Strict Disintegration of Measures

Dorothy Maharam *

Let R be a compact Hausdorff space, I^{k} a product of closed unit intervals, M a Baire probability measure on $R \times I^{k}$, and λ the induced measure on R. Then M has a strict Baire disintegration over λ; that is, for each $r \in R$, there is a Baire probability measure m_{r} on I^{k} such that, for each Baire set $E \subseteq R \times I^{k}, m_{r}\{t \mid(r, t) \in E\}$ defines a Baire measurable function on R, whose integral with respect to λ is $M(E)$. This result generalizes to the case in which R is replaced by an arbitrary measure space.

1. Statement of the Theorems

Let R be an arbitrary set, $\mathscr{B}(R)$ a Borel field of subsets of R, and X the Cartesian product $R \times I^{k}$ where k is an arbitrary cardinal $\geqq 1$, and I^{k} is the product of k copies of $I=[0,1]$. We denote the σ-field of Baire sets in I^{k} by $\mathscr{B}\left(I^{k}\right)$, and the σ-field $\mathscr{B}(R) \times \mathscr{B}\left(I^{k}\right)$ in X, generated by cylinders in X with bases in $\mathscr{B}(R)$ or in $\mathscr{B}\left(I^{k}\right)$, by $\mathscr{B}(X)$. For arbitrary $E \subseteq X$ and $r \in R$, let $E(r)=\left\{t \mid t \in I^{k},(r, t) \in E\right\}$ (so that the " r-section" of E is $\{r\} \times E(r))$. It is easy to see that if $E \in \mathscr{B}(X)$ then $E_{r} \in \mathscr{B}\left(I^{k}\right)$.

Let M be a probability measure on $\mathscr{B}(X)$, and λ the measure induced by M on $\mathscr{B}(R)$ [that is, if $\left.H \in \mathscr{B}(R), \lambda(H)=M\left(H \times I^{k}\right)\right]$. Let $\mathscr{B}_{\lambda}(R), \mathscr{B}_{M}(X)$ be the respective completions of $\mathscr{B}(R)$ and of $\mathscr{B}(X)$, obtained by adjoining subsets of null sets. Clearly $\mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right) \subseteq \mathscr{B}_{M}(X)$, and if $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right)$, then $E(r) \in \mathscr{B}\left(I^{k}\right)$ for all $r \in R$.

Our object is to prove the following:
Theorem I. Under the conditions above, for each $r \in R$ there exists a Baire probability measure m_{r} on $\mathscr{B}\left(I^{k}\right)$ such that, for each $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right)$,
(i) the map $r \mapsto m_{r}(E(r))$ is $\mathscr{B}_{2}(R)$-measurable, and
(ii) $M(E)=\int_{R} m_{r}(E(r)) d \lambda(r)$.

With respect to the whole field $\mathscr{B}_{M}(X)$, the following assertion follows easily from Theorem I:

Theorem I'. If $E \in \mathscr{B}_{M}(X)$, then for almost all $r \in R$ we have $E(r) \in \mathscr{B}_{m_{r}}\left(I^{k}\right)$, the completion of $\mathscr{B}\left(I^{k}\right)$ with respect to $m_{r} ; m_{r}(E(r))$ is a λ-measurable function of r; and $M(E)=\int_{R} m_{r}(E(r)) d \lambda(r)$.

Note that we can replace $X=R \times I^{k}$ by any of its $\mathscr{B}(X)$-measurable subsets S in Theorem I, if we allow $m_{r}(S(r))$ to take values $\leqq 1$. For if M is defined on the $\mathscr{B}(X)$-measurable subsets of S, we extend M to X by setting $M(S-X)=0$, apply

[^0]Theorem 1, and re-define m_{r} on a null set of r 's to ensure that $m_{r}(S(r))=0$ when $S(r)=\emptyset$.

