
Z. Wahrscheinlichkeitstheorie verw. Geb. 25, 109 - 122 (1973) 
�9 by Springer-Verlag 1973 

Composition Limit Theorems 
for Multidimensional Probability Generating Functions* 

N. L. Kaplan 

1. Introduction and Statement of Results 

Let f (s )=(f l (s) ,  f2(s), ..., fP(s)) be a given vector of p-dimensional proba- 
bility generating functions (p.g.f. vector). Set J~l(s) equal to the composition of 
f(s) with itself n times. It is a well-known result, [4, p. 42], that under slight 
regularity conditions on f(s), that limf.)(s)exists for all s~[0, l] p. Suppose we 

now consider an arbitrary sequence of p.g.f, vectors, {f~(s)}~_> a, and again form 
the composition, f , )(s)=f~ (f2 (... f~ (s))). It is the purpose of this paper to ascertain 
conditions for when limf~,)~ (s) exists. Before stating our major results, it is conven- 

ient to introduce the following notation. 

S=(S1, S2,...,Sp) ; si~[0, 1], l ~ i ~ p ,  p ~ 2  

Rs=(s,s ,  ..., s); se[0, 1]. 

(Whenever it is not ambiguous we will write 1 for R1 and 0 for R0.) 
(<) (=<) p 

Let u,v be any 2 vectors. Then u < v means ui < vi; l< i< p .  (u,v)= ~,uivi; 
(_>-) (=>) i=1 

u ~ is the transpose of the vector u. If {a,} n > 1 is any sequence of vectors in [0, 1] p, 
then lim a,=a should be interpreted as a component wise limit. Similar inter- 

pretations should be given to lim sup a, and lira infa, .  Let A=(ae)t<_i,j<_ v and 
n ~ o o  n ~ c o  

B = (b~j)a __< i, j_<p be any two matrices. Then, 

and 

m i n [ A ] =  rain ]aij], m a x [ A ] =  max laijI, 
l~i,j<=p l<=i,j~p 

A < B  means aij<=bi:, l<__i,j<p. 

u. A denotes standard matrix multiplication by a vector u. Let {fn(s)}n>_l be any 
sequence of p. g.f. vectors. Set for each n > 1 

Dj f~ (s) = ~f~ (s) ~sj ' l<_i, j<=p, s~[0, 1] p 

i M,(s)=(Djf ,  (s))l<=i,j<=p, sa[0, 1] v 

'~ This research was partially supported by National Science Foundat ion Grant  GP-24490. This 
research was partially supported by National Science Foundat ion Grant  7110 at Stanford University, 
Stanford, California. 
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d s " 

ds ~l_~ i, j =p " 

Finally we make the following definition. 

Definition 1.1. A sequence of p.g.f, vectors, (fn(s)}n~ t will be said to have 
Property 1 iff for each 1 <- i<_p, 

(i) f~(O)<l;  n > l  

and for any sequence of vectors {a,~} e[O, 1] p 

(ii) lira f,~k(%) = 1 ~* lira a~ = R 1. 
n k ~  OO n k ~  r 

Condition (i) of the definition is made to guarantee that each component of 
every p.g.f, vector is a legitimate p.g.f. Condition (ii) is made to compensate for 
the fact that a p-dimensional p.g.f, is not 1-1. In effect (ii) states that the f~(s) do 
not approach 1 too quickly. 

We now state the results of this paper. Theorem 1, which is our major theorem, 
gives sufficient conditions for when lim of~ ) (R s) exists. 

Theorem 1. Let {fn(s)},,__>l be any sequence of p.g. f. vectors satisfying Property 1. 
Set f~,)(s)=f~(f2(.., f,(s))), n> 1. Then 

(i) l i m  exists for all s~[0, 1] and the convergence is uniform on 

compact subsets of [0, 1]. 
(ii) Either gi(s)=gi(0) for all sE[0, 1) or g~(s) is strictly increasing in [0, 1), 

l<_i<_p. 

