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1. The Additional Remarks 

Using the same notations as in [1] let X c I R r ( T c l R )  be endowed with the 
topology ff induced on X by the product topology of/R r. Let #n, neN,  be a sequence 
of p-measures on the Borel or-field N in (X, ~f) (which are assumed to be X-regular 
in the sense of [11). Starting with the assumption that the finite dimensional 
marginal distributions /z~ (pertaining to 71~-Tc t" X---->lR Itf for t =  {tl, t 2 . . . .  , tn} 
with t i eT  ) converge (weakly) to a p-measure #~ as n~oe  (for every ~), where the 
#;'s are finite dimensional marginal distributions of some p-measure #o on 
(being uniquely determined by the #~'s) it was proved in Theorem 2.8 of [11 that 
the following condition (1.1) imposed on the class cg 0 of all open cylindersets 
C=ntI (G) ,  G being an open subset of ]R [tj with #ot(c3G)=0 (cf. (2.10) in [1]), 
implies lim #n(A)=#o(A ) for all A e ~ :  

(1.1) For every monotone increasing sequence (Cj)j~ w!th C j = ~ I ( G j ) ~ o  
there exists a monotone decreasing sequence (C))j~ with Cj=n~l (G)e~o  such 
that C j~  C) for all j ~ N  and lira sup#~J(A'.',A.)=0,j j where s j= t jwt )  and A)= 
rc~ lt)(G)),., Aj = 7z~xtj(Gj). i . . . .  

But in view of the assertion that (1.1) implies limp.(A)=#o(A ) for all A e N  it 

follows that the limit measure #0 must necessarily satisfy the following condition 
(1.2): 

(1.2) For every monotone increasing sequence (Cj)j~ N with C j = ~ I ( G j . ) ~ o  
there exists a monotone decreasing sequence (C)):, N with C)=rc~I(G)E~o such 
that C j~  C) for allj~lN and 

!im/% (C~. \ C)  = #o ( ~ C} \ U c j) = 0. 
J~x5 jE~'q j~N 

We want to show now that (1.2) and therefore also (1.1) cannot be fulfilled in 
nearly all cases of interest. 
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(1.1) Theorem. If we assume that in the above cited context the space X c l R  r 
with T c l R  fulfills one of the following conditions 

(i) X--  yr  with YclR,  [YI>2 and ITI>N 0, or 

(ii) [rl  > No, and for any q < t 2 < . . -  < t,,, t~e T, and any (ax, ..., %)elR m there 
exists xEX such that x(t~)= a~, i= 1,..., m, then (1.2) (and hence (2.10) in [1]) is not 
fulfilled. 

s_  { x e X  x(s)=y(s) Proof (a) For any y ~ X and S ~ T let us consider in X the set Zy - 
for all seS}; then 

(+) zSc~zS,=f~Mrestsy+restsy ' (where restsy denotes the restriction of y: 
T-MR on S). 

(b) According to (i) or (ii) it follows in both cases that at least for S c T with 
[SI>No the set {ZS:y~X} contains infinitely many pairwise disjoint elements 
Z s which implies 

(+  +)  For any S c T with I sI >= No and for any e >0  there exists y e X  such that 

(c) Now we claim that the following assertion holds true: For any monotone 
strictly increasing sequence (tne T)nE~ there exists a monotone strictly increasing 
sequence (n k ~ N)k~  and a sequence (yke X)k~ ~ such that for any k E N we have 

(-~- Jr- ~") pt0tZ~yk ) ' '  {Ttk~ J" I - (k+l )~  z., , w h e r e  t k - { tnk+l  , . . . ,  t . . . .  }, k e N .  

To prove (+  + +)  let 

T O = {t,: n E N} (where by assumption t~ < t 2 <.- .  < t, < . . . ,  t ie T) 

and choose n 1 = 1. Then by (+  +)  exists ylEX such that #o(Z~T~ -(1+1) 
{tnl+ 1 t 2} (1+1 )  andthereforethereexistsnaEN, nz>nt,with#o(Zy, ...... ) < 2 -  ,i .e.(+ + +)  

holds for k = l .  Now, assume that for k > 2  there are already constructed 
n 1 . . . .  , nkeN, and y~, ..., yk - l eX  for which (+  + +)  holds true; then in the same 
way as before (+  +)  implies that there exists ykEX such that 

#o ( Z ~  ro: ' >'-~) < 2-(k+~) 

and again we obtain nk+leN, nk+l>nk, such that (+  + +)  holds for k. This 
proves (+  + +). 

(d) Now we fix T o = {t~e T: t t < t z < . . .  < t, <. . .},  (nk~N)k~ and (yk E X)k~ 
with the properties proved under (c). Then, considering again t~ = {t,~+l, ..., t,~+,}, 
we obtain #ot~({yk(t,~+l), ...,yk(t,k+~)})<2-(k+l). Since /~o t~ is a regular measure 
on the Borel sets in IR e~ (with dk=nk+ ~ --n~) and since the class of all open sets G 
in IR ~ with #or form a base, it follows that there exists an open set G* 
in IR d~ with 

k t  . . . ,  (y(.~+~), y~(t . . . .  ))EG~, /~ot~'(6~Gff)=0 a n d  /~ot~(G*)<2 -(k+l), keN.  

