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Strict Disintegration of Measures 

Dorothy Maharam* 

Let R be a compact Hausdorff space, I k a product of closed unit intervals, 
M a Baire probability measure on R x I k, and R the induced measure on R. Then 
M has a strict Baire disintegration over 2; that is, for each reR,  there is a Baire 
probability measure m, on I k such that, for each Baire set E_~ R x I k, m, {t I(r, t)e E} 
defines a Baire measurable function on R, whose integral with respect to R is 
M(E). This result generalizes to the case in which R is replaced by an arbitrary 
measure space. 

1. Statement of the Theorems 

Let R be an arbitrary set, ~ (R) a Borel field of subsets of R, and X the Car- 
tesian product R x I k where k is an arbitrary cardinal __> l, and I k is the product 
of k copies of I = [0, 1]. We denote the a-field of Baire sets in I k by ~(/k) ,  and the 
a-field ~ ( R ) •  ~J(I k) in X, generated by cylinders in X with bases in ~(R)  or in 
~(Ik), by ~(X).  For arbitrary E~_X and r~R, let E(r)={t]t~Ik,(r, t)~E} (so 
that the "r-section" of E is {r} x E(r)). It is easy to see that if E ~ ( X )  then 
E,~ ( I k ) .  

Let M be a probability measure on ~(X),  and 2 the measure induced by M 
on ~(R) [that is, if H ~ ( R ) ,  R(H)=M(H x/k)]. Let ~ ( R ) ,  g u ( X )  be the re- 
spective completions of ~(R) and of g(X) ,  obtained by adjoining subsets of null 
sets. Clearly ~ ( R )  x ~( Ik)_~M(X) ,  and if E ~ ( R )  x r then E(r)~5~(I k) 
for all r~R. 

Our object is to prove the following: 

Theorem I. Under the conditions above, for each r~R there exists a Baire 
probability measure m r on ~ ( I  k) such that, for each E ~ ( R ) x  gj(Ik), 

(i) the map r~-~ m,(E(r)) is ~(R)-measurable, and 
(ii) M(E) = ~ m,(E(r)) dR(r). 

R 

With respect to the whole field ~za(X), the following assertion follows easily 
from Theorem I: 

Theorem I'. I f  EE~JM(X), then for almost all rER we have E(r)~mr(Ik), the 
completion of 5~(I k) with respect to m,; m,(E(r)) is a R-measurable function of r; 
and M(E) = I m,(E(r)) dR(r). 

R 

Note that we can replace X = R  x I k by any of its ~(X)-measurable subsets S 
in Theorem I, if we allow m,(S(r)) to take values < 1. For if M is defined on the 
N(X)-measurable subsets of S, we extend M to X by setting M ( S - X ) =  0, apply 

* The author gratefully acknowledges support by the National Science Foundation. 
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Theorem 1, and re-define m r on a null set of r's to ensure t h a t  mr(S(r)):O when 

Perhaps the most significant special case of Theorem I is that in which R is 
a compact Hausdorff space and N(R) is the field of Baire sets in R. Then X is 
also compact Hausdorff, and ~ ( X ) = N ( R ) x  N(I  k) is the field of Baire sets in X. 
Theorem I reduces to the following: 

Theorem II. Let R be a compact Hausdorff space, k a cardinal > 1, M a Baire 
probability measure on R x I k, and 2 the Baire measure induced on ~ (R)  by M. 
Then for each r~R there exists a Baire probability measure m r on ~ ( I  k) such that, 
for each U e N ( R  x I~), 

(1) the function assigning to r the value mr(U(r)) is Baire measurable on R, and 

(2) S mr(U(r)) d2(r) = M(U). 
R 

Our strategy is to prove Theorem II, and then to deduce Theorem I from it. 

