Strict Disintegration of Measures

Dorothy Maharam*

Let R be a compact Hausdorff space, I^k a product of closed unit intervals, M a Baire probability measure on $R \times I^k$, and λ the induced measure on R. Then M has a strict Baire disintegration over λ ; that is, for each $r \in R$, there is a Baire probability measure m_r on I^k such that, for each Baire set $E \subseteq R \times I^k$, $m_r\{t | (r, t) \in E\}$ defines a Baire measurable function on R, whose integral with respect to λ is M(E). This result generalizes to the case in which R is replaced by an arbitrary measure space.

1. Statement of the Theorems

Let R be an arbitrary set, $\mathscr{B}(R)$ a Borel field of subsets of R, and X the Cartesian product $R \times I^k$ where k is an arbitrary cardinal ≥ 1 , and I^k is the product of k copies of I = [0, 1]. We denote the σ -field of Baire sets in I^k by $\mathscr{B}(I^k)$, and the σ -field $\mathscr{B}(R) \times \mathscr{B}(I^k)$ in X, generated by cylinders in X with bases in $\mathscr{B}(R)$ or in $\mathscr{B}(I^k)$, by $\mathscr{B}(X)$. For arbitrary $E \subseteq X$ and $r \in R$, let $E(r) = \{t \mid t \in I^k, (r, t) \in E\}$ (so that the "r-section" of E is $\{r\} \times E(r)$). It is easy to see that if $E \in \mathscr{B}(X)$ then $E_r \in \mathscr{B}(I^k)$.

Let *M* be a probability measure on $\mathscr{B}(X)$, and λ the measure induced by *M* on $\mathscr{B}(R)$ [that is, if $H \in \mathscr{B}(R)$, $\lambda(H) = M(H \times I^k)$]. Let $\mathscr{B}_{\lambda}(R)$, $\mathscr{B}_M(X)$ be the respective completions of $\mathscr{B}(R)$ and of $\mathscr{B}(X)$, obtained by adjoining subsets of null sets. Clearly $\mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k) \subseteq \mathscr{B}_M(X)$, and if $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k)$, then $E(r) \in \mathscr{B}(I^k)$ for all $r \in R$.

Our object is to prove the following:

Theorem I. Under the conditions above, for each $r \in R$ there exists a Baire probability measure m_r on $\mathscr{B}(I^k)$ such that, for each $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k)$,

- (i) the map $r \mapsto m_r(E(r))$ is $\mathscr{B}_{\lambda}(R)$ -measurable, and
- (ii) $M(E) = \int_{R} m_r(E(r)) d\lambda(r).$

With respect to the whole field $\mathscr{B}_M(X)$, the following assertion follows easily from Theorem I:

Theorem I'. If $E \in \mathscr{B}_M(X)$, then for almost all $r \in R$ we have $E(r) \in \mathscr{B}_{m_r}(I^k)$, the completion of $\mathscr{B}(I^k)$ with respect to m_r ; $m_r(E(r))$ is a λ -measurable function of r; and $M(E) = \int_R m_r(E(r)) d\lambda(r)$.

Note that we can replace $X = R \times I^k$ by any of its $\mathscr{B}(X)$ -measurable subsets S in Theorem I, if we allow $m_r(S(r))$ to take values ≤ 1 . For if M is defined on the $\mathscr{B}(X)$ -measurable subsets of S, we extend M to X by setting M(S-X)=0, apply

^{*} The author gratefully acknowledges support by the National Science Foundation.

D. Maharam

Theorem 1, and re-define m_r on a null set of r's to ensure that $m_r(S(r))=0$ when $S(r)=\emptyset$.

Perhaps the most significant special case of Theorem I is that in which R is a compact Hausdorff space and $\mathscr{B}(R)$ is the field of Baire sets in R. Then X is also compact Hausdorff, and $\mathscr{B}(X) = \mathscr{B}(R) \times \mathscr{B}(I^k)$ is the field of Baire sets in X. Theorem I reduces to the following:

Theorem II. Let R be a compact Hausdorff space, k a cardinal ≥ 1 , M a Baire probability measure on $\mathbb{R} \times I^k$, and λ the Baire measure induced on $\mathscr{B}(\mathbb{R})$ by M. Then for each $r \in \mathbb{R}$ there exists a Baire probability measure m_r on $\mathscr{B}(I^k)$ such that, for each $U \in \mathscr{B}(\mathbb{R} \times I^k)$,

(1) the function assigning to r the value $m_r(U(r))$ is Baire measurable on R, and (2) $\int_{\Gamma} m_r(U(r)) d\lambda(r) = M(U)$.