Now,)fiwe+ put t~,~ {tl, ~2 . . . .  , t,~ +, },tthen~ for k ~ j  1, - a j k = g ~ ! t ~ ( G ~ ) i s  a n  o p e n  subset 
of IR " with /~0 (#G~)=0  and Po (Gj~) < 2 - 5  . Hence Gj= U Gj~ is an open 

k<j  
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subset of IR"J +i wi th / / ; t J (~Gj )  = 0, and therefore Cj = ~ 1(G j), j+N,  is a monotone 
increasing sequence of sets belonging to ~0 as it occurs in (1.2). 

(e) Assume that there exists a cylinderset C + X  with U C j c  C. Then C =  
jeN 

{x~X: (x(sl), ...,x(s~))sB} for some s 1 <s2<- - .  <s,,  si+T, r6N, and some Borel 
subset B of IW, where IW -. B +- g (resp. yr \ B + ~( in case (i)) since C + X. According 
to the choices of To, (nk+N)k+~, and (ykeX)k+N (see (d)) there exists p + N  such that 
{sl , . . . ,s ,}c~{t ,+T:n>p}=fJ and we may define for some (a 1 . . . . .  a~) IR~',B 
(resp. for some (al, ..., a,)~ Y~'-B in case (i)) and for j e N so large that nj > p 

Z =  { x E  X : ( x ( s 1 ) ,  . . .  ,x(Sr) , x ( t n d +  l ) ,  . . .  ,X(tnj+l)) 

= (a I . . . .  , a r , yJ (t,j + 1), �9 �9 ", YJ (t,~ +,))} 

to obtain a cylinderset Z in X with Z 4:g according to (i) or (ii) and Z c C i c C, j e N ,  
whereas Z ~ C = g. Hence C = X is the only cylinderset containing U Cj. 

jsN 
(f) The assertion of the theorem follows now immediately from (d) and (e), 

because 

fro( U Cj)= lira #o( U Cj)= lira #o (rc/~ 1( U Gu)) 
j e w  z~o3 j < i  ~ j<=i 

< lira ~#ot~(Gu)< ~ 2 -u+I)=-�89 
i ~  j < i  j = l  

As to the case where one allows Tto  be at most countable one obtains the following 
theorem due to Le Cam: 

(1.2) Theorem. Let T be at most countable, consider X = (  X, (#)~N r and suppose 
that the following condition 

(iii) {x}r for all xEX  
holds true. Then (1.2) (and hence (2.10) in [1]) is not fulfilled. 

Proof We remark first that either one of the two conditions (i) or (ii) of Theorem 1.1 
implies (iii). Now, in the present case IR r and therefore X = (X, (~) become separable 
metrizable spaces. Furthermore, since cg 0 forms a base of (r it follows that for any 
G ~  there exist C,~Cdo, n~N, which may be assumed without loss of generality 
to be monotone increasing, such that G =  Q)C,. Therefore according to 

Lemma 2.2 (1.2) would imply that #o (SG) = 0 for all G ~ ~q, which is in contradiction 
with Lemma 2.1; this proves the theorem. 

2. Auxiliary Lemmata 

(2.1) Lemma. Let X = ( X ,  fg(X)) be an arbitrary separable metrizable space and 
suppose that the one point sets of X are not open. Then for any probability measure # 
defined on the Borel a-field ~(X)  in X there exists a G~ ~(X) with #(OG)> O. 

Proof Assume that #(0G)=0 for all G ~ ( X ) ;  since the one point sets of X are not 
open, we have 0(X \ {x})= {x} and therefore #({x})= 0 for all X~X. 
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Let {x~:j~N} be a countable dense subset of X. Since # is regular there exist 
Gje N(X) such that xj~ Gj and #(G j)< 2-o+ 1) for every j~N.  Then it follows with 
G =  U Gj that G~fq(X) with ~ G = X \ G  and #(~G)> 1 - ~ 2-(J+1)>0. 

j~N j~N 

(2.2) Lcmma. Condition (1.2) implies that for any monotone increasing sequence 
( CjE Cgo)j~ ~ occuring there one has #0(9(~) C j))= 0. 

ten 

Proof. Let ( C # ~ o ) j ~  be monotone increasing, C#=rc;l(Gj) with G~ open in IR IrA 
and #otJ(~?Gj)=0; according to (1.2) there exists a monotone decreasing sequence 
(C}E~g0)j~N, C)=rct)l(G)) with G) open in IR It)l and/~ot)(~G))=0 such that for all 
j ~ N  C j c  C) and !im#o(C ) \ C#)=O. But this implies that 

#o (�9 U C j)) < !im #o (C) c \ C j) = !ira #0 (C) \ C j)= 0, 

where C) c denotes the closure of C) and where the equality of the last two terms 
is due to the fact that #o(~C))< #ot)(~G))= 0. 
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