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On the Convergence of Convolutions of Distributions
with Regularly Varying Tails

THOMAS HOGLUND

Summary. Let x4, ..., x, be a sequence of independent random variables with the common distri-
bution F. Suppose E x, =0 and that F belongs to the domain of attraction of the normal distribution.
Under conditions which do not involve the existence of any particular moment we show that

Plxit 4% Sxa,)=0() 2 | Iy Fdy){o ()+o(1)

n ~a,

uniformly in x, provided the norming constants ay, a,, ... are properly chosen. Here & is the standard
normal distribution and @ a certain operator (depending on F).
The local counterparts are also treated.

1. Introduction and Results

Suppose x;, ..., x, are independent, identically distributed random variables
with zero expectation and with a distribution F that belongs to the domain of
attraction of the normal distribution. Then there is a sequence of numbers
ay, d, -+~ — oo satisfying

;"2— [x?Fdx)>1 as n—oo. )
Obviously a,,~ﬂ o if the variance exists and equals ¢2. Let E, denote the dis-
tribution of the normed sum a; (x, + --- +x,). If we require that the third moment
U3 exists and that F is not a lattice distribution, then (Esséen [2] p. 49)

E(x)=®(x)— ]/— (x —1)(p(x)+0(1/1_ﬁ>

uniformly in x. Here @ stands for the normal distribution with zero expectation
and unit variance and ¢ for its density.

The aim of the present paper is to prove an analogous result when the third
moment does not exist. (Concerning estimates of the Berry-Esséen type in this
case, see Feller [5], Esséen [3] and the references given there.) Instead we have
to impose other conditions. To formulate these we shall say that a positive func-
tion R defined on (0, co) varies regularly with exponent «{— o0 <a<o0) if, for
R(tx)

R(t)

each x>0, — x* as t — o0. R varies slowly if R varies regularly with expo-

nent zero.
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Our conditions will be: for some slowly varying function L, as x — co,

[P Fp~xLx), 0551, @
and - .
§y* Fdy) Lyl F(dy)
o} —x
= -, + —q. 3)
_I lyI® F(dy) § 1y F(dy)

Except when 6=1, (2) and (3) are equivalent to

1-6
240

I—F(x)+F(—x)~ x~ 270 L(x) 2y

and
1—F(x) . F(—x)

1—Fx)+F(-%) P 1=F@+F(—x & @y

The verification of this equivalence is immediate, given Lemma 1 below. Condi-
tions similar to those above have proved successful in connection with large
deviation probabilities, see Heyde [8] and especially Heyde [6] where a result
of McLaren concerning the convergences toward a normal distribution is cited.

Introduce the truncation function

t(x)=x if |x|<1, =0 if |x|>1

and the functions
pxt—° x>0,

Q5(x)=
&) {q Ix'=%  x<0,

where p and g are defined in (3). The results will be formulated in terms of the
derivation operator D and the operators w; and @; defined, for those u for which
the definitions make sense, by

o)~y | N @@, o<
@
() L)) £y DU 0P DU o

y

For later use we here mention that @&;¢ has the Fourier-Sticltjes transform

e~ p(t), where it ,
’ et —itx—1(itt(x))?

h(t)=] . i ) Q;(dx). (5)

X

This is seen if we use the representation (4) of @, @, then apply Fubinis theorem
and remember that

jeitka¢(dX)=-(—it)k e_12/2, k:O, 1,....

The following theorem is closely related to the theorem of Bergstrom, [1] and
also to that of Heyde, [7] in which he shows that (with a,,:aﬂ and without
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any extra assumptions such as ours (2) and (3)).

[ee)

Y. n 2 sup |E (x) — @ (x)| < o0
n=1 X

if and only if
Elx >t <w0, 0<é<l, E|x]log(1+|x )<, 6=0.

Theorem 1. Suppose F satisfies (2) and (3) and has an infinite absolute third
moment.

(i) If >0 we choose a,=0c }/n, where ¢* ={x?F(dx); then

L S A
E(x)= (1—;—%%@5D3) D (x)+o0 (LS;{E)) (6)

uniformly in x.
(ii) If 6=0 then it is possible to choose the sequence a, 4y, ... such that

an L .,
a”f _{nyzF(dy)_»_Ho ( " aé‘”). )

With such a choice of ay, a,, ...,

p;(x):(1+—”—lc‘z(2—“ica0) ¢(x)+o(

n

n L{a,)
i)
uniformly in x.

