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O. Introduction 

Let X, (a~ and X~ 2) be (discrete time) stochastic processes. By a coupling of X~ 1. 
and X~ 2) we mean a simultaneous realization of these processes on the same 
probability space (fa,~,P). We say that a coupling is successful if the two 
processes eventually agree, i.e., if 

(1) (2) P{X. = X.  for all n sufficiently large} = l. 

Thus, a coupling of X(, l) and X~ 2) may be regarded as a joint process 2 ,  
-,-(J~(1)~, j~2q,, where j~i) is a copy of X~ 1) and 3?~ 2) is a copy on X ~2)'. , the 
coupling is successful if a.s. 2 , e D  for n sufficiently large, where D is the diagonal 
of the range space of 2 , .  

Successful coupling has been useful for proving ergodic theorems for Markov 
chains [1-5,7]. In this context, X(, 1) and X~ 2) represent outcomes of the same 
Markov process beginning in two different states, and successful coupling is 
achieved by having the processes stay together once the same state (i.e., the 
diagonal) is reached. For a countable state space, the classical coupling, dating 
back at least to Doeblin [2], has the processes evolving independently until the 
diagonal is reached. This coupling is Markovian, but is inefficient because of the 
independence. A more efficient Markovian coupling has been used by Vaserstein 
[-7]. Griffeath [-3] has discovered a non-Markovian coupling which is maximal 
in the sense that the diagonal is attained as efficiently as possible (see below). 

Coupling is also useful in ergodic theory: partitions characteristic of Ber- 
noulli processes-called very weak Bernoulli par t i t ions-can  be defined using 
coupling [-6]. 

In this paper we consider the following general question: When may two 
processes (not necessarily Markovian) be successfully coupled? We give neces- 
sary and sufficient conditions for this by constructing a maximal coupling for 
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any two processes; this coupling will be successful if any successful coupling of 
the processes exists, and it brings the processes together as rapidly as possible. 
The result obtained also sheds some light on the significance of the tail a- 
algebra. 

1. Notation and Definitions 

We will assume throughout that y(i) i=1 ,2 ,  are stochastic processes taking 
values in the same standard Borel space (g,N).I We will also assume that X~ ~ 

co oo 

are canonical realizations: Let t 2 = E ~ =  x E and Y = N ~ =  x N. Let P"), 
1 1 

i=  1, 2, be two probability measures on (t2, ~ ) .  A point in t2 will be denoted by 
co=(c%), conE& Let X,(co)=c%. Then the process X~ i) is just X,  on (t?,~,P(i)). 

Let D = {(x, x) lx~g}  c C x g be the diagonal of .g x g. Since (g, N) is standard 
Borel, D is measurable in (g x g, ,,~ x N). 

Let t~=t2xt2.  A point in ~ will be denoted by &=(co(1),co(2)), ~o(~)~t?. We 
will identify t} with (g x S) ~, so that we may write (5 = ((5,), (5, =(co~ 1), co~2))~g x & 
Let ~ - = ~  x o~, which may be identified with (N x ~)~.  

Definition 1.1. A coupling of P(*) and p~2~ is a probability measure/5 on (t~,,@) 
with 

/ 5 ( ' x t 2 ) = P  (1) a n d  / 5 ( O x ' ) = P  ~2~. 

Definition 1.2. Let/5 be a coupling of p(1) and p(2)./5 is successful if 

/5{X,~D for all n sufficiently large} = 1. 

Let . ,~=a{Xm,m>=n } be the smallest a-algebra for which X , , X , +  1 .. . .  are 

measurable. Let ~.~=.,~ • o~=a{X~.,,m>=n}. Let ~,~ = (~ ~ be the tail. 
n = l  

Let # be a finite (signed) measure on the measurable space 5f, let # = #+ - # -  
be the Jordan decomposition of #, and let [#1=# + + # - .  We denote by I]/~11 
= ]#[(~c) the variation norm of/~. If v is another finite measure on ~', the infimum 
#A v of # and v is given by 

#/~ v = 1/2(#+ v - I # -  vl). (1) 

# A v > 2 ,  for any measure 2 such that 2 < #  and 2<v.  It follows from (1) that if 
# > 0  and v>O, 

II#/~ vii = 1/2(11# + v 11 - []#- v [I). 