Comparison with some Previous Theorems. Disintegration theorems of this 
type go back to yon Neumann [9], Halmos, and Dieudonn6 (see [-2, Th. 5] and 
[3]); a sharper form (essentially producing a product decomposition) is in [5, 
Th. 5]. Two standard formulations (substantially equivalent to each other and 
to Halmos's theorem as revised in [-3]) are given by Bourbaki [1, w 3, Nos. 1 and 3]. 
In all these theorems, in contrast to Theorem I, the underlying spaces are re- 
quired to have countable bases. Thus, whereas Bourbaki requires the spaces 
R and X (there called B and T) to be locally compact and second countable, we 
impose no cardinality conditions on them. On the other hand, where Bourbaki 
allows an arbitrary measurable map p from X to R to be given, we require X to 
be of a special product form and p to be the projection. The measures in Bourbaki 
are a-finite, in Theorem I are finite; but that is merely a matter of formulation. 
The conclusions of Bourbakfs theorems and of Theorem I are essentially the 
same, except that in the former the measures m r (there called 2b) are essentially 
unique. I do not know whether uniqueness holds in the present Theorem I; this 
is one of the complications arising from the lack of a countable base. 

A proof of Theorem I for the special case k-- 1 (and thus for k < No) is out- 
lined in [6]; this case furnishes the starting-point for the present proof 1. 

After the present paper was written, I learned that Valadier [7, 8] and Graf 
(unpublished) had independently proved a sharper and more general form of 
Theorem I, in which I k is replaced by an arbitrary Hausdorff space U, and "Baire" 
by "Borel"  throughout. (The latter change is the significant one; by itself, the 
generalization from I k to U could be accomplished in a standard way, by im- 
bedding U suitably in s o m e  Ik.) Nevertheless it is hoped that the present proof 
may be of interest, since the method is entirely different from that of Valadier 
and Graf; in particular, the proof of Theorem II makes no use of lifting theory. 

2. Further Notation 

We regard I k as I a= ~[{I, la~A}, where the index set A has cardinal k, and 
each I ,=[0,  1] =I.  We shall generally use r to denote a point of R; x for a point 

1 See [-6, w 4], "A disintegration theorem". A proof can also be deduced without difficulty from Theo- 
rem 2 b of [5, p. 149], by an argument very similar to that used in w 6 of the present paper. 
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of IA; B, C for non-empty subsets of A; z for a point of IC; U, V, W for subsets 
of R x [ A, R x I  B, R x I c respectively, and F, G, H for subsets of I A, I B, I c respec- 
tively. The projection map from R x I A to R X I B (B ~A )  iS denoted by PB, and 
the projection from I A to I B by 7~ B (so that PB = in X ~n). We use M B to denote 
the probabili ty measure induced on R x I B by M; that is, MB(V)=M(p~ 1 V)= 
M(V • I A-B) if V ~ ( R  • IB). When B is a singleton, say {b}, we may write M (b~ 
as mb. We denote (pB) -1  (~(R x I~))= {V x IA-B[ VE~(R x IB)} by ~(B,  R x [A), 
and (~B)-I ( ~  (IB)) = {G x I A-B i G ~ ~ (IB)} by ~ (B, IA). Note that if J~ + C _~ B _~ A, 
then ~ ( c ,  IA)~_~(B, IA)~_~(A, IA)=~(IA), and similarly with I A replaced by 
R x I  A. 

3. Lemmas 

First, a definition. Suppose X is any topological space, m is a finite measure 
on X, and cg is any a-field of m-measurable sets in X. We say that m is "~-regular"  
if, for each E~Cg, m(E)=inf{m(O)lOe~g, O~_E, 0 open in X}. 

Now suppose further that a continuous surjection f :  X - , X '  is given, where 
X'  is a topological space and m' is a finite Bake measure on X' (and so necessarily 
regular). Let N(X')  be the field of Baire sets in X', and cg = f - 1  {~(X')}. Define 
a measure m on cg by setting m ( f  -I E')=m'(E') for E'sN(X') .  

Lemma 1. Under the assumptions above, m is Cg-regular. 

The verification is routine and is omitted. 

Corollary. Under the same assumptions, every finite measure on cg is c(?-regular. 

For every such measure m on cg clearly arises from a measure m' on X'  as 
above. 

Now apply this Lemma and Corollary to X =I  A, X' = I  B (with g=t=BcA), 
and f =  ~r B, and we get 

Lemma 2. Every probability measure on .~(B, I A) is N(B, Ia)-regular. 