Our strategy is to prove Theorem II, and then to deduce Theorem I from it.

Comparison with some Previous Theorems. Disintegration theorems of this type go back to von Neumann [9], Halmos, and Dieudonné (see [2, Th. 5] and [3]); a sharper form (essentially producing a product decomposition) is in [5, 5]Th. 5]. Two standard formulations (substantially equivalent to each other and to Halmos's theorem as revised in [3]) are given by Bourbaki $[1, \S 3, Nos. 1 \text{ and } 3]$. In all these theorems, in contrast to Theorem I, the underlying spaces are required to have countable bases. Thus, whereas Bourbaki requires the spaces R and X (there called B and T) to be locally compact and second countable, we impose no cardinality conditions on them. On the other hand, where Bourbaki allows an arbitrary measurable map p from X to R to be given, we require X to be of a special product form and p to be the projection. The measures in Bourbaki are σ -finite, in Theorem I are finite; but that is merely a matter of formulation. The conclusions of Bourbaki's theorems and of Theorem I are essentially the same, except that in the former the measures m_r (there called λ_b) are essentially unique. I do not know whether uniqueness holds in the present Theorem I; this is one of the complications arising from the lack of a countable base.

A proof of Theorem I for the special case k=1 (and thus for $k \leq \aleph_0$) is outlined in [6]; this case furnishes the starting-point for the present proof¹.

After the present paper was written, I learned that Valadier [7, 8] and Graf (unpublished) had independently proved a sharper and more general form of Theorem I, in which I^k is replaced by an arbitrary Hausdorff space U, and "Baire" by "Borel" throughout. (The latter change is the significant one; by itself, the generalization from I^k to U could be accomplished in a standard way, by imbedding U suitably in some I^k .) Nevertheless it is hoped that the present proof may be of interest, since the method is entirely different from that of Valadier and Graf; in particular, the proof of Theorem II makes no use of lifting theory.

2. Further Notation

We regard I^k as $I^A = \prod \{I_a | a \in A\}$, where the index set A has cardinal k, and each $I_a = [0, 1] = I$. We shall generally use r to denote a point of R; x for a point

¹ See [6, §4], "A disintegration theorem". A proof can also be deduced without difficulty from Theorem 2b of [5, p. 149], by an argument very similar to that used in §6 of the present paper.

of I^A ; *B*, *C* for non-empty subsets of *A*; *z* for a point of I^C ; *U*, *V*, *W* for subsets of $R \times I^A$, $R \times I^B$, $R \times I^C$ respectively, and *F*, *G*, *H* for subsets of I^A , I^B , I^C respectively. The projection map from $R \times I^A$ to $R \times I^B$ ($B \subseteq A$) is denoted by p_B , and the projection from I^A to I^B by π_B (so that $p_B = i_R \times \pi_B$). We use M^B to denote the probability measure induced on $R \times I^B$ by *M*; that is, $M^B(V) = M(p_B^{-1}V) =$ $M(V \times I^{A-B})$ if $V \in \mathscr{B}(R \times I^B)$. When *B* is a singleton, say $\{b\}$, we may write $M^{(b)}$ as M^b . We denote $(p_B)^{-1}(\mathscr{B}(R \times I^B)) = \{V \times I^{A-B} | V \in \mathscr{B}(R \times I^B)\}$ by $\mathscr{B}(B, R \times I^A)$, and $(\pi_B)^{-1}(\mathscr{B}(I^B)) = \{G \times I^{A-B} | G \in \mathscr{B}(I^B)\}$ by $\mathscr{B}(B, I^A)$. Note that if $\emptyset \neq C \subseteq B \subseteq A$, then $\mathscr{B}(C, I^A) \subseteq \mathscr{B}(B, I^A) \subseteq \mathscr{B}(A, I^A) = \mathscr{B}(I^A)$, and similarly with I^A replaced by $R \times I^A$.

