Additional Remarks on Convergence of Stochastic Processes

P. Gänssler and S. Kaiser
Mathematisches Institut der Ruhr-Universität, D-4630 Bochum Federal Republic of Germany

1. The Additional Remarks

Using the same notations as in [1] let $X \subset \mathbb{R}^{T}(T \subset \mathbb{R})$ be endowed with the topology \mathscr{G} induced on X by the product topology of \mathbb{R}^{T}. Let $\mu_{n}, n \in \mathbb{N}$, be a sequence of p-measures on the Borel σ-field \mathscr{B} in (X, \mathscr{G}) (which are assumed to be \mathscr{K}-regular in the sense of [1]). Starting with the assumption that the finite dimensional marginal distributions μ_{n}^{π} (pertaining to $\pi=\pi_{\mathbf{t}}: X \rightarrow \mathbb{R}^{|\boldsymbol{t}|}$ for $\mathbf{t}=\left\{t_{1}, t_{2}, \ldots, t_{n}\right\}$ with $t_{i} \in T$) converge (weakly) to a p-measure μ_{0}^{π} as $n \rightarrow \infty$ (for every π), where the μ_{0}^{π},s are finite dimensional marginal distributions of some p-measure μ_{0} on \mathscr{B} (being uniquely determined by the μ_{0}^{π} s) it was proved in Theorem 2.8 of [1] that the following condition (1.1) imposed on the class \mathscr{C}_{0} of all open cylindersets $C=\pi_{t}^{-1}(G), G$ being an open subset of $\mathbb{R}^{|t|}$ with $\mu_{0}^{\pi_{\mathbf{t}}}(\hat{\partial} G)=0$ (cf. (2.10) in [1]), implies $\lim _{n \rightarrow \infty} \mu_{n}(A)=\mu_{0}(A)$ for all $A \in \mathscr{B}$:
(1.1) For every monotone increasing sequence $\left(C_{j}\right)_{j \in \mathbb{N}}$ with $C_{j}=\pi_{\mathbf{t}_{j}}^{-1}\left(G_{j}\right) \in \mathscr{C}_{0}$ there exists a monotone decreasing sequence $\left(C_{j}^{\prime}\right)_{j \in \mathbb{N}}$ with $C_{j}^{\prime}=\pi_{\mathbf{t}_{j}^{-1}}^{-1}\left(G_{j}^{\prime}\right) \in \mathscr{C}_{0}$ such that $C_{j} \subset C_{j}^{\prime}$ for all $j \in \mathbb{N}$ and $\lim _{j \rightarrow \infty} \sup _{n \in \mathbb{N}} \mu_{n}^{\pi_{\mathbf{s}_{j}}}\left(\boldsymbol{A}_{j}^{\prime} \backslash A_{j}\right)=0$, where $\mathbf{s}_{j}=\mathbf{t}_{j} \cup \mathbf{t}_{j}^{\prime}$ and $A_{j}^{\prime}=$ $\pi_{\mathbf{s}_{j}, \mathbf{t}_{j}^{\prime}}^{-1}\left(G_{j}^{\prime}\right), A_{j}=\pi_{\mathbf{s}_{j}, \mathbf{t}_{j}}^{-1}\left(G_{j}\right)$.
But in view of the assertion that (1.1) implies $\lim _{n \rightarrow \infty} \mu_{n}(A)=\mu_{0}(A)$ for all $A \in \mathscr{B}$ it follows that the limit measure μ_{0} must necessarily satisfy the following condition (1.2):
(1.2) For every monotone increasing sequence $\left(C_{j}\right)_{j \in \mathbb{N}}$ with $C_{j}=\pi_{t_{j}}^{-1}\left(G_{j}\right) \in \mathscr{C}_{0}$ there exists a monotone decreasing sequence $\left(C_{j}^{\prime}\right)_{j \in \mathbb{N}}$ with $C_{j}^{\prime}=\pi_{\boldsymbol{t}_{j}^{-1}}^{-1}\left(G_{j}^{\prime}\right) \in \mathscr{C}_{0}$ such that $C_{j} \subset C_{j}^{\prime}$ for all $j \in \mathbb{N}$ and

$$
\lim _{j \rightarrow \infty} \mu_{0}\left(C_{j}^{\prime} \backslash C_{j}\right)=\mu_{0}\left(\bigcap_{j \in \mathbb{N}} C_{j}^{\prime} \backslash \bigcup_{j \in \mathbb{N}} C_{j}\right)=0
$$

