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On the Convergence of Convolutions of Distributions 
with Regularly Varying Tails 

THOMAS HOGLUND 

Summary. Let xl, ..., x. be a sequence of independent random variables with the common distri- 
bution F. Suppose E xk = 0 and that F belongs to the domain of attraction of the normal distribution. 
Under conditions which do not involve the existence of any particular moment we show that 

n an 
P {xx + ". +x.<x an) = ~(x)-z~- S [Y] 3 F(dy)(~o ~(x)+o(1)) 

an ~ a n 

uniformly in x, provided the norming constants al, a2, ... are properly chosen. Here ~ is the standard 
normal distribution and o~ a certain operator (depending on F). 

The local counterparts are also treated. 

1. Introduction and Results 

Suppose xl, ..., x ,  are independent,  identically distributed r a n d o m  variables 
with zero expectat ion and with a distr ibution F that  belongs to the domain  of  
a t t ract ion of  the normal  distribution. Then there is a sequence of  numbers  
al, a2, . ' . ~ ~ satisfying 

an 

afnX 2 F(dx) ~ 1 as n ~ ~ .  (1) 2 
a n  _ 

Obviously a , , , q / ~ a  if the variance exists and equals a 2. Let F, denote the dis- 
t r ibut ion of  the no rmed  sum a2 ~(Xx + " - +  x,). If  we require that  the third momen t  
/~3 exists and that  F is no t  a lattice distribution, then (Ess6en [2] p. 49) 

P3 (x2 1 )cp(x )+o(  1 ) 
F,(x) = 45(x) 6~r3 l/% ~ -  

uniformly in x. Here  4~ stands for the normal  distr ibution with zero expectation 
and unit variance and ~o for its density. 

The aim of  the present paper  is to prove an analogous  result when the third 
m o m e n t  does not  exist. (Concerning estimates of  the Berry-Ess6en type in this 
case, see Feller [5], Ess6en [3] and the references given there.) Instead we have 
to impose other  conditions. To formulate  these we shall say that  a positive func- 
t ion R defined on (0, ~ )  varies regularly with exponent  ~ ( - ~  < ~ <  or) if, for 

R(t x) 
each x > 0, R (t) ~ x~ as t ~ m. R varies slowly if R varies regularly with expo- 

nent zero. 



264 Th. HiSglund: 

Our conditions will be: for some slowly varying function L, as x--, ~ ,  

X 

lYl3F(dy),,~x~-~L(x), 0 < 6 < 1 ,  
- - X  

and 

(2) 

x o 
S y3 F(dy) I lYl a F(dy) 
o ~ P, -x ~ q (3) 
X X " 

lYl a F(dy) ~ lyl a F(dy) 
- - X  - - ~ r  

Except when 6 = 1, (2) and (3) are equivalent to 

1 - 6  
1-  F(x) + F( -  x ) , . ~  x-  2 -a L(x) (2)' 

and 
1 - F ( x )  F(-x)  

1-F(x)+F(-x-) ~p'  1-F(x)+F(-x)  ~q" (3)' 

The verification of this equivalence is immediate, given Lemma 1 below. Condi- 
tions similar to those above have proved successful in connection with large 
deviation probabilities, see Heyde [8] and especially Heyde [6] where a result 
of McLaren concerning the convergences toward a normal distribution is cited. 

Introduce the truncation function 

"c(x)=x if Ix l~ l ,  = 0  if Ix l> l  
and the functions 

{ ;  x l - ' ,  x > 0  , 
O a ( x )  = 

Ix[ *-a, x < 0 ,  

where p and q are defined in (3). The results will be formulated in terms of the 
derivation operator D and the operators o9 a and &a defined, for those u for which 
the definitions make sense, by 

1 
c%u(x)= 6 (6+1) (~+2)  ~u(x-y)f2~(dy), 0 < 6 < 1  

u (x - y) - u (x) + y O u (x) - �89 z (y)2 0 2 u (x) (4) 
r a U (X) ----- I y3 O o (dy), 0 < a <-- 1. 