In particular, if # and v are probability measures, 

I1# A vii = 1 - 1 /2  t l # -  vii. (2) 

Let p,}o = p{0 }.~ be the restriction of p(i) to .~ and let t0 (1) P~ = P  I~o .  Let a, 
= 1/211r2l)-P(,Z)ll and let % = lim %. 

n ~ o o  

For example, IR e or 7l ~ 
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We denote by S c ~  the event "'success occurs by time n." Thus, S, 
= {&ef)lJ(~((o)eO for re>n}. It is easy to see that for any coupling/5, 

/5(S,) ~ 1 - ~,. (3) 

(Let /5~ = / 5 ( . ( ~ , ) .  Then /5g,,</5, so /5~,,(. x12)_</5(, x f 2 ) = P  (~) and /5~((2 
x " )< / s iQx  ")=P(2k But /5~,(. x 1 2 ) I ' ~ : - / s s , ( 12x - ) I~=P~ , .  2 Thus pg, <)~s 

and Pg.=~-n(2)rs Therefore P~�9 AP~(2k Thus P(S~)=HPg.II<[]P,(1)Ap(~2)II=I 
- -  C( n -) 

Definition 1.3. A coupling/5 is called maximal if 

P(S,) = 1 - c%. (4) 

2. Main Result 

Theorem 2.1. The following are equivalent: 

(i) There exists a successful coupling/5. 
(ii) P(~)=P(~ (agreement on tail) 

(iii) c% = 0 ( =  lim [](p(l)_p(2))I~J]. 
n ~ c c  

Proof. We will prove ( i )~ ( i i )~ ( i i i )~ ( i ) .  We will here prove (i)~(ii), which is 
easy. (iii)~(i) follows from the general existence of a maximal coupling, which 
will be constructed in the next section. (ii) ~ (iii) will be dealt with in Section 4. 

We will actually prove that ( i )~(i i i )~(i i ) .  (iii)~(ii) follows from the obser- 
vation 

~ -  (1)  (2)  2c~,,= ][(P(*)-P (2)) I N  > I I (p(1) -p(2) )  I ~ II = I[P~ - P ~  [I. (1) 

That (i)~(iii) can be seen by noting that ( i )~P(g, ) - -*l  as n - , o o ~ c % ~ 0  as 
n ~ ~ (by Eq. (3)). 

Before proving (iii)~(i) we present a heuristic argument for (ii)~(i) contain- 
ing the main ideas of the rigorous argument. 

Imagine that ~% partitions (2 into fibers s 12(co) should be thought of as 
the collection of all co' ~f2 which end the same way as co:co' ef2(co)<=> co', = co, for n 
sufficiently large. Imagine also that the regular conditional probabilities P~ for 
any probability measure P given .Y,~ are concentrated on (2(co): Po,(f2(co))= 1. 
Then, if P(1)--P(Z)~Poc we may define /5 on ~oo x ~  by lifting Po~ to the - a t  - - ~ o c  

diagonal of f2. P on ~ x Yo~ could then be regarded as a measure on the set of 
fibers (12(co),12(co')) (of ~ induced by ~ x @~) concentrated on the diagonal 
-{(f2(co), 12(co))1coe12}. The extension/5 to J& could then be obtained by requir- 
ing that ~- x 12 and 12 x ~ be conditionally independent given -Fo: x ~ .  Thus on 
the fiber (12(co), s we would put the (conditional) probability distribution P~) 

(2) x P2 . For /5  thus constructed, g2(co~ (2)) for/5 a.e. &=(co(l~, co(z)), i.e., co(l~ 
and co(2) end the same way a.s. 

The difficulty with the above argument stems from the fact that ~o~ is not 
(strictly) countably generated, so that, in particular, regular conditional proba- 

2 This is the definition of Ps 
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bilities Po, will not necessarily be concentrated on [2(co). For example, if P has 
trivial tail, P~ = P  for all co, but in general, P will not be concentrated on any 
~(o~). 

3. A Maximal Coupling 

The maximal coupling/5 will be constructed by piecing together a sequence of 
positive measures/~, on ~-. /~, will be a measure for which "success begins at 
time n." 