The above theorem is a generalization of a result proven by Church [2] for 
1-dimension. 

Theorem A. Let {f,(s)},~l be a sequence of 1 dimensional p.g.f 's. Set f(~)(s)= 
f~(f2 (... f,(s))). Then, 

(i) li2nf~,)(s)=g(s ) exists for all se[0, 1]. 

(ii) Either g(s)=g(0) for s~[0, 1) or g(s) is strictly increasing in [0, 1) with the 
former holding if and only if 

lim 0 = 0. 
~ '~  j=l ( as j 

The proof of Theorem 1 is very similar in spirit to the proof of Church's 
result. A simplified proof of Theorem A can be found in [1]. 

Clearly it would be desirable to have at our disposal simple conditions on the 
{f,,(s)}~>~ which guarantee that Property 1 holds. That is the content of the next 
result. 

Theorem2. Let {f~(s)),~l be a sequence of p .g . f  vectors. The following two 
conditions are sufficient for Property 1 to hold. 
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(i) There exist positive constants C, D>O such that for n> l, l <i,j, k<p, 

C<Djf~(1)<=D and O<D~kf~(1)<=D. 

(D]kf~(1)= 02 f :  (1)) 
~ S j ~ S k  " 

(ii) There exist positive constants E, F such that for n>-_ 1, 1<-_i, j<_p, 

E < Dj f~(O)< Dj f~(1)<=F. 

Part (ii) of Church's result gives a necessary and sufficient condition for when 
the limit function is a constant for s t [0 ,  1). Our final result is a generalization of 
this condition to p-dimensions. 

Theorem 3. Let { f~ (s)}, >1 be a sequence of p.g.f, vectors satisfying condition (ii) 
of Theorem 2. A necessary and sufficient condition for lirn fc, ) (R s) = g (s) = 2irn f(,}(0) 
for s t [0 ,  1) is 

lim inf (1.  f i  Mj(O), 1) : 0 .  (1.1) 
n~c~ \ j = l  

The motivation behind this research comes from the theory of branching 
processes with random environments [11. In [-11, Athreya and Karlin used Theo- 
rem A to show that the nonzero states of the process were transient. In order to 
generalize this result to multidimensions, Theorem 1 was necessary. For further 
details the reader should see [51. 

2. Proofs of Theorems 1 and 2 

We first prove Theorem 1. To prepare for the proof, we introduce the following 
definition. 

Definition 2.1. Any sequence of p.g.f, vectors, {f,(s)}~__>l, will be said to satisfy 
Condition 1 if for any s t [0 ,  11 v, and any subsequence nk~ ~ ,  either 

(i) rain Dim inf [f~(s)]]  = 1 
l<--_i<=p nk~co 

o r  

(ii) max [lim inf[f~(s)]]  < 1. 
l = i = p  nk~oo 

The significance of Condition 1 is the following. Suppose we are given a 
sequence of p. g. f. vectors, {fn(s)}n=>l. By the Helly-Bray Theorem, we can extract 
a convergent subsequence {fn~(s)}. Denote the limit function by g(s)= (gO (s) .... , gP(s)) 
and assume g(1)= 1. In general we have no way of knowing whether g~(s) and say 
g2 (s) depend on the same set of variables. It is quite possible, that in passing to 
the limit, variables might disappear in one component and not in the other. It is 
this very thing that Condition 1 prevents. If Condition 1 holds, then all compo- 
nents of g (s) depend on the same set of variables. We note in passing that if p = 1, 
then Condition 1 always holds. 

Our ultimate goal is to deal with sequences of compositions of functions. 
If {f~(s)},_> 1 is a sequence of p. g. f. vectors and n k a sequence of integers increasing 
to 0% then set 

h k ( S ) = f n k + l ( f n k + 2 ( "  "" fnk+ 1(S))); k__> 1, st[O, 11;. 
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Our first lemma proves that the assumptions of Theorem 1 imply that the collec- 
tion of p.g.f, vectors {hk(S)}k>__ 1 satisfy Condition 1. Unless otherwise stated, we 
will always assume that the conditions of Theorem 1 hold. 