Perhaps the most significant special case of Theorem I is that in which R is a compact Hausdorff space and $\mathscr{B}(R)$ is the field of Baire sets in R. Then X is also compact Hausdorff, and $\mathscr{B}(X)=\mathscr{B}(R) \times \mathscr{B}\left(I^{k}\right)$ is the field of Baire sets in X. Theorem I reduces to the following:

Theorem II. Let R be a compact Hausdorff space, k a cardinal $\geqq 1, M$ a Baire probability measure on $R \times I^{k}$, and λ the Baire measure induced on $\mathscr{B}(R)$ by M. Then for each $r \in R$ there exists a Baire probability measure m_{r} on $\mathscr{B}\left(I^{k}\right)$ such that, for each $U \in \mathscr{B}\left(R \times I^{k}\right)$,
(1) the function assigning to r the value $m_{r}(U(r))$ is Baire measurable on R, and
(2) $\int_{R} m_{r}(U(r)) d \lambda(r)=M(U)$.

Our strategy is to prove Theorem II, and then to deduce Theorem I from it.
Comparison with some Previous Theorems. Disintegration theorems of this type go back to von Neumann [9], Halmos, and Dieudonné (see [2, Th. 5] and [3]); a sharper form (essentially producing a product decomposition) is in [5, Th. 5]. Two standard formulations (substantially equivalent to each other and to Halmos's theorem as revised in [3]) are given by Bourbaki [1, §3, Nos. 1 and 3]. In all these theorems, in contrast to Theorem I, the underlying spaces are required to have countable bases. Thus, whereas Bourbaki requires the spaces R and X (there called B and T) to be locally compact and second countable, we impose no cardinality conditions on them. On the other hand, where Bourbaki allows an arbitrary measurable map p from X to R to be given, we require X to be of a special product form and p to be the projection. The measures in Bourbaki are σ-finite, in Theorem I are finite; but that is merely a matter of formulation. The conclusions of Bourbaki's theorems and of Theorem I are essentially the same, except that in the former the measures m_{r} (there called λ_{b}) are essentially unique. I do not know whether uniqueness holds in the present Theorem I; this is one of the complications arising from the lack of a countable base.

A proof of Theorem I for the special case $k=1$ (and thus for $k \leqq \aleph_{0}$) is outlined in [6]; this case furnishes the starting-point for the present proof ${ }^{1}$.

After the present paper was written, I learned that Valadier [7, 8] and Graf (unpublished) had independently proved a sharper and more general form of Theorem I, in which I^{k} is replaced by an arbitrary Hausdorff space U, and "Baire" by "Borel" throughout. (The latter change is the significant one; by itself, the generalization from I^{k} to U could be accomplished in a standard way, by imbedding U suitably in some I^{k}.) Nevertheless it is hoped that the present proof may be of interest, since the method is entirely different from that of Valadier and Graf; in particular, the proof of Theorem II makes no use of lifting theory.

2. Further Notation

We regard I^{k} as $I^{A}=\prod\left\{I_{a} \mid a \in A\right\}$, where the index set A has cardinal k, and each $I_{a}=[0,1]=I$. We shall generally use r to denote a point of $R ; x$ for a point

[^1]of $I^{A} ; B, C$ for non-empty subsets of $A ; z$ for a point of $I^{C} ; U, V, W$ for subsets of $R \times I^{A}, R \times I^{B}, R \times I^{C}$ respectively, and F, G, H for subsets of I^{A}, I^{B}, I^{C} respectively. The projection map from $R \times I^{A}$ to $R \times I^{B}(B \subseteq A)$ is denoted by p_{B}, and the projection from I^{A} to I^{B} by π_{B} (so that $p_{B}=i_{R} \times \pi_{B}$). We use M^{B} to denote the probability measure induced on $R \times I^{B}$ by M; that is, $M^{B}(V)=M\left(p_{B}^{-1} V\right)=$ $M\left(V \times I^{A-B}\right)$ if $V \in \mathscr{B}\left(R \times I^{B}\right)$. When B is a singleton, say $\{b\}$, we may write $M^{\{b\}}$ as M^{b}. We denote $\left(p_{B}\right)^{-1}\left(\mathscr{B}\left(R \times I^{B}\right)\right)=\left\{V \times I^{A-B} \mid V \in \mathscr{B}\left(R \times I^{B}\right)\right\}$ by $\mathscr{B}\left(B, R \times I^{A}\right)$, and $\left(\pi_{B}\right)^{-1}\left(\mathscr{B}\left(I^{B}\right)\right)=\left\{G \times I^{A-B} \mid G \in \mathscr{B}\left(I^{B}\right)\right\}$ by $\mathscr{B}\left(B, I^{A}\right)$. Note that if $\emptyset \neq C \subseteq B \subseteq A$, then $\mathscr{B}\left(C, I^{A}\right) \subseteq \mathscr{B}\left(B, I^{A}\right) \subseteq \mathscr{B}\left(A, I^{A}\right)=\mathscr{B}\left(I^{A}\right)$, and similarly with I^{A} replaced by $R \times I^{A}$.

