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1. Introduction 
I 

During the last few years a number  of authors have developed a theory of point 
processes on the positive real line based on the modern theory of martingales 
and stochastic integrals. The development seems to have started with the thesis 
of Br6maud (1972), and it was continued with the papers of Boel, Varaiya and 
Wong (1975a, b), Br6maud (1974), Dolivo (1974), Segall and Kailath (1975a, b), 
Varaiya (1975) and possibly others of whom the author may not be aware. Jacod 
(1973, 1975) has taken a somewhat different approach and his work is an 
important  supplement to that of the above mentioned authors. 

The point of view taken in this theory concentrates on the counting aspect of 
the point process. One defines the counting process as the process counting the 
events along the time axis. 

The present author is concerned with statistical applications of this counting 
process theory. In my Ph.D. dissertation (Aalen, 1975) I have studied one 
possible model for such applications which contains certain Markov process 
models as special cases. The bulk of that theory will be published elsewhere. The 
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present paper contains an asymptotic result which is basic for that theory and 
which also may have an independent interest. 

We will proceed to give a short description of a part of the counting process 
theory. For a fuller account one should consult one of the papers mentioned 
above. 

Let f2 be an abstract space. A multivariate stochastic process {N(t)= 
(Nl(t) . . . .  ,N~(t)); t~[0, 1]} defined on f2 is called a (multivariate) counting 
process when the sample paths N(t, co)'=(Nl(t, co) . . . .  , Nk(t , co)) have the following 
properties for each coEf2: 

(i) N;(t, c0); i=  1, . . . ,k; are right-continuous increasing step functions. Each 
has a finite number of jumps with each jump positive and equal to 1. Also, for 
each i, we have Ni(0,e))=0. 

(ii) The functions N~(t, co) and ~( t ,  co) never jump at the same time when i+j .  

Let dtt be the a-algebra on f2 generated by {N(s), s<t} .  According to 
Corollary 2.5 of Boel et al. (1975a) the family {Xt, tel0,  1]} is right-continuous, 
i.e. 0 JV~+h=JVt for every t. Clearly, the family is also increasing. Put JV=.y~ 1. 

h>O 

Let {~t, t~[0,1]} be another right-continuous increasing family of a- 
algebras such that Y t t c ~ t  for each t. Put ~-=~-1. Throughout the paper all 
processes will be studied relative the a-algebras -~t. Let P denote a probability 
measure on ((2, ~ ) .  

We call (see e.g. Meyer 1966, D33) a nonnegative random variable T a 
stopping time if the event {T<=t} belongs to ~t  for every re[0, 1]. 

Following Boel et al. (1975a) we give the following formal definition of the 
jump times T, of N: 

To-O,  T,+ z = i n f { t l t >  T~,N( t )*N(T~)} .  

T, is for all n a stopping time relative to {~/~} and hence also relative to {~} 
(ibid., Corollary 2.2). 

We will assume throughout the paper that N satisfies the following basic 
property (ibid., Section III): 

(1.1) Assumption. The jump times T, are totally inaccessible relative to {~}, i.e. 
for each n and any sequence $1, $2, . . .  of  stopping times 

P {lim S k = T, and S k < T n for all k} = O. 
k 

See Meyer (1966, Section VII.5) for a discussion of this concept and its 
meaning. We also assume: 

(1.2) Assumption. EN~(1) < oc i =  1,.. . ,  k. 

We say that a process X(t)  defined on g2 is adapted to {~} if X(t)  is 
measurable with respect to ~ for all tel0,  1]. We need the following definitions 
and concepts (see Kunita and Watanabe (1967), Meyer (1967, 1971)). 

(1.3) Definition. Let M be a real-valued process defined on [0, 1] and adapted 
to {.~}. Assume that M has sample functions that are right-continuous and have 
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left-hand limits. M is called a square integrable martingale if sup E(M(t)2)< oo 
t 

and E(M(t) I ~ ) = M ( s )  whenever s<  t. The space of these processes is denoted 
by j f2 .  

