Z. Wahrscheinlichkeitstheorie verw. Gebiete 36, 9-12 (1976)

Zeitschrift für Wahrscheinlichkeitstheorie und verwandte Gebiete © by Springer-Verlag 1976

Additional Remarks on Convergence of Stochastic Processes

P. Gänssler and S. Kaiser

Mathematisches Institut der Ruhr-Universität, D-4630 Bochum Federal Republic of Germany

1. The Additional Remarks

Using the same notations as in [1] let $X \subset \mathbb{R}^T (T \subset \mathbb{R})$ be endowed with the topology \mathscr{G} induced on X by the product topology of \mathbb{R}^T . Let $\mu_n, n \in \mathbb{N}$, be a sequence of p-measures on the Borel σ -field \mathscr{B} in (X, \mathscr{G}) (which are assumed to be \mathscr{K} -regular in the sense of [1]). Starting with the assumption that the finite dimensional marginal distributions μ_n^{π} (pertaining to $\pi = \pi_t \colon X \to \mathbb{R}^{\lfloor t \rfloor}$ for $\mathbf{t} = \{t_1, t_2, \ldots, t_n\}$ with $t_i \in T$) converge (weakly) to a p-measure μ_0^{π} as $n \to \infty$ (for every π), where the μ_0^{π} 's are finite dimensional marginal distributions of some p-measure μ_0 on \mathscr{B} (being uniquely determined by the μ_0^{π} 's) it was proved in Theorem 2.8 of [1] that the following condition (1.1) imposed on the class \mathscr{C}_0 of all open cylindersets $C = \pi_t^{-1}(G)$, G being an open subset of $\mathbb{R}^{\lfloor t \rfloor}$ with $\mu_0^{\pi}(\partial G) = 0$ (cf. (2.10) in [1]), implies $\lim_{n \to \infty} \mu_n(A) = \mu_0(A)$ for all $A \in \mathscr{B}$:

(1.1) For every monotone increasing sequence $(C_j)_{j \in \mathbb{N}}$ with $C_j = \pi_{\mathbf{t}_j}^{-1}(G_j) \in \mathscr{C}_0$ there exists a monotone decreasing sequence $(C'_j)_{j \in \mathbb{N}}$ with $C'_j = \pi_{\mathbf{t}_j}^{-1}(G'_j) \in \mathscr{C}_0$ such that $C_j \subset C'_j$ for all $j \in \mathbb{N}$ and $\lim_{j \to \infty} \sup_{n \in \mathbb{N}} \mu_n^{\pi_{\mathbf{s}_j}}(A'_j \setminus A_j) = 0$, where $\mathbf{s}_j = \mathbf{t}_j \cup \mathbf{t}'_j$ and $A'_j = \pi_{\mathbf{s}_j, \mathbf{t}_j}^{-1}(G'_j)$.

But in view of the assertion that (1.1) implies $\lim_{n\to\infty} \mu_n(A) = \mu_0(A)$ for all $A \in \mathscr{B}$ it follows that the limit measure μ_0 must necessarily satisfy the following condition (1.2):

(1.2) For every monotone increasing sequence $(C_j)_{j\in\mathbb{N}}$ with $C_j = \pi_{t_j}^{-1}(G_j) \in \mathscr{C}_0$ there exists a monotone decreasing sequence $(C'_j)_{j\in\mathbb{N}}$ with $C'_j = \pi_{t'_j}^{-1}(G'_j) \in \mathscr{C}_0$ such that $C_j \subset C'_j$ for all $j \in \mathbb{N}$ and

$$\lim_{j \to \infty} \mu_0(C'_j \smallsetminus C_j) = \mu_0(\bigcap_{j \in \mathbb{N}} C'_j \smallsetminus \bigcup_{j \in \mathbb{N}} C_j) = 0.$$

We want to show now that (1.2) and therefore also (1.1) cannot be fulfilled in nearly all cases of interest.

