
Z. Wahrscheinlichkeitstheorie verw. Geb. 25, 8 3 -  95 (1973) 

�9 by Springer-Verlag 1973 

On the Uniform Metric in the Context 
of Convergence to Normality 

C. C. Heyde 

1. Introduction and Results 

There are two basic parts to this paper. In the first part we suppose that Xi, 
i=  1, 2, 3 . . . .  is a sequence of independent and identically distributed random 

variables. We write S, = ~, X~, n_>_ 1, and suppose that the variables are centered 
i = i  

so that EXi=O if E ]X~[<~. Let {B,} with B , - - ,~ ,  (B,+JB~)-, 1 as n ~  be a 
sequence of positive constants and write 

and 

where 

F. (x )=P(S .<B.x )  

A.= sup ]F~(x)-q~(x)I 
- -  o o < x < o o  

x 

We shall establish the following theorem. 

Theorem 1. I f  

m 

Z n-a A .= ~ n -1 sup [F.(x)-q~(x)l< oo, (1) 
n = l  n = J -  - o o < X < o o  

then EX  ff < oo. That is, the X i belong to the domain of normal attraction of the 
normal distribution. 

Remarks. (1) Note that in formulating the above theorem it has not been 
assumed that the X i belong to the domain of attraction of the normal distribution. 
This assumption has been made in previous work on the problem, for example in 

Heyde [71 where it is shown that if ~ n -1 (loglog n) A~<oo then EX~ < oo. 
n=3 

(2) It is known from results of Friedman, Katz and Koopmans [3] and Heyde 
[5] that if EX~ = a 2 < oo, then the series 

n-* sup IP(S.<xal/-n)-oS(x)] 
n = l  - -  c o < x < o o  

may not converge. In fact, it will converge (Heyde [5]) if and only if 

EX 2 log(1 + [Xil ) < oo. 
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However, if the normalization by a ]//n is replaced by that by B. = a.  l fn  where 

a 2= ~ xadP(X,<=x)-[  ~ xdP(X,<=x)] 2 

then 

~ n -1 sup IP(Sn<B.x ) - r  
n = l  - -  o O < x < c o  

Theorem i provides a converse to this last result (which is essentially due to 
Friedman et al. [3]; see also Theorem A of [6]). 

(3) Theorem 1 is also of interest in connection with the derivation of laws 
of iterated logarithm type on the basis of an appropriate rate of convergence to 
normality as measured by the uniform metric. For details see Section 3 of [7] 
and Section 5 of [6]. 

In the second part of this paper we shall be concerned with an inequality of 
Osipov and Petrov. Our setting is the same as before with a sum of independent 
and identically distributed random variables X~, i=  1, 2, 3 . . . .  which are centered 
so that EXi=O if E ]X~l<oo. F(x) is the distribution function of the X i and {C,} 
denotes a sequence of positive constants. We shall discuss the general inequality 
of Osipov and Petrov [10] (see also Feller [2]) which we specialize for the present 
context to give 

A.(C.) =sup IP(S.<= Cnx)-cb(x)] 
X 

Kon ~ ]xl3 dF(x) 

=<nP(lXil> z.)- ~ txl_-<~.B~ (2) 

n l ~ x dF (x)] 

where B. is given by 

B =n{ S 

1 1 - ~ -  max 
2 ~ C. C. ! 

x2 d F ( x ) - [  ~ xdF(x)] 2} 

and we shall choose r n as ~ if EX~ < ~ and as B. otherwise. K o is a universal 
constant. It will be our object to show in a variety of ways that 6. is a very good 
bound for A.. In fact, in many cases of importance we shall show that A n and 6. 
have equivalent asymptotic behaviour. This exercise is of special interest since no 
useful lower bound for A n has been found. We shall obtain the following results. 

Theorem 2. A,(C,)--. 0 if and only if 6,(C~)~ O. 