For later use we here mention that &a ~ has the Fourier-Stieltjes transform 
e -'2/z h(t), where 

e i t x -  1 --it x--�89 z(X))2 f2~(dx). (5) 
h(t)=~ x3 

This is seen if we use the representation (4) of &~ ~, then apply Fubinis theorem 
and remember that 

I e i t X D k ~ ( d x ) = ( - - i t ) k e  -t2/2, k=O, 1 . . . . .  

The following theorem is closely related to the theorem of Bergstr6m, [1] and 
also to that of Heyde, [7] in which he shows that (with a. = a ]/~ and without 
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any extra assumptions such as ours (2) and (3)). 

n -1+'V2 sup IF. ( x ) -  @(x)l < oo 
n = l  x 

if and only if 

E[XkI2+~'<ZZ),  0 < 8 < 1 ,  E l X k J l O g ( l + I X k l ) < o O ,  8 = 0 .  

T h e o r e m  1. Suppose F satisfies (2) and (3) and has an infinite absolute third 
moment. 

(i) I f  6 > 0 we choose a n = a ~/n, where a 2 = S x2 F(dx);  then 

Frt (x)= (1 L(]/~) 1 [ L(]/~) ] 0.2+ ~ n6/2 toaD31 q~(x)+o (6) 
t n l 

uniformly in x. 

(ii) I f  6 = 0 then it is possible to choose the sequence al, a2 . . . .  such that 

n ! i y  2 { n L ( a . ) ~  
2 F(dy) = 1 + o ~ 1 "  (7) 

art - -  

With such a choice of  al, a 2 . . . .  , 

Frt (x) = 1 -~ 2 o5 o ~b (x) + o -~--- 
an a n 

uniformly in x. 

Remark. A choice of ax, az . . . .  according to (7) gives the fastest possible rate 
of convergence if 6 = 0; if 6 > 0 we have nothing to gain by another choice than 
an = ~r V ~. In order to show this, it will in the proof of Theorem 1 be shown that 
F. (x) = (1 + crt cbo + Pn �89 D2) qb (x) + o (crt) q- o (Pn) uniformly in x, where 

n an n L(art) n a. !. lyl3F(dy) o2+~ , P.=--S-~ ~ YZF(dy) - 1 .  (8) C n = -~n 
- -  w n ~ . ~ r t  _ a n 

We first show that the choice of art does not influence the order of magnitude 
of Cn. Suppose a~ ~ a(~ ) . . . .  i=  1, 2, are two sequences satisfying (1), then 

a(1) ,~ #2)  
rt -rt . (9) 

Let cO. i) and p~i) stand for the crt and Pn corresponding to a~ i), i=  1, 2. Now c~.i)= 
nd .  ~ R(a~f), where R is a nondecreasing, regularly varying function; because 
of (9) we therefore have e(1)~e (2) ~rt  ~rt  �9 

Thus we obtain the fastest possible rate of convergence if we choose art such 
that prt= O(crt); this is certainly satisfied if we choose art according to (7). If the 
variance 0 .2 exists and art = o-V ~, then 

1 
_ p . = ~  ~ y2 F(dy).  

~' lyl>e V~ 
It follows from Lemma 1 that in this case 

{ 1-,~ 
_ P .  --. ~ i f  ~ 5 > 0 ,  (10)  

Crt 
if ~ = 0 .  
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This shows that p,=O(c,)  if 6 > 0  and a,=~r ]/~; however, if 6=0 ,  then a choice 
according to (7) is preferable to the choice a, = a ]//-n. 

Theorems 2 and 3 are the local counterparts of Theorem 1, for absolutely 
continuous and lattice distributions respectively. 

Theorem 2. Suppose F satisfies the conditions of Theorem 1, is absolutely con- 
tinuous, and has characteristic function f ~IY, for some 1 < r< ~ .  Denote the density 
ofF. byv, .  

(i) I f  6 > 0 we choose a, = ~ V ~, where ~2 = ~ x 2 F(dx); then 

Vn(X)=(] Z(]//n) o)603) (p(x)q-o [ Z(v/-~)~ 
o-2+~n ~/2 \ n ~/2 ] 

uniformly in x. 
(ii) I f  6=O then it is possible to choose the sequence al, a2 . . . .  such that (7) is 

valid. With such a choice of al, a2 . . . .  