(1.1) **Theorem.** If we assume that in the above cited context the space $X \subset \mathbb{R}^T$ with $T \subset \mathbb{R}$ fulfills one of the following conditions

(i) $X = Y^T$ with $Y \subset \mathbb{R}$, $|Y| \ge 2$ and $|T| \ge \aleph_0$, or

(ii) $|T| \ge \aleph_0$, and for any $t_1 < t_2 < \cdots < t_m$, $t_i \in T$, and any $(a_1, \dots, a_m) \in \mathbb{R}^m$ there exists $x \in X$ such that $x(t_i) = a_i$, $i = 1, \dots, m$, then (1.2) (and hence (2.10) in [1]) is not fulfilled.

Proof. (a) For any $y \in X$ and $S \subset T$ let us consider in X the set $Z_y^S = \{x \in X : x(s) = y(s) \text{ for all } s \in S\}$; then

(+) $Z_y^S \cap Z_{y'}^S = \emptyset \approx \operatorname{rest}_S y \neq \operatorname{rest}_S y'$ (where $\operatorname{rest}_S y$ denotes the restriction of y: $T \to \mathbb{R}$ on S).

(b) According to (i) or (ii) it follows in both cases that at least for $S \subset T$ with $|S| \ge \aleph_0$ the set $\{Z_y^s: y \in X\}$ contains infinitely many pairwise disjoint elements Z_y^s which implies

(++) For any $S \subset T$ with $|S| \ge \aleph_0$ and for any $\varepsilon > 0$ there exists $y \in X$ such that $\mu_0(Z_v^S) < \varepsilon$.

(c) Now we claim that the following assertion holds true: For any monotone strictly increasing sequence $(t_n \in T)_{n \in \mathbb{N}}$ there exists a monotone strictly increasing sequence $(n_k \in \mathbb{N})_{k \in \mathbb{N}}$ and a sequence $(y^k \in X)_{k \in \mathbb{N}}$ such that for any $k \in \mathbb{N}$ we have

(+++) $\mu_0(Z_{y^k}^{t^*_k}) < 2^{-(k+1)}$, where $\mathbf{t}_k^* = \{t_{n_k+1}, \dots, t_{n_{k+1}}\}, k \in \mathbb{N}$.

To prove (+++) let

 $T_0 = \{t_n : n \in \mathbb{N}\}$ (where by assumption $t_1 < t_2 < \cdots < t_n < \dots, t_i \in T$)

and choose $n_1 = 1$. Then by (++) exists $y^1 \in X$ such that $\mu_0(Z_{y_1}^{\{t \in T_0: t > t_1\}}) < 2^{-(1+1)}$ and therefore there exists $n_2 \in \mathbb{N}, n_2 > n_1$, with $\mu_0(Z_{y_1}^{\{t_{n_1+1}, \dots, t_{n_2}\}}) < 2^{-(1+1)}$, i.e. (+++)holds for k = 1. Now, assume that for $k \ge 2$ there are already constructed $n_1, \dots, n_k \in \mathbb{N}$, and $y^1, \dots, y^{k-1} \in X$ for which (+++) holds true; then in the same way as before (++) implies that there exists $y^k \in X$ such that

 $\mu_0(Z_{v^k}^{\{t \in T_0: t > t_{n_k}\}}) < 2^{-(k+1)}$

and again we obtain $n_{k+1} \in \mathbb{N}$, $n_{k+1} > n_k$, such that (+++) holds for k. This proves (+++).

(d) Now we fix $T_0 = \{t_n \in T : t_1 < t_2 < \dots < t_n < \dots\}$, $(n_k \in \mathbb{N})_{k \in \mathbb{N}}$ and $(y^k \in X)_{k \in \mathbb{N}}$ with the properties proved under (c). Then, considering again $\mathbf{t}_k^* = \{t_{n_k+1}, \dots, t_{n_{k+1}}\}$, we obtain $\mu_0^{\pi \mathbf{t}_k^*}(\{y^k(t_{n_k+1}), \dots, y^k(t_{n_{k+1}})\}) < 2^{-(k+1)}$. Since $\mu_0^{\pi \mathbf{t}_k^*}$ is a regular measure on the Borel sets in \mathbb{R}^{d_k} (with $d_k = n_{k+1} - n_k$) and since the class of all open sets G in \mathbb{R}^{d_k} with $\mu_0^{\pi \mathbf{t}_k^*}(\partial G) = 0$ form a base, it follows that there exists an open set G_k^* in \mathbb{R}^{d_k} with