Theorem 3. Let 0 < 6 < 1. Then, the following four conditions are equivalent: 

(i) ; x 2dF(x)<oo and ~ x 2dF(x)=O(z  -~) a s z ~ o o ,  

(ii) incf A.( Cn)=O(n-~/2 ) as n ~ oo, 

(iii) A.(Bn)=O(n -~ as n ~ o o ,  

(iv) 5n(B.)=O(n -~/2) as n ~ o o .  
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T h e o r e m  4. Let 0 < 6 < 1. Then, the Jollowing four conditions are equivalent: 

(i) E IX,12+~<~,  

(ii) f n -1+~/2 infAn(Cn)<oo, 
1 C n  

oo 

(iii) ~, n -  1 + ~/2 A.  (B.) < oo, 
1 

oo 

(iv) ~ n-  1 + ~/2 fin (Bn) < c~. 
1 

2. P r o o f  o f  T h e o r e m  1 

Since ~ n -~ A,, < c~, it follows that there exists a sequence {n j} of integers such 
that A,j ~ 0 asj--*c~ and hence the X i belong to the domain of partial attraction 
of the normal distribution. Our first major task is to show that the Xi in fact belong 
to the domain of attraction of the normal distribution (i. e. that A, ~ 0 as n ~ oo, 
by virtue of Polya's theorem). In order to do this we need the following lemma. 

Lemma. Under the assumptions of the theorem, we can choose a subsequence 
{ni} of the integers such that (ni+l/ni) --+ 1 and A,, --+ 0 as i ~ ~ .  

Proof Let N denote the set of integers n for which A , < [ l o g ( n + l ) ]  -1. N 
contains an infinite (countable) number of elements for if not there would be a 
largest, n L, and writing u, = n log (n + 1), 

f n - l A  >= f u ~ l = ~  
n = n  L n = n  L 

contradicting our assumption. Then, writing N for the complement of N with 
respect to the positive integers, we have 

oo> ~ n-i A.> ~n-i A.>= ~u2 i 
n = l  n e N  n ~ R  

so that ~ u 2 ~ = oo since 
n ~ N  

n = l  n e N  n e N  

Now let N =  {ml, i=  1, 2, 3 . . . .  ; mi+ 1 >m~ each i} and suppose that 

l iminfu~ 1 > i 

Then, there is an e > 0  and an integer I=I(e) such that for all i>I,  

and hence 

7* 

u . . . .  > ( l + ~ ) u ~ ,  

i = l  r = O  
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which contradicts ~ u21= ~ u2,1= oe. We therefore must have 
neN i = 1  

This implies 

lim inf u"*+~-=lim inf mi+~ log(1 +mi+ 0 _ 1. 
i ~  Urn, i . ~  mi log( l  +m ) 

lim inf rni+ 1 m~ -1 = 1 (3) 

for, since rn~+ 1 > mi, 

1 = l imin f  m~+l log0  +mi+O >lira inf mi+!> 1. 
�9 mi log( l+ml)  = i-~o~ m i -- 

By virtue of (3), the required subsequence {hi} can be obtained by choosing a 
subsequence from N for which (ni+ffni)~ 1 holds. 

We now resume the proof of the theorem. Let F (x)--P (X~ < x) and suppose 
that f ( t )  is the corresponding characteristic function. Firstly we shall prove the 
theorem for symmetric random variables (in which case f ( t)  is real valued and 
symmetric). 

Since f ( t )  is continuous and f (0 )=  1, there is some interval [-~/,  t/] in which 
f ( t )  may be written as exp { - A  (t)}. Then, choosing the {hi} so that (ni+ffni)~ 1 
and A,i ~ 0 as i ~  oo (as can be done, according to the temma) we have 

( - - t ]  = e x p { - n i A ( ~ - ~ , ) } - - +  e ~t~, f t "' t _ 
\ B . , ]  ] 

so that 
n i A (t B~, 1) _~ �89 t 2 (4) 

as i--* ~o. 

Now for fixed u, 0 < u < t / ,  let n(u)=min[ni:  B2 l<u] .  Then, B,(,)-I < u<B2(1)_l 
and since A is continuous, A (t u) lies between A (t B2(~)) and A (t B2(, 1) _ 1) for 0 < t < 1. 
But, using (4), 

A(t  B~(~)) ~ t2 n ( u ) -  1 ~ tz 
A (B;(~)_ 1) n (.) 

as u ~ 0 and we have 
A(tu)  + t2 
A(u) 

as u ~ 0. Thus, A is regularly varying with exponent 2 at zero (A (t) is of course 
symmetric in t in view of the assumed symmetry of f(t)) and we can write 

A(t) =�89 t 2 H(t) (5) 

where H is slowly varying at zero. This implies that the Xi belong to the domain 
of attraction of the normal distribution rather than just its domain of partial 
attraction (Ibragimov and Linnik [9], Chapter 2; Ibragimov [8], Lemma 2.1). 