4. The Inductive System 

Let f be the family of all ordered pairs (C, m) where C is a non-empty subset 
of A and m is a real-valued function on R x g ( C ,  I A) such that 

(1) for each r~R the function m r defined by 

mr(F ) = m(r, F), F ~ ( C ,  I A) 

is a probability measure on N(C, IA), 
(2) for each U ~ ( C ,  R x 1A), mr(U(r)) is a Baire measurable function of r  on R, 

and M(U)=~R m~(U(r))d2(r). 
Note that  these conditions on m can be re-phrased in terms of ~ ( I  c) instead 

of ~(C,  I A) as follows: Put #C(H)=mr(~cl (H)) (H~N(IC)). Then 

(a) pc is, for each r~R, a probability measure on ~(lC), 

(b) if W ~ ( R  x I c) then #C(W(r)) is a Baire measurable function of r on R, 
and MC(w)= ~R #C(W(r))d2(r) . 
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In fact, (a) and (b) are immediate consequences of (1) and (2); conversely, if 
for each rER we have a measure #c satisfying (a) and (b), we have only to define 
m by m(r, F)=pC(~c(F))(FeN(C, IA), rER), to recover (1) and (2). 

On ~ ,  define a partial ordering as follows: (C, m)< (B, m') providing 

(i) 04:Cc_B~_A, 
(ii) for each rER, the restriction m' r [~(c, iA)=mr. This relation is easily verified 

to be transitive. 
Our object is, of course, to apply Zorn's Lemma. First, note that ~4 :0 .  For 

choose aEA and choose C={a};  M induces a Baire probability measure M a 
on R x I~, and M a induces the same measure 2 on N(R) as M does. Now the 
theorem of w 4 of [6] (the case k = 1 of the present theorem) applies, giving for 
each rER a Baire measure #~ on I a satisfying conditions (a) and (b) above. Thus 
({a}, m)E~, where re(r, F)=#~(rCaF ) for rER, FEN({a}, Ia). 

Next we show that ~ is inductive in the partial ordering. Let ~r be a non- 
empty totally ordered subset of ~e. Note that if (C, m) and (C, m') are both in ~ ,  
then m=m' from (ii) above. Put c~=_-{C[(C,m)E~}; C*= U c~, a non-empty 
subset of A; and -fi = U {N(C, IA), CE~}. It is easily seen that f f  is a finitely 
additive sub-field of N(C*, IA). Moreover, the a-field generated by ~- is all of 
N(C*, Ia), since the sets of the form E • I A-{a}, where EEN(I~) and aE C*, generate 
N(C*, 1 A) and are in ~ .  It follows from condition (ii) on N that for each rER, 
the measures m r on the various fields N(C, IA), where (C, rn)eY, are mutually 
consistent; thus they combine to give a finitely additive measure m'r on 2 .  We 
show that (keeping r fixed) m', has an extension (necessarily unique) to a countably 
additive measure m r* on N(C*, IA). To do this, it is enough to show that if F 0 , F,, 
F 2 . . . .  E ~ ,  Fo= ~ , ~ I F , ,  and F1,F 2 .... are pairwise disjoint, then mr(Fo)<__ 
y'~ m'r(F,); for the reverse inequality is trivial. 

Now FnEN(Cn, I A) for some CnECg(n=0, 1, 2 . . . .  ); let m" be the corresponding 
measure function, so that (C,, mn)E~e. From Lemma 2, (mn)r is N(Cn, Ia)-regular; 
hence, given eY>0, there exist open sets On in N(C, , I  A) such that O,=F, and 
(m")r(O,) < (mn)~(F,) + ~/2n + 1. Thus m'~(O,) < rn'r(F .) + e/2 n + 1. Similarly, there exists a 

t ~ t compact KoEN(Co,I A) such that KocFo c ~ 0 ,  and m,(Ko)=mr(Fo)-e/2. 
t N t From compactness, K c  ~)~ On for some N. Therefore mr(Ko)< ~,1 mr(O,), and 

the desired inequality follows. 
Now we define m* by m*(r, F)=m*(F) for FeN(C*, Ia). We shall show that 

(C*, m*)e~ ;  since (C, m)<(C*, m*) for each (C, m)ESe, (C*, m*) will then be the 
desired upper bound for ~ in Y'. 

We must check that (C*, m*) satisfies (1) and (2) above. Condition (1) is clear. 
To establish (2), let ~//be the family of all sets UEN(C*, R x I A) for which the 
conclusions of (2) are true with (C, m) replaced by (C*, m*). We must show that 
~//contains, and so is equal to, N(C*, R x Ia). 

