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O. Introduction 

There are two main purposes of this paper. The first is an attempt to resolve, at 
least partially, one of the more disturbing aspects of stochastic Ising model 
theory; the second is to demonstrate that the stochastic theory can be used as a 
powerful tool in deriving results about the equilibrium theory, The rest of this 
introduction is devoted to explaining what it is that we have in mind by these 
statements, while, at the same time, introducing the notation and background 
with which we will work. 

Let E =  ({ -  1, 1})zd be given the product topology and let ~ be the associated 
Borel field. Elements of E will be denoted by t/(={t/k: k~Ze}) and should be 
thought of as the state or configuration of an infinite system of "spins" placed 
on the lattice Z e. Given a non-empty finite subset F of Z d, let ~ e = ~  It/k: kEF-I 
(i.e., the smallest a-algebra of subsets of E with respect to which t/k is measurable 
for all k~F) and ~ = N [ t / k :  k~F]. A potential is a set {JF: F a finite subset of 
Z d} _~R satisfying 

JF+k=JF, for all k~Z a and all F, 

F~0 

Given a potential {Je}, we say that # is a Gibbs state with potential {Jr} if # is a 
probability measure on E and, for every k e Z  a, 

(0.1) p~({~kIIrTk)--(1 +exp [2 ~ J~ ~ ~j])-i 
F~k j e F  

is the regular conditional probability distribution on ~k~ of/~ given ~k~. The set 
~r162 of Gibbs states with potential {JF} is a non-empty, weakly compact, 
convex subset of the probability measures on E (cf. [1]). 

The idea behind the introduction of stochastic Ising models is to realize Gibbs 
states as the stationary measures of an evolution on E. The sort of evolution that 
we are talking about consists of the individual spins flipping, no more than one 
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at a time, at exponential holding times determined by rate constants {ck(q): 
keZ  ~} ~_~+(E) (the non-negative, continuous functions on E). The use of such 
stochastic process in this connection was initiated by Glauber [2]. In [5], we 
showed how such processes can be described in an abstract "martingale problem" 
formulation. Namely, let O=D([0,  oe),E) be the set of all right continuous 
functions co: (0, oe)--,E having left limits, and endow f~ with the Skorohod 
topology. Letting q(t, co) denote the position of co at time t>0,  we define d / t=  
~[~(s): O<s<_t] and J / { = ~  [t/(s): s>0] .  Jg is then also.the Borel field over 0). 
Define Akf=fk  for keZ  a and f: g ~ R  by Akf(tl)=f(krl)--f(~l) where 

J't/j if j 4= k 
- t/k if j=k, 

and set 

~ f  = ~ ckf, k 
k 

for fe~-~{f~Cd(E):f,k-O for all but a finite number of keZd}. A probability 
measure P, on (g2, Jg') is said to solve the martingale problem for ~ starting from 

/ t ~ 

and is a ma ting ,e for a,, ~ E  
\ 0 

f ~ .  We showed in [5] that for any t/~E and any choice of {Ck: k sZ  d} c-cd+(E), 
the martingale problem for ~ = ~  CkA k starting at t/ has a solution. Moreover, 

k 
under additional assumptions on the Ck'S, we were able to show that there is exactly 
one such solution P~ for each t/~E; in which case the family {P~: t/~E} enjoys the 
following properties: 

(i) {P,: t/eE} is a strong Markov, Feller continuous family, 

(ii) if {c(kn): k~Z ~} ___cd+(E), n>  1, and {tf}~ c E  satisfy C~)~Ck uniformly as 
n ~ oo for each k and t / ' ~  r/, then P,~)--~ P, weakly, where P~) is any solution to 
the martingale problem for ~c~(~)= ~ c~,)At starting from t/". 

A discussion of the connection between the martingale problem and our 
intuitive description of the evolution is discussed in the introduction to [5]. 

Let {JF} be a potential and define pk(t/kl~ ~) as in (0.1). Suppose {Ck: k~Z d} c 
cg+ (E) are given so that: 

(0.2) Ck(tl)pk(tlkl~k)~-Ck(ktl)pk(--tlk[~k), k~Z d and t/eE. 

Equation (0.2) is called the detailed balance equation. If the martingale problem 
for ~ = ~ c k A k is well-posed (i.e., it has exactly one solution for each t/~ E), we will 

k 
say that {P~: r/~E} is a stochastic Ising model with potential {JF}. In Lemma (1.2) 
we show that every Gibbs state with potential {Je} is a stationary measure for 
every stochastic Ising model with potential {JF}. This is the essential connection 
between stochastic Ising models and Gibbs states. 