Now introduce a function B (t) defined for z > 0 by 

= ~ ( z - t ) t e  ~t2, O~ t (_ z ,  
B(t) (0, otherwise, 
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and let B (x) denote its Fourier transform, 
Z 

/~(x) = J" eitXB(t) dt. 
0 

From two integrations by parts it is readily seen that ]B(x)[=O(]x[ -2) as 
Ix]-~oe. Now write f,(t) for the characteristic function corresponding to F,(x). 
Then, noting that F, (x) - q~ (x) is integrable and integrating by parts in the equation 

i--t2 ~ itx f . ( t ) - e  -~ = e d[F.(x)-q~(x)~ 
- - 0 9  

we obtain 

L(t)-e-~t~ - ~ eitX[F.(x)-q~(x)] dx. (6) 
it --CO 

Consequently, using Parseval's identity on the two pairs of Fourier transforms, 
we obtain 

z 

i -1 ~ t-1 [ s  e -~t2] B(t) dt = i -1 ~ t -i  [ f . ( t ) - e  -~t>] B(t) dt 
- co o ( 7 )  

= ~o [FAx)-~(x)] ~(x)dx. 
- - c O  

Thus, from (I) and (7), 

cO z dt ~ n _ l  ~o(Z _~t2 - t) ( f .  ( t ) - -  e " ) e ~ t2 

_ e( )J a x  (s) 

< ~ n - l A .  IB(x) ldx<~.  
1 --c~ 

Now, by (5), f(t) is representable in the form 

f(t) =exp {- �89 t 2 H(t)}, 

where H(t) is a slowly varying function as t ~ 0  and moreover, by Lemma 2.1 
of [8J, 

U(t)-  .[ x 2 dF(x) 
Ixtt<l 

as t ~ O. Then 
f . ( t )=r __t \]" ( ntz 

= e x p - W . . 2  , B.J J' tsoJ] R 
so that (8) gives 

n-1 f ( z - t ) {  e x p [ - t 2 [  n~ ( i )  ) ]  1 } d t < o o .  (9) 
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However, as n--, ~ ,  

exp - ~ H  - 1  - 1 = ~ -  1 - ~ - 2 H  +R,(t) (10) 

where 

R~(t)= _ B~ ~ 2~r! 
r = 2  

and for n sufficiently large and 0 _< t_< z, 

IR.(t)l<t 4 1 - - ~ - H  z2(~-l) 

(11) 

< z  -2 e ~ t 4 1 - ~ - H  

IF~(x)-~(x)l~dx 
- o o  

But, as n--. oo, 

and in particular 
~3 z 

n -1 ~ t -2 [f .( t)-e-~t=] 2 dr< oo. (13) 
1 0 

f~(t)-e-~t2 I 1 -~-ta 1 n H ( ll 
so that (13) gwes 

n-l  ~ e-t~ t 2 1-- H dt < oo. 

We then deduce, using (11), that 

co z 

n -1 ~ (z-- t) lR.(t)l dt<oo 
1 0 

Now, F,(x)-Cb(x) obviously belongs to L 2 ( - o o ,  oo). In fact, 

exists and ~ 0  as n-~oo for e>�89 (see Ibragimov and Linnik [9], Theorem 5.2,1, 
p. 172). It then follows from the Parseval identity that 

oo 

[F.(x)-q~(x)]2 d x = ~  1~ ~ t - z [ f . ( t ) -e -4 t : ]Z  dt. (12) 
- o o  Z ~  - o o  

Furthermore, 

~ n  -1 ~ [F,(x)--q~(x)]Zdx<~n-lsuplF~(x)--cl)(x)l S [F,(x)-~(x)ldx<o�9 
1 - o o  1 x - a o  

in view of (1) so that from (12), 

oo 

~ n -1 ~ t-a[fn(t)-e-~t2]2 dt<o�9 
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and, from (9) and (10), 