3. Lemmas

First, a definition. Suppose X is any topological space, m is a finite measure on X, and \mathscr{C} is any σ -field of m-measurable sets in X. We say that m is " \mathscr{C} -regular" if, for each $E \in \mathscr{C}$, $m(E) = \inf \{m(0) | 0 \in \mathscr{C}, 0 \supseteq E, 0 \text{ open in } X \}$.

Now suppose further that a continuous surjection $f: X \to X'$ is given, where X' is a topological space and m' is a finite Baire measure on X' (and so necessarily regular). Let $\mathscr{B}(X')$ be the field of Baire sets in X', and $\mathscr{C} = f^{-1} \{\mathscr{B}(X')\}$. Define a measure m on \mathscr{C} by setting $m(f^{-1}E') = m'(E')$ for $E' \in \mathscr{B}(X')$.

Lemma 1. Under the assumptions above, m is C-regular.

The verification is routine and is omitted.

Corollary. Under the same assumptions, every finite measure on *C* is *C*-regular.

For every such measure m on \mathscr{C} clearly arises from a measure m' on X' as above.

Now apply this Lemma and Corollary to $X = I^A$, $X' = I^B$ (with $\emptyset \neq B \subset A$), and $f = \pi_B$, and we get

Lemma 2. Every probability measure on $\mathscr{B}(B, I^A)$ is $\mathscr{B}(B, I^A)$ -regular.

4. The Inductive System

Let \mathscr{Z} be the family of all ordered pairs (C, m) where C is a non-empty subset of A and m is a real-valued function on $R \times \mathscr{B}(C, I^A)$ such that

(1) for each $r \in R$ the function m_r defined by

 $m_r(F) = m(r, F), \quad F \in \mathscr{B}(C, I^A)$

is a probability measure on $\mathscr{B}(C, I^A)$,

(2) for each $U \in \mathscr{B}(C, R \times I^A)$, $m_r(U(r))$ is a Baire measurable function of r on R, and $M(U) = \int_R m_r(U(r)) d\lambda(r)$.

Note that these conditions on *m* can be re-phrased in terms of $\mathscr{B}(I^{C})$ instead of $\mathscr{B}(C, I^{A})$ as follows: Put $\mu_{r}^{C}(H) = m_{r}(\pi_{C}^{-1}(H))$ $(H \in \mathscr{B}(I^{C}))$. Then

(a) μ_r^c is, for each $r \in R$, a probability measure on $\mathscr{B}(I^c)$,

(b) if $W \in \mathscr{B}(R \times I^{C})$ then $\mu_{r}^{C}(W(r))$ is a Baire measurable function of r on R, and $M^{C}(W) = \int_{R} \mu_{r}^{C}(W(r)) d\lambda(r)$.

D. Maharam

In fact, (a) and (b) are immediate consequences of (1) and (2); conversely, if for each $r \in R$ we have a measure μ_r^C satisfying (a) and (b), we have only to define m by $m(r, F) = \mu_r^C(\pi_c(F))$ ($F \in \mathscr{B}(C, I^A), r \in R$), to recover (1) and (2).

On \mathscr{Z} , define a partial ordering as follows: $(C, m) \leq (B, m')$ providing

(i) $\emptyset \neq C \subseteq B \subseteq A$,

(ii) for each $r \in R$, the restriction $m'_r|_{\mathscr{B}(C, I^A)} = m_r$. This relation is easily verified to be transitive.

Our object is, of course, to apply Zorn's Lemma. First, note that $\mathscr{Z} \neq \emptyset$. For choose $a \in A$ and choose $C = \{a\}$; M induces a Baire probability measure M^a on $R \times I_a$, and M^a induces the same measure λ on $\mathscr{B}(R)$ as M does. Now the theorem of §4 of [6] (the case k=1 of the present theorem) applies, giving for each $r \in R$ a Baire measure μ_r^a on I_a satisfying conditions (a) and (b) above. Thus $(\{a\}, m) \in \mathscr{Z}$, where $m(r, F) = \mu_r^a(\pi_a F)$ for $r \in R$, $F \in \mathscr{B}(\{a\}, I^A)$.