We now come to the first problem mentioned at the beginning of this section. 
Namely, if there is one stochastic Ising model with potential {JF}, then there are 
infinitely many. So far as we know, the physics does not dictate a canonical choice 
of the Ck'S , although it is-customary to take Ck(tl)-~-Dk(--tlkltl k) and in some cases 
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the choice is narrowed by special considerations (cf. [-4]). It is the aim of Section (1) 
to show that, at least in some sense, the conclusions that can be drawn about 
one choice of the stochastic Ising model are valid for them all. The most serious 
flaw in our results is that we have been unable to show that ergodicity for one 
stochastic Ising model implies ergodicity for them all, although Theorem (1.12) 
is a ste p in that direction. 

The second section of the paper is concerned with proving mixing properties 
of Gibbs states from properties of corresponding stochastic Ising models. Our 
main result in this direction is that if the semi-group determined by stochastic 
Ising model with potential {JF} approaches a Gibbs state #, with the same potential, 
in L2(#) at an exponential rate and if J r = 0  for all F~0 not contained in a fixed 
finite set Fo, then there is an ~>0  such that i f A , =  {j: Ijl<n}, 

- 1  
lim i n f - -  log sup t#(A n B) - p(A) p(B)I >- oc 

for all A s ~  depending only on a finite number of coordinates. Conversely, we 
use this result to show that there is no exponential rate at which a stochastic 
Ising model approaches the Gibbs measure in the critical case of the 2-dimensional 
classical stationary Ising model. 

Some of the theorems in this paper appear, at least implicitely, in other places 
(cf. [3] and [9]). However, it is our impression that those which have been proved 
elsewhere (e.g., (i)<:> (ii) in Theorem (1.12)) find themselves in a more natural 
context here and that some of those which have been stated before receive here for 
the first time, regorous statements and complete proofs (e.g., Theorem (1.4)). 

1. L 2 (Gibbs States) 

Let {ck: k~Z a} ~_c+(E) be given and set 

2 , = 2  ckAk, 
k 

defined on 9.  The basic assumption which we will be making throughout this 
section is that the martingale problem for 2 '  is well-posed. We will denote by 
{Pn: tl~E} the corresponding Markov family of probability measures on s and 
by {T, t>0} the Feller semi-group on ~(E) determined by {Pn: qeE}. 

Let f ~  stand for the set of probability measures # on E such that: 

(1.1) S~o2,~d~=~2,~od~, ~ o , ~ .  

It is clear that either N~ = g  or it is a weakly compact convex subset of probability 
measures on E. We will be assuming that ff~ +0. 

(1.2) Lemma (cf. Remark (1.16)). Given a probability measure t~ on E and k s Z  a, 
let ]Ak({~ k) denote the regular conditional probability distribution on ~k~ of I ~ 
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given ~(kl. Then the following are equivalent: 

(i) /~ e ~se, 

(ii) #k({t/k}l~k) Ck(t/)=yk({--t/k}J~/k)Ck(kt/) (a.s.#) for all kaZ a, 
(iii) ~ p S ~ d # = - i / 2 s  # for p,~pe~, 

k 

(iv) 5pTtt/Jd#=5~Ttpd# for all p,~eCd(E). 

Proof. We first show that (i), (ii), and (iii) are equivalent. To prove that (i) implies 
(ii), note that  if p, t ~ e ~  and p , k ~ . ~ = 0  for all k, then s q J ) = p s 1 6 3 1 7 6  
In particular, if #e~se ,  then for such p, t ~ e ~  we have 

0 = 5 s  

Take ~J(t/)=~k and p e ~  such that p , k = 0 .  Then #effsr  implies 

0=Sp e ,d  
= - 2 ~ p (t/) [#k ({ 1 } [~ k) e k ([ 1, Ok]) - #k ({ - 1 }I ~/k) ek ([ _ I, Ok])] #(at/), 

and (ii) follows immediately from this. The passage from (ii) to (iii) is easy, and 
clearly (iii) implies (i). 

Finally, we must  show that (i) is equivalent to (iv). Assume (i) and let s 
ckd k. Then, since (i) is equivalent to (ii), # e ~ ( ~ , .  Since 50(,) is bounded  on 

!kl-<n 
Cd(E), the associated semi-group { Tt("): t > 0} admits the representation 

T3~)~,~_ X ~ t k 
, "~-- z.. 1., ('~("))k~~ p ~ g ( E ) ,  

k > O ~ ;  

and therefore 

TM q,a# = S T (n) p d# 

for all p, qJ cOg(E). Because the solution of the martingale problem for s  is unique, 
T~(')p(t/)-+ T,p(t/), uniformly in t / for  p e g ( E )  and t>O, as n--+ oo. This shows that 
(i) implies (iv). To see that (iv) implies (i), note that  

T~p-p= i T ~  pds, p ~ ,  
0 

and therefore if (iv) holds: 

0 = 5 I/J T t p d # -  5 p T t 0 d # =  jdsS( ,T, p-pT, O)d# 
O 

for p, ~ e 9 .  Dividing by t and letting t --+ 0, one sees that  

I Ypd#=Sp e d# 

(1.3) Lemma.  If #e~#~e, then 

I. 
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Proof Taking 0 -= 1 in part (iv) of Lemma (1.2) we see that # is a stationary measure 
for the family {P~: ~/~ E}. Thus the result follows immediately since 

(Z,~o(~)) 2__< T,(q,2)(~). 