[- n -1 (z - t )  t 2 1 ~5- <oo. 
1 Bn 

Now make the transformation t = z x; we obtain 

/7 -1 ( l - - x )  X 2 1 - - ~ 2 -  H < o o .  (14) 
1 Bn 

Therefore, from (14), 

=<Z"-11 o s(1-Xtx2 1 - g H  

1 [ n ( X ) ] d x  

or equivalently, 

(1 -x ) [ log f (2B21x) -41og f (B2  ~ <oo .  (15) 
1 

N o w ,  

log f (2 B 21 x) - 4 log f (B,  ~ x) 

= l o g [ 1 - { 1 - f ( 2 B 2 1 x ) } ] - 4 1 o g [ 1 - { 1 - f ( B 2 1 x ) } ]  (16) 

= - {1 - f (2B21  x)} + 4  {1 - f ( B 2  ~ x)} + C,(x) 
where 

C,(x) = ~, r -~ [4 {1 - f ( B 2  ~ x)} r -  {1 - f ( 2 B 2  ~ x)}~]. 
r=2 

Furthermore,  as n ~ o o  we have for 0 < x <  1, 

1 - f ( 2B21  x)~�89 x) 2 H(2B21x)~2n 1 x 2 

l _ f (B21  1 - 1  2 - - I  1 - 1 X 2  ' x)~g(B, x ) H ( B  n x)~gn , 

while Cn (0) = 0, so that 
co 1 

2 ~(1-x) lCn(x) ldx<~.  
i 0 

Consequently,  from (15) and (16), 

~o 1 - f (2B21x)}]  dx < ~o ( 1 - x ) [ 4 { 1 -  f (Bzl x )} -{1  oo. 

This may be rewritten as (remembering that  f(t) is real valued) 

~ 1  ! ]dx  ~ o ~ ( 1 - x ) [ _  {4(1-cosB~ixy) - (1 -cos2B21xy)}dF(y)  <oo, 
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which reduces to 

~ ! ( 1 - x )  _ (1 -cosB: ' xy )2  dF(y) dx<oo 

and hence 

1 t } ~ o ~ ( l - x )  I (1-c~ d x < m .  
a Llyl  _-< ~B,, 

Now, for [y] <riB,,, we can find a positive constant C so that 

and therefore, 

that is, 

1-cosB21xy>=C(B21xy) 2, 0 _ x G 1 ,  

B~-'~ S x4(1-x)  y'*dF(y) dx<oo, 
1 0 (.lyl -< ~rB~ ) 

k B ;  4 S y4dF(y) <~176 (17) 
1 ly l -<~B.  

{B,} has not been assumed monotone but we can now make this supposition 
in (17) without loss of generality (since we may discard terms and relabel the 
remaining ones if necessary). (17) is then Eq. (10) of Heyde [6] and following 
exactly the argument given in the remainder of Section 2 of [6] we obtain the 
required result that EX 2 < oo. 

Finally, suppose that the X i are not symmetric. We consider the sequence Y~, 
i= 1, 2, 3 .... of independent and symmetric random variables, each Y~ having the 
distribution of the difference between two independent X[s. Obviously the 
characteristic function of Y~ is ] f ( t ) l  2 and the distribution function of the sum 
Z,=(YI+ ... + Yn)/B,]f2 is equal to F,(xV~), [1-F,(-xk/2-O)]-=G,(x) .  Hence, 
if F,(x) satisfies the condition (1), we have 

k n -~ suplG.(x)-'~(x)] 
1 x 

oo 

= E n-lsupIFn(x]/~) * (1 -  F . ( -  x 1 / 2 -  0))- (/) (x 1/~)* (1 -  �9 ( -  xV~)) I 
1 x 

<= • n- l sup lF.(x l/~) * (1-  F.( -  x l /~-O))-4~(x l,/2) * (1-  Fn(- x ]/2-O))[ 
1 x 

o0 

+ E n-~ sup I~ (x]/2)* (1 " F . ( -  x ] ~ - 0 ) ) - ~ ( x l ~ ) *  (1 -  ~ ( -  xV~)) [ 
1 x 

< 0 0 .  

Then, from our results in the symmetric case, we extract the information that 
EY~2<oo from which it follows that EX~<oo. This completes the proof of the 
theorem. 
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3. Proofs of Theorems 2, 3, 4 

Proof of Theorem2. That  A,(C,)--.O if 6,(C.)~0 follows from (2) so we 
suppose An(C,)~O (i.e. the X~ belong to the domain  of  at t ract ion of  the normal  
distribution) and need to show that 6,(C,)--+0 in order  to complete the proof. 