Lemma 2.1. The collection of p .g . f  vectors, {hk(S)}k>_l as defined above, satisfy 
Condition 1. 

Proof Let s~[0, 1] p. Observe that, 

hk(S)=f,k+l(ak) where ak=f,k+2(f,,~+3(.., f,~+~(S))). 

The {f,~+l(s)} satisfy Property 1. Therefore for l < i < p ,  and any subsequence 

rig, ~ 00, lim inffi~,+l(ak ,) = 1 ~'- lim ak, = 1. (2.1) 
n k ,  ~ co k t ~  co 

The validity of Condition 1 follows directly from (2.1). Q.E.D. 

We now start the proof of Theorem 1. The proof will be broken into 3 lemmas. 

Lemma 2.2. Let { f ,  (s)}, >__ 1 be a sequence of  p. g . f  vectors satisfying Condition 1. 
Suppose for some 1 < r <__ p, 

l imf~,)(s)=g(s)=g(sh, s~2, ..., sh); 1 < l < p ,  s~[0, 1) p (2.2) 

where the convergence is uniform on compact subsets of [0, 1) p. Assume also that 
g(s) is increasing in each of its components. Then, 

l imf~J(Rs)=s for ss [0 ,1]  and j = l ,  2 , . . . , l .  
n ~  oo 

Proof Without loss of generality assume i1= 1, i2 =2, ..., il=l. {f,(s)},> 1 is a 
normal family. Thus, there exists a subsequence nk ~ oo such that lira f,~ (s)= w (s) 

n k  ~ co 

and the convergence is uniform on compact subsets of [-0, 1] p. To prove the 
lemma, it suffices to show that for 1 < i N  l, wi(s) is a legitimate p.g.f, and linear. 
Specifically, p p 

w~(s)=2a~sj  with ~ a ~ = l ;  l < i < l .  
j=l j=l 

We show first that w (s) is a legitimate p. g. f. vector. Condition 1, together with 
the increasing property of g(s) imply that for any se[0, 1) p, w(s)< 1. It follows 
from the uniform convergence in (2.2) that 

g(s)=g(w(s)), s~1-0, 1) p. (2.3) 

Relation (2.3) is the key to proving that w(s) is a p.g.f, vector. By letting s ~  1 in 
such a way that s < 1 always prevails, it is a simple matter to prove that lira w(Rs) 
= 1. This implies that w (s) is a p.g.f, vector. 

We now demonstrate the linearity of w(s). Condition 1 implies that the matrix 

0w ~" 
H = (~-s j  �9 (1))~__< ~, j__< t (2.4) 

has all positive entries. It is a well-known result [4], that if (2.4) holds, and at 
least one of the w ~ (s) is not linear, then lirrl w~,)(s) exists and necessarily equals a 
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constant so long as s + 1. (wc, I(s) = w(w(.., w (s)))). Iterating (2.2) we obtain, 

g(s)=g(wc.)(s)); n>  1. (2.5) 

However, due to the increasing nature of g(s) and (2.5), it is impossible for 
limwcn)(S ) to be a constant�9 Q.E.D. 

Lemma2.3. Let {f,(s)},__> 1 and {g,,(s)},_>l be two sequences of p. g. f vectors. 
Assume {g,(s)},=> 1 satisfy Condition 1. Then, 

l ims ~ l ims sa[0, 1]. 
n ~ c o  

Let 

Proof It suffices to show 

~m f~(g,(Rs))=s ~ lim f2(Rs)=s. 
n n ~ o o  

( j , . , 1 )  if E N / > O  E x' 
j=l i=1 

otherwise, 

where for each n, 
(a) (Xj,,, 1) and (N2,..., Nf) are independent variables for all i, j .  
(b) The p.g.f, of (Xj, n, 1) is gi,(Rs) for all i,j. 
(c) The p.g.f, of (N2 .... , Nf) is f2(s). 
The assumptions of the lemma imply that 

lira I1, = 1 in probability. (2.6) 