(1.4) Theorem. I f  # ~ e ,  then there is a unique strongly continuous semi-group 
{T,": t>0} of self-adjoint contradictions on L2(/~ ) such that T,U~o =- Trio, ~oe~. In 
particular, if s is the generator of  {T  t": t> 0}, then ~ u  is a self-adjoint extension 
of ~ .  Finally,/f  {El: 2>0} is the resolution of the identity in L2(#) such that 

cO 

T,"= 5 e-*'  dE~, 
0 

then 
o~ 

(1.5) S 2d(E~cp, (p)= 1/2 Z S Ck~~ 
0 k 

for all qo eL2(#); and therefore if  qo, ~ eL2(#) satisfy 

~Sck(q0 k+O,k)2 2 d#<  o% 
k 

then 
cO 

(1.6) 5,~d(& ~o, 0)= 1/2 Z c~ ~o k 0.k d#. 
0 k 

Proof Everything except the last part of the theorem is immediate from Lemmas 
(1.2) and (1.3). Also (l.6) follows from (1.5) by the usual polarization trick. 

To prove (1.5) set _go(,)= y' CkAk and let {Tff): t>=0} and {E~'): ;,>0} be 
Ik[<n 

defined accordingly (we have dropped the superscript # here to simplify the 
notation). Then it is obvious that 

oO 

1/2 E ~ Ck q~,2k d# = f 2 d(Ei ") % q~) 
]kl<n 0 

for all (p6Lz(l~), since this equality holds for ~o~9 and both sides are continuous 
in L 2 (#). 

Thus for t>O: 

1/2ZSCkep2kd#>l/2  Z ICk~O2kd# 
k ]k[<n 

cO oo 

~ 2 d(ESy)~o, (p)=> -2z, (.) = ~ 2 e d(Ez ~o, q~) 
0 0 

= 1/2 Z I ck(ry~o)~,~ d# 
[kl<n 

for all cpsL2(#); and so by Fatou's Lemma: 
oO 

1/2 Z 5 Ck q~2k d# > lim sup 5 )~ e-2 z, d(E~,) q~, ~o) 
k n - ,  cO 0 

=> 1/2 Z ~ e~(T~ ~o)~k d# 
k 



92 R.A. Holley and D,W. Stroock 

for t>O and (p~L2(p). But if t>O and qo~Lz(/.t), choose {q~, .}~_~ such that  
qo~ ~ q~ in L2(#). Then  

i .I "~ e - ~" d(Ez ~o, qo) - .[ 2 e - ~' d(E~ ~ q), ~o) 
0 0 

< 0~ ~ ~ ,  ~o~) 
[ 2e - z '  d(E~, q~, r [ )~e-Z' d(Ez 

0 0 

o~176 ~ q~,) 
+ .( 2e - z '  d(E z r qom)- .( e -z* d(E~'O qgm, 

0 

o~ 

+ ~e -ztd(E('o.~ , ;. v , , , ,@, . ) - . f2e-Z~d(E~ ") 
0 

4 
5 7 I[ (P - q~,.ll L~ 0,) sup [I q~,. I(L~O,)+ I(Tt %., ~ q).,)-- (T/") %., ~ ( ' )  q).,)[. 

?/i 

The first term tends to zero uniformly in n as m--+ ~ and the second term tends 
to zero for each m as n --* o~. Hence  

0:3 O~ 

.f 2e-2Z '  d(e~ n) ~0, q~)--* .I 2 e -  2Zt d(Ez ~~ q~) 
0 0 

as n ~  ~ for each t > 0  and q~eL2(#). We therefore have 
oo 

1/2 ~, ~ c k q~,2 k d#>= ~ )~e - 2 z t  d(E z @, @) 
k 0 

>= 1/2 E ~ Ck(T, q~)~k d# 
k 

for all t > 0  and q~ELz(#). Lett ing t+0, applying the mono tone  convergence 
theorem to the middle term and Fatou 's  lemma to the term on the far right we 
get (1.5). 