Remark. A choice of a,, a,, ... according to (7) gives the fastest possible rate
of convergence if §=0; if >0 we have nothing to gain by another choice than
a,=a 1/5 In order to show this, it will in the proof of Theorem 1 be shown that
F,(xX)=(1+c, @5+ p,3D*) ®(x)+o0(c,)+0(p,) uniformly in x, where

n o n L(a,) n
Gtz JWPFa~"S0 =t Tyiray-1 @

We first show that the choice of a, does not influence the order of magnitude
of ¢,. Suppose af’, af, ...i=1, 2, are two sequences satisfying (1), then

i~ o)

Let ¢ and pf? stand for the c, and p, corresponding to a®, i=1, 2. Now W=
@3 () : ; : .
na, ~R(a,’), where R is a nondecreasing, regularly varying function; because
of (9) we therefore have ¢~ ().
Thus we obtain the fastest possible rate of convergence if we choose a, such
that p,=0(c,); this is certainly satisfied if we choose a, according to (7). If the
variance ¢? exists and a,=¢1/n, then

1
—po=—5 | Y*F(dy).

yl>ovn
It foliows from Lemma 1 that in this case
1-6
2 i
P )5 1100, (10)

s if 6=0.
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This shows that p,=0(c,) if >0 and a,=¢ ﬁ ; however, if 6=0, then a choice
according to (7) is preferable to the choice a,=¢ ﬁ

Theorems 2 and 3 are the local counterparts of Theorem 1, for absolutely
continuous and lattice distributions respectively.

Theorem 2. Suppose F satisfies the conditions of Theorem 1, is absolutely con-
tinuous, and has characteristic function fe L for some 1 <r< o0. Denote the density
of E, by v,.

(i) If >0 we choose a,=a}/n, where a*= | x* F(dx); then

o= (1= onn?) o040 (L42)

uniformly in x.
(ii) If =0 then it is possible to choose the sequence ay, a,, ... such that (7) is
valid. With such a choice of a,,a,, ...

0, (X)= (1+ I;(“) ) (x)+0 ("a(a"))

n n

uniformly in x.

If F is a lattice distribution with span h then the variables x; are restricted
to values of the form b, b+h, b+2h, ... and h is the largest positive number with
this property. The atoms of the distribution of a;*(x,+---+x,) are among the
points of form x=a; *(nb+kh), where k=0, +1, +2, .... For such x we define

Pa(x)=P(a; '(x;+ - +x,)=x).

Theorem 3. Suppose F is a lattice distribution with span h and assume that F
satisfies the conditions of Theorem1. Let x be of form a;'(nb+kh), k integer.

(i) If 6>0 we choose a,=oV/n, where 6> =[ x* F(dx), then

Liy/n) Ds) (9o ( L(ﬁ))

p,,(x)=( g2+ oz Do nol2

uniformly in x.
(ii) If =0 then it is possible to choose the sequence a,,a,, ... such that (7) is
valid. With such a choice of a,,a,, ...

= (15 ) oo (M)

n n

uniformly in x.

2. Three Lemmas
The following lemma can be found in problem 30, p.279 of [4].

Lemma 1. Let F be a probability distribution concentrated on (0, c0). Put

U= [FFd. =y Fa),
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If F possesses moments of order <a, but not of order >a>0, then either U, and
V. vary regularly for all {>o and all 6> —a or for no such value. In the first case
the exponents are { —ao and o —o, and this case arises if and only if

XV (x)  {—a
-
U (x) g+

(0<a<{). If U, varies slowly, (11) holds with a={; if V, varies slowly the left side
tends to co.

(11)

In applications of Lemmal to distributions not concentrated on (0, co) we
treat the two tails separately.

We also state a lemma which is contained in Theorem 2a, p. 32 of [2].
Lemma 2. Let F be a probability distribution with characteristic function f.
Let G be a real function of bounded variation over the whole real axis, such that

G(—0)=0, G(+0)=1, while the derivative G' exists everywhere and satisfies
|G'| < K for some constant K. Write

g(0)=[e"*G(dx).
Suppose that for some positive constants T and n we have

f()—2()
t

T

]

-T

dt=n.