Let M~, M 2 be two elements of jg2 and let (M 1 , M2) be the process defined 
in Theorem 1.1 of Kunita and Watanabe (1967). If M ~ / d  2, then ( M , M )  is the 
quadratic variation process of M as defined by Meyer (1966). Kunita and 
Watanabe defined M I and M 2 as being orthogonal if (3//1, M2)=0 .  This is 
equivalent to M 1 M 2 being a martingale with respect to {2t}, which is just 
Meyer's definition of orthogonality. 

The following result is basic in the counting process theory: 

(1.4) Theorem. There exists an increasing, continuous, k-variate process A(t) 
= ( A l ( t ) ,  . . .  , Ak(t)) adapted to {~t} and with A(0)=0, such that 

(i) Mi=N~-A~6J# 2 i = l , . . . , k ,  

(ii) (M~, M~) = A~ i = 1,..., k, 

(iii) ( M  i, Mj)  =0  whenever i+j.  

A version of this theorem formulated by means of local martingales is given 
by Proposition 3.2 and Lemma 3.1 of Boel et al. (1975a). Our Assumption 1.2 
allows us to make the stronger statement using square integrable martingales 
(cfr. Theorem 2.4.7 of Dolivo (1974)). 

Throughout this paper we will assume: 

(1.5) Assumption. Each sample function of the process A i is absolutely continuous 
with respect to Lebesgue measure on [0, lJ. 

From this assumption it follows that there exists a process A(t)= 
(Al(t), ...,Ak(t)) which is predictable (see e.g. Meyer, 1971) with respect to {~} 

and satisfies A~(t)=~ A~(s)ds, i= 1 . . . .  ,k. A is called the intensity process of N 
o 

with respect to {~}. Results on the existence of counting processes with a given 
intensity process can be found in the references mentioned above, see in 
particular Boel et al. (1975b, Theorem3.3 and Prop. 3.4) and Jacod (1975). 

The object of the present paper is to study weak convergence of stochastic 
integrals with respect to the martingales M~ of Theorem 1.4. Such integrals have 
been studied mainly by Meyer and Dol6ans-Dad6, see Meyer (1967, 1971) and 
Dol6ans-Dad6 and Meyer (1970). As shown in Aalen (1975) such integrals play 
an important role in certain parts of the inference theory for counting processes. 
An example is given in Section 3 of the present paper. 

Let {H(t), tel0, 1]} be a predictable process. Let M ~ . ~  2. L2(M) is defined as 
the class of all predictable processes H satisfying 
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The stochastic integral of an element H of LZ(M) with respect to M on the 
interval [0, t] is defined e.g. in Meyer (1971). We denote it by 

t 

H(s) dM(s). 
0 

The corresponding stochastic process that arises by letting t run through [0, 1] 
is denoted b y  ~HdM. We summarize the properties of this process (see e.g. 
Dol6ans-Dad6 and Meyer (1970)): 

(1.6) ~HdMEMr 2. 

(1.7) ( ~ H d M , ~ H d M ) = ~ H 2 d ( M , M )  

(1.8) Let K~J~  2, G~L2(K). Then (~HdM, l GdK)=~HGd(M,K) .  

Integrals with respect to processes which are not elements of ~ 2  are always 
supposed to be Lebesgue-Stieltjes integrals. 

Let M1, ..., M k be the martingales of Theorem 1.4 and define H = ( H  1 .... , Hk) 
where H i is an element of L2(MI) for i=l, . . . ,k.  (1.6)-(1.8) implies: 

(1.9) ~HidMi~Jg z i=1,  ...,k, 

(1.10) (~HidM~,~H~dMi)=~H2Aidt i=l, . . . ,k ,  

(1.11) (~HidMi,SH, dMj)=O whenever i~:j. 

We will consider only certain sub classes of the families La(M) i= 1,..., k. 
First we will make a requirement which guarantees that the stochastic integrals 

i Hi(s)dMi(s), i = l , . . . , k ,  coincide with the corresponding Lebesgue-Stieltjes 
o 
integrals. By Proposition 3 of Dol6ans-Dad6 and Meyer (1970) and Section 2 of 
Jacod (1975) this will be the case if the following requirement holds: 