(1.7) Corollary. I f  # ~ r  and 

O~o--inf{~,~Ck~P2kd#/2 II@_E~ 2 . 911L2(~)" qg~L2(p) and r q~}, 
k 

then E~z-E~=O for 0 < 2 < %  and E ~ - E ~ - O  for 2 > % .  In particular, s o is the 
largest ~>=0 such that IIT, q~-E~ltL~(~)<e -~t Ilq~llL~(~) for all t>=O and ~o~L2(/~ ). 
Finally, the null space, JV'(~u), of  ~LP ~ coincides with the space of  @~L2(#) such 
that y~ S c~ ~ d # - O .  

k 

(1.8) Corollary. Let {c~~ k e Z  d}___c6+(E), i =  1, 2, be given and set ~ ( o = ~  c~OAk. 
k 

Assume that the martingale problem for ~ (o  is well-posed and that { @ ) > 0 } =  
{c~ 2) > 0} for all k e Z a. I f  # ~ ~e., c~ (~(~), then dV'((5~ (1))~) = ~V'((~q(2)) ~) and there- 
fore ~(~),_~(2)~ Finally, if in addition to {@)>0}={c~2)>0}  we have c~2)>= 

a - ' O  - -  ~ 0  �9 

y c~ ~) keZa,  for some ? > 0 ,  then not only does ~o~(i)u- ~ _  ~ ( 2 ) , _  ,~- '~o , but also 

lira sup - 1_ In/I Tt (1) @ - n q~/I L~ (~) >= a 
t-,o~ t 
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for all (pe~ implies 

for all t>O and qoeLz(la ). 

Proof The only part that isn't immediate from Corollary (1.7) is the last. But 

t-,co 

implies (E~X)~-r0 ~o=0 for q ~  and 2<0~. Hence E~I)u-~=0 for 2<e ,  and so, 
by Corollary (1.7) 

i n f { ~  Jk  P,~ rc(~) z d#/2 IIp--n~ollL~(.): ~oeL~(tt) and qo4=r~q~}>e. 
k 

But this means that 

inf{~c~Z) qo,2d#/2 IIcp-rc~oIIL~(~): ~oeL2(/~ ) and qo.~cp} >Te, 
k 

and therefore II Tt (2)" q~ - ZC~OI)L~(,) < e - ~ '  IIq~]lt.~(u), t>O and (,offL2(p). 

(1.9) Lemma. Assume that ck>O for all kEZ d. Given tasf~e, set Au= {~oeL2(#).' 
q~2 k d/.t=0 for all k6Zd}. Then A ,=  {r qo is J-measurable}, where ~-- is 

the tail field of subsets of E i.e., J -= ~ ~v,, and ~)= {ksZa: ]kl< N} . 
0 

Proof From Lemma (1.2) and the positivity of the Ck'S, we see that/~({ + 1} [7/*) 
is uniformly positive for each k~Z ~. It is easy to see from this that if F is a non- 
empty finite subset of Z d and #v(" [gl v) is regular conditional probability distri- 
bution of g on ~ e  given ~v, then/@({~} I~ F) may be assumed to be uniformly 
positive for ae{ - 1, 1} e. In particular, there is an aF< oO such that 

p({q: qk=Otk, k6F} I ~V)~aF /A({t] : t / k =  1, keF} [ ~v) 

(a.s. t0 for all e ~ { -  1, 1} F. 
Clearly {(P~L2(#): ~o is .4~-measurable} = A,. To prove the opposite inclusion, 

define nr: E --+ E for finite non-empty F __ Z a so that 

1 if keF  
(rCFq)k= qk if kCF. 

We must show that if q0 e A,, then qo = q0 o nv for all finite non-empty F ~ Z a. To 
this end, first note that there is a c v < oo such that 

~(~vl(A))< cv a(A) 
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for all A~N.  Indeed,  it is enough to prove this for A=Avc~A F, where A t =  
{t/: Ok= 1 for ksF} and A F s ~  F. But 

#(nFI(AF~AV)) = ~ #({t/k = C~k, k~F}csA v) 
a~{-1 ,  1} F 

I I d# 
o: A F 

< 2  IFI a F ~ #({r /~=l :  k~F} I~) v) d# 
A ~ 

= c~ #(Af~AV). 

Next  note  tha t  

0 o if k~F 
@~ r~ if kq~F. 

Thus if qo~Au, then qo o rCF6A ~. Observe that  if kq~F and F ' = F w  {k}, then 

Hence  if qosA,,  then q0o~r---q)on v (a.s. #). Working  by induction,  one now 
sees that  ~o = cp o nr  (a.s. #) for all finite non-empty  F. 