A basic element in the construction is the observation 

kyn_/n(1)l A Pn(2)1)- I~*.= P'~< (x) A _.P(2). (1) 

(pf: ~,-(1) P.(z--)I) I ~  Tl(1) __ ~D(I} ~n(1) --<G-1 ~'~ and similarly, (/~n- 1 AP(.2)O~<=P(.2). ) We tG-i A 

thus define Q, on ~ as follows: 

Q1 =p(1) A p(2) 

Q.=(P(.I)AP(. 2)) --'G--1(n(1) A P.(2--)I) I O~ for n>l. 

By (1), for all n 

Q.>0.  (2) 

Q. will be the main ingredient in/~. .  We construct from Q. a measure Q. on 
(f2, ~.) by "lifting Q. to the diagonal": For A =A(1)• A(Z)Eo~n, 

0 n ( A )  = Qn(A(1) ~ A(2)). (3) 

Clearly, 

Q .>0 ,  (4) 

and 

0 . ( 0 - s . ) = 0 .  (5) 

(This is perhaps most easily seen by noting that Q. is induced from Q. by the 
map 

o~(m,~o); 

{o,~al4(~o)E0- s.} = 0.) 
To construct /( ,  out of (~, we will use a sequence of kernels K(,~ ~ _ ,  ~ J~, 3, 

i=  1,2. 

Definition 3.1. Let (Y', Yf) be a standard Borel space and let (r = Yg. Let 2 > 0  be 
a finite measure on (Y', ~ ) .  We denote by K(J4~,(q,2)=K: ~Y x ~f  ~ [0, 1] the 
kernel giving the regular conditional probabilities for 2 given ~ 4. This is defined 
by the following conditions: 

3 ~ will denote the set of bounded ~ measurable functions as well as the a-algebra 
4 The fact that this is defined only 2 a.e. presents no difficulty 
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(i) 
(ii) 

(iii) 

~d2 

where, 

For xe~ ,  K(x, ") is a probability measure on .~. 
For AeZg', K(. ,A)e~.  
For he~4 ~ and g e ~  

gh=Sd2gKh 

( K h ) (x) = ~ K(x, d y) h(y). 

The following few statements refer to Definition 3.1: For any finite measure # 
on (q, we denote by #K the measure on j~n given by 

~(dyK)f=~d#(Kf)  

for any f ~ j f . s  
We note that 

II~Klr = II~IP, (6) 

and that 

# > 0 ~ # K > 0 .  (7) 

Furthermore, 

g ~ K g = g  (8) 

# a.e., provided # ~ 2  ~N. In what follows, the measures/~ with respect to which 
we would like (8) to hold a.e. will have the requisite absolute continuity. 
Moreover, it will be possible to choose a version of K for which (8) strictly 
holds. This is because of the product a-algebra structure and the fact that the Y,, 
are strictly countably generated. Thus, we might as well, and will, assume that 
the kernels K which we next define have this property. 

We will denote r~ t~  ~- p ( o  (2) (1), ~ -w~,~+  t , - ,  P~(1)/x P~ ) by K~ . ~,  ~ + p  i=  1,2. Let 

• g , ' n ( i )  __ [dr(i) (i) ~ ( i )  ~ ( i )  6 .  ~ ~ 
- - * - n - l K n - 2  . . . .  ~2 *~1 �9 

and let 

,5/~n = ~ ( 1 )  X d~n(2): c.~ --+O~n . 

J#~, is defined by the condition 

aU,(f (t) x f  (:)) = af,(t)(f (1)) x y(2)(f(2)), 

where f(1)xff2)(&)=f(1)(co(1))f(:)(co(2)), 
We may now define/~, by 

and R(,{ ) by 

6 )  - -  ( i )  R ,  - Q , ~ ,  . 

5 

6 

f( i)e~.  

If # ~ 2 ['G, then #K is independent of the choice of a version for K 
For  n = 1, this product should be interpreted as the identity operator 

(9) 

(10) 

(11) 

(12) 
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/~, is a finite measure on ~ ,  while /~0 
Furthermore, we easily have 

Lemma 3.2. 