Next we show that \mathscr{Z} is inductive in the partial ordering. Let \mathscr{L} be a nonempty totally ordered subset of \mathscr{Z} . Note that if (C, m) and (C, m') are both in \mathscr{L} , then m = m' from (ii) above. Put $\mathscr{C} \equiv \{C \mid (C, m) \in \mathscr{L}\}$; $C^* = \bigcup \mathscr{C}$, a non-empty subset of A; and $\mathscr{F} = \bigcup \{\mathscr{B}(C, I^A), C \in \mathscr{C}\}$. It is easily seen that \mathscr{F} is a finitely additive sub-field of $\mathscr{B}(C^*, I^A)$. Moreover, the σ -field generated by \mathscr{F} is all of $\mathscr{B}(C^*, I^A)$, since the sets of the form $E \times I^{A-\{a\}}$, where $E \in \mathscr{B}(I_a)$ and $a \in C^*$, generate $\mathscr{B}(C^*, I^A)$ and are in \mathscr{F} . It follows from condition (ii) on \mathscr{Z} that for each $r \in R$, the measures m_r on the various fields $\mathscr{B}(C, I^A)$, where $(C, m) \in \mathscr{L}$, are mutually consistent; thus they combine to give a finitely additive measure m'_r on \mathscr{F} . We show that (keeping r fixed) m'_r has an extension (necessarily unique) to a countably additive measure m_r^* on $\mathscr{B}(C^*, I^A)$. To do this, it is enough to show that if F_0, F_1 , $F_2, \ldots \in \mathscr{F}, F_0 = \bigcup_{n=1}^{\infty} F_n$, and F_1, F_2, \ldots are pairwise disjoint, then $m_r(F_0) \leq \sum_{i=1}^{\infty} m'_r(F_n)$; for the reverse inequality is trivial.

Now $F_n \in \mathscr{B}(C_n, I^A)$ for some $C_n \in \mathscr{C}(n=0, 1, 2, ...)$; let m^n be the corresponding measure function, so that $(C_n, m^n) \in \mathscr{L}$. From Lemma 2, $(m^n)_r$ is $\mathscr{B}(C_n, I^A)$ -regular; hence, given $\varepsilon > 0$, there exist open sets O_n in $\mathscr{B}(C_n, I^A)$ such that $O_n \supset F_n$ and $(m^n)_r(O_n) < (m^n)_r(F_n) + \varepsilon/2^{n+1}$. Thus $m'_r(O_n) \le m'_r(F_n) + \varepsilon/2^{n+1}$. Similarly, there exists a compact $K_0 \in \mathscr{B}(C_0, I^A)$ such that $K_0 \subset F_0 \subset \bigcup_1^\infty O_n$ and $m'_r(K_0) \ge m'_r(F_0) - \varepsilon/2$. From compactness, $K \subset \bigcup_1^N O_n$ for some N. Therefore $m'_r(K_0) \le \sum_1^N m'_r(O_n)$, and the desired inequality follows.

Now we define m^* by $m^*(r, F) = m_r^*(F)$ for $F \in \mathscr{B}(C^*, I^A)$. We shall show that $(C^*, m^*) \in \mathscr{Z}$; since $(C, m) \leq (C^*, m^*)$ for each $(C, m) \in \mathscr{L}$, (C^*, m^*) will then be the desired upper bound for \mathscr{L} in \mathscr{Z} .

We must check that (C^*, m^*) satisfies (1) and (2) above. Condition (1) is clear. To establish (2), let \mathscr{U} be the family of all sets $U \in \mathscr{B}(C^*, R \times I^A)$ for which the conclusions of (2) are true with (C, m) replaced by (C^*, m^*) . We must show that \mathscr{U} contains, and so is equal to, $\mathscr{B}(C^*, R \times I^A)$.

Put $\mathscr{H} = \bigcup \{\mathscr{B}(C, R \times I^A) \mid C \in \mathscr{C}\}$. It is easy to see that $\mathscr{H} \subseteq \mathscr{U}$, that \mathscr{H} is a finitely additive field of sets, and that the σ -field generated by \mathscr{H} is $\mathscr{B}(C^*, R \times I^A)$. The implication $U \in \mathscr{U} \Rightarrow R \times I^A - U \in \mathscr{U}$ is trivial, and a routine calculation shows that if $U_1 \subseteq U_2 \subseteq \cdots$ and $U_n \in \mathscr{U}(n=1,2,\ldots)$ then $\bigcup_n U_n \in \mathscr{U}$. Thus \mathscr{U} is a monotone class containing \mathscr{H} ; and it follows immediately from the statements above that $\mathscr{U} \supseteq \mathscr{B}(C^*, R \times I^A)$, as required. Hence $(C^*, m^*) \in \mathscr{U}$.