(1.10) Lemma.  I f  #~N~e and f >O is a bounded J~-measurable function satisfying 

~f dl~= 1, then the measure v defined by a v = f  is again an element of ~ ,  
d# 

Proof Let q~, ~0 e ~ be given and note  tha t  

Z 5 ek((fqO2,k + ~O2,k) d# < 0% 
k 

since (fq~), k = f q o  k" Hence 

oo 

5 qo~O dv = - 5 2d(EUz(f~~ ~t) 
0 

= - 1/2 Z ~ck(fqo),k O,k d# 
k 

= -1/2ZJc q  O,kdv, 
k 

and we can apply L e m m a  (1.2). 

(1.11) Lemma. Let #~Nse and assume that 

{qo~L2(#): q0 = Tt" qo, t > 0 }  = {,q0 eL2(g):  qo = ~ ~o d# (a.s. #)}. 

Set P~ = ~ P, #(dtl). Then <f~, JCt, Or, P~> is an ergodic dynamical system, where 
Ot: ~2 --* ~ is the time shift. 

Proof Clearly P~ = P~ o 0 t  1. Thus, all we have to show is that  if F is a non-negative,  
bounded  J/ l -measurable function satisfying F=Fo Ot (a.s. P,) for t > 0 ,  then 
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F = E P" [F] (a.s. Pu)" Given such an F, set f ( t / )= E P. IF]. Then 

Tt f(tl) = E v" [E e'(t) [F33 = E v" IF o 0,] ( .... u) Ep~ IF]  =f(tl)  

and so f =  ~y d# (a.s. #). Now let A s dC{, be given and define, for F e ~ ,  

v (F) = E P" [I A I r (t 1 (s))]. 

Clearly v < #, since v(F) < E P. [Ir(t/(s))] =/~(F). Thus 

E e" [I A F] = E rr [I a F o 05] = E p" [I A f(t/(s))] 

= ~ f d v =  ~fdl~ v(E)=EP"[F]  P~" (A), 

since f =  Sfdl~ (a.s. v). Because s > 0  and Aed/g s were arbitrary, this proves that 
f = E P- IF] (a.s. P,). 

(1.12) Theorem. Assume that Ck>O for all k ~ Z  n. Given # ~ ,  E~ ~o=EU[cp I ~ ] ,  
where J -  is the tail field," and therefore TtU ~ EU[ . 13-] strongly in L2(p) as t ~ oQ. 
Moreover, the following are equivalent: 

(i) # is an extreme point of  N~, 
(ii) ~-- is #-trivial, 

(iii) E~ (p = S ~o d#, (PeL2(#), 
(iv) T~ u (p -* ~ q~ du in L2(#) as t --* co for (PeL2(/~), 
(v) /f P~= ~P, #(dq) and 0,: f2--.f2 is the time shift, then (f2, J/d, Ot, Pu) is an 

ergodic dynamical system. 

Proof  The first assertion is an immediate consequence of Lemma (1.9). Using 
this in conjunction with Lemma (1.10) and the obvious argument by contradic- 
tion, one sees that (i) implies (ii). Clearly, (ii) implies (iii). From the spectral re- 
presentation of T, u it is obvious that TrUcE ~ strongly in L2(#) as t ~ m ,  and 
therefore (iii) implies (iv). If (iv) holds, then it is clear that (p= T, up, t > 0  implies 
(r ~ q~d/~ (a.s. #), and so (iv) implies (v) by Lemma (1.11). Finally, if #=0#x  + 
(1 - 0) gz where 0 < 0 < 1 and #~, gz e ~ are distinct, then P, -- 0P~ + (1 - 0) P,~ 
and therefore cannot be ergodic. Thus (v) implies (i). 

(1.13) Remark. This section has been written from the point of view that the 
operator 2~ ~ is the object of primary interest. In applications to the study of phase 
transitions, the central role is played by the 1-dimensional conditional distribu- 
tions. To see the connection between these two points of view, Jet {Pk(" [ok): k~Z  e} 
be a family of 1-dimensional conditional Gibbsian distributions and denote by 

the set of all probability measures with those as 1-dimensional conditionals. 
Choose Ck'S SO that Ck~" 0 and ck(tl ) pk(tlk l ~l k) = Ck(ktl) P k ( -  tlk ltlk)" Then, by Lemma 
(1.2), ~ =  ~ ,  where ~ = ~  c k A k. 

k 

(1.14) Remark. It may be useful to summarize the main results of this section in 
the language of analysis. For this purpose, assume there is a constant f l>0  such 
that Ck> fl for all k ~ Z  d, Then what we have shown is that TtUq~ ~ cpd# in L2(#) 
as t ~ oo for (p ~L2(#)  is equivalent to the statement that if  (pffL2(#) and ~cp2k d#=O 
for all k E Z  d then qo=~q~d# (a.s. g). Also we have shown that the existence of an 
ct>0 such that IITtU--#(tp)[]L~(u)<e -~t I[q)llL~(u), t > 0  and (#EL2(#) , is equivalent 