We want to show now that (1.2) and therefore also (1.1) cannot be fulfilled in nearly all cases of interest.
(1.1) Theorem. If we assume that in the above cited context the space $X \subset \mathbb{R}^{T}$ with $T \subset \mathbb{R}$ fulfills one of the following conditions
(i) $X=Y^{T}$ with $Y \subset \mathbb{R},|Y| \geqq 2$ and $|T| \geqq \aleph_{0}$, or
(ii) $|T| \geqq \aleph_{0}$, and for any $t_{1}<t_{2}<\cdots<t_{m}, t_{i} \in T$, and any $\left(a_{1}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ there exists $x \in X$ such that $x\left(t_{i}\right)=a_{i}, i=1, \ldots, m$, then (1.2) (and hence (2.10) in [1]) is not fulfilled.
Proof. (a) For any $y \in X$ and $S \subset T$ let us consider in X the set $Z_{y}^{S}=\{x \in X: x(s)=y(s)$ for all $s \in S\}$; then
$(+) \quad Z_{y}^{S} \cap Z_{y^{\prime}}^{S}=\emptyset \nsucc \operatorname{rest}_{S} y \neq \operatorname{rest}_{s} y^{\prime}$ (where $\operatorname{rest}_{s} y$ denotes the restriction of y : $T \rightarrow \mathbb{R}$ on S).
(b) According to (i) or (ii) it follows in both cases that at least for $S \subset T$ with $|S| \geqq \aleph_{0}$ the set $\left\{Z_{y}^{S}: y \in X\right\}$ contains infinitely many pairwise disjoint elements Z_{y}^{S} which implies
$(++)$ For any $S \subset T$ with $|S| \geqq \aleph_{0}$ and for any $\varepsilon>0$ there exists $y \in X$ such that $\mu_{0}\left(Z_{y}^{S}\right)<\varepsilon$.
(c) Now we claim that the following assertion holds true: For any monotone strictly increasing sequence $\left(t_{n} \in T\right)_{n \in \mathbb{N}}$ there exists a monotone strictly increasing sequence $\left(n_{k} \in \mathbb{N}\right)_{k \in \mathbb{N}}$ and a sequence $\left(y^{k} \in X\right)_{k \in \mathbb{N}}$ such that for any $k \in \mathbb{N}$ we have
$(+++) \quad \mu_{0}\left(Z_{y^{k}}^{t_{k}^{*}}\right)<2^{-(k+1)}, \quad$ where $\quad \mathbf{t}_{k}^{*}=\left\{t_{n_{k}+1}, \ldots, t_{n_{k+1}}\right\}, \quad k \in \mathbb{N}$.
To prove $(+++)$ let

$$
T_{0}=\left\{t_{n}: n \in \mathbb{N}\right\} \quad \text { (where by assumption } t_{1}<t_{2}<\cdots<t_{n}<\ldots, t_{i} \in T \text {) }
$$

and choose $n_{1}=1$. Then by $(++)$ exists $y^{1} \in X$ such that $\mu_{0}\left(Z_{y^{1}}^{\left[t \in T_{0}: t>t_{1}\right]}\right)<2^{-(1+1)}$ and therefore there exists $n_{2} \in \mathbb{N}, n_{2}>n_{1}$, with $\mu_{0}\left(Z_{y^{1}}^{\left(t_{n_{1}+1}, \ldots, t_{n_{2}}\right\}}\right)<2^{-(1+1)}$, i.e. $(+++)$ holds for $k=1$. Now, assume that for $k \geqq 2$ there are already constructed $n_{1}, \ldots, n_{k} \in \mathbb{N}$, and $y^{1}, \ldots, y^{k-1} \in X$ for which $(+++)$ holds true; then in the same way as before $(++)$ implies that there exists $y^{k} \in X$ such that