To prove the result it is sufficient to show that 

n ~ c o  ~ i = 1  

Clearly lim P = 0  = 0. Otherwise, (2.6) would be violated. To prove 
n ~ o v  i 

} that l i m p  N~'>2 =0,  it is enough to show that for any sequence nk~oO , 
n ~ o o  i 

there exists a subsequence n ~  oo and an integer 1 <i<p such that 

lira sup P {(X~,,~, 1)=0} < 1. (2.7) 

(2.7) together with Condition 1 imply that there exists a constant fi > 0 such that 

�9 i lnf P{(X~ .,, 1)=l)=>fi. 
l < = i < = p  , k 

n~>_l 
This implies that for all n~,, 

P{Y~,k>-2 ~'N.i,->2}>=fi 2. 
- -  i__Z~l k - -  

(2.8) 
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It follows from (2.6) and (2.8) that necessarily, 

lim P ; > 2  =0 .  
n~,~ ov i= 

So the proof of Lemma 2.3 reduces to proving (2.7). For ease of notation, the 
subscripted notation will be dropped. We observe that we can write Y, as 

where 

P 

r . = Z <  
i = 1  

Nn / 

< =  2 (xL, 2). 
j = l  

Clearly, not all the W~ tend to zero in probability. Suppose W, 1 does not converge 
to zero in probability. Since W 1 => 2 ~ Y, => 2, (2.6) implies that lim P { W~ __> 2} = 0. 

n ~ o o  

Therefore, there exists a subsequence nk ~ oO and a random variable W such that 

and 

lim 1 _ W,~- W in distribution (2.9) 
nk--. oo 

P { W = O } + P { W = I } = I  with P { W = I } > 0 .  

Let h,~(s) be the p.g.f, of NI~. (2.9) is equivalent to 

lira hn~(g~(Rs))=P {W=0} + P {W= 1} s; 
nk~O~ 

We can write W. 1 as nk 

where 

and 

with 

Furthermore, 

1 1 2 
Wnk = Znk + Znk 

(L(k) 

] ~ (X),n~, 1) if N~ even 
7 )  ~ j = l  
~nk | L(k) + 1 

[ a~l (X) , .~ , I ) i f  N:~ odd 

2 1 1 Z,~ = I/E~- Z,~ 

L(k) = [N~ 

1 __ 3 Z.~ - Z.~  + 1/n~ 

se[0, 1]. 

where Z3~ has the same distribution as Z ~  and 

X 1 . ~( 1,.~, 1) if N~ odd 

""~=[0  if N) ,k even. 

Observe that P {Z~,~> I IN2~} and P {Z,2~> I IN2~} are both increasing in NI~. We 
now make use of the following well-known lemma. 
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Lemma. Let X be a positive random variable and f (x) and g (x) increasing bounded 
functions. Then 

E {f(X) g (X)} => E {f(X)} E {g (X)}. 

Applying this lemma to the random variables P ~ {Z.~ > I [ N J  and P {Z~/e => 1 [N.a~} 
and observing that Z.~/e and Z.2/e are conditionally independent given N.~, we obtain 

However, 

Therefore, 

p { z ~ k > l ,  2 Z.k=> 1} - P { Z ~ >  1} P{ZZ.k> 1} >0 .  

lira sup P{Z~ .>  1, Z~__> 1} <lira sup P{W.* >2} =0. 
n k ~  oo n/e--* ~3 

lira P{Z~> 1} P{Z2/e> 1} =0. (2.10) 
n k ~  00 

It is not too difficult to see that the only way for (2.10) to be true is for 

l iminfP{Z1, /e>l}>0 and lira 2 _ P{Z,/e> 1} =0 .  (2.11) 
n k ~ ~3 n / e ~  

(2.9) and (2.11) together with the fact that Zn~ and Z~/e have the same distribution 
imply that 

lim sup P {t/,/e = 0} < 1. (2.12) 
n/e ~ oo 

X 1 Since, P{( ,/e, 1 )=0}<P{t / ,  =0}, (2.12) implies (2.7). Q.E.D. 