(i) R , > 0  
(ii) R(.')> 0 

(iii) /~,(. x f2)=R~ 1) 
(iv) /(,(~? x �9 ) = R(~ ) 

(v) R} ~ I ~ = Qj I ~ fo~ k >j. 

(vi) ~ RSi))G=(l?21)AP~2)))~, for k>=m. 
j - -1  

(vii) j=~/~j = 1 - % ;  j_~fj  = j~l  R}it 

Proof 

(i) follows from (11), (7), and (4). 
lii) follows from (12), (7), and (2). 

is a finite measure on ~ ,  i=1,2.  

=1--o%o. 

(iii) and (iv) follow from (11), (10), and the fact that (~,(. x~2)=(~,(f2x .) 
= Q,, which follows from (3). 

(v) follows from (12) and (8). 
(vi) follows from (v) and the computat ion 

~, Qj I ~  = (pO) A p(2)) I ~ + [(P2 (1) A P2 (2)) I ~'~ - (po) A p(2)) I ~ ]  +""  
j=l 

+ [(p,(1)/x ~2))I ~ -(P,,(~ 1/x ~2_)1) I ~ ] = (ProWl) A p(2)) ~ ~ .  

(vii) follows from (vi) and Off): 

j~l/~, =,=~L/~,(O) = J=~L RJ)(Q) 

--.= (p~l)  A p,(2))(•) = lip(l) A p,(2)11 = 1 - %. 

The last equality follows from (1.2). 
It follows from 3.2 vii that if c% =0, L /~ is a probability measure. For the 

general case, we proceed as follows: )= ~ 
oo 

Let Roo=P(~ (i)_ VR!i) and let / ~ - a - I R ( 1 ) •  (2) for c ~ > 0  and / ~ = 0  for 
j ~ - - - ' o 0  ~ - c c  - - o c  

j 1 

%0 =0. Then we define 

/5= L /~+ /~ .  (13) 
n = l  

Theorem 3.3. P, defined in Equation (13), is a maximal coupling of P (1) and p(2). 

Proof We must show several things: (a) that 15 is a probability measure, (b) that 
/5 has the right marginals, and (c) that t5 is maximal. All of these follow from 
the next lemma. 
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Lemma 3.4. ~ (o< Rj = . P (0 

j= l  

Proo f  It suffices to show that 

By Lemma 3.2 vi, 

~ R~i)<P (i) for all n. 
j = l  

R}i)~ ~ ,  = p(1)/x p,[2)__< p(,,= p(0 1 ,~. 
j = l  

Suppose that 

R~ 01 ffm =< p(o ~ ~ ,  
j= l  

Then, we claim that 

for some m <n. 

~'~ R~i)~ ~rn - '~ <= p(i) ~ ~m - 1  ; (14) 
j = l  

by (reverse) induction, the lemma follows. To establish the claim (14) we observe 
that 

~,, ~ < (i) oz- Rjr P ~ . ,  
j = l  

n m - 1  

~ R ( o ~ . ~ - < W ) -  ") = ( P " ) -  "(-~) ~:~m (15) _.j ,_,,,=_,,, Y Rj 
j = m  j=  1 

(from Lemma 3.2 vi). 
It follows from the definition of the kernels KI, ~ that 

[ ( p ( i ) _ p ~ l  A p ~ 2 ) l ) t , ~ l  lc(i) =(p(O nd) (2) 

: Pnli) i - P(ml_)i /k P ( 2 ) i  , 

It follows from (12) that 

R(.i) i ~.~ re(i) ,i) l ~ m _  1, 
\ . z - ,  j m l ~ r n -  1 = 
- j  = m - j = m 

since, for m_-<j, 

(i) ~z- _ (i) /.((i) Rj  ) ~ " , , - Q j K j _  1 . . . . .  m. 

Therefore, multiplying the LHS and the RHS of (15) on the right by K~I~ we 
obtain (bearing in mind (7)) 

R(ilb~ <p(i) ~(1) Ap{2)l_ (i) Z e} i )  I f f m - 1  j �9 , ._~=- . ,_~- - t 'm_~ _ -Ptm_ 1 -  
j - -m  j= l  

(from Lemma 3.2 vi). 
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Thus, it follows that 

~, RSi)~'~m 1 ~--~m-l<l::)(1) = P ( i )  I ~ m - 1 ,  
j = l  

and the proof of the lemma is complete. 
It follows from Lemma3.4 that R(~>0. Thus /5>0.  To establish (a) and (b) 

consider separately the cases ~oo=0 and aoo >0. First suppose e~ =0. Then by 
Lemma 3.2 vii, 

H/sI[= j=~ Rj = j=~ R} ~ =1. 

