorem 2, XVII, 7, p. 552], obtaining first the convergence 
of the sum of probabilities from the necessary conditions for existence of a limit 
distribution, then the Poissonness from the shape of the canonical measure. 
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It follows that 
vA = - log P(C,, ~A = O) 

for A6dgr m ~). Since C m ~ is completely random, v is additive. Further if A. T A, 
then C,, ~A,T C,.~A and thus P(Cm ~A,=O)~P(Cm ~A--O). Hence v is countably 
additive on d (C m 4). It follows that v has a unique extension to a measure on the 
o--algebra generated by this class, which is nothing but all of N(R) (as was pointed 
out in the proof of Lemma 2). We denote the extension by v, too, and note that it is 
finite on bounded sets. 

If B is any bounded interval, there is by Lemma 1 a sequence of intervals 
Agent(C,, 4) decreasing to B. Thus, 

P ( C  m ~ B : j )  = lim P(C m ~Ak =j) = lim e- ~Ak, (V Ak)J/j! = e- ~B. (vB)J/j!. 

This and the complete randomness enhance that Cm ~ =Hv and therefore ~ = Hz 
with 2 = C2,1 v. 

This proved the first assertion of the theorem but also the only-if part of the 
second one: if there is convergence, (,) must hold for all A ~ d (Cm 4). But these are 
exactly the sets with v--Cm2-null boundary. 

However, it also follows that under (,) the only possible limits are completely 
random processes with the number of points in intervals of the type appearing 
in (,) Poisson distributed with parameter Cm 2A. But as above this implies that ift 1 
is a limit point of {Cat/,}, then tl=flcm ~. To complete the proof of the second 
assertion we need therefore only establish the tightness of this sequence and apply 
Theorem t. By the note following Prop. 3.2 in [6] the tightness follows from the 
tightness of all sequences {Coil, B} for bounded B. However (.) implies the con- 
vergence of C, tl, A for bounded intervals A with C,,2-null boundary and hence 
the asked for tightness. 

Finally, if P(Ynj = 1)=p,, then 

(Ca. tln) A= 2 Yni 
jean A 

has a limit if and only if a, p, has and if a, p, ~ e, then 

and therefore, by Theorem 1, 
C, tl, a >/7~ L 

Co.~. a ,/L/,,L. 

Note. Define t/,j to be the point process with mass Y,~. at the point j/a,. Then 

Ca. q, = ~ t/,j 
J 

and part of Theorem 2 can be obtained from the asymptotic Poissonness of 
superpositions of point processes, cf. [-6, Sect. 7]. 

Theorem 2 has a natural application to insurance mathematics. With each 
point of occurrence Xj associate a claim Zj > 0, P (Zj < x)= G (x)< 1 for all x. The 



Thinning and Rare Events in Point Processes 95 

Zj'S are supposed independent of one another. Let b,-* oQ and 

Y~j = 1 if Zj > b,, 

Y,~ = 0 if Z~__< b n . 

Then we are in the case of i.i.d, deletions and with a ,=[1-G(b , ) ]  -~ the large 
claims process, consisting of the occurrences where claims larger than b, were 
raised, is, with a contraction of the scale by a n, approximately a stationary Poisson 
process with intensity L/m. Note that we have assumed neither that ~ is renewal 
nor that {Z j} and ~ are independent. 

4. Rare Configurations in Renewal Processes 

Let us now consider renewal processes on [0, ~) ,  i. e. point processes such that 
the waiting times U i = X~ - X j_ 1, J->- 1, Uo = Xo are i.i.d, random variables. We 
shall assume that 0 < E [Uj] = m < ~ .  Then Theorem 1 applies by the law of large 
numbers. 

Weak convergence of renewal processes reduces to weak convergence of the 
distributions of the corresponding waiting times. Explicitly, if Fn is the distribution 
of the waiting times of~, then ~n ~ d d  ~ if and only ifF, w ~ F, where F is the distribu- 
tion of Uj- in (. We give a proof of the/f-part.  Thus, assume that Fn w > F. Then the 
product measures F~,  F ~ on R~ satisfy F~ w , F ~ [1, p. 14]. Set 

A-- u=(u~}~ee?;  Zuj-- ,oc  a s  k--- ,oo . 
1 

By the law of large numbers (provided F(0)< 1), F~176 1. For ueA  let 
h(u)EJV give mass one exactly to the points uo, uo+ul . . . . .  For u~A define h(u) 
to have no mass. The map h' R ~ - - * ~  is continuous on A and by the continuous 
mapping theorem 

~ n = h ( U g )  ' U}~),...) d ,h(Uo, U~ ... .  ) = ~  

a s  y / ~  c,~. 

Let us now turn to a fairly general thinning problem for renewal processes. 
As before ~ is the underlying process with points Xj and waiting times Uj, 0 < E [Uj] 
-- m < oe. For a given natural number k we retain the point Xj if the k preceding 
waiting times satisfy some specified property: let 

V,o=min {j_>_k-1; (Uj-k+I . . . .  , Uj)eA~} 
and 

V,i=min {j_>_ Vn, i-1 +k;  (Uj_k+ ~ . . . . .  Uj)~An} 
for i>-l. Let Y, i=l  if and only if je{V~; 0 = i <  oo}. 