1 

Requirement A. E ~ IH,(s)l dN(s) < co. i=  1, . . . ,  k. 
0 

As a preparation for the asymptotic results of the next section we will also 
make another, rather technical, requirement. It is needed in order to make our 
proofs work, but it is probably not really necessary for the weak convergence 
result to hold. Nevertheless, it is quite easily verified in most of the cases of 
application which the author has in mind. Put 

k k 

f/(t) = ~ N~(t), /l(t) = ~ Ai(t ). 
i = 1  i = 1  

Requirement B. There exists a non-decreasing process {4)(t), t~[0, 1]} defined on 
(~,.~) such that E 4)(1)< oo and the following holds: 

(i) I H~ (t) A i(t) - H 2 (s) A~(s)l <= q~ (t) - �9 (s) for 0 ~ s < t < 1 and i --- 1 . . . .  , k, 
(ii) H~(t)A~(t)<~(1) for 0<t_<l  and i=1  . . . . .  k, 

(iii) E[~(1)57(1)] < ~ ,  
1 
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In accordance with well known invariance principles for martingales it is 
reasonable to believe that under certain conditions the processes f Hi dMi, 
i=  1 . . . . .  k, will converge weakly to independent normal processes, each with 
independent increments. In the next section we will give a precise statement of 
such a result. 

2. Main Result 

Let (N,, A,), n =  1,2 . . . . .  be a sequence of processes of the kind defined in the 
previous section. Write N , = ( N  1 . . . . . .  ,Nk.,) and similarly for A,. Assumptions 
1.1, 1.2 and 1.5 shall hold for each n. Let M , = ( M I  n,.. . ,Mk.,) be defined for 
each n as in Theorem 1.4. Let H,=(H, .n , . . . ,Hk . , )  be a sequence of processes 
such that for each n Hi, . is a member of U(Mi,,), i=1,  . . . ,k,  satisfying 
Requirements A and B. Of course, the process �9 is allowed to vary with n. 

Let D be the space of real functions on [0, 1] which are right-continuous and 
have left hand limits. The members of j//2 are random elements of D. Let D be 
equipped with the Skorohod topology (Billingsley (1968), Chapter 3). Let D m be 
the Cartesian product of D with itself m times, and let D m be equipped with the 
corresponding product topology. When we talk about weak convergence of 
stochastic processes, we will always mean weak convergence of random elements 
of D m with respect to this product topology. We denote weak convergence by ~ .  
See Billingsley (1968) for the general theory of weak convergence. 

Let W be the Wiener process. Using the notation of Section 1, we see that 
(W, W) ( t )= t ,  hence geL2(W)  if geL2(0, 1), and so in that case S g d W i s  well- 
defined as a stochastic integral. It is a normal process with independent 
increments. 

k k 

We put N ,=  ~ Ni, . and / l , =  ~ Ai.,, and let --~P denote convergence in 
i = l  i = l  

probability. We also write for each n: 

Yi. ,(t)=iHi, ,(s)dMi,,(s) i=1  . . . .  ,k, 
0 

Y. = (YI  . . . . . .  , Yk..). 

Theorem 2.1. Make the following assumptions: 

(a) There exist nonnegative functions glair(O, 1), i= 1 ....  ,k, such that 

SI#,.(s)&n(s)ds g}(s)ds for O<_t l and i=1 .... ,k. 
0 0 

(b) Let S! m) m = 1, 2, N,n(1), be the successive jump times of the process N i ~. 

We assume: 

=~'~Ik (.( N i ' " = } 
E ,,(Si.,,)l>e)] --*0 for every e>0 .  i ~"  E 2 (m) (m) ,- 1 [Hi'"(Sf") I([Hf 
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t 

Let W1,..., W k be independent Wiener processes and put Yi(t)= ~ gi(s)dWi(s ) and Y 
0 

= ( ] 1 1 ,  " " ,  Yk)" 2hen 

Y . ~ u  

Remark. We have 

< ri.., ~.> =S HL Ai ~ 

Hence condition (a) serves to stabilize the quadratic variation process of Y~,,. It 
is reasonable that such a stabilization is needed since Y~ has a deterministic 
quadratic variation process. 

Condition (b) is a sort of Lindeberg condition. It guarantees that the jumps 
(or discontinuities) of the processes disappear in the limit. Note that this 
condition implies that the H-processes become small. This means that the 
process A, grows large when n increases, and hence that the number of jumps in 
N,  grows large. This is obviously required in order to get a normal process in 
the limit. 