96 R . A .  H o l l e y  a n d  D . W .  S t r o o c k  

to the existence of an c(' > 0 such that 

~'. ~ 92k d # > e "  lifo 2 - #(P)I[L~u), ~~ 
k 

This last inequality is, in the present context, Poincar6's inequality (or in the 
modern terminology: a coercive inequality). Thus, we rephrase Corollary (1.7) 
by saying II T," - #( . )11L~(,) ----< e -~' for some c~ >0  if and only if # satisfies Poincar6's 
inequality. In this connection, it is amusing to check that when # is the Haar 
measure on E, then # satisfies Poincar6's inequality with e'---2. 

(1.15) Remark. An easy corollary of Theorem (1.12) is that if all the ck's are 
positive and if #1, #2~Nz, then #1=#2 if and only if #~b-=#219-. In particular 
if #1 and #2 are extreme points of Nse, then they are either equal or singular. 

(1.16) Remark. It is important to note that there is definitely something to be 
proved when passing from Equation (1.1) to part (iv) of Lemma (1.2). The point 
is that we have not assumed that the generator of { T,: t >__ 0} is the minimal closure 
of 5o restricted to ~,  in which case the result would have been immediate. The 
trick which we used here to circumvent this point seems to have very limited 
application. For instance, we are unable to prove, under the stated hypotheses 
about 5r that if ~ o d # = 0  for q o ~ ,  then ~T,q~d#=~q~d#, ~o~Cg(E). The 
analogous problem arises in the theory of elliptic differential equations, where it 
is well known not to be a simple one. 

2. Cluster Properties of Gibbs States 

In the previous section we saw that if # is a Gibbs state with trivial tail field and 
#e~r then T, Uf~Sfd# in L2(#). Trivial tail field also implies that for A e N  

(2.1) lim sup I#(Ac~B)-#(A)#(B)]=O 
A S Z d B ~  A 

In this section we want to improve (2.1) by giving an exponential rate at which 
the left side converges to zero. We do this under the assumption that Tt u con- 
verges to E~ exponentially fast and that the flip rates, c k, have finite range. By 
finite range we mean that for some M < 

(2.2) Ck,~--0 if Ik- - j l>M.  

Note that if 

(2.3) sup sup Ick(t/) I=sup tlckll < oo 
k q k 

and the Ck'S have finite range, then there is a C < oo such that 

(2.4) sup [llckj I + ~  lick, jill < C. 
k J 

Let cgJ(E)={fsCg(E): y' Ilf, kll < oo}. If (2.4) holds, the operator s  ckA~, 
k k 

can be extended to cgl (E) in the obvious way and in this case it is known (see [5] 
or [10]) that iffmcg1(E) then T, fecgl(E) for all t>_0. 



L 2 Theory for the Stochastic Ising Model 97 

(2.5) Lemma. Assume that (2.2) and (2.3) hold and let C be as in (2.4). Let f ~cgl(E) 
be such that A j f - O  for L<=[jI<=L+2MN, where M is as in (2.2), L ~ R  + and 
N e Z  +. Then 

(C t) N 
(2.6) ~ sup ]lAk Tsfl] <2(L + M + 2 M N ) a ~  I]fll. 

L + ( N - 1 ) M < [ k [ < L + ( N + I ) M  O<-s<-t 

Proof Forfe~fX(E) let u(t, ~/)= Ttfffl ). By (4.1t) in [5], we know that u(t, -)soft(E) 
and that 

~u, k(t, tl) - ~,~U, k(t, tl) + ~ C j, k(tl) U, j(t, gtl). 
3t j 

Hence by Lemma (4.1) of [5] 

tAS 

X (s)=--u k(t--(t A s), tt(t /X s)) + ~ ~ cj, dtt(a) ) u j(t-- a, bl(a)) da 
j o 

is a P.-martingale, and therefore 

E P~ I f ,  k(n(t))] - u ,(t, n) 
t 

In particular i f f  k-- 0, then 

t 

sup Iru, k(s, ")11 < I ~  Plcj, klP Ilu j(s, 911 ds. 
O<_s<~t 0 j 

Thus if L <_a<b<=L+ 2 M N  

(2.7) ~ sup IlU, k(S, ")11 
a<lk[<b O<--s<--t 

t 

< f F~ ~ Ilcj, kll Ilu j(s, 911 ds 
0 a<lk l<b j 

t 

<- S ~ ~ tlcj, k(I Ilu j(s, ")(I ds 
0 a - M < l j l b + M  k 

__<C i ~ sup IlUk(S,')ll &. 
0 a - M < l k l < b + M  O<-s<-v 

Now let 

era(t)= ~ sup [lu k(S, ")JI. 
L + ( N - - m ) M <  [k[<L+(N+m)M O<-s%t 

The left side of (2.6) is just r and by (2.7) we have for 1 <_m<N 

t 

(2.8) a, At)<=c~ ~,.,+l(s)ds. 
0 
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Also 