(Ynj)j~176 is then a renewal process with waiting times distributed like Vn0. 
We assume that 0 <P((U~_k+ 1 . . . . .  Uj)eA,)=pn---~O as n---* ,~. Note that r/n, r / ,A= 

Ynj, is again a renewal process. 
j eA 

Lemma 3. Assume that 

cn= max P((U o . . . . .  Vk_l)eA~,(Ui . . . . .  Uk+i_l)eA,) 
l<=i<k--1 
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satisfies c./p. ~ 0 as n ~ oo. Then 

C p n l t l  n d ~,HL" 

Proof We shall show that  

lira P (Y.j = O, 0 <j  < x/p.) = e- x 
n~oo 

for all x > 0 .  Let the integers 1.Too but  so that  2 ~- p . ~ 0  and 2t"c./p.~O as n - ,  or. 
Let  B.j be the full space when j < k - 1 and 

B.j={(Uj_k+I . . . .  , Uj) CA.}, j>=k-1,  

( j - 1 ) l n + k - 1  

C.j = (-] B.i, j >= 1, 
i = ( j - 1 ) l n  

jl~-- 1 

O.j= (~ Bni, j>=l, 
i=( j - -1 ) ln+k  

for 1. > k, we obtain,  writ ing a.  = [([x/p.] + 1)//.], 

P I  (~ Bn. i =P  (Cnjc3Onj)c5 ("] Bni �9 
\ j = 0  / j= l  i=Inan 

Obvious ly  the events D.j ,  j = 1, 2 . . . .  , are independent  with the same probabil i ty ,  
and by the formula  for the probabi l i ty  of the union of several events [3, p. 89] 
P (D.j) = 1 - (l. - k) p.  + r. since, writ ing pr ime for complement ,  P (B'.j) = p . , j  > k -  1. 
Here  r. is the remaining par t  of  the inclusion-exclusion formula.  As, for any 
( ] -  1) 1,+ k<jl  <J2 < ' "  <J ,  <jl.  

P(B'.j ,n ... c~B'~,)< max  P(B;ilnB'.i2)<max(c.,p2.) 
J k < i l < i z < l n  

it follows that  r. < 2 ~". max  (c., p2). 

Hence,  

P D.j = ( 1 - ( l . - k ) p . + r . )  --,e 

as n ~ oo. But 

(ju____(~ 1 [x/p.] \ a,~ ( j -  1) In + k -  1 [x/p,d 
P C.j ~ ~ B.i) >- 1 - j~=l ~. P (B', i)-  ~. P (B'. i) 

i=lnan ! "= i=( j - -1) ln  i=l~an 

> l - ( a . k  + [x/p.] - l . a .  + l ) p.--~ l 

as n---, oo, since P(B'.i)=O for O = < i < k - 1 ,  and P(B'.i)=p. for larger i, we have 
proved  that  

[ [x/pn] \ 

p(Y.j=O,O<=j<=x/p,,)=p I ('-] B , , i ) - .e  -x 
\ j=O 

as n--* Go. By the remarks  preceding the l emma this means  that  Cprl q,, d ~ HL. 
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T h e o r e m  3. Let ~ be a renewal process on R+ with finite expected time m between 
renewals. Let Uj, j =  O, 1,. . . ,  be these times between renewals and let A,  c R k be as 
in Lemma 3. I f  4, is obtained from ~ by retaining only those points of occurrence 
X~,j>=k-1,  where (Uj_k+l ,  . . . ,  Uj)6A, and none of the points Xj_k+ 1 . . . . .  Xj_ 1 
were retained, then 

Cp~ l in- d , HL/m" 

This is true also without the last requirement that all k -  1 points, preceding a retained 
one, be cancelled. 

Proof. By T h e o r e m  1 and  the l emma  we need only check the last asser t ion.  Let  
G and Y,j be as in the l emma  and  

Y,~j= l~(vj ........ vj)~a~ rl'.B= Z Y,~j. 
j~B 

Evident ly ,  q'. > G .  However ,  for every x > O, 

E [o, x / p . ] ]  = ( [ x / p . ]  - k)  x 

as n ~ ~ ,  which is the same as 

l i m  E It/. [0, x/p.]]. 

Hence  
o =< [.'. [o, x / p . ] ]  - E [.~ [o, x / p . ] ]  - ,  o 

prov ing  tha t  t/', - t/, tends  to the zero po in t  process.  

As  an app l i ca t ion  we invest igate  when renewal  po in ts  cluster.  Assume  tha t  
the Uj-'s have d i s t r ibu t ion  F such that  F (0) = 0, F (x) > 0 for x > 0. Let  en--~ 0. To get 
4. we keep  those  po in ts  Xj  for which Xj - -X j_k<~  .. Here  p . = P ( X j - X j _ k < ~ . ) =  
F*k(e.)--+O and  for O<_i<_k- l 

P(X~_, <e. ,  Xk+i--Xi <=e.)~ P(Xk_,  <=e., X k - X k _  1 <e.)=p.F(e . ) .  

Therefore  T h e o r e m  3 yields 

p rov ided  E [Uj] = m. 
Cpa i ~n d > HL/m 
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