 $(y^{k}(t_{n_{k}+1}), \ldots, y^{k}(t_{n_{k}+1})) \in G_{k}^{*}, \quad \mu_{0}^{\pi t_{k}^{*}}(\partial G_{k}^{*}) = 0 \quad \text{and} \quad \mu_{0}^{\pi t_{k}^{*}}(G_{k}^{*}) < 2^{-(k+1)}, \quad k \in \mathbb{N}.$

Now, if we put $\mathbf{t}_j = \{t_1, t_2, \dots, t_{n_{j+1}}\}$, then for $k \leq j G_{jk} = \pi_{\mathbf{t}_j, \mathbf{t}_k}^{-1}(G_k^*)$ is an open subset of $\mathbb{R}^{n_{j+1}}$ with $\mu_0^{\pi \mathbf{t}_j}(\partial G_{jk}) = 0$ and $\mu_0^{\pi \mathbf{t}_j}(G_{jk}) < 2^{-(k+1)}$. Hence $G_j = \bigcup_{k \leq j} G_{jk}$ is an open

Convergence of Stochastic Processes

subset of $\mathbb{R}^{n_{j+1}}$ with $\mu_0^{\pi_{t_j}}(\partial G_j) = 0$, and therefore $C_j = \pi_{t_j}^{-1}(G_j), j \in \mathbb{N}$, is a monotone increasing sequence of sets belonging to \mathscr{C}_0 as it occurs in (1.2).

(e) Assume that there exists a cylinderset $C \neq X$ with $\bigcup_{j \in \mathbb{N}} C_j \subset C$. Then $C = \{x \in X : (x(s_1), ..., x(s_r)) \in B\}$ for some $s_1 < s_2 < \cdots < s_r$, $s_i \in T$, $r \in \mathbb{N}$, and some Borel subset B of \mathbb{R}^r , where $\mathbb{R}^r \setminus B \neq \emptyset$ (resp. $Y^r \setminus B \neq \emptyset$ in case (i)) since $C \neq X$. According to the choices of T_0 , $(n_k \in \mathbb{N})_{k \in \mathbb{N}}$, and $(y^k \in X)_{k \in \mathbb{N}}$ (see (d)) there exists $p \in \mathbb{N}$ such that $\{s_1, \ldots, s_r\} \cap \{t_n \in T : n > p\} = \emptyset$ and we may define for some $(a_1, \ldots, a_r) \in Y^r \setminus B$ in case (i)) and for $j \in \mathbb{N}$ so large that $n_i > p$

$$Z = \{x \in X : (x(s_1), \dots, x(s_r), x(t_{n_j+1}), \dots, x(t_{n_{j+1}})) \\ = (a_1, \dots, a_r, y^j(t_{n_j+1}), \dots, y^j(t_{n_{j+1}}))\}$$

to obtain a cylinderset Z in X with $Z \neq \emptyset$ according to (i) or (ii) and $Z \subset C_j \subset C, j \in \mathbb{N}$, whereas $Z \cap C = \emptyset$. Hence C = X is the only cylinderset containing $\bigcup C_j$.

(f) The assertion of the theorem follows now immediately from (d) and (e), because

$$\mu_0(\bigcup_{j\in\mathbb{N}}C_j) = \lim_{i\to\infty}\mu_0(\bigcup_{j\leq i}C_j) = \lim_{i\to\infty}\mu_0(\pi_{t_i}^{-1}(\bigcup_{j\leq i}G_{ij}))$$
$$\leq \lim_{i\to\infty}\sum_{j\leq i}\mu_0^{\pi_{t_i}}(G_{ij}) < \sum_{j=1}^{\infty}2^{-(j+1)} = \frac{1}{2}.$$

As to the case where one allows T to be at most countable one obtains the following theorem due to Le Cam:

(1.2) **Theorem.** Let T be at most countable, consider $X = (X, \mathcal{G}) \subset \mathbb{R}^T$ and suppose that the following condition

(iii) $\{x\} \notin \mathscr{G}$ for all $x \in X$

holds true. Then (1.2) (and hence (2.10) in [1]) is not fulfilled.