This, together with Lemma 3.4, implies that 

~P(. x~), i=1 
p(i) = 2 RSi)=-[P(O x "), i = 2. 

j = l  

Suppose next that c% >0. Then, since by Lemma 3.4, 

co 
IIR~H--HP(i)II- ~i  R}i) -- 1 - (1  -C~oo)--c%o, 

J 
we have 

P(. xr~)= ~2 P,,(. x r~)+P,~o(- x~) 
n = l  

= ~ R(,1)+a~IR(~)(')R~)(Q) 
n=l 

( ) (1, - 1  2 (n 1) goc = R n +o~oo P ( 1 ) -  n 
n = l  

= p ( 1 ) ,  

and similarly, 

/5(Q X " ) = p(2). 

This establishes that/5 is a probability measure with the right marginals. 
t5 is maximal because, 

j = l  j = l  

(~j(~)= ~ I[(~jll- hl/~lq ~ 1 - % .  (16) 
j = l  j = l  j = l  

Here, we have used (8), (11), (5), (6), and Lemma 3.2 vii, as well as the fact that 
S,E/~ for j < n .  In particular, the step/~j(S,)=Oj(Sn) follows from the fact that 
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which need only be checked for product functions: For f ( 1 ) e ~  and f(2)eJ~j, 

dOj • f (:))  = S ",) • 
=~ dO,(f(1)• f(2)) ( = ~ d Q j ( a ) f ( 2 ) ) .  

This completes the proof of Theorem 3.3. 

Remark  3.5. The maximal coupling /5 depends only upon P(~) and p(2) not upon 
the versions of the kernels K~ ~). This may easily be seen by applying R~ to 
product functions, using the fact, refering to Definition 3.1, that K is well defined 
and version independent on functions rood2 (i.e., as a map from Jr(rood 2) to 
~(mod 2)). 

R e m a r k  3.6. Let S be the event "success occurs." Then 

n 

and ~ R1 is "supported" by S: 
j=l 

j - - 1  j = l  

Moreover, /(~ is "supported" by P - S :  Since P ( S , ) - - 1 - ~ , =  ~ Ri(S,) (by 
Eq. (16)), we have that fioo(S) = l i m / ~ ( S , )  =0. j= 1 

n ~ o o  

R e m a r k  3.7. Suppose/5 is any maximal coupling. Then 

/5(S) = lira/5(S,) = lira (1 - ~ , ) =  1 - e ~ .  
n ~ o o  n ~ o , 3  

In particular, if e~ = 0, P(S)= 1 and/5 is successful. Thus (iii) ~ (i) of Theorem 2.1 
follows from Theorem 3.3. 

4. Tail Agreement 

We consider the implication (ii)~(iii) of Theorem2.1. For any n, there exists a 
set An~ ~ such that 

[P(1)(A,) -- P(U)(A,)I --> ~o~. 

Without loss of generality we may, by passing to a subsequence, assume that 

P(1)(A,) - P(2)(A,) >= :% (1) 

for all n. 
Let .~ = Lz(Y2, ~ ,  P(1) + P(2)). 

Since the sequence X',  =-IA, ~ (I A is the indicator function of the set A:IA(O,) ) = 1 if 
c ~ A  and = 0  otherwise) is norm-bounded in .~, it has a weakly convergent 
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subsequence 

X',, ~ X'~. 