$$
\mu_{0}\left(Z_{y^{k}}^{\left.t t \in T_{0}: t>t_{n_{k}}\right)^{\prime}}\right)<2^{-(k+1)}
$$

and again we obtain $n_{k+1} \in \mathbb{N}, n_{k+1}>n_{k}$, such that $(+++)$ holds for k. This proves $(+++)$.
(d) Now we fix $T_{0}=\left\{t_{n} \in T: t_{1}<t_{2}<\cdots<t_{n}<\ldots\right\},\left(n_{k} \in \mathbb{N}\right)_{k \in \mathbb{N}}$ and $\left(y^{k} \in X\right)_{k \in \mathbb{N}}$ with the properties proved under (c). Then, considering again $\mathbf{t}_{k}^{*}=\left\{t_{n_{k}+1}, \ldots, t_{n_{k+1}}\right\}$, we obtain $\mu_{0}^{\pi_{0}^{*}}\left(\left\{y^{k}\left(t_{n_{k}+1}\right), \ldots, y^{k}\left(t_{n_{k+1}}\right)\right\}\right)<2^{-(k+1)}$. Since $\mu_{0}^{\pi_{t_{k}^{*}}^{*}}$ is a regular measure on the Borel sets in $\mathbb{R}^{d_{k}}$ (with $d_{k}=n_{k+1}-n_{k}$) and since the class of all open sets G in $\mathbb{R}^{d_{k}}$ with $\mu_{0}^{\pi_{k}^{*}}(\partial G)=0$ form a base, it follows that there exists an open set G_{k}^{*} in $\mathbb{R}^{d_{k}}$ with

$$
\left(y^{k}\left(t_{n_{k}+1}\right), \ldots, y^{k}\left(t_{n_{k}+1}\right)\right) \in G_{k}^{*}, \quad \mu_{0}^{\pi_{t_{k}^{*}}^{*}}\left(\partial G_{k}^{*}\right)=0 \quad \text { and } \quad \mu_{0}^{\pi_{t_{k}^{*}}^{*}}\left(G_{k}^{*}\right)<2^{-(k+1)}, \quad k \in \mathbb{N} .
$$

Now, if we put $\mathbf{t}_{j}=\left\{t_{1}, t_{2}, \ldots, t_{n_{j+1}}\right\}$, then for $k \leq j G_{j k}=\pi_{\mathbf{t}_{\mathbf{t}}, \boldsymbol{t}_{k}^{t_{k}}}^{-1}\left(G_{k}^{*}\right)$ is an open subset of $\mathbb{R}^{n_{j+1}}$ with $\mu_{0}^{\pi_{t_{j}}}\left(\partial G_{j k}\right)=0$ and $\mu_{0}^{\pi_{t_{j}}}\left(G_{j k}\right)<2^{-(k+1)}$. Hence $G_{j}=\bigcup_{k \leqq j} G_{j k}$ is an open
subset of $\mathbb{R}^{n_{j+1}}$ with $\mu_{0}^{\pi_{t_{j}}}\left(\partial G_{j}\right)=0$, and therefore $C_{j}=\pi_{\mathbf{t}_{j}}^{-1}\left(G_{j}\right), j \in \mathbb{N}$, is a monotone increasing sequence of sets belonging to \mathscr{C}_{0} as it occurs in (1.2).
(e) Assume that there exists a cylinderset $C \neq X$ with $\bigcup_{j \in \mathbb{N}} C_{j} \subset C$. Then $C=$ $\left\{x \in X:\left(x\left(s_{1}\right), \ldots, x\left(s_{r}\right)\right) \in B\right\}$ for some $s_{1}<s_{2}<\cdots<s_{r}, s_{i} \in T, r \in \mathbb{N}$, and some Borel subset B of \mathbb{R}^{r}, where $\mathbb{R}^{r} \backslash B \neq \emptyset$ (resp. $Y^{r} \backslash B \neq \emptyset$ in case (i)) since $C \neq X$. According to the choices of $T_{0},\left(n_{k} \in \mathbb{N}\right)_{k \in \mathbb{N}}$, and $\left(y^{k} \in X\right)_{k \in \mathbb{N}}$ (see (d)) there exists $p \in \mathbb{N}$ such that $\left\{s_{1}, \ldots, s_{r}\right\} \cap\left\{t_{n} \in T: n>p\right\}=\emptyset$ and we may define for some $\left(a_{1}, \ldots, a_{r}\right) \mathbb{R}^{r} \backslash B$ (resp. for some $\left(a_{1}, \ldots, a_{r}\right) \in Y^{r} \backslash B$ in case (i)) and for $j \in \mathbb{N}$ so large that $n_{j}>p$

