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1. Introduction 

P. L~vr  [4, p. 509] proved the following theorem in an elementary way aside 
of technical improvements by G. BAXTER [1], F. KOZIN [2], and K. K~IOKWB~G 
[3, p. 172]: 

Theorem A. Let (Zt)o~t<=l be a Gaussian process with stationary independent 
increments and with zo ~- 0 and Vz l  = 1. Let parameter points 0 ~- tno < tnl < 
< "'" < tnkn = 1 be given, such that there exists a sequence (yn) o /numbers  with 
the properties: 

o o  

(1) y n > 0 ,  lim(~n (~n) ~- 0, ~ n l  < c~ 
n - ->  oo  ~n = 1 

/or ~n : = m a x  { ( t . i  - t . t -1 )  : i = 1 . . . . .  k . } .  
Then with probability one it holds that 

k, 
(2) lim ~(ztn~--zt  .... ) 2 = 1 .  

n - - - - > - o o  i ~ l 

Recently Kozi~ 's  paper [2] has again be called [6, p. 103] "an extension (of the 
results of L~ v r  and BAX~nl~) to processes with stationary independent increments". 
Hence it may be worthwhile to show that  this is not the case. Therefore we shall 
prove in section 3 the following characterization of the normal distribution. 
Condition (c) is included, since it is explicitly used in the proof of Theorem A. 

Theorem 1. Let z be a random variable with infinitely divisible distribution and 
characteristic /unction E exp i u z  = exp~o(u). Then the /ollowing conditions are 
equivalent: 

(a) z is normally distributed, 
(b) d2ny~(u)/du2n[u=o ~- 0 for some n > 1, 
(e) E ( z  --  Ez )  4 -= 3(Vz) z. 

KOZIN'S assumption of Theorem A reads as [2, p. 961] "Let  (Zt)o<=t<l be a process 
with stationary independent increments having characteristic function exp t~p (u). 
Let Ez4t exist and d4y~ (u)/du4[u=o = 0". Hence the above theorem implies that  
KozIN'S assumption is only satisfied in the Gaussian case. 

2. A Lemma 

The assumption of Theorem 1 implies the L6vy-Chintchin formula (see for 
example [5]) 

+oo( _ /ux_~ l + x  9- 
(3) y , ( u ) = i u : r  \e i u x - 1  l + x  2] x2 dG(x) ,  

- -  o o  



A Characterization of the Normal Distribution 245 

where G is monotone  non-decreas ing cont inuous  on the  r ight  and  bounded,  ~ is a 
cons tan t  and  the  value  of  the  i n t eg rand  a t  x = 0, defined b y  cont inu i ty ,  is 
- -  u2/2. Condi t ion  (a) is equ iva len t  to the  following condi t ion:  G(x) is cons tan t  
except  poss ib ly  a t  the  po in t  x = 0 and  G ( +  0) - -  G ( - -  0) = Vz. We denote  b y  
~(n) (u) the  n - th  de r iva t ive  of  yJ and  b y  g ~ 0  (u) i ts  n - th  symmet r i c  difference. 

Lemma.  Let the L&y-Chintchin /ormula (3) be given and consider the conditions 

rxl dG( ) < co, 

(fi) [w<n)(0)] < ~ .  

Then 1. For each n > 1 condition (:r implies that/or m < n the m-th di~erenti- 
ation can be interchanged with the integration in (3). 

2. For each n > 1 condition (~) implies (fi). 
3. For even n > 1 condition (fl) implies (~). 

Proo/. 1. F o r  m > 2 we ob ta in  for the  m-th  symmet r i c  difference 

+ o o  
zJ ~W(U) = feiuz(ei~x--e-i"z)m(l'" ~-x2)xm-2dG(x) (4) 

-~o 2hx 
4 - 0 0  m 

: im f e,UX/sinh x~ 
_ ~  \-~-x ] (xm + x~n-2) dG(x)" 

Hence  condi t ion  (~) for n > m implies  b y  the domina t ed  convergence theorem,  
t h a t  the  l imi t  as h -+ 0 can be in te rchanged  wi th  the  integral ,  t h a t  is 

+ c r  

(5) ~f(m)(u) = i m  fer m + xm-2)dG(x) for m > 2.  
- - o o  

The proof  for the  case m ~ 1 runs  s imi lar ly  and  thus  asser t ion 1 holds. 
2. P u t  u = 0 and  n = m > 2 in (5). Asser t ion  2 follows for n > 2. The proof  

for the  case n = 1 is s imilar .  
3. P u t  u = 0 and  n ---- m even in (4). Condi t ion (fi) impl ies  

[sinhx t n (xn+x'-2) dG(x) ~ [sinhxln ]-~k hx ] ! _ \ hx ] (xn~xn-2)dG(x)  [, 

= + 1 

for 0 < h ~ h0 for some h0 > 0. Hence  the monotone  convergence theorem 
implies  for each k > 0 

+ k  

f (x n ~- xn-2)dG(x) g [ ~v(n)(0)] ~- 1 

and  thus  le t t ing  k --~ r condi t ion  (~). 
R e m a r k .  The equivalence of  (~) and  (fl) for n = 2 is well known. See for 

example  Lo]~vE [5, p. 299]. 

3. Proof of Theorem I 

A t  first we prove  t h a t  (b) implies  (a): Condi t ion (b) implies  b y  the L e m m a  
formula  (5) for u -~ 0 and  m = 2n  > 2, t h a t  is 

+ ~  

f (x 2n + x2n-2)dG(x) = O. 
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Hence G (x) is constant  except possibly at  the point  x -~ O, tha t  is, z is normally 
distributed. This proves tha t  (b) implies (a). Secondly it is well known tha t  con- 
dit ion (a) implies (e). 

Finally we prove tha t  (c) implies (b): Wi thou t  loss of  generali ty we can assume 
tha t  E z  ---- O, since ~0" (u) is independent  of  E z .  Hence it is easily seen tha t  
E z  ~ = - -  ~o"(0) and E z  4 -~ 3(~"(0) )  2 ~- ~o(4)(0) --~ 3(Ez2) 2 -{- ~0(4)(0). Hence 
condition (c) for the case E z  - :  0 implies ~(4)(0) : 0, tha t  is condition (b). This 
proves the theorem. 
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