Let E~~ = 5 f dP~~ for 
+ p ( 2 ) ) = < ] ~  Ihf/I2, E(~ *. Thus, 

E(1)(X'~) - EIZ)(x'~) = lim (P{I)(A,j) - PtZ)(A,,)) > c~,. 
j~oo 

Since subspaces are weakly closed, X ~ e o ~ ,  and we are done. 7 
In fact, we have that 0 < X~ < 1 so that  

~2 ~ = 1/2 [1 (P'I '  _ p(2j) } ff~ II > ~ ~- 

Since, by Equation (2.1), ~ > goo, we have proven the following: 

Propos i t i on  4.1. ][(P~ _ p(2~) I ~-~ [I = lim I1 (p(l)  _ p{2)) I ~'~ H. 
n~co 

S. Goldstein 

fe .~ .  Since IE(~ ~ E ( ~  Ifl d( P~ll 

5. Addi t iona l  R e m a r k s  

(1) Let T, be the event "success begins at time n," i.e., 

Let t5= ~ /~,+/~oo be as in Section3. Then /~ ,  is "suppor ted"  by T, (since, by 
(16), ,= 1 

n--1 
1--0{n--t = E e j ( S n - x ) ~  ~, ej(Sn-l)~P(Sn-l)=l-~ 

j= l  j= l  

so that  R,(S,_  1)=0). 
(2) Suppose U 1) and p(2) represent the same Markov chain (with countable 

state space) starting in different states, say 1 and 2. Then the maximal coupling 
/5 constructed in Section 3 has the following 2 properties: Let ~D be the hitting 
time of the diagonal: 

~D = min {nl2,~D}. 

(If X ,  s O - D  for all n, z D is defined to be 00.) Then, 
(a) ;~, = {z D < n} (mod/5), i.e., 

) ( , eD for n > r D f f  almost surely, 

and (b) co~ 1J, n < t  o and co~ 2), n <z  0 are conditionally independent given z D and 
J?~D" Also, (c) _,P(t~-_,P(2~ = ILP~,.-P"2,. II, where P is the transition matrix. ((c) 

7 I am grateful to S. Varadhan for bringing this argument to my attention 
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follows easily from the Markov property. (a) follows from (c) and the maximality 
of/5, and (b) follows from (a), remark (1), and the Markov property). In fact,/5 in 
this case turns out to be precisely the coupling of Griffeath [3], a result strongly 
suggested by the proposition of the next remark. 

(3) The coupling/5 has the property that 

(I) ~,~ x f2 and f2 x f f  are conditionally independent on ~ - S , _  1 given ~,~ 
x ~2, and given O x a~,; and J x ~2 and/2 x ~,~ are independent on ~ - S. In fact, 

for A~o~ 

- . (2) re> l}  /5{A x OI.Q-~,, 1 ; O)(~),/)7 ~ / 7  ; gO . . . .  

=~g#,(x)(co(1),A) for /5 a.e. &=(o0(1),co~2t). 

We will say that a coupling satisfying (I) is conditionally independent. It is not 
difficult to see that /5 is characterized by conditional independence and maxi- 
mality: 

Proposition. /5 is the unique maximal conditionally independent coupling of p(l~ 
and p(2). 

(4) Griffeath [3] raises the following question: If C is an abstract space, and 
p(l~ an d p(2) are two measures on f2 = E ~176 determine p =(#,),,~, where 

#,=infP{&n~f2-D}, 
P 

/5 a coupling of p(1) and p(2j 
It is easy to see, at least if E is a standard Borel space, by using the version of 

(2.3) appropriate to the present context, that 

#, = 1/2 i[(p(1)- p(2))i~.@n][, 

where 2 , = o - { X , } c ~ - ,  and that, in fact, p, is realized for some coupling /5, 
which may be constructed using the method of Section 3. 

(5) Theorem2.1 provides a precise formulation of the notion that tail 
information tells us how a process ends, that two processes agree on the tail if 
and only if they "end the same way." 

(6) Suppose p~,)=p~2). It is perhaps worthwhile to indicate what goes wrong 
if one tries to construct a successful coupling beginning with the tail: Let Qoo 
=P~I)AP~2)=P~I)=P~2). Lifting Q~o to the diagonal we obtain 0o~ on ~-oo x37oo �9 

Let X 2 ) =  P %  and let = 4"2 • Finally, let/5 = 
The difficulty is that J~:o x J~oo 4 = ~ J&,; in fact, Sr x J~o. Thus, it is not 

n 
true that Oo~(S) = 1. (If S were ~,~ x ff~o measurable, it would follow, just as for 
the corresponding result for 0, ,  that 0~(S)= 1.) 
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