( nL(a,) ) {nL(a~)~ 
v,(x)= lq a,2 (50 q~(x)+o\ a2 ~ l 

uniformly in x. 

If F is a lattice distribution with span h then the variables xj are restricted 
to values of the form b, b +h, b +_2h . . . .  and h is the largest positive number with 
this property. The atoms of the distribution of a; l ( x l+ . . .  +x,) are among the 
points of form x=a; l (nb+kh) ,  where k=0 ,  ___1, +2, .... For such x we define 

p,(x) = P(ay l(xa +...  + x,)= x). 

Theorem 3. Suppose F is a lattice distribution with span h and assume that F 
satisfies the conditions of Theorem 1. Let x be of form a~ X(nb + k h), k integer. 

(i) I f  6 > 0  we choose a,= a ]/~, where ~r2= ~ x 2 F(dx), then 

o-2+'~n~ ~ n ~/2 ] 

uniformly in x. 
(ii) I f  fi = 0 then it is possible to choose the sequence al, a 2 . . . .  such that (7) is 

valid. With such a choice of al, a2,... 

p.(x)= 1+ ~ a .  (50 q)(x)+o ~ a~ ] 

uniformly in x. 

2. Three Lemmas 

The following lemma can be found in problem 30, p. 279 of [4]. 

Lemma 1. Let F be a probability distribution concentrated on (0, ~).  Put 

x oo 
U~(x)= ~ y~ F(dy), V~(x)= ~ y-~ F(dy). 

0 x 
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I f  F possesses moments of  order <e,  but not of order > c~> 0, then either Ur and 
V~ vary regularly for all ~ > ct and all a > -c~ or for no such value. In the first case 
the exponents are ~ - ~  and a - ~ ,  and this case arises if and only if 

x ~ V~(x) ~ - ~  
- - + - -  (11) 

~(x) ,~+~ 

(0<c~<~). I f  U; varies slowly, (11) holds with c~=~ ; if V~ varies slowly the left side 
tends to oe. 

In applications of Lemma 1 to distributions not concentrated on (0, oe) we 
treat the two tails separately. 

We also state a lemma which is contained in Theorem 2a, p. 32 of [2]. 

Lemma 2. Let F be a probability distribution with characteristic function f 
Let G be a real function of bounded variation over the whole real axis, such that 
G ( - o e ) = 0 ,  G ( + o e ) =  1, while the derivative G' exists everywhere and satisfies 
I G'[ < K for some constant K. Write 

g(t) = ~ e it~ G(dx). 

Suppose that for some positive constants T and t l we have 

~ f ( t ) - g ( t )  [d t=q.  
- T  t 

Then there are positive constants A and B independent of T and q such that for all 
real x B 

IF(x)-  G(x)l <At t  +~- .  

Finally we need a bound for characteristic functions of distributions in the 
domain of attraction of the normal distribution. 

Lemma 3. Let F be a probability distribution with characteristic function f 
x 

Suppose ~ yZ F(dy) is slowly varying and the sequence al, a2, ... satisfies (1). Then 
- - X  

there are positive constants e and c such that 

[if(t/a,)[ < e -c Itl (12) 

for 1 <It] <e a, and all sufficiently large n. 

Proof We may without loss of generality assume that ~ x F(dx) = 0. Introduce 
the symmetrized distribution ~ F(x + y)F(dy); then also 

is slowly varying, and 

X 

M(x)= iy2 ov(dy ) 
- - X  

n 
2 M ( a , ) ~  2. (13) 

an 
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This becomes obvious if we use the fact that a distribution G with zero expecta- 
tion belongs to the domain of attraction of the normal distribution if and only if 

y2 G(dy) varies slowly. The variance of the corresponding normal distribution 
- x a ~  

then equals the limit l im-~-  2 ~ y2 G(dy) if we use an as norming constants. (See 
n an - -  an 

[3] p. 544.) Further ~ has characteristic function If(t)l 2 and because ~ is sym- 
metric 

1- I f ( t ) l  2 = ~ ( 1 -  cos tx) ~ 

Now 1 - c o s y  . y2 is non negative for each y and larger than 2 for lY{ < 1, hence 

1 - c o s  tx ( 1 )  
1- I f ( t ) l  2__> ~ (tx) 2 (tx) 2 ~ M ~[~ . 