$$
\begin{aligned}
Z & =\left\{x \in X:\left(x\left(s_{1}\right), \ldots, x\left(s_{r}\right), x\left(t_{n_{j}+1}\right), \ldots, x\left(t_{n_{j+1}}\right)\right)\right. \\
& \left.=\left(a_{1}, \ldots, a_{r}, y^{j}\left(t_{n_{j}+1}\right), \ldots, y^{j}\left(t_{n_{j+1}}\right)\right)\right\}
\end{aligned}
$$

to obtain a cylinderset Z in X with $Z \neq \emptyset$ according to (i) or (ii) and $Z \subset C_{j} \subset C, j \in \mathbb{N}$, whereas $Z \cap C=\emptyset$. Hence $C=X$ is the only cylinderset containing $\bigcup_{j \in \mathbb{N}} C_{j}$.
(f) The assertion of the theorem follows now immediately from (d) and (e), because

$$
\begin{aligned}
\mu_{0}\left(\bigcup_{j \in \mathbb{N}} C_{j}\right) & =\lim _{i \rightarrow \infty} \mu_{0}\left(\bigcup_{j \leq i} C_{j}\right)=\lim _{i \rightarrow \infty} \mu_{0}\left(\pi_{t_{i}}^{-1}\left(\bigcup_{j \leqq i} G_{i j}\right)\right) \\
& \leqq \lim _{i \rightarrow \infty} \sum_{j \leqq i} \mu_{0}^{\pi_{i}(}\left(G_{i j}\right)<\sum_{j=1}^{\infty} 2^{-(j+1)}=\frac{1}{2}
\end{aligned}
$$

As to the case where one allows T to be at most countable one obtains the following theorem due to Le Cam:
(1.2) Theorem. Let T be at most countable, consider $X=(X, \mathscr{G}) \subset \mathbb{R}^{T}$ and suppose that the following condition
(iii) $\{x\} \notin \mathscr{G}$ for all $x \in X$
holds true. Then (1.2) (and hence (2.10) in [1]) is not fulfilled.
Proof. We remark first that either one of the two conditions (i) or (ii) of Theorem 1.1 implies (iii). Now, in the present case \mathbb{R}^{T} and therefore $X=(X, \mathscr{G})$ become separable metrizable spaces. Furthermore, since \mathscr{C}_{0} forms a base of \mathscr{G}, it follows that for any $G \in \mathscr{G}$ there exist $C_{n} \in \mathscr{C}_{0}, n \in \mathbb{N}$, which may be assumed without loss of generality to be monotone increasing, such that $G=\bigcup_{n \in \mathbb{N}} C_{n}$. Therefore according to Lemma 2.2 (1.2) would imply that $\mu_{0}(\partial G)=0$ for all $G \in \mathscr{G}$, which is in contradiction with Lemma 2.1; this proves the theorem.