Proof. We remark first that either one of the two conditions (i) or (ii) of Theorem 1.1 implies (iii). Now, in the present case \mathbb{R}^T and therefore $X = (X, \mathscr{G})$ become separable metrizable spaces. Furthermore, since \mathscr{C}_0 forms a base of \mathscr{G} , it follows that for any $G \in \mathscr{G}$ there exist $C_n \in \mathscr{C}_0$, $n \in \mathbb{N}$, which may be assumed without loss of generality to be monotone increasing, such that $G = \bigcup_{n \in \mathbb{N}} C_n$. Therefore according to Lemma 2.2 (1.2) would imply that $\mu_0(\partial G) = 0$ for all $G \in \mathscr{G}$, which is in contradiction with Lemma 2.1; this proves the theorem.

2. Auxiliary Lemmata

(2.1) **Lemma.** Let $X = (X, \mathcal{G}(X))$ be an arbitrary separable metrizable space and suppose that the one point sets of X are not open. Then for any probability measure μ defined on the Borel σ -field $\mathscr{B}(X)$ in X there exists a $G \in \mathscr{G}(X)$ with $\mu(\partial G) > 0$.

Proof. Assume that $\mu(\partial G) = 0$ for all $G \in \mathscr{G}(X)$; since the one point sets of X are not open, we have $\partial(X \setminus \{x\}) = \{x\}$ and therefore $\mu(\{x\}) = 0$ for all $x \in X$.

Let $\{x_j: j \in \mathbb{N}\}$ be a countable dense subset of X. Since μ is regular there exist $G_j \in \mathscr{G}(X)$ such that $x_j \in G_j$ and $\mu(G_j) < 2^{-(j+1)}$ for every $j \in \mathbb{N}$. Then it follows with $G = \bigcup_{j \in \mathbb{N}} G_j$ that $G \in \mathscr{G}(X)$ with $\partial G = X \setminus G$ and $\mu(\partial G) \ge 1 - \sum_{j \in \mathbb{N}} 2^{-(j+1)} > 0$.

(2.2) **Lemma.** Condition (1.2) implies that for any monotone increasing sequence $(C_j \in \mathscr{C}_0)_{j \in \mathbb{N}}$ occuring there one has $\mu_0(\partial (\bigcup_{i \in \mathbb{N}} C_j)) = 0$.

Proof. Let $(C_j \in \mathscr{C}_0)_{j \in \mathbb{N}}$ be monotone increasing, $C_j = \pi_{t_j}^{-1}(G_j)$ with G_j open in $\mathbb{R}^{|t_j|}$ and $\mu_0^{\pi_{t_j}}(\partial G_j) = 0$; according to (1.2) there exists a monotone decreasing sequence $(C_j \in \mathscr{C}_0)_{j \in \mathbb{N}}, C_j = \pi_{t_j}^{-1}(G_j')$ with G_j' open in $\mathbb{R}^{|t_j|}$ and $\mu_0^{\pi_{t_j}}(\partial G_j') = 0$ such that for all $j \in \mathbb{N}$ $C_j \subset C_j'$ and $\lim_{j \to \infty} \mu_0(C_j' \smallsetminus C_j) = 0$. But this implies that

$$\mu_0(\partial(\bigcup_{j\in\mathbb{N}}C_j)) \leq \lim_{j\to\infty}\mu_0(C_j^{\prime c} \smallsetminus C_j) = \lim_{j\to\infty}\mu_0(C_j^{\prime} \smallsetminus C_j) = 0,$$

where $C_j^{\prime c}$ denotes the closure of C_j^{\prime} and where the equality of the last two terms is due to the fact that $\mu_0(\partial C_j^{\prime}) \leq \mu_0^{\pi_t j}(\partial G_j^{\prime}) = 0$.

Acknowledgement. The authors are very grateful to Professor Lucien Le Cam for his constructive remarks on an earlier version of the manuscript.

References

1. Gänssler, P.: Some remarks on convergence of stochastic processes. Trans. Sixth Prague Conference 199-206 (1973)

Received January 15, 1974; in revised form December 20, 1974