Put H = ~ { N ( C ,  RxlA)I CECg}. It is easy to see that jf_c~//, that ~,~ is a 
finitely additive field of sets, and that the o--field generated by J f  is N(C*, R x IA). 
The implication UE~//=>R x I A -  UEql is trivial, and a routine calculation shows 
that if U, ~ U 2 _c... and U,E~ll(n = 1, 2 . . . .  ) then ~n U,E~. Thus ~//is a monotone 
class containing ~t~; and it follows immediately from the statements above that 
d#~_N(C*, R x IA), as required. Hence (C*, m*)E~_(. 
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5. Proof of Theorem II Concluded 

By Zorn's Lemma, ~ has a maximal element, say (C, m). We shall show that 
C=A,  from which the theorem follows. Suppose, then, that a e A - C ;  we derive 
a contradiction. Put B = C w { a } ;  thus R x lB=(R xlC) X l a = R  ' x I. Apply the 
known case k = 1 of the present theorem to the measure M B on R' x I; note that 
the induced measure on R' (corresponding to "2") is here M c. We obtain, for ,  
each (r, z)eR x I c, a Baire probability measure vr, z on Ia=I  , such that for each 
VEN(R x IB), Vr, z(V(r , z)) is a Baire measurable function of (r, z), and 

MB(V)= ~ vr,~(V(r,z))dMC(r,z). 
R x I  c 

Now for arbitrary FeN(B ,  I A) we note that F = G x I a -B where G = ~zBFeN(IB), 
and define, for each reR, m'r(F ) = ~ic vr, ~ G(z)d#C(z), where G = ~ F  ~ I  B =I  c x I a, 
and G(z) means {tl tela,(Z,  t)eG}. We must check that the integrand is Baire 
measurable on I c (for fixed r~R). But from the definition of v r ~ above, v r ~(V(r, z)) 
is Baire measurable in (r, z), and so in z for fixed r, for ail' VeN(R x'IB); now 
apply this with V = R x G. 

We put m'(r, F)=m'r(F ) (FeN(B,  Ia)) and prove that (B, m ' )e~ .  This is most 
conveniently done in terms of the measures gB where (as in w 4) 

#~(G) =m'r(G x [A-B)= ~ Vr,~G(z)d#C(z), for G e N ( I  B) and rsR.  
i c 

We must show that conditions (a) and (b) of w hold. Condition (a) follows 
easily from the definition and the above remarks on Baire measurability. To see 
that (b) holds, suppose VeN(R  x IB); we must show that MB(V)= ~R #~(V(r))dA(r) 
(first showing that the integrand is Baire measurable). Now, #~(V(r))= 
~Ic vr, ~ V(r, z)d#C(z). First we show that for an arbitrary bounded Baire measurable 
function f on R x I c, 

f(r,  z)dMC(r, z)= ~ { ~ f(r,  z)d#C(z)}d2(r), 
R • I C R I C 

and that the inner integral on the right is a Baire measurable function of r. This 
follows by a routine argument from the special case in which f is the characteristic 
function of a set W e N ( R  x IC). To prove this special case, define U = W x IA-C; 
then UeN(C,  Rx lA) ,  and MC(W)=M(U).  Because (C ,m)e~ ,  condition (2) 
now gives 

MC(w) = ~ m r (W(r) • I A- c) d2 (r) = ~ #c (W(r))d2 (r), 
R R 

as desired. 

To derive (b), apply the result just established to f(r,z)=Vr,~(V(r,z)); we 
obtain 

v,,~(V(r, z))dMC(r, z)= ~ { ~ v,,~(V (r, z))dpC(z)} d;~(r), 
R x I c R I c 

that is (since (V(r))(z)= V(r, z)), 

MB(V) = ~ #~(V(r))d2(r), 
R 

completing the proof of (b). 
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Thus (B,m')e~.  We claim that (C,m)<(B,m'). Since C~_B, we need only 
check that, for each reR and FeN(C, IA), m'r(F)=mr(F ). Now F = H x I  A-c, 
where H=ncFeN(IC), and by definition m'r(F)= ~icVr, z(H• The 
integrand here is just the characteristic function of H, so m'r(F)=#C(H)= 
mr(H x / a - c )  =mr(F) ' as required. 