Now,  as already noted in the p roof  of Theorem 1, we have that U ( x ) =  
u 2 dF(u) is slowly varying as x ~ o o .  Clearly nB; 2 U(Bn)--~ 1 and B,,-~ C, as 

I~l__<x 
n ~ o o .  Also, f rom Gnedenko  and K o l m o g o r o v  [4] p. 172 we have that  

x2 p(Ix,[ > x)/U (x) ~ 0 (18) 

as  X --3. oc.  

If  EX~ < oo we have z, = l f n  and nP(]Xl[ > ] /n) -~0 since the terms of  

EP(IX, 
are monotone .  If EX~ = oo we have % = B, and from (18), 

nP(JXil >B.)~B2. [U (B.)] -~ P(]Xi] > B . ) ~  0 

as n ~ c~. In either case, 

Next, we have 

nP(lXi]>%)-+O as n ~ o o .  (19) 

rn 

nB~ 3 ~ ]xl3dF(x)=nB2 3~xdU(x) 
Ixl _-< ~ o 

~rt 

=nz:n B; 3 U('c,,)-nB] 3 S U(x) dx 
0 

sn 

and nB23S U(x)dx~nL, B2 3 U('c,,) using Theorem 1, p. 273 of  Feller [1]. If  
0 

EX~<oo we have ~ .=I /~ ,B.~(nEX2)~ and U(~.)-~EX~ as n ~ o o  while if 
E X  2 = oo we have % = B, and n B2 2 U (B,) ~ 1. In either case, 

nB[ 3 ~ [x]3 dF(x)-+O as n ~ o o .  (20) 
Ixl_-<~ 

Finally, we have 

nB~] ~ xdF(x)l=nB;~[ ~ xdF(x)l 
Ixl_-<~ Ixl>~ 

<nB,~ 1 ~. Ix[ dF(x) (21) 
Ixl>~ 

co 

<nB21 "c,P([XiI> L3+nB21 ~ P([Xi]> x) dx. 

The first term on the right hand  side of (21) goes to zero as n -~ oo by (19). To deal 
with the second term we use (18) and, given any e > 0, choose N = N (~) so large that 

P(]Xi]>x)<=e,x -2 U(x) 
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for x > N. Consequently, for n sufficiently large that % > N, 

co co 

nB21S P(lXi l>x)dx<enB2 l j x  2U(x)dx.  
Tn ~n 

Another  application of Theorem 1, p. 273 of [1] gives 

O0 

nB2 j J x -2 U(x)dx,..nB2~.c21 U(G)--,(EX2) ~ if EX2<oo, 1 
~n 

otherwise as n ~ o o  since ei ther B,~(nEX2) ~, U(z~)--*EX2,'G=Ifn in case 
E X 2 < ~  or %=B~,  nB; 2 U(B,)--* 1 in case EX2=oo. Thus, from (21), 

nB;l[ ~ xdF(x)l-~o as n--,oo. (22) 

The required result 6 , ( C , ) ~  0 follows from (19), (20) and (22), since C,~B ,  as 
El - +  OQ.  

Proof of Theorem 3. The equivalence of (i) and (ii) follows from Theorem 3.1 
of Ibragimov [8]. We thus have (iv) ~ (iii) ~ (ii) ~ (i) and to complete the proof 
it is just necessary to show that (i) ~ (iv). 

Now, when (i) holds we have 

I $ xdF(x)l= I $ xdr(x)l 
Ixl<=V~ [xl > 1/~ 

----< S I xl dF(x) 
I-~[> v~ 

<n -~ ~ x 2 dF(x)=O(n -0+~)/2) 
Ixl> v~ 

B 2 ~ n EX{ as n ~ o o  and that  S O  

~B;~I ~ xdF(~)l=O(~-~/2). 
Ixl _-< V~ 

Also, putting R (z)= ~ u 2 dF (u), we have 
I~1>~ 

Ixl3 dF(x)= - J udi(u)  
Ixl<_V~ o 

so that  

Finally, 

=-ff~R(~)+ ~ R(.)au=O(n "-~''2) 
0 

(23) 

B23n ~ Ixl 3dF(x)=O(n-~/2). (24) 
Ixl =< r 

nP(lXil>l/n)< [. x2 dF(x)=O(n-~/2), (25) 
Ixl> v~ 

and (iv) follows from (23), (24) and (25). 
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Proof of Theorem 4. If EX~ < m, the equivalence of (i) and (iii) follows easily 
from results given in Friedman,  Katz  and K o o p m a n s  [3]. That  (iii) implies 
EX. z, < oe follows from Theo rem 1. We also have (iv) ~ (iii) ~ (ii) so it remains 
to prove that  (i) ~ (iv) and (ii) ~ (i). 