Then there are positive constants A and B independent of T and n such that for all
real x B
lF(x)——G(x)|<A11+7.

Finally we need a bound for characteristic functions of distributions in the
domain of attraction of the normal distribution.

Lemma 3. Let F be a probability distribution with characteristic function f.

Suppose | y* F(dy) is slowly varying and the sequence a, a,, ... satisfies (1). Then

there are positive constants ¢ and ¢ such that
| (t/a)| <e N (12)

Jor 1<|t|<ea, and all sufficiently large n.

Proof. We may without loss of generality assume that | x F(dx)=0. Introduce
the symmetrized distribution °F(x)={ F(x+y) F(dy); then also

M(x)= [y*°F(dy)
is slowly varying, and
n
) M(a,)—2. (13)

n
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This becomes obvious if we use the fact that a distribution G with zero expecta-
tion belongs to the domain of attraction of the normal distribution if and only if
x

§ ¥* G(dy) varies slowly. The variance of the corresponding normal distribution

then equals the limit li:n ;2 j" y? G(dy) if we use a, as norming constants. (See
[3] p. 544.) Further °F has characteristic function |f(©)* and because °F is sym-
metric

1= |f®*=f(1—cos tx) °F(dx).

1- .
Now ———;;S—y— is non negative for each y and larger than £ for |y| <1, hence

l1—costx
1— 2> —_——
sorz Iy

1
(tx)* °Fdx)=2* M (W) '
From this and the inequality 1—x<e~* valid for all x>0 we obtain
|FOF S em32 M,
- F()] Se-+eMaio,

Thus it suffices to show that there are positive numbers ¢ and ¢ such that

u|”A4(%)>c (14)

@
for 1<|t|<¢a, and all sufficiently large n. From the representation
x d y
M(=b(x)exp ([10)7)
1

where b(x)—b>0 and (x)—0 as x— oo (see [4], p. 274) it now follows that

a, a,
M(Iﬂ> > b( 'f') cxp(— sup |n(y)|log |t]) 2t~
M(a,) ~ b(a,) v>anflt] =’

for 1<|t|<¢ a, and all sufficiently large n, if ¢>0 is chosen so small that |5 (y)| <1
and b(y)>%b for all y>1/e
Because of (13), (14) follows.

3. Proof of Theorem 1
Below we will be concerned with the sequence Uj, U,, ... of measures defined
(a,x)° F(a, dx)

apn

§1yP F@y)

—an

by
U,(dx)=
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Let us point out that U () - fQ,;(dx) (15)
T

for each bounded interval I whose boundary has Q;-measure zero, and that for
each >0 there is an x>0 such that for all n
| lI y 2 |Gl @dy)<e. (16)
yl>x
The first of these statements is a direct consequence of (2) and (3). If we treat
each tail of U, separately and apply Lemma 1 we get

-2 U.l(d —1-4

from which the second statement follows.
Denote the characteristic function of F by f. Using the identity

= "=u—v) o+ 0" Y
. 1 ¢ .
with u=f(t/a,) and v=exp (—7—,{) we obtain

[r(t/a)—e 2 =d, (1) S,(t) (17)
where »
t

d)=n| fia)—erw (-5,

1 n—1 . 1 R
S,0= . Ptiayerp (—5 "),

Remembering that F has zero expectation we get trivially

f@/a)=[[""—1—itx—%(it7(x))*] F(a,dx)
+1+5(@it) [ 1(x)? F(a,dx).

dy ()=, hy () + p, 3 (1) +1, (1) (18)

where ¢, and p, are defined in (8), and

Hence

hn(t)=§ ei'x—l—it);s—%(itr(x»z U,,(dx),

1 ¢ 1
0= o (—5) -1+ 1]

From (15) and (16) we obtain h,(t)— h(¢), where h is defined in (5). The dif-
ference S,(t)—e~"/> we estimate in the following way:

n—1 ) i 1 n—1 . ) .
i Z w Un—l—J_Un - Z Un—j—l(uj_vj)+un~1_vn
nico nj-o
n—-1

1
S— Y jlu—v|+|l—v|Snju—ov|+|1-v]|.

nj=0
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(Here we have used the fact that |u|<1, |v|<1 and that the inequality |/ —v/|<
jlu—wv]is valid for such u and v.) Now f™(t/a,) —> e~ /> implies n( f (t/a,) — 1) > — t*/2.
Hence S, (t)— e~ /2. The inequality |e~*— 1 + x| <4 x? valid for x20 gives