Theorem 2.1 is a revised version of Theorem 4.1 of Aalen (1975). 

3. An Example 

In this section we will apply Theorem 2.1 to a simple Markov chain example. 
We will start by defining a special bivariate counting process and then explain 
the connection with a Markov chain. 

Let nt and n 2 be given nonnegative integers and let e~(t) and e2(t) defined on 
[0, 1] be nonnegative left-continuous and uniformly bounded functions with 
right-hand limits. Also, assume that ct 1 and ~2 are of bounded variation. Let N 
=(N~,Nz) be a bivariate counting process and let {~} be the a-algebras 
generated by N. We want N to have an intensity process A=(A1,A2) of the 
following form: 

Ai(t)=oti(t)Fi(t ) i=1 ,2  

where 

r~(t)=n~ -N~(t-)+N~(t-), F2(t)=n2 + Nl ( t - ) -  N2(t-  ). 

Jacod (1975, Theorem 3.6) shows that there exists a unique measure P on 
giving N the intensity process A in the local martingale sense of Jacod's paper. 
That  our Assumption 1.1 is fulfilled follows from Theorem 2.4.7 of Dolivo 
(1974). Our Assumption 1.2 follows from the fact that A 1 and A z are bounded by 
constants and hence N 1 and N 2 are dominated by Poisson processes. 
Theorem 2.4.8 of Dolivo (1974) then proves that A is an intensity process in the 
sense of Theorem 1.4 and Assumption 1.5 of the present paper. 

The counting process N can be thought of as arising from a Markov chain in 
the following way: Assume that we have a Markov process on the state space 
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{1,2}. The infinitesimal transition probabilities (or forces of transition) from 
state 1 to 2 and from 2 to 1 are el(t) and ~2(t) respectively. Assume that n 1 +n  2 
"particles" are moving around on the state space independently of each other, 
nl starting in state 1 and n 2 starting out in state 2. Then 74i and N 2 can be 
thought of as counting the transitions from state 1 to 2 and from 2 to 1 
respectively. Fl(t ) and Fz(t) denote the numbers of particles in state 1 and 2 
respectively at time t. 

This connection between the Markov chain and the counting process N can 
be treated rigorously but that will not be done here. Aalen (1975, Section 5 D) 
gives a more rigorous discussion. 

We will now pass to the stochastic integrals we have in mind. Define for 
i=1 ,2 :  

Ji(t) =- I (F~(t) > 0), 

H i ( t ) = J i ( t ) ~ t )  -1 , 

where we define 0- oe = 0. 
H 1 and H 2 are left-continuous processes with right-hand limits and bounded by 
the constant 1. Hence they are elements of La(M:), i=  1, 2, respectively, where M 1 
and M 2 are the martingales corresponding to N 1 and ~ (see Theorem 1.4). 
Hence the following stochastic integrals are well defined: 

t 

M*( t )=fHi ( s )dMi ( s  ) i=1 ,2 .  
0 

Requirement A is trivially fulfilled in this case by the boundedness of H 1 and 
H 2. Hence the integral can alternatively be taken as a Lebesgue-Stieltjes 
integral. 

The reason for being interested in the M* is the following: We can write 
(i = 1, 2): 

M* (t)= fli(t) - fii(t) 

where 
t 

Pi(t) = ~ Ji(s) ~i(s) ds, 
0 

~i(t) = i Hi(S) dNi(s). 
o 

From the martingale property of M* it follows that 

E fi,( T ) = E  fiI( T) 

for any stopping time T=< 1. Hence the process fii is an unbiased estimator of fi~. 
One can say that fl~ is an empirical cumulative force of transition. Such 
estimators are studied in a general framework in AMen (1975). They generalize 
the empirical cumulative hazard rate of Nelson (1969) and are related to the 
empirical survival function of Kaplan and Meier (1958). 
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We will show how the theorem of the previous section can be applied to the 
m~. 

We will first verify Requirement B. We have (i = 1, 2): 

H~ (t) Ai(t  ) : ~i(t) Ji(t) Fi(t)- 1. 

Remember that the ~ are supposed to be of bounded variation. Put 

c = sup ~(t) 
i , t  

and let r (t) be a nonnegative non-decreasing function satisfying 

I:~(t)- ~,(s)l < r  0(s) 

for 0 < s < t < l  and i=1,2.  
We define: 

~b (t) = c(N 1 (t) + N2 (t)) + (nl + n2) r (t). 