(2.9) ~N+l(t)<21lfll ~ I < 2 [ L + M + 2 M N ]  aljfl]. 
L - - M <  ]kI<L+ 2 M N  +M 

The result follows easily from (2.8) and (2.9) by induction. 

(2.10) Lemma. Let S and T be disjoint, non-empty, complementary subsets of Z d. 
Suppose {Ck=k~Zd}~c~+(E) has the property that ck, j -O  for k~S (k~T! and 
je  T(ksS). I f  the martingale problem for s = ~ c k Ak starting from tl has exactly 

k 

one solution, then P~(Ac~B)=P,(A)P.(B) for Asj/gs=-YJ[tlk('):k~S] BsJg  T -  
~[ th ( ' ) :  ke r ] ,  where P. is the unique solution. 

Proof Let 5e~= ~CkA k and s  ~CkAk. Given t/eE, let t/s= {t/k : keS}, tlr= 
k~S k~T 

{~k: k~T}, p s on f2s=D([0, oQ], { - 1 ,  1} s) be a solution to the martingale 
problem for L~as starting from r/s, and P,~ on f2 T -- D([0, oo], { - 1, 1} 7") be a solution 
to the martingale problem for ~L~ aT starting from r/r. Let q~: { - 1, 1}s • { _ 1, 1} T ~  E 
be the natural isomorphism between these spaces and let ~: f2 s • f2 w ~ f2 be the 
obvious lifting of q~ (i.e., ~/(., ~(~s,  c~176 ", ~~ ~/T(., COT)). Set p = ( p s  x 
Pn~) o ~-~. Then it is elementary to check that P solves the martingale problem 
for ~ starting from ~. (c.f. the equivalence of (i) and (iv) of Theorem (1.1) in I-5]). 
Since, if A ~  s and B~JF/T, then A~B=q~(ASxBT),  where A s and B T are 
measurable subsets of f2 s and f2r, respectively, this completes the proof. 

We learned the trick used in the proof of the next theorem from Sullivan [11]. 

(2.11) Theorem. Assume that (2.2) and (2.3) hold and let C be as in (2.4). Let 
f g ~ ( E )  be such that A j f~O  i f l j[>L and Ajg=-O if [ j I<L+2MN. Then 

(2.12) sup [IT~(f . g ) - T ~ f  . T~gll < 6 ( L + M + 2 M N )  d (Ct)U+t 
o_<~_<t ( U +  1)! Ilfl] 'ilgll. 

Proof. Let L, N, f, and g be fixed. Let ~o, be the operator 

(2.13) 5 f ' =  Z CkAk+ Z CkAk" 
Ik[ <L+(N --1)M Ikl >=L+(N +I)M 

Since the Ck'S satisfy (2.4), the martingale problem for ~Lf' is well-posed and hence 
by Lemma (2.10), if {U~: t>=0} is the semi-group associated with ~ ' ,  we have 

(2.14) Ut( f .  g ) = ( U t f  ) �9 (Utg). 

Let ~o~Cg(E) be such that ~0k=--0 for L<=]kI<L+2MN. We show that 

(2.15) [IT~q~- U t ~oll < 2 ( L + M + 2 M N )  a (Ct)N+~ (N+ 1)-----~.- II~011. 

The theorem then follows by taking q~ to be f .  g, f, and g in the inequality 

I1Tt(f. g ) -  Ttf .  Ttg[l 

< II Tt(f" g ) -  Ut(f" g)H + II U, flI Ut g - T~ g II 

+ I[ Ttg}l }lU~f-T~fl], 
which follows from (2.14). 
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To prove (2.15) we first take ~oeCg~(E) and note that 

To ~o- Vo ~o = 0  

and 

8 
~-~ (T, ~o)- q ~o) = ~e 71 ~o- ~ '  u~ ~o 

-~ ~e'(T,~o)- U~ ~o) + ( ~ e -  ~e') T~q~. 

Solving this equation we get 

T~-  v~,p= i u~_~(~-~') Z~ods. 
0 

Thus 
t 

II T ~ -  u, ~o II __< j" II(~e- ~e') Ts ~o IIds 
0 

_-<i ; 
0 L + ( N - 1 ) M < I k I < L + ( N + I ) M  

< 2 (L + M + 2MN)  a (C t) N + 1 
= (N+l ) !  