3. Lemmas

First, a definition. Suppose X is any topological space, m is a finite measure on X, and \mathscr{C} is any σ-field of m-measurable sets in X. We say that m is " \mathscr{C}-regular" if, for each $E \in \mathscr{C}, m(E)=\inf \{m(0) \mid 0 \in \mathscr{C}, 0 \supseteq E, 0$ open in $X\}$.

Now suppose further that a continuous surjection $f: X \rightarrow X^{\prime}$ is given, where X^{\prime} is a topological space and m^{\prime} is a finite Baire measure on X^{\prime} (and so necessarily regular). Let $\mathscr{B}\left(X^{\prime}\right)$ be the field of Baire sets in X^{\prime}, and $\mathscr{C}=f^{-1}\left\{\mathscr{B}\left(X^{\prime}\right)\right\}$. Define a measure m on \mathscr{C} by setting $m\left(f^{-1} E^{\prime}\right)=m^{\prime}\left(E^{\prime}\right)$ for $E^{\prime} \in \mathscr{B}\left(X^{\prime}\right)$.

Lemma 1. Under the assumptions above, m is \mathscr{C}-regular.
The verification is routine and is omitted.
Corollary. Under the same assumptions, every finite measure on \mathscr{C} is \mathscr{C}-regular.
For every such measure m on \mathscr{C} clearly arises from a measure m^{\prime} on X^{\prime} as above.

Now apply this Lemma and Corollary to $X=I^{A}, X^{\prime}=I^{B}($ with $\emptyset \neq B \subset A)$, and $f=\pi_{B}$, and we get

Lemma 2. Every probability measure on $\mathscr{B}\left(B, I^{A}\right)$ is $\mathscr{B}\left(B, I^{A}\right)$-regular.

4. The Inductive System

Let \mathscr{Z} be the family of all ordered pairs (C, m) where C is a non-empty subset of A and m is a real-valued function on $R \times \mathscr{B}\left(C, I^{A}\right)$ such that
(1) for each $r \in R$ the function m_{r} defined by

$$
m_{r}(F)=m(r, F), \quad F \in \mathscr{B}\left(C, I^{A}\right)
$$

is a probability measure on $\mathscr{B}\left(C, I^{A}\right)$,
(2) for each $U \in \mathscr{B}\left(C, R \times I^{A}\right), m_{r}(U(r))$ is a Baire measurable function of r on R, and $M(U)=\int_{R} m_{r}(U(r)) d \lambda(r)$.

Note that these conditions on m can be re-phrased in terms of $\mathscr{B}\left(I^{C}\right)$ instead of $\mathscr{B}\left(C, I^{A}\right)$ as follows: Put $\mu_{r}^{C}(H)=m_{r}\left(\pi_{C}^{-1}(H)\right)\left(H \in \mathscr{B}\left(I^{C}\right)\right)$. Then
(a) μ_{r}^{C} is, for each $r \in R$, a probability measure on $\mathscr{B}\left(I^{C}\right)$,
(b) if $W \in \mathscr{B}\left(R \times I^{C}\right)$ then $\mu_{r}^{C}(W(r))$ is a Baire measurable function of r on R, and $M^{C}(W)=\int_{R} \mu_{r}^{C}(W(r)) d \lambda(r)$.

In fact, (a) and (b) are immediate consequences of (1) and (2); conversely, if for each $r \in R$ we have a measure μ_{r}^{c} satisfying (a) and (b), we have only to define m by $m(r, F)=\mu_{r}^{C}\left(\pi_{C}(F)\right)\left(F \in \mathscr{B}\left(C, I^{A}\right), r \in R\right)$, to recover (1) and (2).