Ixl -< l/Itl 

From this and the inequality 1 - x < e  -x valid for all x > 0  we obtain 

i. e., 
If(t)[ 2 < e-~,2 ~(1/Itl), 

If(t)l _-< e - ~'2 M(1/I'L). 

Thus it suffices to show that there are positive numbers e and c such that 

Itl ~ -  > c (14) 
an 

for 1 < Itl <e  an and all sufficiently large n. From the representation 

M(x) = b (x) exp r/(y) 

where b(x)--> b > 0  and ll(x)---> 0 as x--+ oo (see [4], p. 274) it now follows that 

M(a ) 
- -  > e x p ( -  sup I#/(y)llog Itl)~�89 
M(a.) b(a,) r>an/Itl 

for 1 <It[ < e an and all sufficiently large n, if e > 0 is chosen so small that I11 (y)l< 1 
and b(y)>2b for all y >  1/e. 

Because of (13), (14) follows. 

by 

3. Proof of Theorem 1 

Below we will be concerned with the sequence U 1, U2, ... of measures defined 

(a, x) 3 F(a. dx) 
Un(dx)= nn 

I lyl a F(dy) 
--an 
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Let us point out that U.(I)-o ~ (2~(dx) (15) 
i 

for each bounded interval ! whose boundary has I2~-measure zero, and that for 
each ~ > 0 there is an x > 0 such that for all n 

I y-2 IO.l(dy)<e. (16) 
lyl>x 

The first of these statements is a direct consequence of (2) and (3). If we treat 
each tail of U. separately and apply Lemma i we get 

1 - 6  - 1 - ~  
S y-2 [Unl(dy)__+~_47_ x as n--+oo 

[yl > x 

from which the second statement follows. 

Denote the characteristic function of F by f. Using the identity 

u " - v " = ( u - v ) ( u ' - l  +u "-2 v+ ... +v "-1) 

(__1 with u =f(t/a.) and v = exp 2 n ] we obtain 

f "  (t/a.) - e-  t2/2 = d. (t) S. (t) (17) 
where 1 t2 ], 

d.(t)=n [ f ( t /a . ) - exp  ( - ~  n , 

1 "-1 ( 1 z n - j - l _ )  Sn(t)=~- 2 fJ(t/a.) exp - ~ - t  
t~ j= 0 H 

Remembering that F has zero expectation we get trivially 

f (t/a.) = I [ ei'x - 1 - it x - �89 (it z (x)) z] F (a n dx) 

+ 1 +�89 2 f z(x) 2 F(an dx). 
Hence 

d. (t) = c. h. (t) + p. �89 (i t) 2 + r. (t) (18) 

where c. and p. are defined in (8), and 

e i t~ - l - i t x - k ( i t ' c ( x ) )2  U.(dx), 
h.(t)=~ x3 

[exp ( 1 t2~ 1 t2-1 
r.(t)= �9 

From (15) and (16) we obtain h.(t)-+h(t), where h is defined in (5). The dif- 
ference S. ( t ) - e  -t2/2 we estimate in the following way: 

1 n - 1  . . vn 1 n - 1  [ 
n -  2 HJ u n - l - 3 - -  = - -  Z v n - J - l ( u J - - u J ) " ~ l ' ) n - l - - u n  
/ j=O n j=O I 

1 n--1 
< - -  ~ j l u -v l  + 11 - v l  < n lu -v [  + I1 -  vl. 

/'~ j= 0 
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(Here we have used the fact that [u[ =< 1, ]v]_-__ 1 and that the inequality ]uJ-v~ I < 
j ]u - v[ is valid for such u and v.) Now f "  (t/a,) --, e -'2/2 implies n (f(t/a.) - 1) ~ - t2/2. 
Hence S , ( t ) ~  e -t2/2. The inequality [e - z -  1 +x[=<�89 2 valid for x > 0  gives 

Ir.(t)[ ~ 1 t 4 / 8 .  (19) 
n 

A glance at (17) and (18) now suggest introducing the functions g. defined by 

g. (t) - e-t2/2 = [c. h (t) + p. �89 (i 02] e-'2/2; (20) 

then we have 

f "  ( t /a , ) -  g. (t) = r. (t) S, (t) + c. [(h, (t) - h (t)) e-t~/2 

+ h, (t) (S. (t) - e-t~/2)] + p, �89 t) 2 [S, (t) - e-,~/2]. 