Ileal[ Ir&Z~olt ds 

- - [ 1 ~ o [ I .  

The last inequality follows from Lemma (2.5). The proof of (2.15) for continuous 
g0 follows by taking a limit. 

(2.16) Theorem. Assume that (2.2) and (2.3) hold and let C be as in (2.4). Let # be 
a stationary distribution for {P~: t/~ E} such that for some c~ > 0 and A < oo 

sup e~'~llTt~o-~ qod#11L~(u) < A rlqoll 
t>=o 

for all (pe~(E). Let ( peg  and {A,} be an increasing sequence of finite sets with 
U A,  = Z  e. Denote the distance from the origin to A ~, by r,. Then 
tl 

(2.17) l i m i n f i n f { - r 2 1  in I~q~d#--Sq~d#~d#[: Jt~lPL=(u)<l 

and ~9 is ~A"-measurable} >- o:y 
- 2 M C '  

where 0 < ), < 1 solves - c~7 = 1 + In 7. 
C 

Proof First note that it suffices to prove (2.17) when the infumium is restricted 
to continuous functions. In the string of inequalities below the infumium over 
is over continuous, ~A"-measurable, function ~ with II ~ Jr < 1. 
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Let L be large enough so that cp is ~[t / j :  IJl <L]-measurable.  Let N, be the 
greatest integer in (r , -  L)/2M. Then r,/(N, + 1 )~  2M, and we have 

sup I~cp0 d#-~  cpd# ~ ~ d#1 
0 

<sup  I~ (Tt(q~. tp)-Tt qo. Tt O) d#] 

+sup  I~ Ttqo" TtO d # - ~  q0 d# ~t) d#] 
0 

<=6(L + M + 2MN,)e (Ct) ~"+l i~ol I 
(N.+I)! 

+sup  I1~011 I I r~ , -~d# l lL , (~)+  IIr~0--S~0d#11L,(,) 
O 

<[6(L+M+2MN.)  d(Ct)~'+t ] = ( N + I ) !  ~2e-~'A I1~o11. 

One now sets t = y(N, + 1)/C and applies Stirlings' formula to complete the proof. 

(2.18) Remark. If the conclusion of Theorem(2.16) holds then there is an c~>0 
such that for all finite A, B c Z d 

(2.19) l ime=l ' l l i [ I t /a  l~[ rlkd#---SIlrlid#5 I-[ t /kd#l=0'  
]r]-* m joA  keB+v j s A  k sB+r  

There are several interesting physical consequences of (2.19). Rather than try to 
explain them here we refer the reader to [7]. 

(2.20) Remark. Let # be a Gibbs state with finite range potential {JR} and assume 
that # has trivial tail field. Suppose there is an operator s with finite range flip 
rates such that #eNao and that ~ "  has a gap in its spectrum immediately below 0. 
(This is really a property of # and does not depend on the choice of ~q~, see Corol- 
lary (1.18).) Then from section one and Theorem (2.16) we see that (2.19) holds, 
Another condition which implies (2.19) is that the transfer matrix for the potential 
{JR} have a gap in its spectrum (see [8]). It would be interesting to know if the 
similarity in these two statements is more than just a coincidence. 

(2.21) Remark. We can use Theorem (2.16) to give a natural example where 
Tt"f--,~fd # for all f sL2(#)  and yet the convergence may be made arbitrairly 
slow by taking f properly. The example is the two dimensional stochastic Ising 
model at the critical temperature. Thus d = 2 and 

jR= ; - -  sinh-l(1) if R={j ,k}  w i t h  I j - k [ = l  

lo otherwise. 

Let # be the Gibbs state with one point conditionals given by (0.1) with this poten- 
tial. It is known that there is only one such #. Also if we take Ck(~) = Pk(-- ~k ] ~lk), 
then the interaction is attractive in the sense of [4-1, and hence as t ~ oo 

]j T e f -  ~fd#1j -+ 0 for all fEC~(E). 

Thus Tt~qo-'5 qo d# in L2(#) for all (pf fL2(#) .  Also ~a has finite range flip rates; 
however, (2.19) does not hold (see [6]). Hence by Theorem (2.16) the L2(#) con- 
vergence of Tt"~0 to 5 q0 d# must not be uniformly exponentially fast. Therefore 
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if {E~: 2>0}  is as in Theorem (1.4) we have E~-E~ ~0 for all 2>0,  and it follows 
that by choosing (pEL2(#) properly the con(~ergence can be made as slow as 
desired. This also shows that the convergence of Ttf to ~fd# in the uniform 
norm cannot be exponentially fast uniformly for f s  ~ .  
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