On \mathscr{Z}, define a partial ordering as follows: $(C, m) \leqq\left(B, m^{\prime}\right)$ providing
(i) $\emptyset \neq C \subseteq B \subseteq A$,
(ii) for each $r \in R$, the restriction $\left.m_{r}^{\prime}\right|_{\mathscr{B}\left(C, I^{A}\right)}=m_{r}$. This relation is easily verified to be transitive.

Our object is, of course, to apply Zorn's Lemma. First, note that $\mathscr{Z} \neq \emptyset$. For choose $a \in A$ and choose $C=\{a\} ; M$ induces a Baire probability measure M^{a} on $R \times I_{a}$, and M^{a} induces the same measure λ on $\mathscr{B}(R)$ as M does. Now the theorem of $\S 4$ of [6] (the case $k=1$ of the present theorem) applies, giving for each $r \in R$ a Baire measure μ_{r}^{a} on I_{a} satisfying conditions (a) and (b) above. Thus $(\{a\}, m) \in \mathscr{Z}$, where $m(r, F)=\mu_{r}^{a}\left(\pi_{a} F\right)$ for $r \in R, F \in \mathscr{B}\left(\{a\}, I^{A}\right)$.

Next we show that \mathscr{Z} is inductive in the partial ordering. Let \mathscr{L} be a nonempty totally ordered subset of \mathscr{Z}. Note that if (C, m) and $\left(C, m^{\prime}\right)$ are both in \mathscr{L}, then $m=m^{\prime}$ from (ii) above. Put $\mathscr{C} \equiv\{C \mid(C, m) \in \mathscr{L}\} ; C^{*}=\bigcup \mathscr{C}$, a non-empty subset of A; and $\mathscr{F}=\bigcup\left\{\mathscr{B}\left(C, I^{A}\right), C \in \mathscr{C}\right\}$. It is easily seen that \mathscr{F} is a finitely additive sub-field of $\mathscr{B}\left(C^{*}, I^{A}\right)$. Moreover, the σ-field generated by \mathscr{F} is all of $\mathscr{B}\left(C^{*}, I^{A}\right)$, since the sets of the form $E \times I^{A-\{a\}}$, where $E \in \mathscr{B}\left(I_{a}\right)$ and $a \in C^{*}$, generate $\mathscr{B}\left(C^{*}, I^{A}\right)$ and are in \mathscr{F}. It follows from condition (ii) on \mathscr{Z} that for each $r \in R$, the measures m_{r} on the various fields $\mathscr{B}\left(C, I^{A}\right)$, where $(C, m) \in \mathscr{L}$, are mutually consistent; thus they combine to give a finitely additive measure m_{r}^{\prime} on \mathscr{F}. We show that (keeping r fixed) m_{r}^{\prime} has an extension (necessarily unique) to a countably additive measure m_{r}^{*} on $\mathscr{B}\left(C^{*}, I^{A}\right)$. To do this, it is enough to show that if F_{0}, F_{1}, $F_{2}, \ldots \in \mathscr{F}, F_{0}=\bigcup_{n=1}^{\infty} F_{n}$, and F_{1}, F_{2}, \ldots are pairwise disjoint, then $m_{r}\left(F_{0}\right) \leqq$ $\sum_{1}^{\infty} m_{r}^{\prime}\left(F_{n}\right)$; for the reverse inequality is trivial.