Furthermore we have in connection with the definition (5) of h shown that g, 
is the Fourier-Stieltjes transform of 

G,(x) =(1 + c ,  c3~ + p. �89 2) ~(x). 

Given e > 0 we put T =  (e c . ) - l B  in Lemma 2 and obtain 

]F~(x)- G.(x)I<=A(I,+I2 + I 3 ) + e  c. 
where 

T 
I i =  I [r . ( t ) t - lS . (  t)] dr, -T 

i(hn(t)-h(t) le-t2/2+'hn(t) t-l(Sn(t)-e-t2/2)l)dt' I2 = Cn_ t 

T 
I3=�89 ~ [t(S.(t)-e-t212)] dr. -T 

Since 
/~ an 

a. c. = ~--2g-a. _ -~ Y2 F(dy).  b . ~ b  n , 

where 
~ ) / ?  b .=  I {yl3 F(dy F(dy), 

- - a n  - -  n 

the assumption of an infinite absolute third moment implies T=o(a.) .  Thus 
according to Lemma 3 there is a positive constant c such that 

I f"( t /a.) l<e -~"1 for l < l t t < T  

and all sufficiently large n. Hence also 

for some Co > 0  if i < [t[ < T and n is large enough (because (21) is trivial when 
j <  n/2). Because of (21), for the above-mentioned t and n, 

IS. (t)[ < e -  ~~ ltl. (22)  
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From (19) and (22) we conclude I~=O(1/n). The inequalities 

give 

[ei'~--l--itx--�89 <__ itx[ 
if Ix[< 1, 

if [xl> l, 

1 [h.(t)l<~[t[ 3 ~ [U.l(dx)+2[t[ ~ ~u[U.[(dx). 
I~1~1 IxJ>a 

This together with (15) and (16) shows that 

I h. (t)] < (constant not depending on n) [ t l (1 + tz). (23) 

The functions under the integral signs in 12 and I3 tend to zero and they are 
according to (22) and (23) dominated by integrable functions. Hence, by Lebes- 
gues dominated convergence theorem, 12--o(c.), 13 = o(p.). 

Thus we have shown that 

F~ (x) = (1 + c. ~6 + �89 p. O2) ~ (x) + o (c.) -q- o (p.) (24) 

uniformly in x. 

If 6 > 0  and a.=al/~ it follows from (10) that 

p .=-c .  ~ l~?a(dx)+o(c.). 
[xl>a x 

Hence we can get rid of the truncation in this case: 

(c. c5~ + p. �89 2) ~ (x) (25) 

= c. S ~ ( x - y ) -  ~ ( x ) + y D  ~ ( x ) - � 8 9  2 O 2 ~(x)  y3 ~2~ (dy) + o (c.), 

uniformly in x. Three partial integrations to the right in (25) show that (24) is 
equivalent to (6) if 6 > 0. 

It remains to show that a choice of the sequence al, a2 . . . .  according to (7) 
is possible. Put V(x)= S yZ F(dy) and 

fy[ =<x 

a.=sup {x>O ~2- V(x)> l} 

for n large enough. Then, since V is nondecreasing, n aZ 2 V(a.)= 1. 

4. Proof of Theorem 2 and 3 

From the inversion formula for Fourier transforms we obtain in the abso- 
lutely continuous case 

v.(x)-(l+c. Co~+p.�89 (26) 
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where g, is defined in (20). We choose e > 0 so small that (12) is true for 1 <It I< e an 
and n sufficiently large and divide the integral to the right in (26) into two parts, 

Itl<ea, Itl_->ea,~ 

We proceed with the first integral in a similar way as in the proof of Theorem 1 
of this paper; with the second as in [4], p. 489. 

The modifications necessary when F is a lattice distribution parallels those 
which permit us to conclude Theorem 3, p. 490 of [4-1, from Theorem 2, p. 489 
of [4-1. 
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