Lemma 2.4. Let {f,(s)},e 1 be a sequence of  p . g . f  vectors satisfying the con- 
ditions of Theorem l. Let fr f,(s))). Then for l<_i<p, l imf~(Rs) 
exists and converges to either a constant or an increasing function. ,4  

Proof The following arguments hold for 1 =< i<  p. Since f~)(0) is increasing in n, 
lim fi,)(0) exists. Without loss of generality, we can assume that there exists an 

n ~ o o  

So~[0, 1) such that e = l i m f ~ ) ( 0 ) < l i m  supf~,)(Rso)=fl. 

Choose a subsequence nk ~ oo such that lim f~,/e)(Rso)=fl. ~ a {f,~)(s)} is normal 
n / e ~  oo 

family. Thus there exists a further subsequence {n~} such that 

lim f~,,)(s) = g(si , , . . . ,  si,); 1 < l<p  
n k  ~ o(3 /e 

and the convergence is uniform on compact subsets of [0, 1) p. Without loss of 
generality, assume i1=1, i2=2 .. . .  , i l=l.  Since g(Rso)=f l>~=g(RO ) we know 
that g(s) is increasing in each of its variables. Observe that, 

where 
& , ( s l  = wk_l(s))) 

wj(s) =f,5+~(f,5+ 2 (... f,j+ ~(s))), j = 1, 2, ..., k - 1 

w o (s)=f~(f2 (... f,i(s))) �9 

By Lemma 2.1, the {wk(s)} satisfy Condition 1, Lemma 2.2 implies that 

limwJ,(Rs)=s; j = l  . . . .  , l ,  se[0,  1]. 
n ~ o o  

9 Z.  Wahrsche in l i chke i t s theor i e  verw. Geb. ,  Bd. 25 

(2.13) 



116 N.L. Kaplan: 

Let qm be any sequence of integers converging to oo. To prove the lemma it suffices 
to show that 

limoffq,.)(Rs)=g(Rs); se[O, 1). (2.14) 

For each integer m > 1, we associate the integer k (m) so that 

Also, 

where 

and 

' < < n '  rtktm)=qm~ k(m)+l"  

= +I(L  (... 

Again by Lemma 2.1, the {tin(S)} satisfy Condition 1. Using (2.13) and Lemma 2.3, 
we conclude that 

l imd~(Rs)=s; j = l  . . . .  ,l ,  sel-0, 1]. 
m o o o  

But, 
fiq~) (R s) = fi%,~,)(d m (R s)). 

Thus by uniform convergence, 

lim fio~ ) (R s) = g (a s). 
m o o 9  

This proves (2.14). Q.E.D. 

Theorem 1 is a direct consequence of Lemma 2.4. 
We now turn our attention to the proof of Theorem 2. For any function f 

of p variables, let gradfl~ denote the gradient vector o f f  evaluated at the point s. 
Using Taylor's Theorem, the monotonicity off,~(s), and the assumptions of (i) 
and (ii) of Theorem 2, we obtain the existence of a constant A > 0  such that 

0 ~ 1  - f / , ( s )<A(1,1-s) ;  n>l ,  l< i<p ,  se [0 ,1 ]  p. (2.15) 

One direction of the theorem is a consequence of (2.15). Indeed, it follows from 
(2.15) that for any sequence of vectors {a,~} s [0, 1] p 

lira a,~ = 1 ~ lim f,~ (a,k) = 1. 
n k ~  09  n k o  O9 

We now consider the other direction. For convenience the subscripted notation 
will be dropped, Suppose for some i, lim inff, i (a , )= l  and lim i n f a , # l .  Then 

n ~ o o  n ~ o 9  

some component of the {a,}, say the first, has a convergent subsequence {a~k } 
such that 

lim 1 a ,~=bo<  1. 
n k ~  o9 

i s The collection of functions { f 2 ( ,  L ..., 1)} is a normal family and thus has a 
subsequence {f~,(s, 1 . . . . .  1)} converging to a limit function h(s), uniformly on 
compact subsets of [0, 1]. However, 