Now $F_{n} \in \mathscr{B}\left(C_{n}, I^{A}\right)$ for some $C_{n} \in \mathscr{C}(n=0,1,2, \ldots)$; let m^{n} be the corresponding measure function, so that $\left(C_{n}, m^{n}\right) \in \mathscr{L}$. From Lemma $2,\left(m^{n}\right)_{r}$ is $\mathscr{B}\left(C_{n}, I^{A}\right)$-regular; hence, given $\varepsilon>0$, there exist open sets O_{n} in $\mathscr{B}\left(C_{n}, I^{A}\right)$ such that $O_{n} \supset F_{n}$ and $\left(m^{n}\right)_{r}\left(O_{n}\right)<\left(m^{n}\right)_{r}\left(F_{n}\right)+\varepsilon / 2^{n+1}$. Thus $m_{r}^{\prime}\left(O_{n}\right) \leqq m_{r}^{\prime}\left(F_{n}\right)+\varepsilon / 2^{n+1}$. Similarly, there exists a compact $K_{0} \in \mathscr{B}\left(C_{0}, I^{A}\right)$ such that $K_{0} \subset F_{0} \subset \bigcup_{1}^{\infty} O_{n}$ and $m_{r}^{\prime}\left(K_{0}\right) \geqq m_{r}^{\prime}\left(F_{0}\right)-\varepsilon / 2$. From compactness, $K \subset \bigcup_{1}^{N} O_{n}$ for some N. Therefore $m_{r}^{\prime}\left(K_{0}\right) \leqq \sum_{1}^{N} m_{r}^{\prime}\left(O_{n}\right)$, and the desired inequality follows.

Now we define m^{*} by $m^{*}(r, F)=m_{r}^{*}(F)$ for $F \in \mathscr{B}\left(C^{*}, I^{A}\right)$. We shall show that $\left(C^{*}, m^{*}\right) \in \mathscr{Z}$; since $(C, m) \leqq\left(C^{*}, m^{*}\right)$ for each $(C, m) \in \mathscr{L},\left(C^{*}, m^{*}\right)$ will then be the desired upper bound for \mathscr{L} in \mathscr{Z}.

We must check that (C^{*}, m^{*}) satisfies (1) and (2) above. Condition (1) is clear. To establish (2), let \mathscr{U} be the family of all sets $U \in \mathscr{B}\left(C^{*}, R \times I^{A}\right)$ for which the conclusions of (2) are true with (C, m) replaced by (C^{*}, m^{*}). We must show that \mathscr{U} contains, and so is equal to, $\mathscr{B}\left(C^{*}, R \times I^{A}\right)$.

Put $\mathscr{H}=\bigcup\left\{\mathscr{B}\left(C, R \times I^{A}\right) \mid C \in \mathscr{C}\right\}$. It is easy to see that $\mathscr{H} \subseteq \mathscr{U}$, that \mathscr{H} is a finitely additive field of sets, and that the σ-field generated by \mathscr{H} is $\mathscr{B}\left(C^{*}, R \times I^{A}\right)$. The implication $U \in \mathscr{U} \Rightarrow R \times I^{A}-U \in \mathscr{U}$ is trivial, and a routine calculation shows that if $U_{1} \subseteq U_{2} \subseteq \cdots$ and $U_{n} \in \mathscr{U}(n=1,2, \ldots)$ then $\bigcup_{n} U_{n} \in \mathscr{U}$. Thus \mathscr{U} is a monotone class containing \mathscr{H}; and it follows immediately from the statements above that $\mathscr{U} \supseteq \mathscr{B}\left(C^{*}, R \times I^{A}\right)$, as required. Hence $\left(C^{*}, m^{*}\right) \in \mathscr{Z}$.

5. Proof of Theorem II Concluded

By Zorn's Lemma, \mathscr{Z} has a maximal element, say (C, m). We shall show that $C=A$, from which the theorem follows. Suppose, then, that $a \in A-C$; we derive a contradiction. Put $B=C \cup\{a\}$; thus $R \times I^{B}=\left(R \times I^{C}\right) \times I_{a}=R^{\prime} \times I$. Apply the known case $k=1$ of the present theorem to the measure M^{B} on $R^{\prime} \times I$; note that the induced measure on R^{\prime} (corresponding to " $\lambda^{\prime \prime}$) is here M^{C}. We obtain, for each $(r, z) \in R \times I^{C}$, a Baire probability measure $v_{r, z}$ on $I_{a}=I$, such that for each $V \in \mathscr{B}\left(R \times I^{B}\right), v_{r, z}(V(r, z))$ is a Baire measurable function of (r, z), and