The processes H~ A i have jumps at the same times as N i + N 2. The size of 
these jumps are bounded by c. Apart from the jumps the variation in H{ A i is 
only due to the variation in ~i. Hence parts (i) and (ii) of Requirement B are 
fulfilled. Parts (iii) and (iv) are consequences of the boundedness of A and the 
implication that N i and N 2 are dominated by Poisson processes. 

Let W i and W 2 be independent Wiener processes. Let P/j(t) denote the 
probability of being in state j at time t for a particle starting out in state i at 
time 0. We can now prove the next proposition as a consequence of 
Theorem2.1. It should be remembered that the stochastic processes in the 
statement of the proposition and in its proof depend on n 1 and n 2 even though 
this is not shown in the notation. 

(3.1) Proposition. Assume that n 1 and n 2 increase to infinity in such a way that 

n 1 - -  ---). a 

n 2  

where a is a positive constant. Then the processes ]/~i(fii-fi i) ,  i= 1,2, converge 
weakly to the normal processes 

~ g~dW~ i=1 ,2  

where 

gl (t) 2 = "1 (t) (Pll (t) + a-1 P21 (t))-l, 

g2(t) 2 = ~2(t) (P22(t) + aPi 2(0)-1. 

Proof. Our situation is the same as that treated in Theorem 2.1 if one identifies 
HL~ with n~Hi and H~,~Ai, ~ with niH 2 At, which can alternatively be written 

n i a i  Hi. 
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Define K~ =ni-N,.(1 ), i=1,2 .  These variables have binomial (ni,pi) distri- 
butions where 

( i )  Pi = exp - ei(s) ds i = 1, 2. 

Define K i=  1 if K~ = 0 and K~ = K~ otherwise. We will use the random variables 
K 1 and K 2 to verify the assumptions of Theorem 2.1. For  each t the following 
holds: 

1 
- -  Fl(t) ~ P1 l(t) + a - 1  P21 (t), 
nl 

1 
- -  F2(t) ~ P22(t)+aP12(t). 
n2 

This implies: 

n i H 2 Ai(t  ) ~ g~(t) 2 i=  1, 2. 

The left hand side is bounded above by c nl/K i which converges in probability to 
cp[-*. Hence, Assumption (a) of Theorem2.1 follows from the general form of 
the Lebesgue convergence theorem given in Royden (1968, Sect. 4.4, Thin. 16). 

We also have to check Assumption (b) of Theorem2.1 with Hi, ~ in that 
expression substituted by n~i H i. This process is bounded above by n~/K i and 
hence it is enough to prove the following for every e>0 :  

E [ N * n ~ K i - 2 I ( n ~ K F ~ > e ) ]  --+0 i=  1,2, 

where N * = N ~ ( 1 ) + N 2 ( I  ). By H61der's inequality it is enough to prove: 

[N,,i3 /n  i ,6 
E 1 , - -  E [ ~ - I  P ( n ~ K [ I > 8 )  i = 1 , 2 .  

\ n  i / 

The first factor on the left hand side is bounded when n 1 and n 2 increases since 
N* is dominated by a Poisson random variable. The second factor can be shown 
to be bounded by a straightforward extension of Lemma 4.2, part (i) of Aalen 
0976). The third factor converges to 0. []  

4. Proof of the Main Result 

Theorem 2.1 will be proved by means of Theorem A.2 of the Appendix: 
Let {%} be an increasing sequence of nonnegative integers such that v n ~ oc. 

Define for all i and n: 

v~(t)=j if J - ~ l l < t < J ,  j = l , . . . , v , ,  
V n V n 

n, j . , 

v.(t) 

- -n , j~ �9 �9 
j= l  
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Using the terminology of the appendix, we see that CZ(~ i=  1, k, are k t - -n , JJ ,  """, 
orthogonal martingale difference arrays. By Theorem A.2 we then just have to 
verify that, for some sequence {v,}, conditions (i) and (ii) of Theorem A.1 hold 
for each array with f =  g~ for array number i. When we have verified this we can 
conclude 

U n ~ Y  

for this sequence {v.}. Now it follows from the definition of U.  that 

I U(~)(t) - Yi .(t)l <= sup Z(.i!j. 
J 

Hence, to get the conclusion of the theorem, we also have to verify: 

sup Z(,~!j ~ 0, i = 1, ..., k. 
J 

However, by part (a) of the proof of Corollary 3.8 in McLeish (1974), the last 
condition follows from what corresponds to condition (i) of Theorem A.1. 