5. Proof of Theorem II Concluded

By Zorn's Lemma, \mathscr{Z} has a maximal element, say (C, m). We shall show that C = A, from which the theorem follows. Suppose, then, that $a \in A - C$; we derive a contradiction. Put $B = C \cup \{a\}$; thus $R \times I^B = (R \times I^C) \times I_a = R' \times I$. Apply the known case k = 1 of the present theorem to the measure M^B on $R' \times I$; note that the induced measure on R' (corresponding to " λ ") is here M^C . We obtain, for each $(r, z) \in R \times I^C$, a Baire probability measure $v_{r,z}$ on $I_a = I$, such that for each $V \in \mathscr{B}(R \times I^B)$, $v_{r,z}(V(r, z))$ is a Baire measurable function of (r, z), and

$$M^{\mathcal{B}}(V) = \int_{R \times I^{C}} v_{r, z} (V(r, z)) dM^{C}(r, z).$$

Now for arbitrary $F \in \mathscr{B}(B, I^A)$ we note that $F = G \times I^{A-B}$ where $G = \pi_B F \in \mathscr{B}(I^B)$, and define, for each $r \in R$, $m'_r(F) = \int_{I^C} v_{r,z} G(z) d\mu_r^C(z)$, where $G = \pi_B F \subseteq I^B = I^C \times I_a$, and G(z) means $\{t \mid t \in I_a, (z, t) \in G\}$. We must check that the integrand is Baire measurable on I^C (for fixed $r \in R$). But from the definition of $v_{r,z}$ above, $v_{r,z}(V(r, z))$ is Baire measurable in (r, z), and so in z for fixed r, for all $V \in \mathscr{B}(R \times I^B)$; now apply this with $V = R \times G$.

We put $m'(r, F) = m'_r(F)$ $(F \in \mathscr{B}(B, I^A))$ and prove that $(B, m') \in \mathscr{Z}$. This is most conveniently done in terms of the measures μ_r^B where (as in § 4)

$$\mu_r^{\mathcal{B}}(G) = m_r'(G \times I^{A-B}) = \int_{I^C} v_{r,z} G(z) d\mu_r^C(z), \quad \text{for } G \in \mathscr{B}(I^B) \text{ and } r \in R.$$

We must show that conditions (a) and (b) of §4 hold. Condition (a) follows easily from the definition and the above remarks on Baire measurability. To see that (b) holds, suppose $V \in \mathscr{B}(R \times I^B)$; we must show that $M^B(V) = \int_R \mu_r^B(V(r)) d\lambda(r)$ (first showing that the integrand is Baire measurable). Now, $\mu_r^B(V(r)) = \int_{I^C} v_{r,z} V(r, z) d\mu_r^C(z)$. First we show that for an arbitrary bounded Baire measurable function f on $R \times I^C$,

$$\int_{R \times I^C} f(r, z) dM^C(r, z) = \int_{R} \left\{ \int_{I^C} f(r, z) d\mu_r^C(z) \right\} d\lambda(r),$$

and that the inner integral on the right is a Baire measurable function of r. This follows by a routine argument from the special case in which f is the characteristic function of a set $W \in \mathscr{B}(R \times I^{c})$. To prove this special case, define $U = W \times I^{A-C}$; then $U \in \mathscr{B}(C, R \times I^{A})$, and $M^{C}(W) = M(U)$. Because $(C, m) \in \mathscr{Z}$, condition (2) now gives

$$M^{C}(W) = \int_{R} m_{r} (W(r) \times I^{A-C}) d\lambda(r) = \int_{R} \mu_{R}^{C} (W(r)) d\lambda(r),$$

as desired.

To derive (b), apply the result just established to $f(r, z) = v_{r,z}(V(r, z))$; we obtain

$$\int_{R\times I^C} v_{r,z} (V(r,z)) dM^C(r,z) = \int_{R} \left\{ \int_{I^C} v_{r,z} (V(r,z)) d\mu_r^C(z) \right\} d\lambda(r),$$

that is (since (V(r))(z) = V(r, z)),

$$M^{B}(V) = \int_{R} \mu_{r}^{B}(V(r)) d\lambda(r),$$

completing the proof of (b).