$$
M^{B}(V)=\int_{R \times I^{C}} v_{r, z}(V(r, z)) d M^{C}(r, z)
$$

Now for arbitrary $F \in \mathscr{B}\left(B, I^{A}\right)$ we note that $F=G \times I^{A-B}$ where $G=\pi_{B} F \in \mathscr{B}\left(I^{B}\right)$, and define, for each $r \in R, m_{r}^{\prime}(F)=\int_{I^{c}} v_{r, z} G(z) d \mu_{r}^{C}(z)$, where $G=\pi_{B} F \subseteq I^{B}=I^{C} \times I_{a}$, and $G(z)$ means $\left\{t \mid t \in I_{a},(z, t) \in G\right\}$. We must check that the integrand is Baire measurable on I^{C} (for fixed $r \in R$). But from the definition of $v_{r, z}$ above, $v_{r, z}(V(r, z)$) is Baire measurable in (r, z), and so in z for fixed r, for all $V \in \mathscr{B}\left(R \times I^{B}\right)$; now apply this with $V=R \times G$.

We put $m^{\prime}(r, F)=m_{r}^{\prime}(F)\left(F \in \mathscr{B}\left(B, I^{A}\right)\right)$ and prove that $\left(B, m^{\prime}\right) \in \mathscr{Z}$. This is most conveniently done in terms of the measures μ_{r}^{B} where (as in §4)

$$
\mu_{r}^{B}(G)=m_{r}^{\prime}\left(G \times I^{A-B}\right)=\int_{I^{C}} v_{r, z} G(z) d \mu_{r}^{C}(z), \quad \text { for } G \in \mathscr{B}\left(I^{B}\right) \text { and } r \in R .
$$

We must show that conditions (a) and (b) of $\S 4$ hold. Condition (a) follows easily from the definition and the above remarks on Baire measurability. To see that (b) holds, suppose $V \in \mathscr{B}\left(R \times I^{B}\right)$; we must show that $M^{B}(V)=\int_{R} \mu_{r}^{B}(V(r)) d \lambda(r)$ (first showing that the integrand is Baire measurable). Now, $\mu_{r}^{B}(V(r))=$ $\int_{I^{C}} v_{r, z} V(r, z) d \mu_{r}^{C}(z)$. First we show that for an arbitrary bounded Baire measurable function f on $R \times I^{C}$,

$$
\int_{R \times I^{C}} f(r, z) d M^{C}(r, z)=\int_{R}\left\{\int_{I^{C}} f(r, z) d \mu_{r}^{C}(z)\right\} d \lambda(r),
$$

and that the inner integral on the right is a Baire measurable function of r. This follows by a routine argument from the special case in which f is the characteristic function of a set $W \in \mathscr{B}\left(R \times I^{C}\right)$. To prove this special case, define $U=W \times I^{A-C}$; then $U \in \mathscr{B}\left(C, R \times I^{A}\right)$, and $M^{C}(W)=M(U)$. Because $(C, m) \in \mathscr{Z}$, condition (2) now gives

$$
M^{C}(W)=\int_{R} m_{r}\left(W(r) \times I^{A-C}\right) d \lambda(r)=\int_{R} \mu_{R}^{C}(W(r)) d \lambda(r)
$$

as desired.
To derive (b), apply the result just established to $f(r, z)=v_{r, z}(V(r, z))$; we obtain

$$
\int_{R \times I^{C}} v_{r, z}(V(r, z)) d M^{C}(r, z)=\int_{R}\left\{\int_{I^{C}} v_{r, z}(V(r, z)) d \mu_{r}^{C}(z)\right\} d \lambda(r),
$$

that is $(\operatorname{since}(V(r))(z)=V(r, z))$,

$$
M^{B}(V)=\int_{R} \mu_{r}^{B}(V(r)) d \lambda(r)
$$

completing the proof of (b).

Thus $\left(B, m^{\prime}\right) \in \mathscr{Z}$. We claim that $(C, m) \leqq\left(B, m^{\prime}\right)$. Since $C \subseteq B$, we need only check that, for each $r \in R$ and $F \in \mathscr{B}\left(C, I^{A}\right), m_{r}^{\prime}(F)=m_{r}(F)$. Now $F=H \times I^{A-C}$, where $H=\pi_{C} F \in \mathscr{B}\left(I^{C}\right)$, and by definition $m_{r}^{\prime}(F)=\int_{I^{c}} v_{r, z}\left(H \times I_{a}\right)(z) d \mu_{r}^{C}(z)$. The integrand here is just the characteristic function of H, so $m_{r}^{\prime}(F)=\mu_{r}^{C}(H)=$ $m_{r}\left(H \times I^{A-C}\right)=m_{r}(F)$, as required.