RS 8. (19

A glance at (17) and (18) now suggest introducing the functions g, defined by

gu(t)—e " =[c,h(t)+p, 3] e~ (20)
then we have

SM(6/a,)— 22O =1,(8) Sy @)+ [ (Ru () — R (1) €2
+ (0 (Sy ()~ e~ ]+ p 3 (11P [S, () — e~ 1.

Furthermore we have in connection with the definition (5) of h shown that g,
is the Fourier-Stieltjes transform of

Gn(x):(l +C" Cbé-l_pn%Dz) @(X)
Given ¢>0 we put T=(ec,)~' B in Lemma 2 and obtain

X)) =G, (=AU + I + ) +ec,

where r
L= [ln@t"S,0ldt,
-T
I,=c, jT( Mt_—h(ﬂ e“'2/2+|h,,(t)t“(S,,(t)—e”z/z)l) dt,
_TT
Li=3%p, [|t(S.(t)—e~"7?)|dt.
Since T
tycy=tr | ¥ Fdy)-b~b,,
where o

b= | WPF@y /| [y Fay,

—an —08n

the assumption of an infinite absolute third moment implies T=o(a,). Thus
according to Lemma 3 there is a positive constant ¢ such that

I (t/a)|Se M for 1<|t|<T

and all sufficiently large n. Hence also

<e%ll  0<j<n 1)

Pfayesp (-5 =)

for some c,>0 if 1<|t|<T and n is large enough (because (21) is trivial when
j<n/2). Because of (21), for the above-mentioned ¢ and n,

NGRS (22)
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From (19) and (22) we conclude I, =0(1/n). The inequalities

slex®if x|,

itx _1_ 3 —1(; 2
e —1—itx—(it7(x)) ‘é{thxl if |x|>1,

give :
RGIFSIlk IllUnl(dX)JFZItl| ) ~2 |Gl (@x).

EIES [>1
This together with (15) and (16) shows that
|h,,(£)] £ (constant not depending on ) |¢] (1 +12). (23)

The functions under the integral signs in I, and I; tend to zero and they are
according to (22) and (23) dominated by integrable functions. Hence, by Lebes-
gues dominated convergence theorem, I, =0{c,), Is=0(p,).

Thus we have shown that
E,(X)Z(l‘l'cn d)é+%an2) ¢(x)+0(cn)+0(pn) (24)

uniformly in x.
If >0 and a,=0/n it follows from (10) that

It
Pp= —0Cy I ——Q(;(dX)—l-O(C,,).
x|>1 X
Hence we can get rid of the truncation in this case:
(cy @5+ py3D?) B ()
D(x—y)—P(x)+yD B(x)—1y*> D? d(x)

—c, o 0,(dy)+o(c,).

(25)

uniformly in x. Three partial integrations to the right in (25) show that (24) is
equivalent to (6) if §>0.

It remains to show that a choice of the sequence a,, a,, ... according to (7)
is possible. Put V(x)= [ y*F(dy) and

==
n
a,=sup {x>0‘x—2 V(x)= 1}

for n large enough. Then, since V is nondecreasing, na; ? V(a,)=1.

4. Proof of Theorem 2 and 3

From the inversion formula for Fourier transforms we obtain in the abso-
lutely continuous case

0n(x)—(1+¢, @5+ p, £D?) qo(x)=jln—f e "X (f"(t/a,)— g, (1)) dt (26)
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where g, is defined in (20). We choose ¢>0 so small that (12) is true for 1 <|t|<¢a,
and » sufficiently large and divide the integral to the right in (26) into two parts,

+

[tl<ean [tlZzean

We proceed with the first integral in a similar way as in the proof of Theorem 1
of this paper; with the second as in [4], p. 489.

The modifications necessary when F is a lattice distribution parallels those
which permit us to conclude Theorem 3, p. 490 of [4], from Theorem 2, p. 489
of [4].
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