D. Maharam

Thus $(B, m') \in \mathscr{D}$. We claim that $(C, m) \leq (B, m')$. Since $C \subseteq B$, we need only check that, for each $r \in R$ and $F \in \mathscr{B}(C, I^A)$, $m'_r(F) = m_r(F)$. Now $F = H \times I^{A-C}$, where $H = \pi_C F \in \mathscr{B}(I^C)$, and by definition $m'_r(F) = \int_{I^C} v_{r,z} (H \times I_a)(z) d\mu_r^C(z)$. The integrand here is just the characteristic function of H, so $m'_r(F) = \mu_r^C(H) = m_r(H \times I^{A-C}) = m_r(F)$, as required.

This contradicts the maximality of (C, m). Thus C = A, and Theorem II follows.

6. Proof of Theorem I

We now deduce Theorem I from Theorem II, and return to the notation of § 1. R is now an arbitrary set (with no topology), λ is the measure induced on the Borel field $\mathscr{B}(R)$ in R, and $\mathscr{B}_{\lambda}(R)$ is the completion of $\mathscr{B}(R)$ with respect to the measure λ . Let \mathscr{M} be the algebra of measurable modulo null sets of $\mathscr{B}_{\lambda}(R)$, and S the representation space of \mathscr{M} equipped with the usual (compact, extremally disconnected) topology, and the usual measure, which we call $\tilde{\lambda}$. That is, for $a \in \mathscr{M}$, we denote the open-closed set corresponding to a by S(a), set $\tilde{\lambda}(S(a)) = \lambda(a)$, and extend $\tilde{\lambda}$ to the field $\mathscr{B}(S)$ of Baire sets in S. Let $\rho : \mathscr{M} \to \mathscr{B}_{\lambda}(R)$ be a lifting of \mathscr{M} [4]. It is easy to verify that, for each $r \in R$, the family $\{a \mid a \in \mathscr{M}, r \in \rho(a)\}$ is an ultrafilter in \mathscr{M} , and so a point of S. Thus if we define, for $r \in R$,

$$\theta(r) = \bigcap \{ S(a) \mid a \in \mathcal{M}, r \in \rho(a) \},\$$

 θ is a well defined map of R into S. It is easy to see that, for $a \in \mathcal{M}$, $\theta^{-1}S(a) = \rho(a)$, and so $\tilde{\lambda}(S(a)) = \lambda(\theta^{-1}(S(a)))$; and it follows at once that, for all $H \in \mathcal{B}(S)$, $\theta^{-1}(H) \in \mathcal{B}_{\lambda}(R)$ and $\lambda(\theta^{-1}H) = \tilde{\lambda}(H)$. Hence if \tilde{f} is $\mathcal{B}(S)$ -measurable in S, and if f is the function on R such that $f(r) = \tilde{f}(\theta r)$, then f is $\mathcal{B}_{\lambda}(R)$ -measurable and

$$\int_{R} f(r) d\lambda(r) = \int_{S} \tilde{f}(S) d\tilde{\lambda}(s).$$

Now let $T = S \times I^k$ (a compact Hausdorff space) and let $\mathscr{B}(T)$ be the σ -field of Baire sets in T, so that $\mathscr{B}(T)$ is generated by sets of the form $S(a) \times L$, where $a \in \mathscr{M}, L \in \mathscr{B}(I^k)$. Define $\psi \colon R \times I^k \to S \times I^k$ by setting $\psi(r, t) = (\theta r, t)$. Then for all $H \subseteq S \times I^k$ and $r \in R, H(\theta r) = \{t | t \in I^k, (\theta r, t) \in H\} = \{t | t \in I^k, (r, t) \in \psi^{-1}H\} = (\psi^{-1}H)(r)$. Also from the properties mentioned above for θ , it follows (by a simple Borel induction) that if $H \in \mathscr{B}(T)$, then $\psi^{-1}(H) \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^K) \subseteq \mathscr{B}_M(X)$.