0 =  lira n~,~ o9{1 -f~; (a,~)} > [irn {1 -f,~(a1%, 1, ..., 1)} = 1 - h(bo). 
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Therefore, h(b0)= 1. Since h(s) is either a constant or an increasing function, 
we conclude that h(s)= 1. This implies that 

lira ~ - f ~  (s, 1, ... 1)=0; se[0, 1). (2.16) 
, ;~o  (~s k 

It is not difficult to see that (2.16) contradicts both Conditions (i) and (ii) of 
Theorem 2. Q.E.D. 

3. Proof of Theorem 3 

We now turn our attention to proving a necessary and sufficient condition 
for when limf,)(Rs)=g(s) is a constant vector for s~[-0, 1). The conditions of 

Theorem 3 will be assumed throughout this section. 
We will first show the necessity of (1.1). Suppose some component of g(s) 

is a constant. It then follows from the definition of g(s) and the conditions of 
Theorem 3 that all the components of g(s) are constants. Therefore, 

where, 

Also, 

d n 

0=  ~s(g(s  ), 1)= lira ( 1 - j U  I Mj(aj(n)),l) 

= ( . . .  f,(Rs))); 
a,(n)=Rs; 

l < j < n - 1  

se[0, 1). 

n n 

(l'j~=lMj(ai(n)), l) >=(l"j~=lMj(O), l) �9 

(3.1) 

(3.2) 

9*  

(3.6) max [lira sup ej (so) ] < 1. 
l <=i<=p j~oo  

(1.1) follows from (3.1) and (3.2). 
In order to prove the sufficiency of (1.1), we need to introduce the following 

functions and prove certain properties about them. Define 

f(j.a)(s)=f~(fj+l(...L.+,ds))); j> l ,  k>O, s~[0, 1] p 
and 

ej(s)=limf(j,k)(Rs); j_>_ 1, s~[0, 1). (3.3) 

The existence of the limit in (3.3) follows from Theorem 1. If gi(s) is assumed 
increasing for some i, it is a simple matter to show that each component of ej(s) 
is increasing. Therefore, ej(s)<l  for s~[0, 1). It follows from the definition of 
the {ej(s)}j>__ 1 that, 

ej(s) =fj(fj+~ (... fk(G+l(s)))); 1 <j<k< oe (3.4) 
and 

~, d e~+i(s); l < i < p ,  j_>_l, se[0, 1). (3.5) d ej(s)= Dzfj(ej+l(s))~s = = ds / = i  

Lemma 33. Assume gl (s) is increasing. Let So ~ [0, 1). Then 
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Proof It follows from the definition of g~ (s) that 

gl (s)= l im 1 ft,~(Rs)=ftt,)(e,+~(s)); n> l.  (3.7) 

Suppose that (3.6) is false. Then for some i, there exists a subsequence nk ~ 
such that, 

i S lim % ( o )  = i. (3.8) 
nk~  

From (3.4) we obtain, 
i i e S e,k(So)=flk( ,~+1( 0))" (3.9) 

(3.8) and (3.9) together with Theorem 2 imply that 

lira eJ,~+l(So)=l; l < j < p .  (3.10) 
n k ~  oO 

Using (3.7), it is easy to see that (3.10) is incompatable with the assumption 
that gl (s) is strictly increasing. Q.E.D. 