This contradicts the maximality of (C, m). Thus $C=A$, and Theorem II follows.

6. Proof of Theorem I

We now deduce Theorem I from Theorem II, and return to the notation of $\S 1$. R is now an arbitrary set (with no topology), λ is the measure induced on the Borel field $\mathscr{B}(R)$ in R, and $\mathscr{B}_{\lambda}(R)$ is the completion of $\mathscr{B}(R)$ with respect to the measure λ. Let \mathscr{M} be the algebra of measurable modulo null sets of $\mathscr{B}_{\lambda}(R)$, and S the representation space of \mathscr{M} equipped with the usual (compact, extremally disconnected) topology, and the usual measure, which we call $\tilde{\lambda}$. That is, for $a \in \mathscr{A}$, we denote the open-closed set corresponding to a by $S(a)$, set $\tilde{\lambda}(S(a))=\lambda(a)$, and extend $\tilde{\lambda}$ to the field $\mathscr{B}(S)$ of Baire sets in S. Let $\rho: \mathscr{M} \rightarrow \mathscr{B}_{\lambda}(R)$ be a lifting of \mathscr{M} [4]. It is easy to verify that, for each $r \in R$, the family $\{a \mid a \in \mathscr{M}, r \in \rho(a)\}$ is an ultrafilter in \mathscr{M}, and so a point of S. Thus if we define, for $r \in R$,

$$
\theta(r)=\bigcap\{S(a) \mid a \in \mathscr{M}, r \in \rho(a)\}
$$

θ is a well defined map of R into S. It is easy to see that, for $a \in \mathscr{M}, \theta^{-1} S(a)=\rho(a)$, and so $\tilde{\lambda}(S(a))=\lambda\left(\theta^{-1}(S(a))\right.$; and it follows at once that, for all $H \in \mathscr{B}(S)$, $\theta^{-1}(H) \in \mathscr{B}_{\lambda}(R)$ and $\lambda\left(\theta^{-1} H\right)=\tilde{\lambda}(H)$. Hence if \tilde{f} is $\mathscr{B}(S)$-measurable in S, and if f is the function on R such that $f(r)=\tilde{f}(\theta r)$, then f is $\mathscr{B}_{\lambda}(R)$-measurable and

$$
\int_{R} f(r) d \lambda(r)=\int_{S} \tilde{f}(S) d \tilde{\lambda}(s) .
$$

Now let $T=S \times I^{k}$ (a compact Hausdorff space) and let $\mathscr{B}(T)$ be the σ-field of Baire sets in T, so that $\mathscr{B}(T)$ is generated by sets of the form $S(a) \times L$, where $a \in \mathscr{M}, L \in \mathscr{B}\left(I^{k}\right)$. Define $\psi: R \times I^{k} \rightarrow S \times I^{k}$ by setting $\psi(r, t)=(\theta r, t)$. Then for all $H \subseteq S \times I^{k}$ and $r \in R, H(\theta r)=\left\{t \mid t \in I^{k},(\theta r, t) \in H\right\}=\left\{t \mid t \in I^{k},(r, t) \in \psi^{-1} H\right\}=\left(\psi^{-1} H\right)(r)$. Also from the properties mentioned above for θ, it follows (by a simple Borel induction) that if $H \in \mathscr{B}(T)$, then $\psi^{-1}(H) \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{K}\right) \subseteq \mathscr{B}_{M}(X)$.

Set $\tilde{M}(H)=M\left(\psi^{-1} H\right)$ for $H \in \mathscr{B}(T)$; then \tilde{M} is a Baire measure on T. Moreover, for each $L \in \mathscr{B}(S), \tilde{M}\left(L \times I^{k}\right)=M\left(\psi^{-1}\left(L \times I^{k}\right)\right)=M\left[\theta^{-1} L \times I^{k}\right]=\lambda\left(\theta^{-1} L\right)=\lambda(L)$.