We now fix i and suppress it from the notation in the rest of this section. We 
also suppress n from the notation. It should however be kept in mind that 
almost all quantities occurring below, including the process Z, depend on n, and 
that all limits are taken with respect to n. Ej is defined in the appendix. 

The existence of a sequence {v,} such that conditions (i) and (ii) of 
Theorem A.1 holds will now be proved in the form of two lemmas. 

Lemma 4.1. There" exists a sequence {v,} such that 

A= ~ Ej_IEZZX(IZjI>OI & 0 
j = l  

for every e > O. 

Proof Let T~* > ( j -  1)/v be the time of the first jump of the process N i after time 
(j~-1)/v. Put Tj=min(Tj*,j/v). From Section 1 we know that T~ is a stopping 
time. We have: 

Tj  j/v 

zj= HdM+  dU. 
(j-- 1)/v Tj  

Hence we can rewrite Zj as 

zj= vl,j+ v2,~+ v3,~ 
where 

Tj 

V l , j = -  ~ H A d s ,  
(j-  1)/v 

V24 = H(T) I(Tj <j/v), 
j /v 

V3,~= j" H d M .  
Tj 
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By Lemma 1 of the Appendix it is enough to prove: 

(i) There exists a sequence {v,} such that 

~ E~_ ~ l-V~Z I(I V~jJ > g)] v--~-* 0, i=1 ,2 ,3  
j=l 

for every e > 0. 
For i = 2  (i) is a consequence of Assumption (b). We will now prove (i) for 

i=  1. Clearly, it is enough to prove A 1 ~ 0 where 

A1 E~_ 1 1,," 
j=l 

Since A~ is nonnegative it follows from a version of Ceby~ev's inequality that it is 
enough to prove that EA 1 --+0. We have: 

EAI  ~ ~, E[( 5 H A ds) 2] 
j= 1 Dj 

where Dj=(( j -1) /v ,  j/v). H61der's inequality and Requirement B gives us: 

( ~ H A ds) 2 = ( ~ (HA �89 (A ~)ds) 2 
Dj Dj 

<__ n:Ad  Ad,<= 1 Ad . 
Dj Dj ~) Dj 

Hence 

EA 1 _ ~ E  ~ (5 H A d s )  2 < !  E {~(1) J'A ds). 
j=l Dj =V \ 0 / 

By part (iv) of Requirement B it follows that a sequence {v,} can be chosen so 
that EA ~ ~ O. 

Hence it remains to prove (i) for i=3. It is enough to prove that A 2 ~  0 
where 

/j/v \2 
A 2 = Z E j _ I  { ~ H d M ~ .  

\Tj / 

By (1.10) we have: 
j/v 

A 2 = Z E j _  1 ~ H2Ads  
Tj 

which further gives us: 

A 2 <=ZEj_ 1 [ I ( N ( D ) >  1) S H2A] 
Dj 

where N (D) = N (j/v) - N ((j -1)/v) .  



272 O.O. Aalen 

By Requirement B we have: 

A 2 <=~ Z Ej_  1 ( ~ ( 1 )  I(N(Dj) >= 1)]. 

Hence 

EA2 1 ZE[O(1) I(N(Dj)~ 1)] 
Y 

1 
= -  E [0(1) XI(N(Dj) >= 1)] 

V 

1 
< -  E[O(1) N(1)]. 

Y 

From part (iii) of Requirement B it follows that a sequence {vn} can be chosen 
so that EA 2 ~ 0, and hence A 2 ~ 0. [] 

We have checked condition (i) of Theorem A.1 and will now check condition 
(ii). 