Set $\tilde{M}(H) = M(\psi^{-1}H)$ for $H \in \mathscr{B}(T)$; then \tilde{M} is a Baire measure on T. Moreover, for each $L \in \mathscr{B}(S)$, $\tilde{M}(L \times I^k) = M(\psi^{-1}(L \times I^k)) = M[\theta^{-1}L \times I^k] = \lambda(\theta^{-1}L) = \lambda(L)$.

Now Theorem II applies to $(T, \mathscr{B}(T), \tilde{M})$, so that for each $s \in S$ there is a probability measure \tilde{m}_s on $\mathscr{B}(I^k)$ such that, for $H \in \mathscr{B}(T)$,

(i) $s \mapsto \tilde{m}_s(H(s))$ is Baire measurable in S, and

(ii)
$$\int_{S} \tilde{m}_{s}(H(s)) d\tilde{\lambda}(s) = \tilde{M}(H).$$

For $r \in R$ and $L \in \mathscr{B}(I)$, set $m_r L = \tilde{m}_{\theta r}(L)$. We show that, with this choice of m_r , Theorem I holds. First suppose $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k)$ and is of the form $\theta^{-1}H$, where $H \in \mathscr{B}(T)$. From the considerations above, for each r, $E(r) = H(\theta r) \in \mathscr{B}(I^k)$; and by definition of m_r , $m_r E(r) = \tilde{m}_{\theta r} H(\theta r)$. Thus if we set $\tilde{f}(s) = \tilde{m}_s H(s)$ and $f(r) = m_r E(r)$ we have $f(r) = \tilde{f}(\theta r)$. Hence $m_r E(r)$ is $\mathscr{B}_{\lambda}(R)$ -measurable in r, and

$$\int_{R} m_r E(r) d\lambda(r) = \int_{S} \tilde{m}_s(H(s)) d\tilde{\lambda}(s) = \tilde{M}(H) = M(\psi^{-1}H) = M(E).$$

Finally, for each $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k)$, we can find a set $H \in \mathscr{B}(T)$ and a null set $N \subset R$ such that the symmetric difference $E \Delta \psi^{-1}(H) \subseteq N \times I$. For if E is of the form $A \times L$, where $A \in \mathscr{B}_{\lambda}(R)$, $L \in \mathscr{B}(I^k)$, we take $H = S(a) \times L$ where a is the measure class of A, so that $\psi^{-1}(H) = \rho(a) \times L$; and $N = A \Delta \rho(a)$. The assertion carries over to all $E \in \mathscr{B}_{\lambda}(R) \times \mathscr{B}(I^k)$ by Borel induction. But if E, H and N are related as above, then on R - N, $E(r) = (\psi^{-1}H)(r)$ and so $m_r(E_r) = m_r(\psi^{-1}H)(r)$. Therefore, since Theorem I holds for $\psi^{-1}H$, it holds for E, and the proof is now complete.

References

- 1. Bourbaki, N.: Éléments de mathématique. Livre VI, Intégration, Chapitre 6; Intégration vectorielle. Paris: Hermann 1959
- 2. Dieudonné, J.: Sur le théorème de Lebesgue-Nikodym III. Ann. Univ. Grenoble 23, 25-53 (1948)
- 3. Halmos, P.R.: On a theorem of Dieudonné. Proc. Acad. Sci. U.S.A. 35, 38-42 (1949)
- 4. Maharam, D.: On a theorem of von Neumann. Proc. Amer. Math. Soc. 9, 987-994 (1958)
- 5. Maharam, D.: Decompositions of measure algebras and spaces. Trans. Amer. Math. Soc. 69, 142-160 (1950)
- 6. Maharam, D.: On smoothing compact measure spaces by multiplication. Trans. Amer. Math. Soc. (To appear)
- 7. Valadier, M.: Désintégration d'une mesure sur un produit. C.R. Acad. Sci., Paris, 273, 33-35 (1973)
- 8. Valadier, M.: Séminaire d'Analyse convexe. Montpellier 1972, exposé no. 10
- von Neumann, J.: Zur Operatorenmethode in der klassischen Mechanik. Ann. Math., 33, 587-642 (1932)

Dorothy Maharam University of Rochester Dept. of Math. Rochester N.Y. 14627 USA

(Received April 29, 1974; in revised form January 31, 1975)