Lemma 3.2. Assume g~(s) is strictly increasing. Given any sequence n k ~ o% 
! ___> we can always extract a subsequence n k oo such that for some 1 <j<-_p, 

lira @~(s)=s; s t [0 ,  1). (3.11) 
rlk~ CO 

Proof We can assume that nk=k for all k. The collection of p.g.f, vectors, 
{f~k_~(S)}k~2 is a normal family. Therefore, there exists a convergent subsequence 
{ f l n k - 1 )  (S)},  A s s u m e ,  

lira hl(si~, si~, si); 1 < l<p. fc~,~_ 1)(s) . . . .  , (3.12) 
nk~  CO 

Since, h ~ (R s) = g~ (s), we know that h ~ is not a constant. Without loss of generality 
assume that i ,=  1, i2=2, ..., il=l. Also note that for nj>n k, 

f?,_~)(s) =f&_l~(h~,~.~(st) (3.13) 
where 

h~,j~(s)=L~(L~<(... L,_l(s))); se[0, 1]~. 

For each k, the collection, {h~kj)(s)},j>, ~ is a normal family. Thus, there exists 
a function hk(S) and a sequence j ( k ) ~  o9 such that 

hk(s)---- lim hck,j~k))(S); st[O, 1] p. 
j ( k ) ~  co 

It follows from (3.12) and (3.13) that 

h(sl, ...,Sl)=f~_~)(hk(S)); k->l,  s~[-0, 13 p. (3.14) 

(3.14) implies that for each k, hk(S ) depends only on the variables Sl, s2, ..., sl. 
It should also be noted that 

hk(Rs)=e,~(s); k> 1. 
Thus, if we can show that, 

limh~(Rs)=s; s t [0 ,  1) (3.15) 
k ~ c o  
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we are done. The collection of functions {hk(S)}k>=l is a normal family. Thus, 
we can always find a function w(s) and a subsequence k'--+ oo such that 

w (s) = k!irn h k, (s). 

To prove (3.15), it is sufficient to show that w(s) is always linear, i.e., 

l l 

wi(s)= ~a}sj  and ~ a j = l ;  l<-i-<p. 
j = l  j = l  

Let s < l .  By Lemma 3.1, we know that w(s)< 1. Thus by uniform convergence 
in (3.12), we obtain, 

h i ( s 1 ,  S 2 . . . . .  s,)=hl(w(s)); se[0, 1) p. 

We can now proceed exactly as in Lemma 2.2, and conclude that (3.15) is valid, 
providing we can show that the collection of functions {hk(S)}k>_, satisfies Condi- 
tion 1. However, that follows from the definition of hk (s) and Theorem 2. Q.E.D. 

We now prove some corollaries of Lemma 3.2. For each of the next four 
corollaries g~ (s) is assumed to be increasing. 

Corollary 3.1. For s~[O, 1) there exist Constants cq, fil depending on s such that, 

0 < c q < i n f (  d ~ d _<sup( 1 , - -  ej(s)~ 1,-~7 s ea(s)] <ill < oo 
j>=l\  --j>=l \ ds ! " 

Sincega(s) is increasing, we know that O<(l ,d~Tej(s))<oo for Proof. allj. 
\ U~ l 

Suppose the result was false and that sup 1 , ~ s  s ei(s ) =oo. Then there exist 
a subsequence, Jk ~ oo such that j>_l 

limoo (1, d ej~(s)) =oo.  (3.16) 
~k~ \ ds 

By Lemma 3.2 there exists a subsequence of the {Jk--1}, say {j~--1}, and an 
1 -< i_< p such that 

lira e{, (s)=s; se[0, 1). 
j , k _ l ~  ~ Jk - 1  

It follows that 
d 

lim - -  e};_x(S)= 1" se[0, 1) (3.17) 
j;-l~oo ds 

(3.5), (3.17) together with the assumptions of Theorem 3 imply that forj~ sufficiently 
large, 

2--F< 1, e;~(s) < - -  = 2 E  

This contradicts (3.16). The left hand inequality is established in the same 
way. Q.E.D. 