Lemma 4.2. There exists a sequence {%} such that for each t~[0, 1] 

v(t) 

B(t)= Z Ej_ l(Z ) i g (s)as. 
j = l  0 

Proof. By (1.10) we have 

v(t) 
B(t)= Z E,-1 5 H2Ads 

j =  1 D 3 

v(t) v(t) 

= ~ 5 HZAds+ E ~ [Ej-I(H2A)-H2A] ds" 
j = l  Dj j=l  Dj 

We denote the two parts of the last expression as Bl(t ) and B2(t ) respectively. 
We have 

v(t)/v 

Bl(t)=iH2Ads+ ~ H2Ads. 
0 t 

Denote the two parts of this expression as B3(t ) and B4(t ) respectively. By (a) we 
have 

Ba(t) ~ ig2ds" 
0 

Let 6 > 0  be given. When n is large enough we have: 

t+~5 

B4(t)< ~ H2Ads. 
t 
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The right side converges in probability to 

Hence 

B4(O ~ 0. 

273 

tq-c~ 

g2 ds which goes to 0 when 6 ~ 0. 
t 

Hence we only need to show that B z ( t ) ~  0. We have: 

v(t) j =  1 Dj  

s 
"= Dj  

It is enough to show that EIB2(t)I--*0. By Requirement B we have: 

~(t) oj ~ E H2(s)A(s)-H2 (J~vl) A ( ~ )  E ]Bz(t)] =< 2j~ 1 

2 
< -  E (~ (1 ) -  ~(0)). 

Y 

Hence a sequence {v.} can be chosen so that E]Bz(t)[-+O. [] 

Appendix 

In this section We give a multivariate generalization of an invariance principle 
due to McLeish (1974, Corollary 3.8) and based on a central limit theorem due 
to Dvoretsky (1972, Theorem 2.2). 

Let {X~,i; i=  1, ..., v,,; n =  1,2, ...} be a triangular array of random variables 
defined on a probability space (f2, ~,  P). Let {~,i;  i=  1,..., v~; n = 1, 2 . . . .  } be a 
triangular array of sub-a-algebras of ~ such that X,,i is .~,i measurable and 
~ n , i _ l ~ n , i  . We will denote E(Ul~n,i)=En,iU. We call {X,,~; i=1  ... .  ,v.; n 
=1,2,  ...} a martingale difference array if En,i_ 1 Xn, i-=O almost surely for all n 
and i. 

Let %(0 be integer-valued, non-decreasing, right-continuous functions de- 
fined on [0, 1], and such that v,(0)=0 and v,(1)=v,. Define 

v,~(t) 
v. ( t )  = x . . .  

i = 1  

Let W be the Wiener process. The stochastic integral ~gdW is well defined 
l 

whenever ~ gZ(s)ds < o% i.e. whenever geL 2 (0, 1). 
0 

Let ~ denote convergence in probability. Let ~ denote weak convergence 
for random elements of D[O, 11 with respect to the Skorohod topology (see 
Billingsley (1968), Chapter lII). The following theorem is a consequence of 
Corollary 3.8 of McLeish (1974): 
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Theorem A.1. Make the following assumptions: 

Vn 

(i) ~ E,, i_ a S2,,i I(tX,,il >e)  & 0 for all e> O. 
i = 1  

(ii) There exists a nonnegative function f s L  2 (0, 1) such that 

v~(t) t 

E. , i - ,  X2i  ~ y f2(s)ds  
i = 1  0 

for all t~[0,  1]. 
Then 

U n ~ 5 f d W .  

We will now prove  a mul t ivar ia te  general izat ion of this theorem.  Let  ~X ~ �9 i t n , i '  

= 1 . . . .  , vn; n = 1, 2,. . .}, j = 1, 2, ..., k be k mar t ingale  difference arrays with re- 
spect to the a r ray  of a-a lgebras  {~,i}.  We assume 

E ~vo) g(O ~ _ a whenever  j 4: I. n, i - -1  ~ , ~ n ,  i z x n ,  i] - -  v 

In accordance  with the te rminology  of Section 1, we say that  the mar t ingale  
difference ar ray  s are orthogonal. 

Define 

v.(t) 

F, 
i = 1  

Let  W~ . . . .  , Wk be independent  Wiener  processes. 
In  the following theorem ~ denotes  weak convergence of r a n d o m  elements  

in the cartesian p roduc t  of  D [0, 1] with itself k times, equipped with the p roduc t  
topo logy  corresponding to the Skorohod  topology.  