2. Auxiliary Lemmata

(2.1) Lemma. Let $X=(X, \mathscr{G}(X))$ be an arbitrary separable metrizable space and suppose that the one point sets of X are not open. Then for any probability measure μ defined on the Borel σ-field $\mathscr{B}(X)$ in X there exists a $G \in \mathscr{G}(X)$ with $\mu(\partial G)>0$.
Proof. Assume that $\mu(\partial G)=0$ for all $G \in \mathscr{G}(X)$; since the one point sets of X are not open, we have $\partial(X \backslash\{x\})=\{x\}$ and therefore $\mu(\{x\})=0$ for all $x \in X$.

Let $\left\{x_{j}: j \in \mathbb{N}\right\}$ be a countable dense subset of X. Since μ is regular there exist $G_{j} \in \mathscr{G}(X)$ such that $x_{j} \in G_{j}$ and $\mu\left(G_{j}\right)<2^{-(j+1)}$ for every $j \in \mathbb{N}$. Then it follows with $G=\bigcup_{j \in \mathbb{N}} G_{j}$ that $G \in \mathscr{G}(X)$ with $\partial G=X \backslash G$ and $\mu(\partial G) \geqq 1-\sum_{j \in \mathbb{N}} 2^{-(j+1)}>0$.
(2.2) Lemma. Condition (1.2) implies that for any monotone increasing sequence $\left(C_{j} \in \mathscr{C}_{0}\right)_{j \in \mathbb{N}}$ occuring there one has $\mu_{0}\left(\partial\left(\bigcup_{j \in \mathbb{N}} C_{j}\right)\right)=0$.
Proof. Let $\left(C_{j} \in \mathscr{C}_{0}\right)_{j \in \mathbb{N}}$ be monotone increasing, $C_{j}=\pi_{\boldsymbol{t}_{j}}^{-1}\left(G_{j}\right)$ with G_{j} open in $\mathbb{R}^{\left|\boldsymbol{t}_{j}\right|}$ and $\mu_{0}^{\pi_{t_{j}}}\left(\partial G_{j}\right)=0$; according to (1.2) there exists a monotone decreasing sequence $\left(C_{j}^{\prime} \in \mathscr{C}_{0}\right)_{j \in \mathbb{N}}, C_{j}^{\prime}=\pi_{\mathbf{t}_{j}^{\prime}}^{-1}\left(G_{j}^{\prime}\right)$ with G_{j}^{\prime} open in $\mathbb{R}^{\left|\mathbf{t}_{j}^{\prime}\right|}$ and $\mu_{0}^{\pi_{t_{j}}}\left(\partial G_{j}^{\prime}\right)=0$ such that for all $j \in \mathbb{N} C_{j} \subset C_{j}^{\prime}$ and $\lim _{j \rightarrow \infty} \mu_{0}\left(C_{j}^{\prime} \backslash C_{j}\right)=0$. But this implies that

$$
\mu_{0}\left(\partial\left(\bigcup_{j \in \mathbb{N}} C_{j}\right)\right) \leqq \lim _{j \rightarrow \infty} \mu_{0}\left(C_{j}^{\prime c} \backslash C_{j}\right)=\lim _{j \rightarrow \infty} \mu_{0}\left(C_{j}^{\prime} \backslash C_{j}\right)=0
$$

where C_{j}^{c} denotes the closure of C_{j}^{\prime} and where the equality of the last two terms is due to the fact that $\mu_{0}\left(\partial C_{j}^{\prime}\right) \leqq \mu_{0}^{\pi_{t_{j}^{\prime}}}\left(\partial G_{j}^{\prime}\right)=0$.

Acknowledgement. The authors are very grateful to Professor Lucien Le Cam for his constructive remarks on an earlier version of the manuscript.

References

1. Gänssler, P.: Some remarks on convergence of stochastic processes. Trans. Sixth Prague Conference 199-206 (1973)