Now Theorem II applies to $(T, \mathscr{B}(T), \tilde{M})$, so that for each $s \in S$ there is a probability measure \tilde{m}_{s} on $\mathscr{B}\left(I^{k}\right)$ such that, for $H \in \mathscr{B}(T)$,
(i) $s \mapsto \tilde{m}_{s}(H(s))$ is Baire measurable in S, and
(ii) $\int_{S} \tilde{m}_{s}(H(s)) d \tilde{\lambda}(s)=\tilde{M}(H)$.

For $r \in R$ and $L \in \mathscr{B}(I)$, set $m_{r} L=\tilde{m}_{\theta r}(L)$. We show that, with this choice of m_{r}, Theorem I holds. First suppose $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right)$ and is of the form $\theta^{-1} H$, where $H \in \mathscr{B}(T)$. From the considerations above, for each $r, E(r)=H(\theta r) \in \mathscr{B}\left(I^{k}\right)$; and by definition of $m_{r}, m_{r} E(r)=\tilde{m}_{\theta r} H(\theta r)$. Thus if we set $\tilde{f}(s)=\tilde{m}_{s} H(s)$ and $f(r)=$ $m_{r} E(r)$ we have $f(r)=\tilde{f}(\theta r)$. Hence $m_{r} E(r)$ is $\mathscr{B}_{\lambda}(R)$-measurable in r, and

$$
\int_{R} m_{r} E(r) d \lambda(r)=\int_{S} \tilde{m}_{s}(H(s)) d \tilde{\lambda}(s)=\tilde{M}(H)=M\left(\psi^{-1} H\right)=M(E) .
$$

Finally, for each $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right)$, we can find a set $H \in \mathscr{B}(T)$ and a null set $N \subset R$ such that the symmetric difference $E \Delta \psi^{-1}(H) \subseteq N \times I$. For if E is of the form $A \times L$, where $A \in \mathscr{B}_{\lambda}(R), L \in \mathscr{B}\left(I^{k}\right)$, we take $H=S(a) \times L$ where a is the measure class of A, so that $\psi^{-1}(H)=\rho(a) \times L$; and $N=A \Delta \rho(a)$. The assertion carries over to all $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}\left(I^{k}\right)$ by Borel induction. But if E, H and N are related as above, then on $R-N, E(r)=\left(\psi^{-1} H\right)(r)$ and so $m_{r}\left(E_{r}\right)=m_{r}\left(\psi^{-1} H\right)(r)$. Therefore, since Theorem I holds for $\psi^{-1} H$, it holds for E, and the proof is now complete.

References

1. Bourbaki, N.: Éléments de mathématique. Livre VI, Intégration, Chapitre 6 ; Intégration vectorielle. Paris: Hermann 1959
2. Dieudonné, J.: Sur le théorème de Lebesgue-Nikodym III. Ann. Univ. Grenoble 23, 25-53 (1948)
3. Halmos, P. R.: On a theorem of Dieudonné. Proc. Acad. Sci. U.S.A. 35, 38-42 (1949)
4. Maharam, D.: On a theorem of von Neumann. Proc. Amer. Math. Soc. 9, 987-994 (1958)
5. Maharam, D.: Decompositions of measure algebras and spaces. Trans. Amer. Math. Soc. 69, 142-160 (1950)
6. Maharam, D.: On smoothing compact measure spaces by multiplication. Trans. Amer. Math. Soc. (To appear)
7. Valadier, M.: Désintégration d'une mesure sur un produit. C.R. Acad. Sci., Paris, 273, 33-35 (1973)
8. Valadier, M.: Séminaire d’Analyse convexe. Montpellier 1972, exposé no. 10
9. von Neumann, J.: Zur Operatorenmethode in der klassischen Mechanik. Ann. Math., 33, 587-642 (1932)

Dorothy Maharam
University of Rochester
Dept. of Math.
Rochester N.Y. 14627
USA

[^0]: * The author gratefully acknowledges support by the National Science Foundation.

[^1]: ${ }^{1}$ See $[6, \S 4]$, "A disintegration theorem". A proof can also be deduced without difficulty from Theorem $2 b$ of [5, p. 149], by an argument very similar to that used in $\S 6$ of the present paper.