This contradicts the maximality of (C,m). Thus C=A, and Theorem II 
follows. 

6. Proof of Theorem I 

We now deduce Theorem I from Theorem II, and return to the notation of w 1. 
R is now an arbitrary set (with no topology), 2 is the measure induced On the Borel 
field N(R) in R, and N~(R) is the completion of N(R) with respect to the measure 2. 
Let Jg  be the algebra of measurable modulo null sets of Nx(R), and S the rep- 
resentation space of ~ '  equipped with the usual (compact, extremally discon- 
nected) topology, and the usual measure, which we call 2. That is, for aeJg ,  we 
denote the open-closed set corresponding to a by S(a), set 1(S(a))=2(a), and 
extend )~ to the field N(S) of Baire sets in S. Let p: rig' ~ Nx(R) be a lifting of dg 
[4]. It is easy to verify that, for each reR, the family {alaeJ/{, rap(a)} is an 
ultrafilter in J{, and so a point of S. Thus if we define, for reR,  

O(r) = (-] {S(a) l aedd, rap(a)}, 

0 is a well defined map of R into S. It is easy to see that, for a e ~ ,  O-1S(a)=p(a), 
and so ~(S(a))=2(O-l(S(a))); and it follows at once that, for all HeM(S), 
O-l(H)eNx(R) and 2(0-1H)=2(H). Hence if f is N(S)-measurable in S, and 
if f is the function on R such that f(r)=f(Or), then f is Nx(R)-measurable and 

~ f(r) d2(r) = I f(S)di(s). 
R S 

Now let T=S  x/k (a compact Hausdorff space) and let N(T) be the a-field 
of Baire sets in T, so that N(T) is generated by sets of the form S(a) x L, where 
aeJg, LeN(Ik). Define ~b: R x I k ~  S x/k by setting ~b(r, t)=(Or, t). Then for all 
H ~_S x IkandreR, H(Or)= {tltelk,(Or, t)eH}= {t[telk,(r,t)eO-l H}=(tp-l H)(r). 
Also from the properties mentioned above for 0, it follows (by a simple Borel 
induction) that if HeM(T), then 0-1(H)eNz(R)x N(I~)___NM(X). 

Set ~ / (H)= M(O- i l l )  for HeM(T);  then/9/is a Baire measure on T. Moreover, 
for each LeN(S), f4 (L x Ik)= M(O-~(L x P))= M[O-~ L x P]  =2(0-~L)=  2(L). 

Now Theorem II applies to (T, N(T), A?/), so that for each seS there is a 
probability measure ~ on N(I  k) such that, for HeM(T), 

(i) s~--~FG(H(s)) is Baire measurable in S, and 

-- (ii) ~s 7G(H(s))di(s)=]~/(H). 
For reR and LeN(I), set mrL =th0r(L ). We show that, with this choice of m r, 

Theorem I holds. First suppose EeN~(R)x N(I k) and is of the form O-~H, where 
HeM(T). From the considerations above, for each r, E(r)=H(Or)eN(Ik); and 
by definition of mr, mrE(r)=FnorH(Or ). Thus if we set f(s)=Tnfl(s) and f ( r ) =  
mrE(r) we have f(r)=f(Or). Hence m,E(r) is Na(R)-measurable in r, and 

m r E (r) d2 (r) = ~ Yn~ (H (s)) d1 (s) = f/l (U) = M (O -~ H) = M (E). 
R S 
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Finally, for each EsYd~(R)x ~(lk), we can find a set HeN(T) and a null set 
N o R  such that the symmetric difference EA 0 - a ( H ) _ N  x I. For if E is of the 
form A x L, where AeN~(R), LeN(Ik), we take H=S(a) x L where a is the measure 
class of A, so that q/-1 ( H ) =  p (a)x L; and N = A A p(a). The assertion carries over 
to all E~Mz(R ) x ~(I k) by Borel induction. But if E, H and N are related as above, 
then on R - N ,  E(r)=(O-lH)(r) and so mr(E,)=mr(O-lH)(r). Therefore, since 
Theorem I holds for ~ - 1  H, it holds for E, and the proof is now complete. 
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