Theorem A.2. Assume that each of the arrays ~X ~ j =  1, k, satisfy assump- ( n , i J ,  �9 "'~ 

tions (i) and (ii) of Theorem A.1. Denote the function f of assumption (ii) 
corresponding to ,(X (j~,~,~ by fj. Then 

U,  ~ (~f~dW~,.. . ,~fkdWO. 

We need the following simple l emma:  

L e m m a  A.1. Let cl, c 2 .... ,c k and x > x 2 ,  . . . ,x  k be real numbers and define 

k 

y ~  ~ C j X j .  
j=l 

Assume that 
k 

I jt <= 1. 
j= l  
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Then for any e > 0 

k 

y2 I(lyl >~)-< ~ x~ I(t~sl >~). 
j = l  

Proof  Clearly: 

k 

]yJ < ~ ]c~f Ix2] < max Ix2]. 
j = l  l<j<_k 

y2 I(]yt >z) is non-decreasing in lY]. Hence: 

k 

y21 (]Y] > 8) ~ max ]xj 21 (max Ix2[ > e) < Y, x~ I (Ix21 > e). 
J J j = l  

[] 

Proof  of  Theorem A.2. By Theorem A. 1 

v~2~. I~dWj j=l,...,k. 

Since D[0, 1] is separable and complete in the Skorohod topology (Billingsley 
(1968), Section 14), each sequence {U~ j)} is tight by Prohorovs theorem (ibid., 
Theorem 6.2). It is easily seen that this implies the tightness of {U,}. Hence we 
only have to show convergence of finite-dimensional distributions. We use the 
Cram6r-Wold method (Billingsley (1968), Theorem 7.7). 

Let c 1 (t), ..., ck(t ) be integrable functions satisfying 

k 

Ic2(t)l < 1. 
j = l  

Define 
t 

v.(t)= ~ j" cj(s)dF,?(s) 
j = l  0 

where the integrals are Stieltjes integrals. We can write 

v.(t) 

V.(t)= ~ Y,,,,i 
i=1 

where {Y.,i} is the martingale difference array defined by 

k 

r..i = Z cj(~; 1(0) x~  
j = l  

where 

v 2 1(0 =inf{t:  v,(t)> i}. 
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By Lemma A.1, {Y, . i }  satisfies assumption (i) of Theorem A.1. Hence we must 
check assumption (ii) of Theorem A.1. By the assumed orthogonality we have 

v~(t) vn(t) [~_lCJ ~ ) ] 2  
, _ ( i ) )  X 

i=1 i=1 j -  
v~(t) k 

= E E 
i=1 j = l  

v,~(t) 
Put Z~)(t)= ~ E �9 (x(J))  2 Then the above expression assumes the form ~I,1-- l \  n, ll 

i=1 

t 

j = l O  

The assumption on the c-functions implies ~ c~ (t)< 1. By the assumption of the 
theorem 

i d,. 
0 

Hence 

E E n . i -  1 n,~ 
i=1 j = l  0 

To apply the Cram6r-Wold theorem, we can let c j ,  j = 1 . . . .  , k,  be step functions. 
Hence the appropriate finite-dimensional convergence follows. [] 
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Note Added in Proof. In the first part of the proof of Proposition 3.1 we apply the general form of the 
Lebesgue convergence theorem (denoted GL) given in Royden (1968, Sect. 4.4, Thin: 16). Professor 
S. Johansen has pointed out that this theorem can not be applied directly in our situation. We have 
to introduce the following argument: 

Put X~(t)=]n~H~(t)A~(t)-g~(t)l. In order to verify Assumption (a) of Theorem 2.1 it suffices to 
prove for i= 1, 2: 

} EX~(t) dt-~ 0 
0 

By the strong law of large numbers Xg(t)~ 0 a.s. for each t. We also have Xi(t)< c nl/K ~+ c pi ~ for 
all t. The right hand side converges almost surely to 2cp71 and its expectation converges to the same 
quantity (see e.g. Lemma 4.2 of AMen (1976)). By an application of GL we can conclude EXi(t)~-~ 0 
for all t. Furthermore EX~(t)<cE(n]K~)+cp71 which is bounded. Hence an application of the domi- 
nated convergence theorem gives us the conclusion. 