Corollary 3.2. For se [0, 1) there exist constants ~2 and f12 depending on s such 
that 

d i < 
0<c~o< inf ~ - -e j ( s )<  sup -7-e)(s)=fi2<oo 

--l<=i<=P d s  l<=i<p a s  
j > l  j>>l 



120 N.L. Kaplan: 

Proof Omitted 

CorolLary 3.3. For ss[O, 1) there exist constants ~3 and f13 depending on s such 
that 

0<0r inf (1, f iMj(e j+l(s ) ) . l  t) 
- - l  <__m<n j=m 

n>-.1 

< sup 1, HMj(ej+I(S)). 1 t ~f13<oo. 
l<m<n j=m 

n>-I 
Proof Omitted 

Corollary 3.4. For ss[0, 1) there exist constants ~ and fi4 depending on s such 
that 

[ [ f iM;(e j  ))]l 0<c~ 4< sup min +l(s 
l<m<nL ~j=m Jd  

n>l 

< sup [maxF(IMj(ej+l(s))]]=__&<c~. 
l<=m<n L L j = m  ~ d  

n>_l  

Proof This result follows from Corollary 3.3 and the following inequality. 

[ ~  t] ( O~f ) min ej+l(s) < 1, ei+l(S)). 1 t 
J ~ m  j=  

~p2  max  e j+ l ( s  (3.18) 
~ J = O l  ..t 

<-_p2(f~)2min[(IMj(ej+x(S))]. 
j = m  J 

(3.18) is a simple consequence of the conditions of Theorem 3. Q.E.D. 

We are finally ready to prove the sufficiency of (1.1). Suppose that gl(s) is 
increasing and (1.1) holds. Consider the ratio. 

Suppose that 

) 1, ~(e;+~(So)). r 
B(n ) -  , n > l ,  s0s[0,1). (~ ) 1, I-[ Mj(O). 1 t 

j= l  

lim supB(n) < oo. 
. ~ o o  

(3.19) is sufficient to prove the result. To see this observe that 

(n ) ( ) 
1, I-IM~(O) �9 I t 1 " j=l = ~ -  1, 1-IMj(ej+~(So)) �9 1 t . 

j= l  

From 3.19, 3.20 and Corollary 3.3, we conclude that 
n ,~nf(~, ~.~o~ 1')~o 

(3.19) 

(3.20) 



This 
theorem and the monotonicity of the Mrs we deduce that for j > 1, 

Mj(e~+~ (So)) __< Mj(O)+ Pj 
where 

Pj = ((grad D k 5 i l e j  * l (so) ' 1))1_-< i, k =< p. 

It follows from Corollary 3.2 and the assumptions of Theorem 3 that 
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contradicts (1.1). So all that remains is to prove (3.19). Using Taylor's 

m a x [ ~ M j ( e j + l ( s o ) ) ] M j ( O )  

Ec~21 

B(n)< l + ~ 2 E m a x  ej+l(So) �9 (3.21) 

So to prove (3.19), it is enough to show that 

[d )l •max T m j ( e j + x ( S o )  ( o o .  (3.22) 
j=l k as J 

By Lemma 3.2 there exists a subsequence nk ~ O0 and an integer i such that for 
se[O, 1) 

lim e.k (S) = S. 
n k ~  

By uniform convergence, it follows that for s~[0, 1) 

d _  d 2 
lira -- d,k(s)=l and l im~2-elnk(s)=0.  (3.23) 

n k ~  oo ds , ~  o~ ds 

Using 3.4, 3.23, and Corollary 3.4, it is not difficult to show that 

) lim 1.~-sMj(e j+l(s )  ), 1 =0 .  (3.24) 
n k ~ 0o j =  n k 

(3.22) is a direct consequence of (3.24). 
This completes the proof of Theorem 3. 

Remarks. 1. In the situation when l imf , ) (Rs)=g(s)~ is a constant vector, 

it can be shown that lirn f,)(s) exists for any s ~ E0, 1] p and is equal to the constant 
vector. 

2. It would be desirable to show that it is possible that }irn fn)(R s) converges 

but lira f,)(s) does not for arbitrary se[0,  1] v. Although no example of this type 

of behavior is known, I do believe that it can occur. 

d 

We, therefore, obtain the inequality: 
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