First  we shall prove that  (i) ~ (iv). We have 

~, n 6/2 P (IX, I> l ~ )  < oo (26) 
t 

since E [X~ [2 +6< (30. Also, B.~ (n EX{) ~ as n ~ oo and using integration by parts, 

~ n (a- 31/2 ~ [xl3 dF(x) 
n=l Ixl=<g;, 

<3~n~ ~ x2p(lxi]>x) dx 
n = l  k = l  ~ < x < l  ~ 

< ~ n~ p([xi[>l~--1)[k~-(k-1)~] 
n = l  k = l  

<C~ P X/ l>  _ k �89 n (6- 3)/2 
k = l  n=k 

co 

=<c~ Y k6/2 P(IX I~ > kl/U-- 1)<oo, 
k = l  

(27) 

C~, C 2 denot ing suitable positive constants. Fur thermore ,  

i2(6-- 1)/2 I ~ X dF ( x )  l 

n = l  [x] _-< l/n 

co 

2 n<6-11/2 ~ IXl dF(x )  
.=i lxl > v~ 

= n <6-1>/2 r ( l X i l > l f n ) +  SP(lXif>x)clx 
n = 1 V'n 

co ~ co 
= 2n6/2P(IX,[>l/n)+ nC~-l)/ZY ", [. P(IX~l>x)dx 

n = l  n=l k=n V~<x< ~l/W4-f 
~ co 

-<-- r  
n = l  n = l  k=n 
co k 

< Y,n o/2P(IXiI>I/~)+D~ P(IX~I>I /k)k-*E n (~-~)/2 
n = l  k = l  n = l  

_<_v2 k6/2 P(ix ,  
k = l  

(28) 

D1, D 2 denot ing suitable positive constants. (iv) follows from (26), (27), (28). 
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Finally, we need to prove that (ii) ~ (i). Choose {C*} so that A.(C*)~ icnfA.(C.) 
and fix attention on ~ n  -*+a/2 A.(C*)<oo.  That  (i) holds for 6 = 0  is given by 
Theorem 1 and the proof for 6 > 0 is obtained by paralleling the proof of Theorem t. 
Instead of (8) we now have 

~', n-'+'/' oS (Z-t)(f"(t)-e-r162 dt < oo, 

where 

and 
f.(t) = [f(t/C*)]" 

f(t) =exp  { - � 8 9  t 2 H(t)} 

with H(t)-+ EX 2 as t--+ 0. The proof of Theorem 1 can then be followed through 
in similar fashion up to the stage of obtaining 

~na/Zi(1-x){ 5 (1-cos(C*)-~xy)2dF(y)}dx<oo (29) 
i 0 M_-<,~ V~ 

where 0 -2 =EX 2. Now, noting that C*~(nEX2) ~ as n ~ o o  we can, for lyl<n C*, 
find a positive constant K such that 

1-cos(C*)-lxy>=K(n-~x) 2, 0_<x_<l, 

and therefore (29) yields 

Furthermore,  

n(6/2) - 2 
n=l  

~ n (a/2)- 2 5 y~dF(y)<oo. (30) 
1 lyl<al/~ 

n-1 

Ixl_<_.~ n=2 k=t ,* ~ < I~[ _-<,~ g~W'r 

f >a42k2p(al~<]X,l<__a kl/k+i) n(a/2) -2 
k=l n=k+l 
oo 

> c Z P(0- r  < Lx, l_<- o Vk+ 1) 
k=l 

for some positive constant C, while 

E [XII 2+'= ~ I Ix[ z+a dE(x) 

~-C1 ~ k '+a/2 p ( 0 - ~ f k . ~ l X i ] ~ 0 - ] ~ l  ) 
k=l 

for some positive constant C 1 and hence E IXil2+a< oo. This proves the required 
result (i) for symmetric random variables; the result for the general case is obtained 
as in the proof  of Theorem 1. 
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